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Abstract

We give a proof of a Spectral Property related to the description of the singularity formation for the L2 critical nonlinear Schrödinger equation

iut +1u + u|u|
4
N = 0 in dimensions N = 2, 3, 4.

Assuming this property, the rigorous mathematical analysis developed in a recent series of papers by Merle and Raphaël provides a complete
description of the collapse dynamics for a suitable class of initial data. In particular, this implies in dimension N = 2 the existence of a large class

of solutions blowing up with the log–log speed |u(t)|H1 ∼

√
log | log(T −t)

T −t where T > 0 is the blow up time.
This Spectral Property is equivalent to the coercivity of some Schrödinger type operators. An analytic proof is given in [F. Merle, P. Raphaël,

Blow up dynamic and upper bound on the blow up rate for critical nonlinear Schrödinger equation, Ann. of Math. 161 (1) (2005) 157–222] in
dimension N = 1 and in this paper, we give a computer assisted proof in dimensions N = 2, 3, 4. We propose in particular a rigorous mathematical
frame to reduce the check of this type of coercivity property to accessible and robust numerical results.
c© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

1.1. Setting of the problem

This paper is devoted to the proof of a Spectral Property
which is at the heart of the description of the singularity
formation for the L2 critical nonlinear Schrödinger equation

(NLS)

{
iut = −1u − |u|

4
N u, (t, x) ∈ [0, T )× RN

u(0, x) = u0(x), u0 : RN
→ C

(1)

with u0 ∈ H1
= H1(RN ) in dimension N ≥ 1. Let us

briefly recall the main known facts about (1) and refer to [14]
and references therein for a more complete introduction to the
problem.
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From a result of Ginibre and Velo [7], (1) is locally well-
posed in H1 and thus, for u0 ∈ H1, there exists 0 < T ≤

+∞ such that u(t) ∈ C([0, T ), H1) and either T = +∞,
and we say the solution is global, or T < +∞ and then
lim supt↑T |∇u(t)|L2 = +∞, and we say the solution blows
up in finite time.

Eq. (1) is an infinite dimensional Hamiltonian system with
the following conservation laws in the energy space H1:

L2-norm:
∫

|u(t, x)|2 =

∫
|u0(x)|

2
;

Energy: E(u(t, x)) =
1
2

∫
|∇u(t, x)|2

−
1

2 +
4
N

∫
|u(t, x)|2+

4
N = E(u0);

Momentum: Im
(∫

∇uu(t, x)

)
= Im

(∫
∇u0u0(x)

)
.
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It is classical from the conservation of the energy and the
L2-norm that the power nonlinearity in (1) is the smallest
one for which blow up may occur. Indeed, recall the
Gagliardo–Nirenberg inequality:∫

|u|
p+1

≤ C

(∫
|u|

2
) p+1

2 −αp
(∫

|∇u|
2
)αp

with αp =
N (p − 1)

4
;

then for p < 1 +
4
N , αp < 1 and thus the conservation of

the energy and the L2 norm imply a uniform bound on the H1

norm of the solution which is thus global and bounded from the
Cauchy theory; see [7].

Eq. (1) admits a number of symmetries in the energy space
H1: if u(t, x) is a solution to (1) then ∀(λ0, t0, x0, β0, γ0) ∈

R+
∗ × R × RN

× RN
× R, so is

v(t, x) = λ
N
2

0 u(t + t0, λ0x + x0 − β0t)ei
β0
2 ·(x−

β0
2 t)eiγ0 .

A last symmetry is not in the energy space H1 but in the virial
space Σ , the pseudo-conformal transformation: if u(t, x) solves
(1), then so does

v(t, x) =
1

|t |
N
2

u

(
1
t
,

x

t

)
ei |x |

2
4t .

Special solutions play a fundamental role for the description of
the dynamics of (1). They are the so-called solitary waves of
the form u(t, x) = eiωt Wω(x), ω > 0, where Wω solves

1Wω + Wω|Wω|
4
N = ωWω. (2)

Eq. (2) is a standard nonlinear elliptic equation, and from [1,6,
8], there is a unique positive solution up to translation Qω(x).
Qω is in addition radially symmetric. Letting Q = Qω=1,

then Qω(x) = ω
N
4 Q(ω

1
2 x) from scaling property. Note that

in dimension N = 1, the Q equation is explicitly integrable
and

Q(x) =

(
3

ch2(2x)

) 1
4

. (3)

For |u0|L2 < |Q|L2 , the solution is global in H1

from the conservation of the energy, the L2-norm and the
Gagliardo–Nirenberg inequality as exhibited by Weinstein
in [26]:

∀u ∈ H1, E(u) ≥
1
2

(∫
|∇u|

2
)1 −

(∫
|u|

2∫
Q2

) 2
N
 .

In addition, this condition is sharp: for |u0|L2 ≥ |Q|L2 , blow
up may occur. Indeed, the pseudo-conformal transformation
applied to the stationary solution eit Q(x) yields an explicit
solution

S(t, x) =
1

|t |
N
2

Q
( x

t

)
e−i |x |

2
4t +

i
t

which blows up at T = 0 with |S(t)|L2 = |Q|L2 . Note that the
blow up speed for S(t) is:

|∇S(t)|L2 ∼
1
|t |
.

Moreover, from [13], S(t) is the unique minimal mass finite
time blow up solution up to the symmetries.

Most results concerning the blow up dynamics of (1) now
concern the perturbative situation when

u0 ∈ Bα∗ =

{
u0 ∈ H1 with

∫
Q2

≤

∫
|u0|

2 <

∫
Q2

+ α∗

}
,

for some small constant α∗ > 0. In this setting, the variational
characterization of the ground state Q as a blow up profile
implies that finite time blow up solutions to (1) admit near the
blow up time a geometrical decomposition

u(t, x) =
1

λ(t)
N
2

(Q + ε)

(
t,

x − x(t)

λ(t)

)
eiγ (t), (4)

where

|ε(t)|H1 � 1 (5)

and

λ(t) ∼
1

|∇u(t)|L2
.

