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a b s t r a c t

Wepresent a general framework for constructing singular solutions of nonlinear evolution equations that
become singular on a d-dimensional sphere,where d > 1. The asymptotic profile and blowup rate of these
solutions are the same as those of solutions of the corresponding one-dimensional equation that become
singular at a point. We provide a detailed numerical investigation of these new singular solutions for the
following equations: The nonlinear Schrödinger equation iψt(t, x)+1ψ + |ψ |2σψ = 0 with σ > 2, the
biharmonic nonlinear Schrödinger equation iψt(t, x) − 12ψ + |ψ |2σψ = 0 with σ > 4, the nonlinear
heat equation ψt(t, x) − 1ψ − |ψ |2σψ = 0 with σ > 0, and the nonlinear biharmonic heat equation
ψt(t, x)+12ψ − |ψ |2σψ = 0 with σ > 0.

© 2010 Elsevier B.V. All rights reserved.
1. Introduction

In this study, we consider nonlinear evolution equations of the
form

ut(t, x) = F [u,1u,12u, . . .], x ∈ Rd, d > 1. (1)

Examples for such equations are the nonlinear Schrödinger equa-
tion, the biharmonic nonlinear Schrödinger equation, the nonlin-
ear heat equation, and the biharmonic nonlinear heat equation. It
is well known that these equations admit solutions that become
singular at a point. Recently, it was discovered that the nonlinear
Schrödinger equation with a quintic nonlinearity admits solutions
that become singular on a d-dimensional sphere [1–4], see Fig. 1.
Following [2], we refer to these solutions as singular standing-ring
solutions.
The main goal of this study is to present a general framework

for constructing singular standing-ring solutions of nonlinear
evolution equations of the form (1). In order to understand the
basic idea, let us assume that Eq. (1) admits a singular standing-
ring solution. Then, near the singularity, Eq. (1) reduces to the one-
dimensional equation

ut(t, r) = F [u, urr , urrrr , . . .], r = |x|. (2)
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Hence, Eq. (2) ‘‘should’’ admit a solution that becomes singular at
a point. Conversely, if the one-dimensional equation (2) admits a
solution that becomes singular at a point, then Eq. (1) ‘‘should’’
admit a standing-ring singular solution. Moreover, the asymptotic
profile and blowup rate of the standing-ring solutions of (1)
‘‘should’’ be the same as those of the corresponding solution of the
one-dimensional equation (2).
The above argument is obviously very informal. Nevertheless,

in what follows we will provide numerical evidence in support of
the relation between standing-ring singular solutions of (1) and
singular solutions of the one-dimensional equation (2).

1.1. Peak-type and ring-type singular solutions of the nonlinear
Schrödinger equation (NLS)—review

The focusing nonlinear Schrödinger equation (NLS)

iψt(t, x)+1ψ + |ψ |2σψ = 0, ψ(0, x) = ψ0(x), (3)

where x ∈ Rd and ∆ = ∂x1x1 + · · · + ∂xdxd , is one of the canonical
nonlinear equations in physics, arising in various fields such as
nonlinear optics, plasma physics, Bose–Einstein condensates, and
surface waves. One of the important properties of the NLS is that it
admits solutions which become singular at a finite time, i.e.,

lim
t→Tc
‖ψ‖H1 = ∞, 0 < Tc <∞.

The NLS is called subcritical if σd < 2. In this case, all solutions
exist globally. In contrast, solutions of the critical (σd = 2) and
supercritical (σd > 2) NLS can become singular in finite time.
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Fig. 1. Illustration of a two-dimensional singular standing-ring solution at times t0 < t1 < t2 . The insets show the radial profile of u.
When the initial condition ψ0 is radially-symmetric, Eq. (3)
reduces to

iψt(t, r)+ ψrr +
d− 1
r

ψr + |ψ |
2σψ = 0,

ψ(0, r) = ψ0(r), d > 1,
(4)

where r = |x|. Let us denote the location of themaximal amplitude
by

rmax(t) = argmax
r
|ψ |.

Singular solutions of (4) are called ‘peak-type’ when rmax(t) ≡ 0 for
0 ≤ t ≤ Tc , and ‘ring-type’ when rmax(t) > 0 for 0 ≤ t < Tc .
Until a few years ago, the only known singular NLS solutions

were peak-type. In the critical case σd = 2, it has been rigo-
rously shown [5] that peak-type solutions are self-similar near the
singularity, i.e., ψ ∼ ψR, where

ψR(t, r) =
1

L1/σ (t)
R (ρ) eiτ+i

Lt
4L r
2
,

τ =

∫ t

0

ds
L2(s)

, ρ =
r − rmax(t)
L(t)

, rmax(t) ≡ 0,

the self-similar profile R(ρ) attains its global maximum at ρ = 0,
and the blowup rate L(t) is given by the loglog law

L(t) ∼
(

2π(Tc − t)
log log 1/(Tc − t)

) 1
2

, t → Tc . (5)

In the supercritical case (σd > 2), the rigorous theory is far less
developed. However, formal calculations and numerical simula-
tions [6] suggest that peak-type solutions of the supercritical NLS
collapse with the self-similar ψS profile, i.e., ψ ∼ ψS , where

ψS(t, r) =
1

L1/σ (t)
S (ρ) eiτ , (6a)

τ =

∫ t

0

ds
L2(s)

, ρ =
r − rmax(t)
L(t)

, rmax(t) ≡ 0, (6b)

|S(ρ)| attains its global maximum at ρ = 0, and the blowup rate is
a square-root, i.e.,

L(t) ∼ κ
√
Tc − t, t → Tc . (6c)

In the last few years, new singular solutions of the NLS were
discovered, which are ring-type [7,2,1,4,3]. In [2], we showed that
the NLS with d > 1 and 2d ≤ σ ≤ 2 admits singular ring-type
solutions that collapse with the ψQ profile, i.e., ψ ∼ ψQ , where

ψQ (t, r) =
1

L1/σ (t)
Q (ρ) eiτ+iα

Lt
4L r
2
+i(1−α) Lt4L (r−rmax(t))

2
, (7a)

τ =

∫ t

0

ds
L2(s)

, ρ =
r − rmax(t)
L(t)

, rmax(t) = r0Lα(t), (7b)
Fig. 2. Illustration of ring radius rmax(t) and width L(t).

and

α =
2− σ
σ(d− 1)

. (7c)

The self-similar profile Q attains its global maximum at ρ = 0.
Hence, rmax(t) is the ring radius and L(t) is the ringwidth, see Fig. 2.
The ψQ ring solutions can be classified as follows, see Fig. 3:

A. In the subcritical case (σd < 2), all NLS solutions globally exist,
hence no singular ring solutions exist.

B. The critical case σd = 2 corresponds to α = 1. Since rmax(t) =
r0L(t), these solutions undergo an equal-rate collapse, i.e., the
ring radius goes to zero at the same rate as L(t). The blowup
rate of these critical ring solutions is a square root.

C. The supercritical case 2/d < σ < 2 corresponds to 0 < α < 1.
Therefore, the ring radius rmax(t) = r0Lα(t) decays to zero,
but at a slower rate than L(t). The blowup rate of these ring
solutions is

L(t) ∼ κ(Tc − t)p, (8)

where p = 1
1+α =

σ(d−1)
2+σ(d−2) .

D. The supercritical case σ = 2 corresponds to α = 0. Since
rmax(t) ≡ r0, the solution becomes singular on the d-dimen-
sional sphere |x| = r0, rather than at a point. The blowup rate
of these solutions is given by the loglog law (5).

E. The case σ > 2 was open until now.

Thus, theψQ solutions are shrinking rings (i.e., limt→Tc rmax(t) =
0) for 2d ≤ σ < 2 (cases B and C), and standing rings (i.e., 0 <
limt→Tc rmax(t) <∞) for σ = 2 (case D).

1.2. Singular standing-ring solutions of the NLS

One of the goals of this paper is to study singular ring-type
solutions for σ > 2 (case E). The most natural guess is that these
solutions also blowup with the ψQ profile. Since α < 0 for σ > 2,
see (7c), ψQ should be an expanding ring, i.e., limt→Tc rmax = ∞.
In this study we show that although such expanding rings do not
violate power conservation,ψQ ring solutions cannot exist for σ >
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Fig. 3. Classification of singular ring solutions of the NLS as a function of σ and d.
(A) subcritical case. (B) critical case, with equal-rate collapse [7]. (C) 2/d < σ < 2,
shrinking rings [2]. (D) σ = 2, standing rings [2,1,4]. (E) the case σ > 2, which is
considered in this study.

2. Rather, singular rings solutions of the NLS (4) with σ > 2 are
standing rings.
The blowup profile and rate of standing-ring solutions can be

obtained using the following informal argument. In the ring region
of a standing-ring,ψrr ∼ 1

L2
and 1rψr ∼

1
L·rmax

. Therefore, the d−1r ψr
term in Eq. (4) becomes negligible compared with ψrr as t → Tc .
Hence, near the singularity, Eq. (4) reduces to the one-dimensional
NLS1

iφ(t, x)+ φxx + |φ|2σφ = 0, x = r − rmax.

