1) Give an example for a linear map \(T : F^4 \mapsto F^4 \) such that
\[\text{Im} T = \text{Ker} T = \text{Sp}\{ (1,1,1,1); (1,1,1,0) \} \]

\textbf{Solution :} Complete the two vectors \((1,1,1,1)\) and \((1,1,1,0)\) to a basis in \(F^4 \). For example choose \((1,0,0,0)\) and \((0,1,0,0)\). Then we are looking for a map \(T \) such that
\[T((1,1,1,1)) = T((1,1,1,0)) = 0; \quad T((1,0,0,0)) = (1,1,1,1); \quad T((0,1,0,0)) = (1,1,1,0) \]
To give an explicit formula for \(T \), let \((x,y,z,w) \in F^4\). Then a simple computation implies
\[(x,y,z,w) = \alpha(1,1,1,1) + \beta(1,1,1,0) + (x - z)(1,0,0,0) + (y - z)(0,1,0,0) \]
Here \(\alpha \) and \(\beta \) are some elements in \(F \) which we dont care about. Hence,
\[T((x,y,z,w)) = (x - z)T((1,0,0,0)) + (y - z)T((0,1,0,0)) = \]
\[(x + y - 2z, x + y - 2z, x + y - 2z, x - z) \]
Clearly such a \(T \) is not unique.

2) Let \(U, V \) and \(W \) denote three vector spaces over a field \(F \). Let \(T : U \mapsto V \) and \(S : V \mapsto W \) be two linear transformation such that \(S \circ T \) is an isomorphism. Prove that \(V = \text{Im} T \oplus \text{Ker} S \).

\textbf{Solution :} To prove that the sum is direct we first prove that \(\text{Im} T \cap \text{Ker} S = \{0\} \).
Let \(v \in \text{Im} T \cap \text{Ker} S \). Then \(S(v) = 0 \), and there is \(u \in U \) such that \(T(u) = v \). But then \((S(T(u))) = 0 \). Since \(S \circ T \) is an isomorphism, we get \(u = 0 \) and hence \(v = 0 \).

We give two proofs that \(V = \text{Im} T + \text{Ker} S \). The first is based mainly on dimension considerations. Notice that since \(S \circ T \) is an isomorphism then \(T \) is one to one and \(S \) is onto. \textbf{(It is not true that \(T \) and \(S \) must be isomorphisms!!)}. For example, to show that \(T \)
is one to one, let \(Tu = 0 \) for some \(u \in U \). Then \(0 = S(Tu) = (S \circ T)(u) \) which implies that \(u = 0 \) since \(S \circ T \) is an isomorphism. Similarly, one proves that \(S \) is onto. Hence we have

\[
\dim \ker T = 0; \quad \dim \im S = \dim W; \quad \dim U = \dim W \tag{1}
\]

The first identity follows from the fact that \(T \) is one to one. The second follows from the fact that \(S \) is onto, and the third because \(S \circ T \) is an isomorphism.

Applying the two dimension Theorems, and using identities (1) we get

\[
\dim U = \dim \im T + \dim \ker T = \dim \im T \tag{2}
\]

\[
\dim V = \dim \im S + \dim \ker S = \dim W + \dim \ker S = \dim U + \dim \ker S + \dim \im T + \dim \ker S \tag{3}
\]

where the last equality is obtained by plugging in identity (2). We obtain,

\[
\dim V = \dim \im T + \dim \ker S
\]

We also have the dimension theorem

\[
\dim(\im T + \ker S) = \dim \im T + \dim \ker S - \dim(\im T \cap \ker S) = \dim \im T + \dim \ker S = \dim V
\]

From this we deduce that \(V = \im T + \ker S \), and we are done.

In the second proof the idea is to define a certain map from \(V \) to itself. To do that, let \(K : W \rightarrow U \) denote the inverse of the map \(S \circ T \). Then \(L = T \circ K \circ S \) is a linear map from \(V \) to itself.

Let \(v \in V \). Then \(L(v) = T((K \circ S)(v)) \). Hence \(L(v) \in \im T \). Also, since \(S \circ T \circ K = I_V \) then

\[
S(v - L(v)) = S(v) - (S \circ L)(v) = S(v) - (S \circ T \circ K \circ S)(v) = S(v) - S(v) = 0
\]

Hence \(v - L(v) \in \ker S \). The identity \(v = L(v) + (v - L(v)) \) implies that \(V = \im T + \ker S \).

\[3\) Write down all the matrices \(A \) of size three such that the vector space of all the solutions to the homogeneous system \(Ax = 0 \) will be generated by the vector \((1, 2, 3)^t\).\]
Solution: We first determine all the row echelon matrices with this property. Since $V = \text{Sp}\{(1, 2, 3)^t\}$ is one dimensional, then we must have $\text{rank}(A) = 2$. So we have two possible cases for the corresponding row echelon matrix. They are

$$P = \begin{pmatrix} 1 & a \\ 1 & b \end{pmatrix} \quad Q = \begin{pmatrix} 1 & a \\ 1 & b \end{pmatrix}$$

Since $Q(1, 2, 3)^t \neq 0$, then Q is not good. On the other hand $P(1, 2, 3)^t = 0$ has a unique solution which is $a = -1/3$ and $b = -2/3$. In other words we get

$$P = \begin{pmatrix} 1 & -1/3 \\ 1 & -2/3 \end{pmatrix}$$

The conclusion is that all matrices A which satisfies the requirements are EP where E is any invertible matrix of size three.

4) Let u, v and w be three vectors in an inner product vector space over the Real numbers. Assume that $u + v + w = 0$ and that $||u|| = ||v|| = ||w|| = 1$. Prove that $(u, v) = -\frac{1}{2}$.

Solution: We have $w = -(u + v)$. Hence

$$1 = ||w||^2 = ||-(u + v)||^2 = ||(u + v)||^2 = (u + v, u + v) = (u, u) + (u, v) + (v, u) + (v, v) = 1 + 2(u, v) + 1$$

Here we used the fact that $||u|| = ||v|| = 1$ and that $(u, v) = (v, u)$ because it is a Real inner product space. Comparing both sides of the above equation we get $(u, v) = -\frac{1}{2}$.

5) Let A be a matrix of size four whose entries are all ± 1. Prove that $8|\text{det} \ A|$.

Solution: If $\text{det} \ A = 0$ the result follows. Multiplying each column by ± 1, the value of $|A|$ is changed by ± 1. Hence we may assume that all the entries of the first row of A are all one. Multiplying the last three rows by ± 1, it is enough to prove the statement for

$$A = \begin{pmatrix} 1 & 1 & 1 & 1 \\ -1 & \pm 1 & \pm 1 & \pm 1 \\ -1 & \pm 1 & \pm 1 & \pm 1 \\ -1 & \pm 1 & \pm 1 & \pm 1 \end{pmatrix}$$
Add the first row to each of the three last rows. Then

\[
|A| = \begin{vmatrix}1 & 1 & 1 & 1 \\ 0 & 2a_1 & 2a_2 & 2a_3 \\ 0 & 2a_4 & 2a_5 & 2a_6 \\ 0 & 2a_7 & 2a_8 & 2a_9 \end{vmatrix} = \begin{vmatrix}2a_1 & 2a_2 & 2a_3 \\ 2a_4 & 2a_5 & 2a_6 \\ 2a_7 & 2a_8 & 2a_9 \end{vmatrix}
\]

From which the claim easily follows.