Smallness estimate (5) allows a perturbative analysis for (1) and
at least two different blow up behaviors are known to possibly
occur:

• There exists in dimensions N = 1, 2 a family of solutions
of type S(t) by a result of Bourgain and Wang, [2], that is
solutions with |∇u(t)|L2 ∼

1
T −t near blow up time.

• On the other hand, it has been suspected since the 1970’s that
the blow up speed of generic initial data is different from the
S(t) one, which indeed is never observed numerically. Let
us say that quite an amount of both formal and numerical
works has been devoted to the derivation of the exact blow
up law for (1) and that different laws have been proposed,
in particular by Zakharov [28]. Then in the 1980’s, a
combination of refined numerical simulations and formal
asymptotic expansions led Fraiman [5], and independently
LeMesurier, Landman, Papanicolaou, Sulem and Sulem [9,
10], to propose in dimension N = 2 the log–log law

|∇u(t)|L2 ∼

(
log | log(T −t)|

T −t

) 1
2

as the generic blow up speed.

Note, however that the log–log law regime is reached
only at exceedingly huge (�10200) focusing levels; see
for example [4]. Further formal arguments to explain the
log–log correction to self similar blow up may also be
found in Fibich and Papanicolaou [4], Dyachenko et al. [3]
and Pelinovsky [20]. We refer to the monograph [25] and
references therein for a complete introduction to the history
of the problem. Then in 2001, Perelman in [21] establishes
rigorously the existence in dimension N = 1 of an even
log–log solution and its stability in some space E ⊂ H1.
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The situation has been clarified in the series of papers [14–
19] which provide a detailed insight into the singularity
formation. The analysis relies on a refined studies of the
dispersive effects of (1) in the vicinity of the ground state Q. At
the heart of the proof lies a Spectral Property which corresponds
to positivity properties of some explicit Schrödinger operators
and implies the existence of new Lyapounov type functionals
for (1). We note y = (yi )1≤i≤N the space variable and r = |y|

the radial coordinate.

Spectral Property: Let N ≥ 1. Consider the two real
Schrödinger operators

L1 = −1+ V1, L2 = −1+ V2 (6)

where

V1(r) =
2
N

(
4
N

+ 1
)

Q
4
N −1r Q′,

V2(r) =
2
N

Q
4
N −1r Q′

(7)

and the real valued quadratic form for ε = ε1 + iε2 ∈ H1:

H(ε, ε) = H1(ε1, ε1)+ H2(ε2, ε2)

= (L1ε1, ε1)+ (L2ε2, ε2). (8)

Let

Q1 =
N

2
Q + y · ∇Q, Q2 =

N

2
Q1 + y · ∇Q1.

Then there exists a universal constant δ0 > 0 such that
∀ε ∈ H1, if (ε1, Q) = (ε1, Q1) = (ε1, yi Q)1≤i≤N =

(ε2, Q1) = (ε2, Q2) = (ε2, ∂yi Q)1≤i≤N = 0, then

H(ε, ε) ≥ δ0

(∫
|∇ε|2 +

∫
|ε|2e−|y|

)
.

We then have:

Theorem 1 (Dynamics of (1), [14–18,22]). Let N = 1 or
N ≥ 2 assuming the Spectral Property holds true. There exist
universal constants α∗ > 0, C∗ > 0 such that the following
holds true. For u0 ∈ Bα∗ , let u(t) be the corresponding solution
to (1) with [0, T ) its maximum time interval existence on the
right in H1.
(i) Description of the singularity: Assume that u(t) blows up
in finite time, i.e. 0 < T < +∞, then there exist parameters
(λ(t), x(t), γ (t)) ∈ R∗

+ × RN
× R and an asymptotic profile

u∗
∈ L2 such that

u(t)−
1

λ(t)
N
2

Q

(
x − x(t)

λ(t)

)
eiγ (t)

→ u∗ in L2 as t → T .

Moreover, the blow up point is finite in the sense that

x(t) → x(T ) ∈ RN as t → T .

(ii) Estimates on the blow up speed: We have either

lim
t→T

|∇u(t)|L2

|∇Q|L2

(
T − t

log | log(T − t)|

) 1
2

=
1

√
2π
, (9)
or

|∇u(t)|L2 ≥
C(u0)

(T − t)
,

for t close enough to T .
(iii) Sufficient condition for log–log blow up: If E(u0) ≤ 0 and∫

Q2 <
∫

|u0|
2 <

∫
Q2

+ α∗, then u(t) blows up in finite time
with the log–log speed (9). More generally, the set of initial
data u0 ∈ Bα∗ such that the corresponding solution u(t) to (1)
blows up in finite time 0 < T < +∞ with the log–log speed
(9) is open in H1.

1.2. The Spectral Property

The analysis developed for the proof of Theorem 1 is an
N -dimensional H1 theory. The only part of the proof which
is not complete in any dimension is the Spectral Property. It
has been proved in [14] for dimension N = 1 by using the
explicit formula (3) for the ground state in this case. It was also
remarked in [14,16] that the linear operators L1, L2 given by (6)
are related through a remarkable commutation formula to the
standard linear operators close to the ground state, as studied
by Weinstein in [26] and given by

L+ = −1+ 1 −

(
1 +

4
N

)
Q

4
N , L− = −1+ 1 − Q

4
N .

Indeed, for a given function f , let

f1 =
N

2
f + y · ∇ f =

d
dλ

[
λ

N
2 f (λy)

]
λ=1

,

then

L1 f =
1
2

[
L+( f1)− (L+ f )1

]
,

L2 f =
1
2

[
L−( f1)− (L− f )1

]
.

(10)

At this stage, we do not know how to use the spectral structure
of (L+, L−) which is known, see [26], and the commutation
formula to give an analytic proof of the Spectral Property.

The aim of this paper is to give a computer assisted proof of
this Spectral Property in dimensions N = 2, 3, 4.

Theorem 2. The Spectral Property holds true in dimensions
N = 2, 3, 4.

Let us briefly recall more precisely the role of the Spectral
Property in the proof of Theorem 1.

In the study of (NLS) type problems, the study of coercivity
properties of explicit quadratic forms involving the ground
state solution Q naturally appears when one considers the
question of the stability or instability of these solutions. These
quadratic forms are then related to the asymptotic form of
the Hamiltonian near Q and their coercivity properties can be
derived from the variational formulation of Q. See for example
Weinstein [27].

The quadratic forms L1, L2, are of different nature and
more related to the asymptotic stability (that is the convergence
locally in space after renormalization to the ground state at blow
up time). Indeed, this property leads to a notion of irreversibility
as t goes to the blow up time, even if the equation is reversible.
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Unfortunately, at this level of the analysis, we are not able to
relate this property to the variational characterization of Q. In
particular, L1 and L2 appear just as commutators involving
L+, L− and differentiation with respect to the scaling of the
equation, see (10), and from the computations in [14], the
orthogonality conditions chosen in the Spectral Property are
related to instability directions of the dynamics.

