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a b s t r a c t

We show that the subcritical d-dimensional nonlinear Schrödinger equation iψt + ∆ψ + |ψ |
2σψ = 0,

where 1 < σd < 2, admits smooth solutions that become singular in Lp for p∗ < p ≤ ∞, where
p∗

:=
σd
σd−1 . Since limσd→2− p∗

= 2, these solutions can collapse at any 2 < p ≤ ∞, and in particular for
p = 2σ + 2.

© 2011 Elsevier B.V. All rights reserved.
1. Introduction

The focusing nonlinear Schrödinger equation (NLS)

iψt(t, x)+1ψ + |ψ |
2σψ = 0, ψ(0, x) = ψ0(x), (1)

where x = (x1, . . . , xd) ∈ Rd and ∆ =
∑d

j=1 ∂xjxj is the
Laplacian, has been the subject of intensive study, due to its
role in various areas of physics, such as nonlinear optics and
Bose–Einstein condensates (BEC). The NLS is called subcritical,
critical, and supercritical if σd < 2, σd = 2, and σd > 2,
respectively. It is well-known that in the critical and supercritical
cases, the NLS (1) possesses solutions that become singular in a
finite time in Lp for some finite p [1]. In this study we show that
the subcritical NLS also admits solutions that become singular in
Lp for some finite p.

NLS theory was originally developed for solutions that are in
H1(Rd). In this case, the initial condition ψ0 ∈ H1, and the NLS
solution is said to become singular at t = Tc if ψ(t) ∈ H1 for
0 ≤ t < Tc , and limt→Tc ‖ψ(t)‖H1 = ∞. In 1983, Weinstein
proved that all H1 solutions of the subcritical NLS exist globally:

Theorem 1 ([2]). Let ψ be a solution of the NLS (1), let 0 < σd < 2,
and let ψ0 ∈ H1. Then, ψ exists globally in H1.

In recent years, there has been a lot of work on the NLS with
lower regularity than H1. In this study we show that if we do not
restrict ourselves to H1 solutions, then the subcritical NLS also
admits singular solutions. Here, by singular we mean that there
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exists some 2 < p < ∞ such that ‖ψ‖p becomes infinite in a
finite time.1 Our main result is as follows:

Theorem 2. Let

p∗ < p ≤ ∞, p∗
:=

σd
σd − 1

. (2)

Then, the subcritical NLS with 1 < σd < 2 admits classical solutions
that become singular at a finite time Tc in Lp, i.e.,

‖ψ(t)‖p < ∞, 0 ≤ t < Tc,

and

lim
t→Tc

‖ψ(t)‖p = ∞.

Theorem 2 follows from the following theorem:

Theorem 3. Let p be in the range (2), let 1 < σd < 2, let a > 0 be
a positive constant, and let Q (ρ) be the solution of

1Q (ρ)− Q + ia


1
σ
Q + ρQ ′


+ |Q |

2σQ

= 0, 0 < ρ < ∞, (3a)

subject to

0 ≠ Q (0) ∈ C, Q ′(0) = 0. (3b)

1 In the case of H1 solutions of the NLS, blow-up of the H1 norm implies blow-up
of the Lp norms for 2σ + 2 ≤ p ≤ ∞; see Appendix A.
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Let

ψ
explicit
Q (t, r) =

1
L1/σ (t)

Q (ρ)eiτ(t), (4a)

where

r = |x|, L(t) =


2a(Tc − t), (4b)

and

ρ =
r

L(t)
, τ =

∫ t

0

1
L2(s)

ds =
1
2a

log
Tc

Tc − t
. (4c)

Then,ψexplicit
Q is an explicit solution of the subcritical NLS that becomes

singular in Lp as t −→ Tc .

Remark. Although Q , and hence also ψexplicit
Q , is not in H1, it is

smooth, and it decays to zero as |x| −→ ∞; see Lemma 2.

Since

lim
σd→2−

p∗
= 2+,

then for any 2 < p < ∞, there exists a singular solution of a
subcritical NLS that becomes singular in Lp. In particular, if σd is
sufficiently close to 2 from below, then ψexplicit

Q becomes singular
in L2σ+2.

Remark. The linear Schrödinger equation iψt + 1ψ = 0 admits
the fundamental solution ψ =

1
(4π it)d/2

ei|x|
2/4t , which becomes

singular in finite time in L∞. Additional solutions of linear and
subcritical nonlinear Schrödinger equations that become singular
in finite time in L∞ are given by Cordero-Soto et al. [3]. Unlike
ψ

explicit
Q , however, these solutions do not become singular in Lp for

any finite p.

2. Proof of Theorem 3

We begin with the following result.