Therefore, the blowup profile and blowup-rate of standing-ring
solutions of theNLS (4)with d > 1 andσ ≥ 2 are the same as those
of singular peak-type solutions of the one-dimensional NLS with
the same σ . Specifically, standing-ring solutions are self-similar in
the ring region, i.e., ψ ∼ ψF , where ψF is, up to a shift in r , the
asymptotic peak-type profile of the one-dimensional NLS, i.e.,

ψF (t, r − rmax) = φS(t, x),

andφS is given by (6a) with d = 1. In addition, the blowup rate L(t)
of ψF is the same as the blowup rate of φS , see (6c), and is equal to
a square-root, i.e.,

L(t) ∼ κ(σ )
√
Tc − t, t → Tc . (9)

Moreover, κ(σ ) is universal, i.e., it depends on σ , but not on the
dimension d or the initial condition ψ0.
Numerically, we observe that ψF is an attractor for a large

class of radially-symmetric initial conditions, but is unstable with
respect to symmetry-breaking perturbations.

1.3. Singular standing vortex solutions of the NLS

The two-dimensional NLS

iψt(t, x, y)+1ψ + |ψ |2σψ = 0, ψ(0, x, y) = ψ0(x, y),
∆ = ∂xx + ∂yy,

admits vortex solutions of the formψ(t, x, y) = A(t, r)eimθ , where
m ∈ Z. In [3], we presented a systematic study of singular vortex
solutions. In particular, we showed that there exist singular vortex
solutions that collapse with the asymptotic profileψQ · eimθ , when
ψQ is given by (7). The blowup rates of these solutions are the same
as those ofψQ in the non-vortex case. Therefore, theψQ ·eimθ vortex
solutions can be classified as follows:

1 Throughout this paper, we denote the solution of the one-dimensional NLS by
φ, and its spatial variable by x.
A. In the subcritical case (σ < 1), all NLS solutions globally exist,
hence no singular vortex solutions exist.

B. In the critical case σ = 1, these solutions undergo an equal-rate
collapse at a square root blowup rate.

C. The supercritical case 1 < σ < 2 corresponds to 0 < α < 1.
In this case, the ring radius decays to zero at a slower rate than
L(t) and the blowup rate is given by (8) where p = 1

1+α =
σ
2 .

D. The supercritical case σ = 2 corresponds to α = 0. Therefore,
the solution becomes singular on a circle. The blowup rate is
given by the loglog law (5).

E. The case σ > 2 was open until now.

In this study, we show numerically that there exist singular
standing-vortex solutions of the two-dimensional NLS with σ > 2
(case E) with the asymptotic profile eimθψF . Moreover, the blowup
rate of these singular standing vortices is the same as that of the
standing-ring solutions in the non-vortex case, i.e., is given by (9).
Therefore, these results extend the ones obtained in the non-vortex
case.

1.4. Singular solutions of the biharmonic nonlinear Schrödinger
equation

Let us consider the focusing biharmonic nonlinear Schrödinger
equation (BNLS) equation

iψt(t, r)−12ψ + |ψ |2σψ = 0, (10)

where 12 is the radial biharmonic operator. Here, singularly for-
mation is defined as limt→Tc ‖ψ‖H2 = ∞. In the subcritical case
σd < 4, all BNLS solutions exist globally [8]. Numerical simu-
lations [8–10] indicate that in the critical case σ = 4/d and the
supercritical case σ ≥ 4/d, the BNLS admits singular solutions. At
present, however, there is no rigorous proof that the BNLS admits
singular solutions, whether peak-type or ring-type.
Peak-type singular solutions of the BNLS (10) were recently

studied numerically in [9,10]. The blowup rate of these solutions
is slightly faster than p = 1/4 in the critical case (1/4+ log log ?),
and is equal to p = 1/4 in the supercritical case.
The BNLS (10) also admits ring-type singular solutions for

4/d ≤ σ ≤ 4 [11]. These solutions are of the form ψ ∼ ψQB ,
where

|ψQB | =
1

L1/2σ (t)
QB(ρ), (11a)

ρ =
r − rmax(t)
L(t)

, rmax(t) = r0LαB(t), (11b)

and

αB =
4− σ
σ(d− 1)

. (11c)

The ψQB solutions can be classified as follows (see Fig. 4):

A. In the subcritical case (σd < 4), all BNLS solutions globally
exist, hence no collapsing ring solutions exist.

B. The critical case σd = 4 corresponds to αB = 1. These solutions
undergo an equal-rate collapse. The blowup rate of these critical
ring solutions is given by (8) with p = 1/4.

C. The supercritical case 4/d < σ < 4 corresponds to 0 < αB < 1.
Therefore, the ring radius rmax(t) = r0LαB (t) decays to zero,
but at a slower rate than L(t). The blowup rate of these ring
solutions is given by (8) with p = 1/(3+ αB) = σ(d− 1)/(4+
3σd− 4σ).
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Fig. 4. Classification of singular ring solutions of the BNLS as a function of σ and d.
(A) subcritical case. (B) critical case, with equal-rate collapse [11]. (C) 4/d < σ < 4,
shrinking rings [11]. (D) σ = 4, standing rings with the critical 1D profile [11]. (E)
the case σ > 4, which is considered in this study.

D. The case σ = 4 corresponds to αB = 0. Since rmax(t) ≡ r0, the
solution is a singular standing ring. The blowup rate is close to
p = 1/4 and is conjectured to be 1/4 with a loglog correction.

E. The case σ > 4 was open until now.

Thus, up to the change σ −→ 2σ , this classification is completely
analogous to that of singular ring solutions of the NLS (see Fig. 3).
In thisworkwe shownumerically that this analogy carries through
to the regime σ > 4. Thus, the BNLS with σ > 4 and d > 1 admits
singular standing-ring solutions. Near the standing-ring peak,
Eq. (10) reduces to the one-dimensional BNLS

iφt(t, x)− φxxxx + |φ|2σφ = 0.

Therefore, the blowup profile and blowup-rate of standing ring
solutions of the BNLS (10) with d > 1 and σ ≥ 4 are the same
as those of collapsing peak solutions of the one-dimensional BNLS
with the same value of σ .
Thus, the results for ring solutions of the BNLS with σ > 4 are

completely analogous, up to the change σ −→ 2σ , to those for
singular standing-ring solutions of the NLS with σ > 2.

1.5. Singular solutions of the nonlinear heat equation

The d-dimensional nonlinear heat equation (NLHE)

ut(t, r)−1u− |u|2σu = 0, σ > 0, d > 1, (12)

admits singular solutions for any σ > 0 [12]. In [13], Giga and
Kohn proved that (12) admits singular standing-ring solutions.
Matos [14] proved that the blowupprofile and blowup rate of these
solutions are the same as those of singular peak-type solutions of
the corresponding one-dimensional NLHE. We provide numerical
evidence for the stability of these solutions.

1.6. Singular solutions of the biharmonic nonlinear heat equation

Thed-dimensional nonlinear biharmonic heat equation (NLBHE)

ut(t, r)+12u− |u|2σu = 0, σ > 0, d > 1 (13)

admits singular solutions for any σ > 0 [15]. To the best of our
knowledge, until now all known singular solutions of (13) col-
lapse at a point. In this study, we provide numerical evidence
that the NLBHE (13) admits singular standing-ring solutions. The
blowup profile and blowup rate of these solutions are the same
as those of singular peak-type solutions of the corresponding one-
dimensional equation.
1.7. Critical exponents of singular ring solutions

In Fig. 5A we plot the blowup rate parameter p of singular ring
solutions of the NLS, see (8). As σ increases from 2/d to 2−, p
increasesmonotonically from 1/2 to 1−. When σ = 2, the blowup
rate is given by the loglog law (5), i.e., p = 1/2 with a loglog
correction. Finally, p = 1/2 for σ > 2. Since

lim
σ→2−

p = 1, lim
σ→2+

p =
1
2
,

the blowup rate has a discontinuity at σ = 2. Surprisingly, the
blowup rate is not monotonically-increasing with σ . For example,
a ring solution of the NLS with σ = 1.8 blows up faster than a ring
solution of the NLS with σ = 2.2.
The above results show that the critical exponent of singular ring

solutions of the NLS is σ = 2: The blowup rate is discontinuous
at σ = 2, and the blowup dynamics change from a shrinking-ring
(σ < 2) to a standing-ring (σ ≥ 2), see Fig. 5C.We can understand
why σ = 2 is a critical exponent using the following argument.
Standing-ring solutions are ‘equivalent’ to singular peak solutions
of the one-dimensional NLS with the same nonlinearity exponent
σ . Since σ = 2 is the critical exponent for singularity formation in
the one-dimensional NLS, it is also a critical exponent for standing-
ring blowup.
An analogous picture exists for the BNLS. For 4/d ≤ σ < 4, the

blowup-rate p of the BNLS ring solutions increases monotonically
in σ from 1/4 to (1/3)−, at σ = 4, p = 1/4 possibly with a loglog
correction, and p = 1/4 for σ > 4, see Fig. 5B. Therefore, the
blowup rate is discontinuous at σ = 4. In addition, the blowup
dynamics change at σ = 4 from a shrinking-ring (σ < 4) to a
standing-ring (σ > 4), see Fig. 5D. Hence, the critical exponent
of standing-ring solutions of the BNLS is σ = 4, precisely because
it is the critical exponent for singularity formation in the one-
dimensional BNLS.
In the case of the NLHE and BNLHE equations, there is no critical

exponent of singular ring solutions. Indeed, these equations admit
standing-ring solution for any σ > 0, precisely because there is
no critical exponent for singularity formation in the corresponding
one-dimensional equations.