More precisely, let u(t) ∈ Bα∗ be a small super critical
mass blow up solution to (1), then it admits a geometrical
decomposition (4) near blow up time. Such a decomposition
is not unique, and each modulation parameter λ(t), x(t), γ (t)
may be used to ensure suitable orthogonality conditions on ε(t).
The choice of these orthogonality conditions is governed by
two constraints: using some nonlinear degeneracy properties of
the flow of (1) around Q, a specific choice of orthogonality
conditions allows some decoupling in the finite dimensional
dynamic governing the geometrical parameters λ(t), x(t), γ (t)
at the heart in particular of the estimates on the blow up speed;
this choice should be compatible with the time averaged control
of the infinite dimensional part of the solution, i.e. ε(t), and
here the positivity property provided by the Spectral Property
is at the heart of the proof of these fine dispersive estimates —
see in particular the proof of Proposition 1 in [14]. In short,
the Spectral Property implies a non-degeneracy property of the
flow of (1) around the solitary wave.

Observe that the Spectral Property should be decomposed
into two parts. On the one hand, the potentials V1, V2 given
by (7) are built on the ground state Q which is smooth and
exponentially decreasing at infinity, and thus from standard
linear theory, the quadratic form H given by (8) admits a
finite number of negative eigenvalues. The Spectral Property
first implies counting the number of these eigenvalues exactly.
Note that in the frame of the proof of Theorem 1, we need
this number of eigenvalues not to be too large with respect to
the number of symmetries in order to ensure sufficiently many
orthogonality conditions.

On the other hand, the Spectral Property also amounts to
saying that the explicit choice of orthogonality conditions we
gave and which is not the exact set of negative bound states
of H is enough to ensure its coercivity. This explicit choice
was first proposed in [14] as the result of a nonlinear game and
indeed allows one to exhibit a suitable decomposition of the
solution u to (1) for which the proof of Theorem 1 applies.

Remark 1. Let us say a word about what happens in
dimensions N = 5, 6. The Spectral Property as stated is false
for N = 5, 6. What goes wrong is not the number of negative
eigenvalues which is the same as for N = 4, but the explicit
choice of orthogonality conditions which is no longer enough
to ensure the positivity.

More precisely, the set of orthogonality conditions given
for H2 is still good, but not for H1; see Remark 4. Now in
dimension N = 5, we claim that the Spectral Property holds
true with the orthogonality condition (ε1, Q1) = 0 replaced by

(ε1, |y|
2 Q) = 0;

see again Remark 4. Using this new orthogonality condition and
Lemma 8 in [16] in the analysis of the series of papers [14,
17], we can prove Theorem 1. This fact is based on the specific
choice |y|

2 Q. From this, we can say that Theorem 1 holds true
for N = 5 but not Theorem 2 as stated. In dimension N = 6,
the choice (ε1, |y|

2 Q) = 0 is not enough to have the coercivity
of H1 and Theorem 1 is open for N = 6.

The question of what happens in higher dimensions is wide
open. Analytically, one could hope to obtain the explicit form
of the ground state Q as the dimension N goes to infinity and
thus to reduce the proof of the Spectral Property to that of an
explicit limit problem. Let us nevertheless insist on the fact that
the influence of the dimension on the blow up dynamics may
sometimes be quite spectacular. A typical striking example is
for the supercritical nonlinear heat equation ut = 1u + u p,
where, for p large and N ≥ 11, a new blow up regime appears;
see Matano and Merle [12]. Whether or not similar phenomena
should be expected for (1) is completely unknown.

More generally, we expect that similar spectral properties
like the one we study here will be at the heart of the description
of the dynamics of other nonlinear PDEs. Note that in the recent
history of mathematical physics, some deep problems have
been solved by reducing them to check coercivity estimates for
certain Schrödinger operators; see for example Seco [24], de la
Llave [11]. The aim of this paper is to provide a general simple
and efficient frame to check this kind of property numerically,
including the fact that we need to deal with orthogonality
conditions which are a priori not adapted to the Schrödinger
operator.

The paper is organized as follows. In Section 2, we prove the
Spectral Property when restricted to the subset H1

r of the H1

distributions with radial symmetry. The general case is treated
in Section 3. We briefly sketch in Section 4 an alternative proof
of the main result.

We give a definition of the index of a bilinear form. Let B
denote a bilinear form on a vector space V ; we define the index
of B on V as:

indV (B) = min{k ∈ N/there exists a sub-space

P of codimension k such that B|P is positive}.

2. The radial case

In this section, we let N ≥ 2 and V (r) denote either V1(r) or
V2(r)which are given by (7). Note that V (r) is a locally smooth
potential with exponential decay at infinity:

|V (r)| ≤ Ce−Cr .

Let L = −1+ V and H(u, u) = (Lu, u) be the corresponding
quadratic form; then from standard spectral theory, see [23],
L admits a finite number of negative eigenvalues and has a
continuous spectrum [0,+∞). Our aim in this section is to
prove the spectral property numerically when restricted to the
subset H1

r of radial distributions.

2.1. Computation of the index

An efficient numerical way of estimating the index of H on
H1

r is based on the following classical Lemma whose proof is
standard and similar to that of Theorem XIII.8 p. 90 in [23].
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Fig. 1. U (r).

Fig. 2. Z(r).
Lemma 1 (Estimate on the Number of Eigenvalues). Let U be
the solution to{

LU = −U ′′
−

N − 1
r

U ′
+ V (r)U = 0,

U (0) = 1, U ′(0) = 0,
(11)

then the number N (U ) of zeros of U is finite and

indH1
r

H = N (u).

Remark 2. The fact that the solution U to (11) admits a finite
number of zeros relies on a simple ODE analysis which implies
in particular that no zero can occur when the potential has
become too small. This smallness can be explicitly estimated.
Indeed, let r0 be such that Q(r0) ≤

1
2 , then for r ≥ r0, one has

a precise exponential estimate on Q and thus on the potential.
From that, one can explicitly estimate the size of a r1 such
that U does not vanish for r ≥ r1. This is of fundamental
importance for the numerics as the exponential decay of V
ensures that we need to compute U on a not too large interval
only.

Let H1, H2 be given by (8). We first claim:

H2(Q, Q) = 0.

