
Solution of Moed A in Linear Algebra 2 2013

David Ginzburg

1) Find a 3× 3 matrix over R, which is not diagonizable and which commutes with the

matrix A =




0 0 −1
1 1 1
0 0 1


.

Solution: The characteristic polynomial of A is x(x− 1)2. Thus, we have A = P−1RP

where R =




1
1

0


 or R =




1 1
1

0


. ( In fact if you solve the equation (A− I)v = 0,

then you will see that A is diagonizable.) In both cases, one can check that L =




0 1
0

0




commutes with R. Hence P−1LP commutes with A.

2) Let f : R2 ×R2 7→ R denote a symmetric bi-linear form. Let g ∈ Mat2(R) satisfy

f(gu, gv) = f(u, v) for all u, v ∈ R2. What are the possible values for detg?

Solution: Write f(u, v) = utAv and A is symmetric. Then f(gu, gv) = f(u, v) implies

utgtAgv = utAv for all u, v ∈ R2. This last equation holds for all u, v ∈ R2 if and only if

gtAg = A. Since A is symmetric, there is an invertible matrix P such that A = P tDP and

where D = ±I or D =

(±1
0

)
. In both cases, plugging this into the equality gtAg = A, we

obtain gtP tDPg = P tDP , or (PgP−1)tD(PgP−1) = D. Let h = PgP−1. Then htDh = D

and detg = deth. If D = ±I, then htDh = D is the same as hth = I and h is orthogonal.

Hence detg = deth = ±1. If D =

(±1
0

)
and h =

(
a b
c d

)
, then htDh = D is equivalent

to

(
a2 ab
ab b2

)
=

(
1 0
0 0

)
. Thus a = ±1 and b = 0, and h =

(±1 0
c d

)
. This implies that in

this case detg can obtain any value.

3) Let V denote an inner product vector space over C. Let T : V 7→ V denote a linear

map with the property that every eigenvector of T + T ∗ is also an eigenvector of T − T ∗.

Prove that T is normal.
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Solution: By choosing a base of V , we may assume that T is represented by a matrix A

with the property that every eigenvector of A+A∗ is also an eigenvector of A−A∗. We need

to prove that A is normal. Since (A + A∗)∗ = A + A∗, we deduce that A + A∗ is self adjoint.

Hence there is a unitary matrix U such that A + A∗ = U∗D1U and D1 is diagonal. The

columns of U are all eigenvectors for A + A∗. Since every eigenvector for A + A∗ is also an

eigenvector for A−A∗, it follows that that the columns of U are also a base of eigenvectors

for A− A∗. Hence, there exists a diagonal matrix D2 such that A− A∗ = U∗D2U . Hence

A =
1

2
(A + A∗) +

1

2
(A− A∗) =

1

2
(U∗D1U + U∗D2U) =

1

2
U∗(D1 + D2)U

Since D1 + D2 is a diagonal matrix, it is normal, and hence A is normal.

4) Let V denote an an inner product vector space over C. Let T, S : V 7→ V be linear

maps such that S and S∗T are positive definite. Prove that the eigenvalues of T are all

positive real numbers.

Solution: Since S∗T is positive definite, it is self adjoint. Hence, S∗T = (S∗T )∗ = T ∗S.

For all v ∈ V we have

0 < (S∗Tv, v) = (T ∗Sv, v) = (Sv, Tv)

If v is an eigenvector for T with eigenvalue λ, then Tv = λv. Hence,

0 < (Sv, Tv) = (Sv, λv) = λ̄(Sv, v)

Since S is positive definite, then (Sv, v) > 0, and hence λ must be a real positive number.
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