1.8. Paper outline

The paper is organized as follows. In Section 2 we review the
theory of singular peak-type solutions of the supercritical NLS, and
conduct a numerical study of the one-dimensional case. In Sec-
tion 3.1 we prove that standing-ring blowup can only occur for
σ ≥ 2, and show that the blowup profile and blowup-rate of sin-
gular standing ring solutions of the supercritical NLS with σ > 2
and d > 1 are the same as those of peak-type solutions of the one-
dimensional NLS equation. In Section 3.2 we confirm these results
numerically.We then shownumerically that the singular standing-
ring profile ψF is an attractor for radially-symmetric initial
conditions (Section 3.3), but it is unstable with respect to
symmetry-breaking perturbations (Section 3.4). In Section 4 we
show analytically and numerically that expanding ψQ ring solu-
tions do not exist for σ > 2. Section 5 extends the results to
singular vortex solutions. In Section 6 we study singular peak-
type solutions of the one-dimensional supercritical BNLS. In Sec-
tion 7 we show that singular ring solutions of the supercritical
BNLS with σ > 4 are standing-rings, whose blowup profile and
blowup-rate are the same as those of peak-type solutions of the
one-dimensional BNLS. In Section 8 we show that singular
standing-ring solutions of the nonlinear heat equation exist for any
σ > 0, and that their blowup profile and blowup-rate are the same
as those of peak-type solutions of the one-dimensional NLHE. In
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Fig. 5. (A) Blowup rate of singular ring solutions of the NLS. The blowup rate increases monotonically from p = 1/2 at σ = 2/d to p = 1− at σ = 2−. For σ = 2 (full circle)
p = 1/2 (with a loglog correction) and for σ > 2, p ≡ 1/2. (B) Blowup rate of singular ring solutions of the BNLS. The blowup rate increases monotonically from p = 1/4
at σ = 4/d to p = (1/3)− at σ = 4−. For σ = 4 (full circle) p = 1/4 (with a loglog correction?) and for σ > 4, p ≡ 1/4. (C) The shrinkage parameter α, defined by the
relation rmax ∼ r0Lα of singular ring solutions of the NLS. For 2/d ≤ σ < 2, α decreases monotonically from 1 to 0+ (shrinking rings). For σ ≥ 2, α ≡ 0 (standing rings).
(D) The shrinkage parameter αB of singular ring solutions of the BNLS. For 4/d ≤ σ < 4, αB decreases monotonically from 1 to 0+ (shrinking rings). For σ ≥ 4, αB ≡ 0
(standing rings).
Section 9we show that singular standing-ring solutions of the non-
linear biharmonic heat equation exist for any σ > 0, and that their
blowup profile and blowup-rate are the same as those of peak-type
solutions of the one-dimensional BNLHE. The numerical methods
used in this study are briefly described in Section 10.
Finally, we note that our results may be applicable to ring-

type solutions of other equations, such as extinction solutions
to the reaction–diffusion equation [16], and annular flames [17].
It is also instructive to compare the singular solutions of the
NLS and the BNLS with those of the Keller–Segel equation, since
although parabolic, it displays striking analogies with the NLS [18].
The Keller–Segel equation admits singular peak-type solutions
in the two-dimensional critical case, and singular shrinking-ring
solutions in the three-dimensional supercritical case [19,20]. No
singular standing-ring solutions were found, however, for the
multidimensional Keller–Segel equation. This is to be expected,
as the one-dimensional Keller–Segel equation does not admit
singular peak-type solutions.

2. Singular peak-type solutions of the one-dimensional super-
critical NLS

2.1. Theory review

Let us consider the one-dimensional supercritical NLS

iφt(t, x)+ φxx + |φ|2σφ = 0, σ > 2. (14)

In contrast to the extensive theory on singularity formation in
the critical NLS, much less is known about the supercritical
case. Previous numerical simulations and formal calculations (see,
e.g., [6, Chapter 7] and the references therein) suggested that peak-
type singular solutions of the supercritical NLS (14) collapse with
a self-similar asymptotic profile φS , i.e., φ ∼ φS , where

φS(t, x) =
1

L1/σ (t)
S(ξ)eiτ , ξ =

x
L(t)

, τ =

∫ t

0

ds
L2(s)

. (15)

The blowup rate L(t) of these solutions is a square root, i.e.,

L(t) ∼ κ
√
Tc − t, t → Tc, (16)
where κ > 0. In addition, the self-similar profile S is the solution
of

S ′′(ξ)+ i
κ2

2

(
1
σ
S + ξS ′

)
+ |S|2σ S = 0, S ′(0) = 0,

S(∞) = 0.
(17)

In general, solutions of (17) are complex-valued, and depend on
the parameter κ and on the initial condition S(0). Solutions of (17)
whose amplitude |S| is monotonically-decreasing in ξ , and which
have a zero Hamiltonian are called admissible solutions [6]. For each
σ , Eq. (17) has a unique admissible solution (up to a multiplication
by a constant phase eiα). This solution is attained for specific real
values of κ and S(0), which we denote as

κ = κS(σ ), S(0) = S0(σ ). (18)

Moreover, numerical simulations and formal calculations suggest
that:

1. The self-similar profile of singular peak-type solutions of the
NLS (14) is an admissible solution of (17).

2. The constant κ of the blowup rate (16) is universal (i.e., is
independent of the initial condition ψ0), and is equal to κS(σ ).

2.2. Simulations

To the best of our knowledge, the theory of supercritical
peak-type collapse which is presented in Section 2.1, was tested
numerically only for d ≥ 2. Since this theory is not rigorous, and
since wewill make use of these results in Sections 3 and 4, we now
confirm numerically the above theoretical predictions for the one-
dimensional supercritical NLS (14).
We verified numerically that for each σ , there exists a unique

admissible solution of (17). The corresponding values of κS and S0
as a function of σ are shown in Fig. 6. For example, for σ = 3, the
parameters of the admissible solution of Eq. (17) are

κS(σ = 3) ≈ 1.664, S0(σ = 3) ≈ 1.155. (19)

We now solve the one-dimensional NLS (14) with σ = 3 and
the Gaussian initial conditionφ0(t = 0, x) = 2e−2x

2
.We first show
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BA

Fig. 6. The parameters κS and S0 of the admissible solutions of Eq. (17), as function of σ .
A B C

Fig. 7. Solution of the one-dimensional NLS (14) with σ = 3 and the initial condition ψ0 = 2e−2x
2
. (A) Rescaled solution, see (20), at the focusing levels 1/L = 104 (solid)

and 1/L = 108 (dashed); the dotted curve is the admissible profile S(ξ ; σ = 3), all three curves are indistinguishable. (B) L as a function of (Tc − t) on a logarithmic scale.
The dotted curve is the fitted curve 1.713 · (Tc − t)0.5007 . The two curves are indistinguishable. (C) LLt as a function of 1/L.
that the NLS solution collapses with the self-similar profile φS , see
(15). To do that, we rescale the solution according to

φrescaled(t, x) = L
1
σ (t)

∣∣∣∣φ ( x
L(t)

)∣∣∣∣
L(t) =

(
‖S‖∞
‖φ‖∞

)σ
=

(
S1D0 (σ )
‖φ‖∞

)σ
.

(20)

The rescaled profiles at focusing levels of 1/L = 104 and 1/L =
108 are indistinguishable, see Fig. 7A, indicating that the solution
is indeed self-similar while focusing over 4 orders of magnitude.
Moreover, the rescaled profiles are in perfect fit with the admi-
ssible S(ξ ; σ = 3) profile.
Next, we consider the blowup rate of φ. To do that, we first

assume that

L(t) ∼ κ(Tc − t)p, (21)

and find the best fitting κ and p, see Fig. 7B. In this case κ ≈ 1.713
and p ≈ 0.5007, indicating that the blowup rate is square-root or
slightly faster. In order to check whether L is slightly faster than a
square root, we compute the limit limt→Tc LLt , see [7]. Recall that
for the square-root blowup rate (16),

lim
t→Tc

LLt = −
κ2

2
< 0,

while for a faster-than-a-square root blowup rate LLt goes to zero.
Since limTc→t LLt = −1.384, see Fig. 7C, the blowup rate of φ is
square-root (with no loglog correction), i.e.,

L(t) ∼ κblowup-rate1D

√
Tc − t,

κ
blowup-rate
1D ≈

√
2 · 1.384 ≈ 1.664.