Indeed, the Q equation is1Q− Q+ Q1+
4
N = 0 or equivalently

L−Q = 0. Injecting this into (10) and using the self-adjointness
of L− give:

H2(Q, Q) = (L2(Q), Q) =
1
2
(L−(Q1)− (L−(Q))1, Q)

=
1
2
(L−(Q1), Q) =

1
2
(Q1, L−(Q)) = 0.
We then conclude:

H1 < H2, H2(Q, Q) = 0 and thus

indH1
r

H1 ≥ indH1
r

H2 ≥ 1. (12)

We now compute numerically the solutions to (11) with V =

V1, V2.
More precisely, we let U (r) be the solution to

−1U (r)+
2
N

(
4
N

+ 1
)

r R
4
N −1 Rr U = 0,

U (0) = 1,Ur (0) = 0.

The solution is shown in Fig. 1 in dimensions N ∈ [2, 6].
Observe that there is only one zero for N = 2, 3 and thus

(12) implies:

indH1
r

H1 = indH1
r

H2 = 1 for N = 2, 3.

They are two zeros for N = 4, 5, 6 from which

indH1
r

H1 = 2 for N = 4, 5, 6.

We then compute numerically Z , the solution to

−1Z +
2
N

r R
4
N −1 Rr Z = 0, Z(0) = 1, Zr (0) = 0.

The solution is shown in Fig. 2 for N = 4, 5, 6 and Z displays
only one zero from which

indH1
r

H2 = 1 for N = 4, 5, 6.

Let us observe that we may have performed the same
numerical computations with the slightly perturbed quadratic
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form

H(u, u) = (Lu, u) = (Lu, u)− δ0

∫
|u|

2e−|y|, (13)

for some small enough universal constant δ0 > 0. We let
L = −1+ V . We may summarize the results of this subsection
as follows:

Proposition 1 (Estimate on the Index of the Quadratic Forms
on H1

r ).

indH1
r

H1 = 1 for N = 2, 3,

indH1
r

H1 = 2 for N ∈ [4, 6],

indH1
r

H2 = 1 for N ∈ [2, 6].

2.2. L is invertible

We claim as a consequence of Proposition 1 that the operator
L is invertible modulo the suitable boundary conditions at
infinity:

Proposition 2 (Invertibility of L1, L2). Let N ∈ [2, 6] and
f ∈ C0

loc(R
N ) with radial symmetry and | f (r)| ≤ e−Cr ; then

there exists a unique radial solution to

Lu = f with (1 + r N−2)u ∈ L∞. (14)

Proof of Proposition 2. There are two standard approaches to
prove this kind of result: either direct ODE techniques, which
we detail below following the analysis in dimension N = 1
in [14]; or variational techniques based on the Lax–Milgram
theorem. This last approach requires changing the functional
space in which we work in the whole paper and is briefly
presented in Section 4.

(A) Uniqueness: Let u with Lu = 0 and (1 + r N−2)u ∈ L∞.
From standard elliptic theory and the smoothness of f , u is
locally smooth. From u′(0) = 0, we have

u′(r) =
1

r N−1

∫ r

0
τ N−1V (τ )u(τ )dτ

which together with (14) implies

lim
r→+∞

ru′(r) → 0 for N = 2,

|u′(r)| ≤
C

r N−1 for N ∈ [3, 6].
(15)

We then multiply the equation by u and integrate by parts; the
boundary term goes away from (15) and thus∫

|∇u|
2 < +∞ and H(u, u) = 0. (16)

Let now A > 1 and u A = χAu where

χA(r) = χ
( r

A

)
,

χ(r) =

{
1 for r ≤ 1,
0 for r ≥ 2,

for N ∈ [3, 6], (17)
χA(r) =


1 for r ≤ A,

2
(

log A

log r
−

1
2

)
for A ≤ r ≤ A2, for N = 2.

0 for r ≥ A2,

(18)

We claim:

H(u A, u A) → H(u, u) as A → +∞. (19)

Indeed, we compute∫
|∇u A|

2
=

∫
χ2

A|∇u|
2
+

∫
|∇χA|

2
|u|

2

+ 2
∫
(χA∇u) · (∇χAu).

We estimate from (14) and (15) in dimensions N ≥ 3:∫
|∇χA|

2
|u|

2
+ 2

∣∣∣∣∫ (χA∇u) · (∇χAu)

∣∣∣∣
≤ C

AN

A2 A2(N−2)
+ C

AN

AAN−2 AN−1 ≤
C

AN−2

and in dimension N = 2:∫
|∇χA|

2
|u|

2
+ 2

∣∣∣∣∫ (χA∇u) · (∇χAu)

∣∣∣∣
≤ C(log A)2

∫ A2

A

dr

r(log r)4
+ o(log A)

∫ A2

A

dr

r(log r)2

≤ o(1) → 0 as A → +∞,

and (19) follows from the decay of V .

Let N = 2, 3. Let ψ be the first eigenvector of L with
eigenvalue λ < 0, |ψ |L2 = 1, and consider VA = span(ψ, u A)

and the matrix MA = matVA H ; then H(u A, u A) → H(u, u) =

−δ0
∫

|u|
2e−|y| as A → +∞ from (16) and (19), (Lu A, ψ) →

−δ0(e−|y|u, ψ) and H(ψ,ψ) ≤ −|λ|, and thus MA is definite
negative for A large enough provided δ0 > 0 is small enough.
From Proposition 1 for N = 2, 3, we have indH1

r
H = 1 and

thus dim VA = 1 and u A = µAψ . From Lu = 0 and Lψ = λψ ,
we conclude λµA = (u A, λψ) = (Lu A, ψ) → 0 as A → +∞

from which u = 0. We argue similarly for N ∈ [4, 6].

(B) Existence: By fixed point argument, we construct (φi )i=1,2

solutions to the linear homogeneous equation Lφi = 0 by
solving on [A,+∞), A > 0 large enough, the integral equation

for N = 2,



φ1(r) = log r +

∫
+∞

r

dτ

τ N−1

×

∫
+∞

τ

σ N−1V (σ )φ1(σ )dσ

φ2(r) = 1 +

∫
+∞

r

dτ

τ N−1

×

∫
+∞

τ

σ N−1V (σ )φ2(σ )dσ,
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for N ∈ [3, 6],



φ1(r) = 1 +

∫
+∞

r

dτ

τ N−1

×

∫
+∞

τ

σ N−1V (σ )φ1(σ )dσ

φ2(r) =
1

r N−2 +

∫
+∞

r

dτ

τ N−1

×

∫
+∞

τ

σ N−1V (σ )φ2(σ )dσ.