Lemma 1. Let ψexplicit
Q be defined as in Theorem 3. Then, ψexplicit

Q is
an explicit solution of the NLS (1).

Proof. Substituting ψexplicit
Q in the NLS (1) and carrying out the

differentiation proves the result. �

The result of Lemma 1 was used by Zakharov [4], and sub-
sequently by others (see [1] and the references therein), in the
study of singular H1 solutions of the supercritical NLS. These solu-
tions undergo a quasi-self-similar collapse, in which ψexplicit

Q is the
asymptotic blow-up profile of the collapsing core of the solution.
Here, in contrast,ψexplicit

Q is an explicit, ‘‘truly’’ self-similar solution
of the subcritical NLS.

We now establish the decay at infinity of all solutions of Eq. (3):

Lemma 2. Let a > 0 and that 1 < σd < 2. Then, for any Q (0) ∈ C,
the solution of Eq. (3) exists, is unique, and decays to zero asρ −→ ∞,
so that

|Q | = O(ρ−d+1/σ ), ρ −→ ∞.

Therefore, Q is in Lp for any p∗ < p ≤ ∞.

Proof. The proof is nearly identical to the proof of Johnson and Pan
in the supercritical case [5]; see Appendix B. �

Lemma 3. For any p∗ < p ≤ ∞, ψ
explicit
Q becomes singular in Lp as

t −→ Tc .
Proof. Since

‖ψ
explicit
Q (t)‖p =

‖Q‖p

L1/σ (t)
,

and ‖Q‖p < ∞, the result follows. �

This concludes the proof of Theorem 3.

3. The Q equation in the subcritical case

As in [6], the far-field asymptotics of Q can be calculated using
the WKB method:

Lemma 4. Let Q (ρ) be a solution of Eq. (3), where 1 < σd < 2.
Then,

Q (ρ) ∼ c1Q1(ρ)+ c2Q2(ρ), ρ −→ ∞, (5)

where c1 and c2 are complex numbers, and

Q1 ∼ ρ−i/a−1/σ , Q2 ∼ e−iaρ2/2ρ i/a−d+1/σ .

Proof. See Appendix C. �

Corollary 1. If 1 < σd < 2, then

Q1 ∈ L2(Rd), ∇Q1 ∈ L2(Rd),

and

Q2 ∉ L2(Rd), ∇Q2 ∉ L2(Rd).

In addition, Q1 ∈ Lp(Rd) for any 2 ≤ p ≤ ∞, and

Q2 ∈ Lp(Rd),
σd

σd − 1
< p ≤ ∞.

Proof. This follows from Lemma 4. �

In the supercritical case, a key role is played by the zero-
Hamiltonian solutions of the Q equation, which behave as c1Q1 at
large ρ [1]. We now show that there are no such solutions in the
subcritical case:

Lemma 5. When 1 < σd < 2, there are no nontrivial solutions of
the Q Eq. (3), such that c2 = 0, i.e., that

Q (ρ) ∼ c1Q1(ρ), ρ −→ ∞.

Proof. By negation. Assume that there is such a Q . In this case, it
follows from Corollary 1 that Q ∈ H1. Hence, ψexplicit

Q is a solution
of the subcritical NLS that becomes singular in H1, which is in
contradiction with Theorem 1. �

Fig. 1 shows two numerical solutions of Eq. (3). As expected (see
Lemma 4),

|Q | ∼ |c1ρ−i/a−1/σ
+ c2e−iaρ2/2ρ i/a−d+1/σ

|

decreases to zero as ρ −→ ∞, while undergoing faster and faster
oscillations. The ‘‘cleaner picture’’ in Fig. 1 A has to do with the fact
that the values of a and Q (0) were chosen so as to minimize the
value of c2.23

2 These values of a and Q (0) were calculated using the shooting algorithm of
Budd et al. [7] for calculating the zero-Hamiltonian solutions in the supercritical
case.
3 The value of c2 cannot be equal to zero; see Lemma 5.
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Fig. 1. Solutions of Eq. (3) with d = 1, σ = 1.9, a = 0.5145, and with A: Q (0) = 1.2953, and B: Q (0) = 3.
4. Final remarks

In this study we showed that if we do not limit ourselves
to H1 solutions, then the subcritical NLS admits solutions that
become singular at a finite time in Lp for some finite p. This finding
raises several questions, which are currently open. One question is
whether the explicit singular solutions are stable. This question is
hard to study numerically, because of the slow decay, coupledwith
the ever faster oscillations, of the solution at infinity. Another open
question is that of whether the subcritical NLS admits singular
solutions that are not self-similar.4The answers to these questions
will determinewhether singularity formation in the subcriticalNLS
will remain as an anecdote, or lead to a new line of research.
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Appendix A. Blow-up of ‖ψ‖p

The NLS conserves the power (mass, L2 norm) and the
Hamiltonian, i.e.,

‖ψ‖
2
2 ≡ ‖ψ0‖

2
2, H(t) := ‖∇ψ‖

2
2 −

1
σ + 1

‖ψ‖
2σ+2
2σ+2 ≡ H(0).