(22)

In particular, there is an excellent match (to 4 digits) between
κ
blowup-rate
1D ≈ 1.664 extracted from the blowup rate of φ, see (22)
and the parameterκS(σ = 3)of the admissible S(ξ ; σ = 3)profile,
see (19).
3. Singular standing-ring solutions of the supercritical NLS

Let us consider singular solutions of the supercritical NLS

iψt(t, r)+ ψrr +
d− 1
r

ψr + |ψ |
2σψ = 0, d > 1, σd > 2. (23)

In this section we show that Eq. (23) has singular standing-ring
solutions for σ ≥ 2. Since the case σ = 2 was already studied
in [2,1,4], we mainly focus on the case σ > 2.

3.1. Analysis

The following lemma shows that standing-ring blowup can only
occur for σ ≥ 2:

Lemma 1. Let ψ be a standing-ring singular solution of the NLS (23),
i.e., ψ ∼ ψF for |r − rmax| ≤ ρc · L(t), where

|ψF (t, r)| =
1

L1/σ (t)
|F (ρ) |, ρ =

r − rmax(t)
L(t)

,

lim
t→Tc

L(t) = 0,
(24a)

and

0 < lim
t→Tc

rmax(t) <∞. (24b)

Then, σ ≥ 2.

Proof. The power of the collapsing part ψF is

‖ψF‖
2
2 = L

−2/σ
∫ rmax+ρc ·L(t)

r=rmax−ρc ·L(t)

∣∣∣∣F ( r − rmaxL

)∣∣∣∣2 rd−1dr
= L−2/σ

∫ ρc

ρ=−ρc

|F(ρ)|2 (Lρ + rmax)d−1(Ldρ)

∼ L1−2/σ (t) · rd−1max

∫ ρc

ρ=−ρc

|F(ρ)|2 dρ.
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Since ‖ψF‖22 ≤ ‖ψ‖
2
2 = ‖ψ0‖

2
2 < ∞, then L

1−2/σ has to be
bounded as L→ 0, hence σ ≥ 2. �

Let

Pcollapse = lim inf
ε→0+

lim
t→Tc

∫
|r−rmax(t)|<ε

|ψ |2rd−1dr

be the amount of power that collapses into the standing-ring
singularity. We say that a singular standing-ring solution ψ
undergoes a strong collapse if Pcollapse > 0, and a weak collapse if
Pcollapse = 0.

Corollary 2. Under the conditions of Lemma 1, ψF undergoes a
strong collapse when σ = 2, and a weak collapse when σ > 2.

Proof. This follows directly from the proof of Lemma 1. �

Let us further consider singular standing-ring solutions of the
NLS (23). Following the analysis in [2, Section 3.2], in the ring
region of a standing-ring solution, i.e., for r − rmax = O(L),

[ψrr ] ∼
[ψ]

L2(t)
,

[
d− 1
r

ψr

]
∼

(d− 1)[ψ]
rmax(Tc) · L(t)

.

Therefore, the d−1r ψr term in Eq. (23) becomes negligible compared
with ψrr as t → Tc .
Hence, near the singularity, Eq. (23) reduces to the one-

dimensional supercritical NLS (14), i.e.,

ψ(t, r) ∼ φ (t, x = r − rmax(t)) ,

where φ is a peak-type solution of the one-dimensional NLS (14).
Therefore, we predicted in [2] that the blowup dynamics of

standing ring solutions of the NLS (23) with d > 1 and σ = 2
is the same as the blowup dynamics of collapsing peak solutions
of the one-dimensional critical NLS with σ = 2, as was indeed
confirmed numerically in [2] and analytically in [1,4]. Similarly, we
now predict that the blowup dynamics of standing-ring solutions
of the NLS (23) with d > 1 and σ > 2 is the same as the blowup
dynamics of collapsing peak solutions of the supercritical one-
dimensional NLS (14) with the same nonlinearity exponent σ :

Conjecture 3. Let ψ be a singular standing-ring solution of the NLS
equation (23) with d > 1 and σ > 2. Then,

1. The solution is self-similar in the ring region, i.e., |ψ | ∼ |ψF | for
r − rmax = O(L), where ψF is given by (24a).

2. The self-similar profile ψF is given by

ψF (t, r) = φS (t, x = r − rmax(t)) , (25)

where φS(t, x), see (15), is the asymptotic peak-type profile of the
one-dimensional NLS (14)with the same σ . In particular, F = S is
the admissible solution of Eq. (17) with

κ = κS(σ ), S0 = S0(σ ).

3. The blowup rate of ψ is a square root, i.e.,

L(t) ∼ κS(σ )
√
Tc − t, t −→ Tc, (26)

where κS(σ ), is the parameter κ = κS of the self-similar profile S,
see (18).

Conjecture 3 implies that the parameter κ of the blowup-rate
(26) of ψ is equal to the parameter κ of the blowup rate (16) of
φ. In particular, κ depends on the nonlinearity exponent σ , but is
independent of the dimension d and of the initial condition ψ0.
Fig. 8. Ring radius rmax(t) as a function of the focusing level 1/L(t) for the solution
of the NLS (23) with d = 2 and σ = 3, and the initial condition (27).

3.2. Simulations

We solve the NLS (23) with d = 2 and σ = 3 for the initial
condition

ψ0 = 2e−2(r−5)
2
, (27)

and observe that the solution blows-up with a ring profile. In Fig. 8
we plot the ring radius
rmax(t) = argmax

r
|ψ |

as a function of the focusing factor 1/L(t), as the solution blows up
over 10 orders of magnitude. Since limt→Tc rmax(t) = 5.0011, the
ring is standing and is not shrinking or expanding.
We now test Conjecture 3 numerically item by item.

1. In Fig. 7A we plot the rescaled solution

ψrescaled = L
1
σ (t)

∣∣∣∣ψ ( r − rmax(t)L(t)

)∣∣∣∣ ,
L(t) =

(
S0(σ )
‖ψ(t)‖∞

)σ
, (28)

at 1/L = 104 and 1/L = 108, and observe that the two lines
are indistinguishable. Therefore,we conclude that the standing-
ring solutions blowup with the self-similar ψF profile (24a).

2. To verify that the self-similar blowup profile ψF is, up to a
shift in r , the asymptotic blowup peak-profile φS of the one-
dimensional NLS (14), we superimpose in Fig. 9A the self-
similar profile of the solution of the one-dimensional NLS (14)
from Fig. 7A and the admissible solution S(x, σ = 3), and
observe that, indeed, the four curves are indistinguishable.

3. Fig. 9B shows that

L(t) ∼ 1.714 · (Tc − t)0.5009.

Therefore, the blowup rate is a square-root or slightly faster.
Fig. 9C shows that limTc→t LLt ≈ −1.385, indicating that the
blowup rate is square-root (with no loglog correction), i.e.,

L(t) ∼ κblowup-rate2D

√
Tc − t,

κ
blowup-rate
2D =

√
2 · 1.385 ≈ 1.664.

(29)

Thus, there is an excellent match between the parameter κ =
κS(σ = 3) ≈ 1.664 of the admissible S profile, see (19), the
value of κblowup-rate2D ≈ 1.664 extracted from the blowup rate
of the solution of the two-dimensional NLS, and the value of
κ
blowup-rate
1D ≈ 1.664 extracted from the blowup rate of the
solution of the one-dimensional NLS, see (22).

3.3. Robustness of ψF and universality of κ

The initial condition (27) in Figs. 8 and 9 is different from the
asymptotic profile ψF . Since the solution ψ blows up with the
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A B C

Fig. 9. NLS solution of Fig. 8. (A) Rescaled solution according to (28) at focusing levels 1/L = 104 (solid) and 1/L = 108 (dashed), the dotted curve is the asymptotic profile
S(ξ , σ = 3), and the dashed curve is the rescaled solution of the one-dimensional NLS at 1/L = 108 , taken from Fig. 7A. All four curves are indistinguishable. (B) L as a
function of (Tc − t) on a logarithmic scale. The dotted curve is the fitted curve 1.709(Tc − t)0.5007 . (C) LLt as a function of 1/L.
A B C D

Fig. 10. Solution of the NLS (23) with d = 2 and σ = 3 and the initial condition ψ0 = 2e−r
4
at (A) t = 0. (B) t = 0.0105. (C) t = 0.0188. (D) t = 0.0198.
BA

Fig. 11. NLS solution of Fig. 10. (A) Location of the maximum rmax(t) as a function of the focusing level 1/L(t) (B) LLt as a function of the focusing level 1/L(t).
asymptotic profile ψF , this indicates that ψF is an attractor. The
initial condition (27), however, is already ring-shaped. Therefore,
we now show that initial conditionswhich are not ring-shaped can
also blowup with the ψF profile.
In [21,22], we developed a Nonlinear Geometrical Optics (NGO)

method which showed that high-power super-Gaussian initial
conditions evolve into a ring profile. To see this, in Fig. 10 we solve
the NLS (3) with d = 2 and σ = 3, and the super-Gaussian
initial conditionψ0(r) = 2e−r

4
, and observe that the NLS solution,

indeed, evolves into a ring. Since limt→Tc rmax(t) = 0.33, see
Fig. 11A, this singular solution is a standing ring. Therefore, we see
that initial conditionswhich are not rings can also blowupwith the
ψF standing ring profile.
We now consider the blowup rate of the above solution, since

limt→Tc LLt = −1.384, see Fig. 11B, this implies that

L(t) ∼ κblowup-rate2D

√
Tc − t, κ

blowup-rate
2D ≈

√
2 · 1.384 = 1.664.