These solutions may be continued on (0,+∞) from linear
theory. Let φrad be the solution to{

Lφrad = 0
φrad(0) = 1, φ′

rad(0) = 0,

then φrad ∈ Vect(φ1, φ2) and from the uniqueness result, φrad
and φ2 are linearly independent, from which there holds for
some W0 6= 0:

W (φrad, φ2) = φ′

radφ2 − φradφ
′

2 =
W0

r N−1 .

Last, we compute:

φ2(r) = φ2(1)+
φ′

2(1)

log r
+

∫ r

1

dτ

τ N−1

×

∫ 1

τ

σ N−1V (σ )φ2(σ )dσ for N = 2,

φ2(r) = φ2(1)−
φ′

2(1)

(N − 2)r N−2 +

∫ r

1

dτ

τ N−1

×

∫ 1

τ

σ N−1V (σ )φ2(σ )dσ for N ∈ [3, 6],

from which

|φ′

2(r)| ≤
C

r N−1 , |φ2(r)| ≤
C

r N−2 + C | log r | as r → 0.

From direct verification and using the decay property of f at
infinity,

u(r) = −
1

W0

(
φ2(r)

∫ r

0
τ N−1φrad(τ ) f (τ )dτ

+ φrad(r)
∫

+∞

r
τ N−1φ2(τ ) f (τ )dτ

)
is a smooth solution on [0,+∞) to Lu = f with u′(0) =

0 and (1 + r N−2)u ∈ L∞. This concludes the proof of
Proposition 2. �

2.3. Numerical check of the orthogonality conditions

Let us observe that Proposition 2 also holds for H given
by (13) for δ0 > 0 small enough. We now proceed to the
numerical computations which will ensure that the set of
orthogonality conditions selected for the Spectral Conjecture
is indeed enough to ensure the coercivity properties of H1, H2.

Lemma 2 (Numerical Computations for N = 2, 3, 4, 5, 6).
(i) Case of H1: Let U 0 be the radial solution to

L1U 0 = Q with (1 + r N−2)U 0 ∈ L∞, (20)
Table 1
(U0, Q)

Dimension 2 3 4 5 6

(U0, Q) −0.65 −2.1 −8 −40 −190

then

(U 0, Q) < 0 for N = 2, 3. (21)

For N = 4, 5, 6, let U 3 be the radial solution to

L1U 3 = Q1 with (1 + r N−2)U 3 ∈ L∞, (22)

and let

K 1 = (U 0, Q), K 2 = (U 3, Q1), K 3 = (U 0, Q1), (23)

then

K 1 < 0 and K 1 K 2 − K
2
3

{
> 0 for N = 4,
< 0 for N = 5, 6.

(24)

(ii) Case of H2: Let U 1,U 2 be the radial solutions to

L2U 1 = Q1, L2U 2 = Q2 with (1 + r N−2)U 1 ∈ L∞,

(1 + r N−2)U 2 ∈ L∞,
(25)

and let

J 1 = (U 1, Q1), J 2 = (U 2, Q2), J 3 = (U 2, Q1), (26)

then

1

J 2
(J

2
3 − J 1 J 2) > 0. (27)

Numerically, we compute the (Ui )0≤i≤3 on H instead of
H using a shooting method on Ui (0) and restrict ourselves to
N ∈ [2, 6]. The exact numerical values are given below and
imply Lemma 2 for H with δ0 > 0 small enough.

We first compute U0, the radial solution to L1U0 = Q with
(1 + r N−2)U0 ∈ L∞, and estimate that (U0, Q) < 0 for
N ∈ [2, 11]. The exact results are given in Table 1.

Next, in dimensions N = 4, 5, 6, we compute U3, the radial
solution to L1U3 = Q1 with r N−2U3 ∈ L∞, and estimate
the inner products K1 = (U0, Q), K2 = (U3, Q1), K3 =

(U0, Q1). Let K̃3 = (U3, Q); then analytically:

K̃3 = (U3, L1U0) = (L1U3,U0) = (Q1,U0) = K3,

and thus the computation of K3 − K̃3 is a good measurement of
the accuracy of the numerics. The results of Table 2 prove (24)

and show in particular that the sign of K 1 K 2 − K
2
3 changes for

N ≥ 5.
Eventually, we compute U1,U2, the radial solutions to

L2U1 = Q1, L2U2 = Q2 with (1 + r N−2)U1, (1 + r N−2)

U2 ∈ L∞, and estimate J1 = (U1, Q1), J2 = (U2, Q2),
J3 = (U2, Q1). We also test the accuracy of the numerics by
computing J̃3 = (U2, Q1) = J3. Results are given in Table 3
and show that (27) is always fulfilled.

Remark 3. Note that it can be checked that the boundary
condition (14) is equivalent to assuming that the solutions u to
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Table 2
(Ki )1≤i≤3

Dimension K1 K2 K3 K1 K2 − K 2
3 K3 − K̃3

4 −8.0178 −31.8102 4.6472 233.4524 1e−7
5 −40.3903 12.4921 35.5946 −1.7715e+003 −5.4214e−006
6 −190.7594 5432.4 854.9890 −1.7673e+006 −5.9598e−004
Table 3
(Ji )1≤i≤3

Dimension J1 J2 J3 J 2
3 − J1 J2 J3 − J̃3

2 0.9969 12.4211 −4.4095 7.0616 3e−006
3 5.9141 100.36881 −28.0500 193.2117 −6e−006
4 147 3404 −728 28 933 1e−004
5 −128 −4321 609 −1.8293e+005 6e−004
6 −131.623 −1e+004 169.0371 −1.4e+006 8e−004
Table 4
(Mi )1≤i≤3

Dimension M1 M2 M3 M1 M2 − M2
3 M3 − M̃3 〈U0, L(R)〉 − 〈R, R〉

4 −8.0 −639 −26 4.4e+3 −4.8e−7 2e−5
5 −40 −2.3e+3 −166 6.4e+4 5.7e−5 1e−4
6 −190 2.0e+3 −2.25e+3 −5.4e+006 9.6e−4 8e−4
Lu = f belongs to the Lax–Milgram space (36) of Section 4.
In particular, it suffices to find a solution to Lu = f with∫

|∇u|
2 < +∞ that is a boundary condition ∂r u → 0 as

r → +∞, and this is precisely what is done numerically to
get the results of Lemma 2.