Therefore, when ‖ψ‖H1 becomes infinite, then so does ‖∇ψ‖2;
hence ‖ψ‖2σ+2. Therefore, since ‖ψ‖2 is conserved, it follows from
the interpolation inequality for Lp norms that ‖ψ‖p also becomes
infinite for 2σ + 2 ≤ p ≤ ∞.

Appendix B. Proof of Lemma 2

As in the proof of Johnson and Pan in the supercritical case [5],
let

Q (ρ) = u(ρ)e−iaρ2/4, u(ρ) = u1(ρ)+ iu2(ρ),

where u1 and u2 are real functions, that

vj(ρ) = ρ(d−1)/2uj(ρ), j = 1, 2,

that

t = ρ2, xj(t) = vj(ρ), yj(t) =
dxj
dt
,

4 Cordero-Soto et al. [3] derived solutions of subcritical nonlinear Schrödinger
equations that become singular in finite time in L∞ , which are not self-similar. These
solutions, however, do not become singular in Lp for any finite p.
that

fj(t) = t1/4xj(t), gj(t) =
dfj
dt
,

and that

H(t) =
1
2
(g2

1 + g2
2 )+

1
8


λ−

1
t

−
e
t2


(f 21 + f 22 )

+
1

4(2σ + 2)
t−β(f 21 + f 22 )

σ+1,

where

λ =
a2

4
, β = 1 +

σd
2
, e =

1
4
d(d − 4).

Then,

H ′(t) =
B
4t
(f1g2 − f2g1)+

1
8t2


1 +

2e
t


(f 21 + f 22 )

−
β

4(2σ + 2)
t−β−1(f 21 + f 22 )

σ+1,

where

B = a

d
2

−
1
σ


< 0.

In addition, from the Cauchy–Schwartz inequality [5],

|f1g2| ≤
1
2

√
λ

2
f 21 +

2
√
λ
g2
2


,

|f2g1| ≤
1
2

√
λ

2
f 22 +

2
√
λ
g2
1


.

Since β > 0 and B < 0,

H ′(t) ≤
|B|
4t
(|f1g2| + |f2g1|)+

1
8t2


1 +

2e
t


(f 21 + f 22 )

≤
|B|
8t

√
λ

2
(f 21 + f 22 )+

2
√
λ
(g2

1 + g2
2 )



+
1
8t2


1 +

2e
t


(f 21 + f 22 )

=
|B|

2
√
λt


λ

8
(f 21 + f 22 )+

1
2
(g2

1 + g2
2 )


+

1
8t2


1 +

2e
t


(f 21 + f 22 )

≤
|B|

2
√
λt


1 + O


1
t


H(t).

Since H(t) > 0 for large t ,
H ′

H
≤

|B|

2
√
λt

+ O


1
t2


.
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Therefore, as in [5], there exists a constant c > 0, such that

H(t) ≤ c(1 + t2|α|), 0 ≤ t < ∞,

where

2|α| =
|B|

2
√
λ

=
1
σ

−
d
2
.

Hence,

|fj(t)| ≤ c(1 + t |α|),

|xj(t)| ≤ ct−1/4(1 + t |α|),

|vj(ρ)| ≤ cρ−1/2(1 + ρ2|α|),

and

|uj(ρ)| ≤ cρ−d/2(1 + ρ2|α|).

Therefore,

|u| = O(ρ−d+1/σ ), ρ −→ ∞.

Remark. The only difference from the original proof of Johnson
and Pan is that in the supercritical case, B > 0. Therefore, we take
the absolute value of B, instead of B, in the bounds for H ′.

Appendix C. Proof of Lemma 4

Let

Q (ρ) = e−
1
2
  d−1

ρ +iaρ

Z(ρ) = e−iaρ2/4ρ−(d−1)/2Z(ρ).

Therefore, the equation for Z is given by

Z ′′(ρ)+


a2

4
ρ2

− 1 − ia
dσ − 2

2σ
−
(d − 1)(d − 3)

4ρ2
+ |Q |

2σ

Z

= 0. (C.1)

Since by Lemma 2, limρ→∞ Q = 0, let us look for an asymptotic
solution of the form

Z = ew(ρ), w(ρ) ∼ w0(ρ)+ w1(ρ)+ · · · .