This value of κblowup-rate2D identifies with the one obtained for the
ring-type initial condition (27), see (29). We thus see that the
parameter κ of the blowup rate (26) is, indeed, independent of the
initial condition.
Remark 3.1. A different type of initial condition that blows-up
with the ψF profile and with the same value of κ

blowup-rate
2D is given

in Section 4.2.

3.4. Instability with respect to symmetry-breaking perturbations

In Section 3.3 we saw that the standing-ring asymptotic profile
ψF is an attractor for a large class of radially-symmetric initial
conditions. In general, NLS solutionswith a ring structure are stable
under radial perturbation, but unstable under symmetry-breaking
perturbations [7,2,3]. We now show that ψF is also unstable with
respect to symmetry-breaking perturbations. To see that, let us
consider the two-dimensional NLS

iψt(t, r, θ)+ ψrr +
1
r
ψr +

1
r2
ψθθ + |ψ |

2σψ = 0, (30)

with the initial condition
ψ0(r, θ) = f (r) (1+ εh(θ)) .
We chose f (r) so that when ε = 0, the solution blows up with the
ψF profile at r = rmax. We now consider the case 0 < ε � 1. Since
for a standing ring the 1rψr term becomes negligible compared
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Fig. 12. Solution of the NLS (30) with σ = 3 and with the initial condition (31). (A) t = 0. (B) t = 0.01400, (C) t = 0.01472. Top: Surface plot. Bottom: Amplitude along
the ring peak |ψ(t, rmax(t), θ)| as function of θ .
withψrr , see Section 3.1, Eq. (30) can be approximated in the ring-
peak region (r ≈ rmax) with

iψt + ψrr +
1
r2max

ψθθ + |ψ |
2σψ = 0.

This is the two-dimensional focusing NLS. Therefore, the solution
will localize at local maximum points in the (r, θ) plane, thereby
breaking the radial symmetry.
To see this numerically, we solve the two-dimensional NLS (30)

with σ = 3 and with the initial condition

ψ0(r, θ) = 2e−2(r−5)
2
[
1+ ε2e−

(
θ
ε

)2]
,

ε =
1
10
, θ = [−π, π]. (31)

This initial condition is the standing-ring initial condition (27),
with an O(0.01) small bump at θ = 0, see Fig. 12A. As predicted,
as the solution self-focuses, it localizes around the small initial
bump at θ = 0 (see Fig. 12B and C), resulting in breakup of radial
symmetry.

4. Existence of non-standing ring solutions for σ > 2?

Lemma 1 does not exclude the possibility that there exist non-
standing rings for σ > 2. The main reason that this question arises
is as follows. In [2] we discovered ring solutions of the supercritical
NLS for d > 1 and 2d < σ ≤ 2 of the form ψ ∼ ψQ , see (7).
Therefore, it is natural to attempt to extrapolate these results to
the regime σ > 2. Since α < 0 when σ > 2, the ring radius
rmax(t) goes to infinity as t → Tc , hence ψQ is an expanding-ring
profile for σ > 2, if such a solution exists. Note that although the
ring is expanding to an infinite radius, the power of the collapsing
part ψQ remains bounded, as∥∥ψQ∥∥22 = ∫ rmax+ρc ·L(t)

r=rmax−ρc ·L(t)
|ψQ |

2rd−1dr ∼ rd−10

∫ ρc

ρ=−ρc

|Q |2dρ,

t → Tc .

Therefore, these expanding rings, if they exist, do not violate power
conservation.
In [2] we solved the NLS (23) with σ = 2.1 > 2 and d =
2 and the ring initial condition ψ0 =

4√3
√
sech(2(r − 5)). The

solution turned out to be a singular standing ring, rather than an
expanding one. Moreover, the blowup profile was different from
ψQ . In retrospect, this NLS solution was a standing-ring with the
ψF profile, see Section 3. Nevertheless, this still leaves open the
question of whether there exist expanding-ring ψQ solutions for
σ > 2.

4.1. Analysis

We now prove that singular ring solutions with the ψQ profile
do not exist for σ > 2.

Lemma 4. Whenσ > 2, there are no singular NLS solutions such that
ψ ∼ ψQ , see (7), and

L(t) ∼ κ(Tc − t)p, Lt ∼ pκ(Tc − t)p−1,

Ltt ∼ p(p− 1)κ(Tc − t)p−2.
(32)

Proof. The result shall follow directly from Lemmas 5 and 6. �

Lemma 5. Under the assumptions of Lemma 4, p < 1.
Proof. We first recall that, as shown by Merle [23], for every
singular solution ψ of the supercritical NLS∫ Tc

0
(Tc − t)‖∇ψ‖22dt <∞. (33)

To find the limiting behavior of ‖∇ψ(t)‖22 as t → Tc , note that by
the conservation of the Hamiltonian

‖∇ψ‖22 ∼
1

σ + 1
‖ψ‖2σ+22σ+2, t → Tc . (34)

In addition,

‖ψ‖2σ+22σ+2 ∼ ‖ψQ‖
2σ+2
2σ+2 =

1

L
2σ+2
σ

∫
|Q (ρ)|2σ+2(Lρ + r0Lα)d−1Ldρ

∼
rd−10

1+ σ
1
L2(t)

∫
|Q |2σ+2dρ, (35)
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A B

Fig. 13. Solution of the NLS (23) with d = 2 and σ = 3 and the initial condition (38). (A) Ring radius rmax(t) as a function of the focusing level 1/L(t). (B) LLt as a function
of 1/L.
where in the last equality we used the value of α given by (7c), and,
in particular, that α < 0. Therefore, by (32), (34), (35)

‖∇ψ‖22 ∼ ‖ψ‖
σ+1
2σ+2 ∼

1
L2(t)

∼
1

(Tc − t)2p
, t → Tc .

Hence, the bound (33) implies that p < 1. �

Lemma 6. Under the conditions of Lemma 4, p > 1.
Proof. Substitution of ψQ , see (7), into the NLS (23) gives the
following ODE for Q ,

Qρρ(ρ)+
(d− 1)L
Lρ + r0Lα

Qρ − Q + |Q |2σQ

−
[
A(t)ρ2 + αr0B(t)ρ + αr20C(t)

]
Q + iD(t)Q = 0, (36a)

where

A(t) =
1
4
L3Ltt , B(t) =

1
2
L2+αLtt − 2(1− α)L1+αL2t ,

C(t) =
1
4
L1+2αLtt − (1− α)L2αL2t ,

D(t) =
σd− 2
2σ

LLt
ρ + r0Lα−1

ρ.

Since Q depends only on ρ, each of the time-dependent terms
of (36) should go to a constant as t → Tc . In particular, C(t) should
go to a constant as t → Tc . Under assumption (32),

C(t) ∼ cC (Tc − t)2αp+2p−2, c = κ2+2αp
[(
α −

3
4

)
p−

1
4

]
.

(37)

Since limt→Tc L(t) = 0, then p > 0, see (32). In addition, for σ > 2,
α < 0, see (7c). This implies that c < 0 and in particular c 6= 0.
Since C(t) should goes to a constant as t → Tc then, by (37),
2αp+ 2p− 2 ≥ 0. Therefore,

1− p
p
≤ α < 0.