Remark 4. (24) means that the choice of orthogonality
conditions (ε1, Q) = (ε1, Q1) = 0 is not enough in dimensions
N = 5, 6 to ensure the coercivity of H1. Nevertheless, the
index of H1 being no greater than two from Proposition 1, one
may expect that another set of two orthogonality conditions will
allow one to both ensure the coercivity of H1 and have the proof
of Theorem 1 go through. As a matter of fact and from direct
verification, if the Spectral Property holds true for H1 with the
new set of orthogonality conditions (ε1, Q) = (ε1, |y|

2 Q) = 0,
then the proof of Theorem 1 goes through. To check whether
the replacement of Q1 by |y|

2 Q is a better bet, we compute U4,
the solution to L1U4 = |y|

2 Q with (1 + r N−2)U4 ∈ L∞ in
dimensions N = 5, 6. Let M1 = (U0, Q), M2 = (U4, |y|

2 Q),
M3 = (U0, |y|

2 Q) and M̃3 = (Q,U4) = M3 to test the
numerics. Recall from Table 1 that M1 = (U0, Q) < 0 and
thus as for (24), it remains to check that

M1 M2 − M2
3 > 0.

The results of Table 4 show that indeed this holds true in
dimension N = 5, and thus the proof of Theorem 1 is also
complete for N = 5, but fails in dimension N = 6.

2.4. Proof of the spectral property for N = 2, 3, 4 on H1
r

We now are in position to conclude the proof of the Spectral
Property in dimensions N = 2, 3, 4 when restricted to radial
data. We indeed claim that under the orthogonality conditions
of the Spectral Property, H1 and H2 are positive, which from
(13) concludes the proof. �
Step 1. H1 in dimensions N = 2, 3.

We start with H1 in dimensions N = 2, 3. We adapt the
proof of Lemma 13 in [14] and argue in three steps.
(α) Let U 0 given by (20). For A > 1, let the cut off function
χA be given by (17) and (18) and set (U 0)A = χAU 0, (P0)A =

Vect((U 0)A). Let us introduce the norm

‖ f ‖ =

(∫
|∇ f |

2
+

∫
|V1|| f |

2
) 1

2

,

then arguing as for the proof of (19), we have∣∣H1((U0)A, (U0)A)− H(U0,U0)
∣∣+ ‖(U0)A − U0‖ → 0

as A → +∞. (28)

From (21), H(U0,U0) = (U0, Q) < 0 and thus the quadratic
form is non-degenerate on (P0)A for A large enough. This
implies from standard argument:

H1
r = (P0)A ⊕ (P0)

⊥

A .

(β) From Proposition 1, the index of H1 on H1
r is 1 and thus

H1 ≥ 0 on (P0)
⊥

A . Indeed, by contradiction, assume that there
is a non-zero Z ∈ (P0)

⊥

A with H1(Z , Z) < 0 and consider the
plane Vect((U0)A, Z); then from Z ∈ (P0)

⊥

A , the quadratic form
is definite negative on Vect((U0)A, Z) which is of dimension 2.
Let now P be of codimension 1; then P ∩ Vect((U0)A, Z) 6= ∅

and thus (H1)|P is not positive. This means that indH1
r

H1 ≥ 2
and contradicts Proposition 1.
(γ ) Let now u ∈ H1

r be non-zero such that (u, Q) = 0. For A >
0 large enough, decompose u = αA(U0)A + u(2)A where u(2)A ∈
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(P0)
⊥

A ; then by definition, H1(u, u) = α2
A H1((U0)A, (U0)A)+

H1(u
(2)
A , u(2)A ) ≥ α2

A H1((U0)A, (U0)A) from (β). The
conclusion now follows from (28) and

αA → 0 as A → +∞. (29)

Indeed, from (u, Q) = 0, we have αA((U0)A, Q) =

−(u(2)A , L1U0) = −(u(2)A , L1(U0 − (U0)A)) from which

|αA| ≤ C‖u2
A‖‖U0 − (U0)A‖. (30)

Now ‖u2
A‖ ≤ C(‖u‖+ |αA|‖U0‖) and thus (28) and (30) imply

‖u2
A‖ ≤ C‖u‖ and (29) follows.

Step 2. H1 in dimension N = 4.
In this case, the orthogonality against Q is no longer enough

to ensure the coercivity of H1 and we use the second condition
(u, Q1) = 0. Let U 0 be given by (20), U 3 be given by (22),
and (K i )1≤i≤3 be given by (23). For A > 1, let the cut off
function χA be given by (17) and (18) and set (U 0)A = χAU 0,
(U 3)A = χAU 3, (P3)A = Vect((U 0)A, (U 3)A), then∣∣∣∣H1((U 0)A, (U 0)A) H1((U 0)A, (U 3)A)

H1((U 3)A, (U 0)A) H1((U 3)A, (U 3)A)

∣∣∣∣
= K 1 K 2 − K

2
3 + o(1) > 0

from (24) for A > 0 large enough. From K 1 < 0, we conclude
that for A > 0 large enough, the quadratic form H1 restricted to
(P3)A is definite negative and thus H1

r = (P3)A ⊕ (P3)
⊥

A . From
Proposition 1, the index of H1 on H1

r is at most 2 and thus
H1 ≥ 0 on (P3)

⊥

A . Arguing as for the proof of (γ ) of step 1, we
now easily conclude that for u ∈ H1

r with (u, Q) = (u, Q1) =

0, H1(u, u) ≥ 0.
This concludes the proof of the Spectral Property for H1

restricted to radial data in dimensions N = 2, 3, 4.
Step 3. H2 in dimensions N = 2, 3, 4.

We now turn to H2 in dimensions N = 2, 3, 4. Let U 1, U 2
be given by (25) and J 1, J 2, J 3 be given by (26), and let

Q4 = Q1 −
J 3

J 2
Q2, U 4 = U 1 −

J 3

J 2
U 2,

then L2U4 = Q4 and

(U 4, Q4) = H2(U 4,U 4) = J 1 − 2
J 3

J 2
J 3 +

J
2
3

J
2
2

J 2

= −
1

J 2
(J

2
3 − J 1 J 2) < 0

from (27). We now follow the proof of step 1 and conclude
from Proposition 1, i.e., indH1

r
H2 = 1, that for all u ∈ H1

r

with (u, Q4) = 0, H2(u, u) ≥ 0. Now (u, Q1) = (u, Q2) = 0
implies (u, Q4) = 0 from Q4 ∈ Vect(Q1, Q2). This concludes
the proof of the Spectral Property for H2 restricted to radial data
in dimensions N = 2, 3, 4.