The equation for {wi(t)} is given by

(w′′

0 + w′′

1 + · · ·)+ (w′

0 + w′

1 + · · ·)2 +


a2

4
ρ2

− 1

− ia
dσ − 2

2σ
−
(d − 1)(d − 3)

4ρ2
+ |Q |

2σ


= 0. (C.2)

A priori, the equation for the leading-order terms is

w′′

0 + (w′

0)
2
+

a2

4
ρ2

= 0.

The substitution w0 = cρn shows that the orders of the terms in
this equation are ρn−2, ρ2n−2, and ρ2, respectively. Since the only
consistent way to balance the leading-order terms is if n = 2, the
equation for the leading-order terms is given by

(w′

0)
2
+

a2

4
ρ2

= 0.

Therefore,

w′

0 = ±
ia
2
ρ, w0 = ±

ia
4
ρ2.
The balance of the next-order terms is given by

w′′

0 + 2w′

0w
′

1 − 1 − ia
dσ − 2

2σ
= 0.

Substitutingw′

0 = ±iaρ/2 and rearranging gives

w′

1 = ∓
i
aρ

±
dσ − 2

2σ
1
ρ

−
1
2ρ
,

w1 =


∓

i
a

±
dσ − 2

2σ
−

1
2


log ρ.

Wewill now show thatw2 = o(1). Therefore, we obtained the two
solutions

w(1)(ρ) = ia
ρ2

4
+


−

i
a

−
1 − d
2

−
1
σ


log ρ + o(1),

w(2)(ρ) = −ia
ρ2

4
+


i
a

+
−1 − d

2
+

1
σ


log ρ + o(1).

Substituting Qi(ρ) = e−iaρ2/4ρ−(d−1)/2ew
(i)(ρ) leads to the result.

In order to confirm that w2 = o(1), we note that the equation
forw2 is given by

w′′

1 + (w′

1)
2
+ 2w′

0w
′

2 −
(d − 1)(d − 3)

4ρ2
+ |Q |

2σ
= 0. (C.3)

In the case of Q1, since |Q1|
2σ

∼ ρ−2, substituting the expressions
forw0 andw1 gives

w′

2 = O


1
ρ3


, w2 = O


1
ρ2


.

In the case ofQ2, since |Q2|
2σ

∼ ρ−2σd+2
≫ ρ−2, the leading-order

equation forw2 becomes

2w′

0w
′

2 + |Q2|
2σ

= 0.

Sincew′

0 ∼ ρ, thenw′

2 ∼ ρ−2σd+1 andw2 ∼ ρ−2σd+2
= o(1).

Finally, we note that this proof is rigorous, since solutions
of linear ODEs always have their asymptotics obtained by WKB
calculations, and the ODE (C.1) for Z is ‘‘linear’’, since it can be
written as

Z ′′(ρ)+


a2

4
ρ2

− 1 − ia
dσ − 2
2σ

−
(d − 1)(d − 3)

4ρ2

+O(ρ−d+1/σ )


Z = 0.

References

[1] C. Sulem, P.L. Sulem, The Nonlinear Schrödinger Equation, Springer, New York,
1999.

[2] M.I. Weinstein, Nonlinear Schrödinger equations and sharp interpolation
estimates, Comm. Math. Phys. 87 (1983) 567–576.

[3] R. Cordero-Soto, R.M. Lopez, E. Suaz, S.K. Suslov, Propagator of a charged particle
with a spin uniformmagnetic and perpendicular electric fields, Lett.Math. Phys.
84 (2008) 159–178.

[4] V.E. Zakharov, Handbook of Plasma Physics, vol. 2, Elsevier, New York, 1984.
[5] R. Johnson, X. Pan, On an elliptic equation related to the blow-up phenomenon

in the nonlinear Schrödinger equation, Proc. Roy. Soc. Edinburgh Sect. A 123
(1993) 763–782.

[6] B.J. LeMesurier, G. Papanicolaou, C. Sulem, P.L. Sulem, Focusing and multi-
focusing solutions of the nonlinear Schrödinger equation, Physica D 31 (1988)
78–102.

[7] C.J. Budd, S. Chen, R.D. Russel, New self-similar solutions of the nonlinear
Schrödinger equation with moving mesh computations, J. Comput. Phys. 152
(1999) 756–789.


	Singular solutions of the subcritical nonlinear Schrödinger equation
	Introduction
	Proof of Theorem 3
	The  Q  equation in the subcritical case
	Final remarks
	Acknowledgment
	Blow-up of  ||ψ ||p 
	Proof of Lemma 2
	Proof of Lemma 4
	References