Hence, p > 1. �

4.2. Simulations

The result of Lemma 4 that expanding-ring singular solutions
with the profile ψQ do not exist, is based on formal arguments
rather than on a rigorous analysis. Therefore, we now provide a
numerical support for this result. To do that, we solve the NLS (23)
with d = 2 and σ = 3 and with the expanding ring profile initial
condition

ψ0 = ψQ (t = 0) = (1+ σ)
1
2σ sech

1
σ (σ (r − 10))

× e−iαr
2
−i(1−α)(r−10)2 , (38a)
where

α =
2− 3
3(2− 1)

= −
1
3
. (38b)

If a ψQ solution indeed exists, then ψ would be a singular ring
solution whose radius goes to infinity. In Fig. 13A we plot the
ring radius rmax(t) as a function of the focusing factor 1/L, as the
solution blows up over 10 orders of magnitude. Initially, the ring
radius, indeed, expands from rmax(0) = 10 to rmax(t) ≈ 12.11.
This expansion is due to the defocusing (expanding) phase term
e−iαr

2
of the initial condition. However, the ring stops expanding

when 1/L ≈ 20, and becomes a singular standing ring with radius
rmax(Tc) ≈ 12.11. Since the initial condition was an expanding
ring, this simulation provides a strong support to the result of
Lemma 4.
Wenow consider the blowup rate of the above solution, Fig. 13B

shows that limt→Tc LLt = −1.384, implying that

L(t) ∼ κblowup-rate2D

√
Tc − t, κ

blowup-rate
2D ≈

√
2 · 1.384 = 1.664.

This value of κblowup-rate2D identifies with the one obtained for a ψF
collapse, see (29). Therefore, this simulation provides an additional
support to the robustness of ψF and to the universality of κ (see
Section 3.3).

5. Singular standing vortex solutions of the NLS (σ > 2)

We now consider vortex solutions of the two-dimensional NLS

iψt(t, x, y)+1ψ + |ψ |2σψ = 0, ψ(0, x, y) = ψ0(x, y),
∆ = ∂xx + ∂yy,

(39)

i.e., solutions of the form

ψ(t, r, θ) = A(t, r)eimθ , m ∈ Z, (40)

where r =
√
x2 + y2 and θ = tan−1(x/y).

In [3] we proved that if the initial condition is a radially-
symmetric vortex, then the solution remains a vortex:

Lemma 7. Let ψ be a solution of the NLS (39) with the initial con-
dition ψ0(r, θ) = A0(r)eimθ . Then, ψ(t, r, θ) = A(t, r)eimθ , where
A(t, r) is the solution of

iAt(t, r)+ Arr +
1
r
Ar −

m2

r2
A+ |A|2σA = 0,

A(0, r) = A0(r).
(41)

Note that the phase singularity at r = 0 implies that A(r =
0) = 0. Hence, all vortex solutions are ring-type solutions. Specif-
ically, all the singular solutions of (41) are ring-type and not peak-
type.
In [3] we showed by formal calculations and numerical simu-

lations that Eq. (39) admits singular shrinking-vortex solutions for
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Fig. 14. Ring radius rmax(t) as a function of the focusing level 1/L(t) for the solution
of the two-dimensional NLS (23) withm = 1, σ = 3 and the initial condition (43).

1 ≤ σ < 2, and singular standing-vortex solutions for σ = 2.
Moreover, we showed that the blowup rate and profile of the
standing-vortex solutions is the same as in the two-dimensional
non-vortex case. We now show that this is also true for σ > 2,
namely, that the analysis conducted in Section 3.1 for non-vortex
standing-ring collapse, applies also for singular standing-vortex
solutions.

5.1. Analysis

Lemma 8. Let ψ be a singular standing-ring vortex solution of the
NLS (39), i.e., ψ ∼ ψF (t, r)eimθ , where ψF is given by (24a). Then,
σ ≥ 2.
Proof. The proof is identical to the proof of Lemma 1. Indeed, the
proof of Lemma 1 relies only on |ψ |, hence is not affected by the
phase term eimθ . �

We now show that the blowup dynamics of standing vortex so-
lutions is the same as the blowup dynamics of collapsing solutions
of the one-dimensional NLS (14). Indeed, in the ring region of a
standing vortex solution,

[Arr ] ∼
[A]
L2(t)

,

[
d− 1
r
Ar

]
∼

(d− 1)[A]
rmax(Tc) · L(t)

,[
m2

r2
A
]
∼
m2[A]
r2max(Tc)

.

Therefore, as t → Tc , both the d−1r Ar and
m2

r2
A terms in Eq. (23)

become negligible compared with Arr .
Hence, as in the non-vortex case, near the singularity, Eq. (23)

reduces to the one-dimensional NLS (14), i.e.,
A(t, r) ∼ φ (t, x = r − rmax(t)) , (42)
where φ is a peak-type solution of the one-dimensional NLS (14).
Therefore, we expect that the blowup dynamics of standing-vortex
solutions of the NLS (23) with d = 2 and σ > 2 to be the same
as the blowup dynamics of collapsing peak solution of the one-
dimensional NLS (14) with the same nonlinearity exponent σ :

Conjecture 9. Let ψ(t, r, θ) = A(t, r)eimθ be a singular standing-
vortex solution of the NLS equation (39) with σ > 2. Then, ψ blows
up with the asymptotic self-similar profile

ψ ∼ eimθ · ψF (t, r),

whereψF is given by (25). In addition, items 1–3 of Conjecture 3 hold.

5.2. Simulations

We solve Eq. (41) with m = 1 and σ = 3, with the initial
condition

A0 = 2 tanh(4r2)e−2(r−5)
2
. (43)

In Fig. 14weplot the ring radius rmax(t) as a function of the focusing
factor 1/L(t), as the solution blows up over 10 orders ofmagnitude.
Since limt→Tc rmax(t) = 5.0011, the vortex is standing.
We now test Conjecture 9 numerically item by item.

1. In Fig. 15weplot the rescaled solution, see Eq. (28), at 1/L = 104

and 1/L = 108, and observe that, indeed, the standing ring
solution undergoes a self-similar collapse with the profile (25).

2. To verify that the self-similar collapse profile is, up to a shift in
r and multiplication by eimθ , the asymptotic collapse profile φS
of the one-dimensional NLS (14), we superimpose the rescaled
solution of the one-dimensional NLS (14) from Fig. 7A, as well
as the admissible solution S(x, σ = 3), on to the rescaled
solutions of Fig. 15A and observe that, indeed, the four curves
are indistinguishable.

3. Fig. 15B shows that

L(t) ∼ 1.701 · (Tc − t)0.50068.

Therefore, the blowup rate is square root or slightly faster.
Fig. 15C shows that

lim
Tc→t

LLt ≈ −1.384,

indicating that the blowup rate is square-root, i.e.,

L(t) ∼ κblowup-rate2D-vortex

√
Tc − t,

κ
blowup-rate
2D-vortex =

√
2 · 1.384 ≈ 1.664.

In addition, there is an excellent match between the parameter
κ = κS(σ = 3) ≈ 1.664 of the admissible S profile, see (19),
and the value of κblowup-rate2D-vortex ≈ 1.664 extracted from the blowup
rate of the two-dimensional vortex solution.
A B C

Fig. 15. Solution of Eq. (41) with σ = 3, m = 1, and the initial condition (43). (A) Rescaled solution according to (28) at focusing levels 1/L = 104 (solid) and 1/L = 108
(dashed), the dotted curve is the asymptotic profile S, and the dashed curve is the rescaled solution of the one-dimensional NLS at 1/L = 108 , taken from Fig. 7A. All four
curves are indistinguishable. (B) L as a function of (Tc − t) on a logarithmic scale. The dotted curve is the fitted curve 1.71(Tc − t)0.5007 . The two curves are indistinguishable.
(C) LLt as a function of 1/L.
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6. Singular peak-type solutions of the one-dimensional super-
critical BNLS

In Section 2 we reviewed the theory of singular peak-type
solutions of the one-dimensional NLS. In this section, we present
the analogous findings for the one-dimensional BNLS. We will
make use of these results in the study of singular standing-ring
solutions of the BNLS in Section 7.

6.1. Analysis

Let us consider the one-dimensional supercritical focusing BNLS

iφt(t, x)− φxxxx + |φ|2σφ = 0, σ > 4. (44)
At present, there is no theory for singular peak-type solutions of Eq.
(44). A recent numerical study [9] suggests that peak-type singular
solutions of the supercritical BNLS (44) collapse with a self-similar
asymptotic profile φB, i.e., φ ∼ φB, where

φB(t, x) =
1

L2/σ (t)
B(ξ)eiτ , ξ =

x
L(t)

,

τ (t) =
∫ t

s=0

ds
L4(s)

.

(45)

The blowup rate L(t) of these solutions is a quartic root, i.e.,

L(t) ∼ κB
4
√
Tc − t, t → Tc, (46)

where κB > 0. In addition, the self-similar profile B(ξ) is the
solution of

Bξξξξ −
i
4
κ4B ξBξ +

(
1−

i
2σ
κ4B

)
B(ξ)− |B|2σB = 0. (47)

In general, symmetric solutions of (47) are complex-valued, and
depend on the parameter κB and on the initial conditions B(0) and
B′′(0). We conjecture that, in analogy with the NLS, the following
holds:

Conjecture 10. 1. The nonlinear fourth-order ODE (47)has a unique
‘admissible solution’ with κB = κB(σ ), B(0) = B0(σ ), B′′(0) =
B′′0(σ ) and a zero Hamiltonian.