3. The non-radial case

This section is devoted to the proof of the Spectral Property
in the non-radial case. Our main tools rely on the theory of
Schrödinger operators in the so-called central case; see [23],
section XIII B., i.e., the fact that the potentials V1, V2 have
radial symmetry. This allows us to decompose H into the sum
of the restricted quadratic forms obtained by projecting onto the
basis of spherical harmonics.

More precisely, let Harmk be the space of spherical
harmonics of degree k and let ak = dim Harmk , explicitly
a0 = 1, a1 = N and ak = Ck

N+k−1 − Ck−2
N+k−3 for k ≥ 2.

For each k ≥ 0, let (Y (k)i )1≤i≤ak be an orthonormal basis of
Harmk , then any function u ∈ L2(RN ) has a unique expansion

u =

∞∑
k=0

ak∑
i=1

ck,i Y
(k)
i

(
x

|x |

)
with

ck,i =

∫
SN−1

u(|x |θ)Y (k)i (θ)dθ. (31)

Moreover, the potential V being radial, we have

H(u, u) =

+∞∑
k=0

ak∑
i=1

H (k)(ck,i , ck,i ) (32)

where

H (k)(w,w) = (L(k)w,w),

L(k) = −
d2

dr2 −
N − 1

r

d
dr

+ V (r)+
k(k + N − 2)

r2 .

Note that the operator L(k) for k > 0 should be thought of
as a differential operator on a weighted L2 space on (0,∞)

with boundary conditions w(0) = 0 and the corresponding
quadratic form H (k) is well defined on the subset H̃1

r (R
N ) of

radial distributions w ∈ H1
r (R

N ) such that∫
RN

|w|
2

|x |2
< +∞.

3.1. Computation of the index

The computation of the index of H (k) on H1
r (R

N ) follows
from the following classical Lemma; see Theorem XIII.8 p. 90
in [23].

Lemma 3 (Estimate on the Index of H (k)). For k ≥ 1, let W
be the solution to

L(k)W = −W ′′
−

N − 1
r

W ′
+ V (r)W

+
k(k + N − 2)

r2 W = 0,

W (0) = 0, lim
r→0

W (r)

rk = 1,

then the number Nk(W ) of zeros of W is finite and

indH̃1
r

H (k)
= Nk(W ).

Note that the number of k for which the quadratic form
H (k) has negative directions is clearly finite. Moreover, H (k′)

≥

H (k) for k′
≥ k. Numerically, we compute W , the solution
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Fig. 3. W (r) for k = 1, i = 1 and N = 2, . . . , 6.

Fig. 4. W (r) for k = 2, i = 1 and N = 2, . . . , 6.
to

−1W +
2
N

(
4
N

+ 1
)2−i

r Q′Q
4
N −1W

+
k(k + N − 2)

r2 W = 0, i = 1, 2,

where

W ∼ rk for r � 1,

and i = 1, 2 corresponds to the potential V1, V2, respectively.
To calculate this numerically, we use the fact that W ∼ rk(1 +

O(r4)) near r = 0 to overcome the singularity at r = 0.
The solution is seen in Figs. 3–5 for N = 2, . . . , 6. In all
dimensions, there is one zero for (k = 1; i = 1) and no zeros
for (k = 1; i = 2), (k = 2; i = 1, 2).
Again, these computations could have been performed with
H given by (13) instead of H for δ0 > 0 small enough, and the
outcome is the following:

Proposition 3 (Estimate on the Index of H
(k)

on H1
r ).

indH̃1
r

H
(1)
1 = 1, indH̃1

r
H
(2)
1 = 0,

indH̃1
r

H
(1)
2 = 0 for N ∈ [2, 6].

3.2. L(k) is invertible

From Proposition 3, L(k) is invertible modulo the suitable
boundary conditions at infinity:

Proposition 4 (Invertibility of L(k)). Let N ∈ [2, 6], k ≥ 1,
f ∈ C0

loc(R
N ) with radial symmetry and | f (r)| ≤ e−Cr ; then
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Fig. 5. W (r) for k = 1, i = 2 and N = 2, . . . , 6.
there exists a unique radial solution to{
L(k)u = f,
u(0) = 0 and (1 + rk+N−2)u ∈ L∞.

(33)

Proof of Proposition 2. The argument is similar to the one of
Proposition 2 and we briefly sketch the proof.

(A) Uniqueness: Let u with L(k)u = 0, u(0) = 0 and
(1 + rk+N−2)u ∈ L∞. From standard elliptic theory and the
smoothness of f , u is locally smooth on (0,+∞). From direct
verification, Z =

u
rk satisfies

1

r2k+N−1

(
r2k+N−1 Z ′

)′

=
V u

rk ,

and thus

u′(r) =
ku

r
+ C1rk+N−1

+
1

rk+N−1

∫ r

1
τ k+N−1V (τ )u(τ )dτ (34)

for some constant C1. From rk+N−2u ∈ L∞ and the well
localization of V , we conclude

|u′(r)| ≤
C

rk+N−1 as r → +∞.

Let χA be the cut off function given by (17) in all dimensions;
we let u A = χAu and conclude as for the proof of (19) that

H(u A, u A) → H(u, u) as A → +∞

from which∫
|∇u|

2 < +∞ and H(u, u) = 0.

Arguing as for the proof of Proposition 2, we conclude from
Proposition 3 that u = 0, which concludes the proof of the
uniqueness part.

(B) Existence: By fixed point argument, we construct (φi )i=1,2
solutions to the linear homogeneous equation L(k)φi = 0 by
solving on [A,+∞), A > 0 large enough, the integral equation

φ1(r) = rk
(

1 +

∫
+∞

r

dτ

τ 2k+N−1

×

∫
+∞

τ

σ k+N−1V (σ )φ1(σ )dσ
)
.

φ2(r) = rk
(

1

r2k+N−2 +

∫
+∞

r

dτ

τ 2k+N−1

×

∫
+∞

τ

σ k+N−1V (σ )φ2(σ )dσ
)
.

These solutions may be continued on (0,+∞) from linear
theory. Let φrad be the solution toLφrad = 0

φrad(0) = 0, lim
r→0

φrad(r)

rk = 1,

then φrad ∈ Vect(φ1, φ2) and from the uniqueness result, φrad
and φ2 are linearly independent, from which there holds for
some W0 6= 0:

W (φrad, φ2) = φ′

radφ2 − φradφ
′

2 =
W0

r N−1 .