2. This admissible solution is the self-similar profile of the asymptotic
peak-type blowup profile φB, see (45).

3. The value of κB of the blowup rate (46) is equal to κB(σ ) of the
admissible B profile.

6.2. Simulations

We solve the one-dimensional BNLS (44) with σ = 6 and the
Gaussian initial condition

φ(t = 0, x) = 1.6 · e−x
2
. (48)

We first show that the BNLS solution blows upwith the self-similar
profile φB, see (45). To do that, we rescale the solution according to

φrescaled(t, x) = L2/σ (t)φ
(
x
L(t)

)
, L(t) = ‖φ‖−σ/2

∞
. (49)

The rescaled profiles at focusing levels of 1/L = 104 and 1/L = 108
are indistinguishable, see Fig. 16A, indicating that the solution is
indeed self-similar while focusing over 4 orders of magnitude.
Next, we consider the blowup rate of the collapsing solution,

see Fig. 16B. To do that, we first assume that

L(t) ∼ κB(Tc − t)p, (50)
and find the best fitting κB and p. In this case κB ≈ 1.020 and
p ≈ 0.25017, indicating that the blowup-rate is close to a quartic
root. To verify that the blowup rate is indeed p = 1/4, we compute
the limit limt→Tc L

3Lt . Note that for the quartic-root blowup rate
(46)
lim
t→Tc

L3Lt = −
κ4B

4
< 0,

while for a faster-than-a-quartic root blowup rate L3Lt → 0. Since
limTc→t L

3Lt ≈ −0.2898, see Fig. 16C, the blowup rate is a quartic-
root (with no loglog correction), i.e.,

L(t) ∼ κblowup-rateB,1D
4
√
Tc − t, κ

blowup-rate
B,1D ≈

4√4 · 0.2898 ≈ 1.0376.

7. Singular standing-ring solutions of the supercritical BNLS

In Section 3we analyzed singular standing-ring solutions of the
NLS with σ > 2. In this section, we derive the analogous results
for the biharmonic NLS with σ > 4.

7.1. Analysis

Let us consider singular solutions of the focusing supercritical
BNLS

iψt(t, r)−12rψ + |ψ |
2σ ψ = 0, σd > 4, d > 1, (51)

where

∆2r = −
(d− 1)(d− 3)

r3
∂r +

(d− 1)(d− 3)
r2

∂2r

+
2(d− 1)
r

∂3r + ∂
4
r (52)

is the radial biharmonic operator. The following lemma, which is
the BNLS analogue of Lemma 1, shows that standing-ring collapse
can only occur for σ ≥ 4:

Lemma 11. Let ψ be a self-similar standing-ring singular solution of
the BNLS (10), i.e., ψ ∼ ψB, where

|ψB(t, r)| =
1

L2/σ (t)
|B(ρ)|, ρ =

r − rmax(t)
L(t)

, (53a)

and

0 < lim
t→Tc

rmax(t) <∞. (53b)

Then, σ ≥ 4.

Proof. Integration gives ‖ψB‖22 = O
(
L1−4/σ

)
, and so the proof of

Lemma 1 holds for σ ≥ 4. �

Corollary 12. ψB undergoes a strong collapse when σ = 4, and a
weak collapse when σ > 4.

Proof. This follows directly from the proof of Lemma 11. �

Let us further consider standing-ring solutions of the BNLS (51).
In this case, in the ring region of a standing ring solution, the terms
of the biharmonic operator, see (52), behave as[
1
r4−k

∂krψ

]
= O

(
L−k
)
, k = 0, . . . , 4.

Therefore, ∆2rψ ∼ ∂4r ψ . Hence, near the singularity, Eq. (51)
reduces to the one-dimensional BNLS (44), i.e.,

ψ(t, r) ∼ φ (t, x = r − rmax(t)) , (54)

where φ is a peak-type solution of the one-dimensional BNLS (44).
Therefore, we predicted in [11] and also confirmed numerically
that the blowup dynamics of standing ring solutions of the NLS
(51) with d > 1 and σ = 4 is the same as the blowup dynamics of
singular peak solutions of the one-dimensional BNLS (51)withσ =
4. Similarly, we now predict that the blowup dynamics of standing
ring solutions of the BNLS (51) with d > 1 and σ > 4 is the same
as the blowup dynamics of collapsing peak solutions of the one-
dimensional BNLS (44) with the same nonlinearity exponent σ :
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Fig. 16. Solution of the one-dimensional BNLS (44) with σ = 6 and the Gaussian initial condition (48). (A) Rescaled solution according to (49) at focusing levels 1/L = 104
(solid) and1/L = 108 (dashed). The two curves are indistinguishable. (B) L as a function of (Tc−t)on a logarithmic scale. Thedotted curve is the fitted curve 1.020(Tc−t)0.25017 .
(C) L3Lt as a function of 1/L.
Fig. 17. Ring radius rmax(t) as a function of the focusing level 1/L(t) for the solution
of the BNLS (10) with d = 2, σ = 6 and the initial conditionψ0(r) = 1.6 · e−(r−5)

2
.

Conjecture 13. Let ψ be a singular standing-ring solution of the
BNLS (51) with d > 1 and σ > 4. Then,

1. The solution is self-similar in the ring region, i.e., ψ ∼ ψB for
r − rmax = O(L), where |ψB| is given by (53a).

2. The self-similar profile ψB is given by

ψB(t, r) = φB (t, x = r − rmax(t)) , (55)

where φB(t, x), see (45), is the asymptotic profile of the one-
dimensional BNLS (44) with the same σ .

3. The blowup rate is a quartic root, i.e.,

L(t) ∼ κB(σ )
4
√
Tc − t, t → Tc, (56)

where κB(σ ) > 0 is the value of κB of the admissible B profile.

Conjecture 13 implies, in particular, that the parameter κB of the
blowup-rate of ψ , see (56), is the same as the parameter κB of the
blowup rate of φ, see (46). This value depends on the nonlinearity
exponentσ , but is independent of the dimension d and of the initial
condition ψ0.
7.2. Simulations

We solve the BNLS (51) with d = 2 and σ = 6 with the initial
condition ψ0(r) = 1.6 · e−(r−5)

2
. In Fig. 17 we plot the ring radius

rmax(t) as a function of the focusing factor 1/L(t), as the solution
blows up over 8 orders of magnitude. Since limt→Tc rmax(t) =
4.992, the ring is standing and is not shrinking or expanding. Note
that the initial condition is different from the asymptotic profile
ψB, suggesting that standing-ring collapse is (radially) stable.
We next test each item of Conjecture 13 numerically:

1. In Fig. 18A, we plot the rescaled solution

ψrescaled = L2/σ (t)ψ
(
r − rmax(t)
L(t)

)
,

L(t) = ‖ψ‖−σ/2
∞

, rmax(t) = argmax
r
|ψ |, (57)

at 1/L = 104 and 1/L = 108. The two curves are indistin-
guishable, showing that standing rings undergo a self-similar
collapse with the self-similar ψB profile (45).

2. To verify that the self-similar collapse profileψB is, up to a shift
in r , equal to the asymptotic collapse profile φB of the one-
dimensional BNLS (44),we superimpose the rescaled solution of
the one-dimensional BNLS (44) from Fig. 16A, on to the rescaled
solutions of Fig. 18A, and observe that, indeed, the curves are in-
distinguishable.

3. Fig. 18B shows that

L(t) ∼ 1.020(Tc − t)0.25017.

Therefore, the blowup rate is quartic root or slightly faster.
Fig. 18C shows that limTc→t L

3Lt ≈ −0.2894, indicating that
the blowup rate is quartic-root (with no loglog correction), i.e.,

L(t) ∼ κblowup-rateB,2D
4
√
Tc − t,

κ
blowup-rate
B,2D ≈

4√4 · 0.2894 ≈ 1.0373.
A CB

Fig. 18. Solution of the two-dimensional BNLS (10) with σ = 6 and the initial condition ψ0(x) = 1.6 · e−(r−5)
2
. (A) Rescaled solution according to (49) at focusing levels

1/L = 104 (solid) and 1/L = 108 (dashed). The dashed curve is the rescaled solution of the one-dimensional BNLS at 1/L = 108 , taken from Fig. 16. All three curves are
indistinguishable. (B) L as a function of (Tc − t) on a logarithmic scale. The dotted curve is the fitted curve 1.020(Tc − t)0.2502 . The two curves are indistinguishable. (C) L3Lt
as a function of 1/L.
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Fig. 19. Solution of the NLHE (58) with d = 2, σ = 3 and the initial condition (62). (A) t = 0. (B) t = 0.002683. (C) t = 0.002686.
A B

Fig. 20. Solution of Fig. 19. (A) Ring radius rmax(t) as a function of 1/L(t). (B) Solution u at 1/L = 108 (solid curve). Dashed curve is the asymptotic uS profile (64). Both
curves are rescaled according to (63). The two curves are indistinguishable.
As predicted, there is an excellent match between the value of
κ
blowup-rate
B,2D ≈ 1.0373 extracted from the two-dimensional BNLS
solution, and the value of κblowup-rateB,1D ≈ 1.0376 extracted from
the one-dimensional BNLS solution, see Section 6.2.