Last, we easily conclude from the integral equation that

|φ′

2(r)| ≤
C

rk+N−1 , |φ2(r)| ≤
C

rk+N−2 as r → 0.

From direct verification and using the decay property of f at
infinity,

u(r) = −
1

W0

(
φ2(r)

∫ r

0
τ N−1φrad(τ ) f (τ )dτ

+ φrad(r)
∫

+∞

r
τ N−1φ2(τ ) f (τ )dτ

)
is a smooth solution on [0,+∞) to Lu = f with u(0) = 0
and (1 + rk+N−2)u ∈ L∞. This concludes the proof of
Proposition 4. �
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Table 5
(T0, r Q)

Dimension 2 3 4 5 6

(T0, r Q) −3.1 −11 −54 −337 −2512

3.3. Check of the orthogonality conditions

Proposition 4 also holds for H
(k)

with δ0 > 0 small enough.

Note that from Proposition 3, H
(k)
1 is positive for k ≥ 2 and

H
(k)
2 is positive for k ≥ 1. The numerical check that the

orthogonality conditions selected for the Spectral Conjecture
are enough to ensure the coercivity H (1)

1 is a consequence of
the following:

Lemma 4 (Numerical Computations for N = 2, 3, 4, 5, 6). Let
T 0 be the radial solution to

L
(1)
1 T 0 = r Q with T 0(0) = 0 and (1 + r N−1)T 0 ∈ L∞,

then

(T 0, r Q) < 0 for N ∈ [2, 6]. (35)

Again, the numerical computation is made directly on H (1)

using a shooting method. We compute T0, the solution to
L1T0 +

N−1
r2 T0 = r Q with T0(0) = 0 and r N−1T0 ∈

L∞, numerically. As pointed out in Remark 3, the boundary
condition on T0 is equivalent to assuming that it belongs to
the Lax–Milgram space (37), so that numerically, it suffices to
check a boundary condition ∂r T0 → 0 as r → +∞. We also
use the fact that T0(r) ∼ cr(1+ O(r3)) near r = 0 to overcome
the singularity at r = 0. We then compute the inner product
(T0, r Q), and the results of Table 5 show that (35) holds for
N = 2, 3, 4.

3.4. Proof of the spectral property for N = 2, 3, 4 on H1

We now are in position to conclude the proof of the Spectral
Property in dimensions N = 2, 3, 4.

We start with H1 and claim that for all u ∈ H1 with
(u, Q) = (u, Q1) = (u, yQ) = 0, we have H1(u, u) ≥ 0
which concludes the proof.

Indeed, decompose u into spherical harmonics according to
(31) and recall (32):

H(u, u) =

+∞∑
k=0

ak∑
i=1

H
(k)
(ck,i , ck,i ).

We claim that each term in the above sum is positive, which
concludes the proof. Indeed, first observe from Proposition 3
that

H
(k)
1 ≥ 0 for k ≥ 2.

From (u, Q) = (u, Q1) = 0 and Q, Q1 radial, the radial part
of u satisfies

(c0,1, Q) = (c0,1, Q1) = 0

and thus from Section 2.3 and H
(0)
1 = H1,
H
(0)
1 (c0,1, c0,1) ≥ 0.

Last, observe from Q radial that (u, yQ) = 0 is equivalent to

(c1,i , r Q) = 0, 1 ≤ i ≤ N .

Now arguing as for the proof of step 1 of Section 2.3,

indH̃1
r

H
(1)
1 = 1 from Proposition 3 and (35) imply that for every

w ∈ H̃1
r ,

(w, r Q) = 0 implies H
(1)
1 (w,w) ≥ 0.

This concludes the proof of the Spectral Property for H1 in
dimension N = 2.

We argue similarly for H2. Let u ∈ H1 with (u, Q1) =

(u, Q2) = 0. Decompose u into spherical harmonics and write

down formula (32). From Proposition 3, H
(k)
2 ≥ 0 for k ≥ 1.

For the radial part, (u, Q1) = (u, Q2) = 0 implies (c0,1, Q1) =

(c0,1, Q2) = 0 and H
(0)
2 (c0,1, c0,1) = H2(c0,1, c0,1) ≥ 0 from

Section 2.3. This yields H2(u, u) ≥ 0 and concludes the proof
of the Spectral Property for H2 in dimensions N = 2, 3, 4. �

4. Alternative proof of the spectral property

We propose in this section a slightly different approach for
the proof of the Spectral Property. The idea is to enlarge the
functional space H1 which does not contain the directions built
in Propositions 2 and 4 and to work with

Er =

{
u radial,

∫
|∇u|

2
+

∫
|u|

2e−γ0|y| < +∞

}
(36)

for some small γ0 > 0 small enough in the radial case and

Ẽr =

{
u radial,

∫
|∇u|

2
+

∫
|u|

2

r2 < +∞

}
(37)

in the non-radial case. Let us focus on the radial situation only.
We now consider the quadratic forms H1, H2 not on H1

r
but on Er . Note that the inner products introduced in the
Spectral Property still make sense thanks to the exponential
decay property of Q.

The first step is to generalize Lemma 1 and prove that the
number of zeros of the solution U to (11) indeed corresponds
to the index of H1 on Er . This is achieved using localization
arguments and the standard Hardy inequality to control the error
terms:∫

|u|
2

r2 ≤ C
∫

|∇u|
2 for N ≥ 3

and the modified two-dimensional version,∫
r≥1

|u|
2

r2 log2 r
≤ C

(∫
|∇u|

2
+

∫
|u|

2e−r
)
.

The second step is now to prove Proposition 2 using the
Lax–Milgram theorem. This first requires projecting out the
negative directions of L in order to recover a coercive operator
on Er . Then the Lax–Milgram theorem ensures the existence
and uniqueness of a solution u ∈ Er of Lu = f . Using now
ODE techniques, we prove using the exponential decay of f
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that for a solution to Lu = f , it is equivalent to be in Er or
to satisfy the boundary condition (1 + r N−2)u ∈ L∞ which
is the one which we check numerically. Here again, the case
N = 2 requires a slightly more refined argument to overcome
some logarithmic divergences.

Now as the directions build from Proposition 2 belong to Er
and the index of H on Er is known, the proof of the Spectral
Property given in Section 2.4 may be slightly simplified as it
does not require any localization argument anymore.
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