8. Singular standing-ring solutions of the nonlinear heat
equation

We now consider the d-dimensional radially-symmetric non-
linear heat equation (NLHE)

ut(t, r)−1u− |u|2σu = 0, σ > 0, d > 1, (58)

where u is real and ∆ = ∂rr +
d−1
r ∂r . The existence of singular

standing ring solutions of (58) was proved by Giga and Kohn [13].
We now study the relation between these solutions, and peak-type
solutions of the one-dimensional NLHE.2

vt(t, x)− vxx − |v|2σv = 0, σ > 0. (59)

Eq. (59) admits singular solutions that collapse with the self-
similar peak-type profile [24–26]

vS(t, x) =
1

λ
1
σ (t)

1(
1+ ξ 2

) 1
2σ
, ξ =

x
L(t)

, (60a)

where

λ(t) =
√
2σ(Tc − t),

L(t) =

√
2
(
2+

1
σ

)
(Tc − t)| ln(Tc − t)|.

(60b)

Note that unlike the one-dimensional NLS, the one-dimensional
NLHE admits singular solutions for any σ > 0.

2 Throughout this paper, we denote the solution of the one-dimensional NLHE by
v, and its spatial variable by x.
Let us consider singular standing-ring solutions of the NLHE
(58). Since1u ∼ urr in the ring region, near the singularity Eq. (58)
reduces to the one-dimensional NLHE (59). Therefore, this suggests
that singular standing-ring solutions of the NLHE (58) exist for any
σ > 0, and that the blowup profile and blowup rate of these
solutions are the same as those of singular peak-type solutions of
the one-dimensional NLHE with the same σ . Indeed, we have the
following result:

Theorem 14. Let u(t, r) be a singular standing-ring solution of the
NLHE (58). Then, the solution is self-similar in the ring region, i.e.,
u ∼ uS for r − rmax = O(L), where

uS(t, r) = vS (t, x = r − rmax(t)) , (61)

and vS is given by Eq. (60).
Theorem 14 was rigorously proved by Matos [14]. Subse-

quently, Zaag [27–30] improved the results of Matos, and obtained
bounds for the convergence rate to the self-similar profile.

8.1. Simulations

We solve the NLHE (58) with d = 2 and σ = 3 and the initial
condition

u0(r) = 2e−2(r−5)
2
. (62)

The solution blows up with a ring profile, see Fig. 19. Since limt→Tc
rmax(t) = 4.9994 > 0, see Fig. 20A, the ring is standing.
In order to show that the solution blows upwith the self-similar

uS profile (61), we rescale the solution according to

urescaled(t, r) = λ
1
σ (t)u

(
r − rmax
L(t)

)
, (63)

where λ(t) and L(t) are given by (60b) and Tc is extracted from
the numerical simulation. The rescaled profile at 1/L = 108 is in
perfect agreement with the rescaled uS profile

uS,rescaled =
1(

1+ ρ2
) 1
2σ
, (64)

see Fig. 20B.
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Fig. 21. Standing ring solution of the BNLHE (65) with initial condition (62). (A) ring radius rmax(t) as a function of 1/L(t) (B) solution u rescaled according to (57), at focusing
factors of 1/L = 104 (solid curve) and 1/L = 108 (dashed curve). The rescaled peak-type solution of the one-dimensional NLH (66) is given by the dotted curve. All three
curves are indistinguishable.
Wenote that Matos [14] showed that there is a different type of
singular ring solutions, which is believed to be unstable (this has
been proved in one dimension [25]). This is probably the reason
why our numerical simulations only captured the ring solutions of
Theorem 14.

9. Singular standing-ring solutions of the nonlinear bihar-
monic heat equation

The d-dimensional radially-symmetric biharmonic nonlinear
heat (BNLHE) equation

ut(t, r)+12u− |u|2σu = 0, σ > 0, d > 1, (65)

where u is real and 12 is the radial biharmonic operator (52), ad-
mits singular solutions for anyσ > 0 [15]. To the best of our knowl-
edge, all known singular solutions of the BNLHE (65) collapse at a
point. We now show that the BNLHE admits singular standing-ring
solutions. The blowup profile and blowup rate of these solutions
are the same as those of singular peak-type solutions of the one-
dimensional BNLHE with the same σ .

9.1. Peak-type solutions of the one-dimensional BNLHE (review)

The one-dimensional BNLHE equation

vt(t, x)+ vxxxx − |v|2σv = 0, σ > 0, (66)

admits singular peak-type solutions which collapse with the self-
similar peak-type profile

vB(t, x) =
1

L2/σ (t)
B(ξ), L(t) = κBH

4
√
Tc − t, ξ =

x
L(t)

, (67)

see [15]. The self-similar profileB(ξ) is not knownexplicitly. Unlike
the one-dimensional BNLS, the one-dimensional BNLHE admits
singular solutions for any σ > 0.

9.2. Analysis

Let us consider singular standing-ring solutions of the BNLHE
(65). Since 12u ∼ urrrr in the ring region, near the singularity
the BNLHE (65) reduces to the one-dimensional BNLHE (66). We
therefore conjecture that standing-ring solutions of Eq. (65) exist,
and that their blowup profile and blowup rate is the same as those
of singular peak solutions of Eq. (66):

Conjecture 15. Let u(t, r) be a singular standing-ring solution of the
BNLHE (65). Then, the solution is self-similar in the ring region, i.e.,
u ∼ uB for r − rmax = O(L), where

uB(t, r) = vB (t, x = r − rmax(t)) , (68)

and vB is given by Eq. (67).
9.3. Simulations

We solve the BNLHE (65) with d = 2 and σ = 3 and the initial
condition (62). The solution blows up with a standing-ring profile,
see Fig. 21A. In Fig. 21B we plot the solution, rescaled according
to (57), at focusing levels of 1/L = 104 and 1/L = 108. The
two curves are indistinguishable, indicating that the solution is
indeed self-similar. Next, we want to show that the self-similar
blowup profile is given by B(ξ), the self-similar profile of peak-
type solutions of the one-dimensional NLHE, see (67). To do that,
we compute the solution of the one-dimensional BNLHE (66)
with σ = 3 and u(t = 0, x) = 2e−x

2
, and superimpose its

profile at 1/L = 108 in Fig. 21B. The three rescaled solutions
are indistinguishable, indicating that standing-ring solutions of the
BNLHE blowup with the self-similar profile of peak-type solutions
of the one-dimensional BNLHE. In addition, we have from the
numerical simulations that limt→Tc L

3Lt ≈ −1.2108 when d =
2, where L(t) := ‖u‖−σ/2∞ , and limt→Tc L

3Lt ≈ −1.2108 when
d = 1, where L(t) := ‖v‖−σ/2∞ . Therefore, the blowup rate of the
standing-ring solution of the two-dimensional BNLHE is equal, up
to 5 significant digits, to the blowup rate of the singular peak-type
solution of the one-dimensional BNLHE, and is given by

L(t) ∼ κBH
4
√
Tc − t, κBH ≈

4√4 · 1.2108 ≈ 1.4835.

Thus, the numerical results provide a strong support for Conjec-
ture 15.

10. Numerical methods

10.1. Admissible solutions of (17)

The admissible solution S of (17) was calculated using the
shootingmethod of Budd et al. [31, Section 3.1]. In thismethod, one
searches in the two-parameter space (S(0), fc) for the parameters
such that the solution of (17) satisfies the admissible solution
condition

lim
ξ→∞

F(ξ ; fc, S(0)) = 0,

F(ξ ; fc, S(0)) =
∣∣∣∣ξS ′(ξ)+ ( 2if 2c + 1σ

)
S(ξ)

∣∣∣∣2 .
10.2. Solution of the NLS, BNLS, NLHE and BNLHE

In this study, we computed singular solutions of the NLS (4), the
BNLS (51), the NLHE (58) and the BNLHE (65). These solutions be-
come highly-localized, so that the spatial scale-difference between
the singular region r− rmax = O(L) and the exterior regions can be
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as large as O(1/L) ∼ 1010. In order to resolve the solution at both
the singular and non-singular regions, we use an adaptive grid.
We generate the adaptive grids using the Static Grid Redis-

tribution (SGR) method, which was first introduced by Ren and
Wang [32], and was later simplified and improved by Gavish and
Ditkowsky [33]. Using this approach, the solution is allowed to
propagate (self-focus) until it starts to become under-resolved. At
this stage, a new grid, with the same number of grid-points, is gen-
erated using De’Boors ‘equidistribution principle’, see [32,33] for
details.
The method in [33] also allows control of the portion of grid

points that migrate into the singular region, preventing under-
resolution at the exterior regions. In [11], we further extended
the approach to prevent under-resolution in the transition region
O(L)� r − rmax � O(1).
On the sequence of grids, the equations are solved using a

Predictor–Corrector Crank–Nicholson scheme.
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