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1) Give an example for a linear map T : F 4 7→ F 4 such that

ImT = KerT = Sp{(1, 1, 1, 1); (1, 1, 1, 0)}

Solution : Complete the two vectors (1, 1, 1, 1) and (1, 1, 1, 0) to a basis in F 4. For

example choose (1, 0, 0, 0) and (0, 1, 0, 0). Then we are looking for a map T such that

T ((1, 1, 1, 1)) = T ((1, 1, 1, 0)) = 0; T ((1, 0, 0, 0)) = (1, 1, 1, 1); T ((0, 1, 0, 0) = (1, 1, 1, 0))

To give an explicit formula for T , let (x, y, z, w) ∈ F 4. Then a simple computation implies

(x, y, z, w) = α(1, 1, 1, 1) + β(1, 1, 1, 0) + (x− z)(1, 0, 0, 0) + (y − z)(0, 1, 0, 0)

Here α and β are some elements in F which we dont care about. Hence,

T ((x, y, z, w)) = (x− z)T ((1, 0, 0, 0)) + (y − z)T ((0, 1, 0, 0)) =

(x+ y − 2z, x+ y − 2z, x+ y − 2z, x− z)

Clearly such a T is not unique.

2) Let U, V and W denote three vector spaces over a field F . Let T : U 7→ V and

S : V 7→ W be two linear transformation such that S ◦ T is an isomorphism. Prove that

V = Im T ⊕KerS.

Solution : To prove that the sum is direct we first prove that Im T
∩

KerS = {0}.
Let v ∈ Im T

∩
KerS. Then S(v) = 0, and there is u ∈ U such that T (u) = v. But then

(S(T (u)) = 0. Since S ◦ T is an isomorphism, we get u = 0 and hence v = 0.

We give two proofs that V = ImT + KerS. The first is based mainly on dimension

considerations. Notice that since S ◦T is an isomorphism then T is one to one and S is onto.

(It is not true that T and S must be isomorphisms!!). For example, to show that T
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is one to one, let Tu = 0 for some u ∈ U . Then 0 = S(Tu) = (S ◦ T )(u) which implies that

u = 0 since S ◦ T is an isomorphism. Similarly, one proves that S is onto. Hence we have

dimKerT = 0; dimImS = dimW ; dimU = dimW (1)

The first identity follows from the fact that T is one to one. The second follows from the

fact that S is onto, and the third because S ◦ T is an isomorphism.

Applying the two dimension Theorems, and using identities (1) we get

dimU = dimImT + dimKerT = dimImT (2)

dimV = dimImS + dimKerS = dimW + dimKerS = (3)

dimU + dimKerS + dimImT + dimKerS

where the last equality is obtained by plugging in identity (2). We obtain,

dimV = dimImT + dimKerS

We also have the dimension theorem

dim(ImT +KerS) = dimImT + dimKerS − dim(ImT ∩KerS) =

= dimImT + dimKerS = dimV

From this we deduce that V = ImT +KerS, and we are done.

In the second proof the idea is to define a certain map from V to itself. To do that, let

K : W 7→ U denote the inverse of the map S ◦ T . Then L = T ◦K ◦ S is a linear map from

V to itself.

Let v ∈ V . Then L(v) = T ((K ◦S)(v)). Hence L(v) ∈ Im T . Also, since S ◦ T ◦K = IV

then

S(v − L(v)) = S(v)− (S ◦ L)(v) = S(v)− (S ◦ T ◦K ◦ S)(v) = S(v)− S(v) = 0

Hence v−L(v) ∈ KerS. The identity v = L(v)+(v−L(v)) implies that V = Im T +KerS.

3) Write down all the matrices A of size three such that the vector space of all the

solutions to the homogeneous system Ax = 0 will be generated by the vector (1, 2, 3)t.
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Solution : We first determine all the row echelon matrices with this property. Since

V = Sp{(1, 2, 3)t} is one dimensional, then we must have rank(A) = 2. So we have two

possible cases for the corresponding row echelon matrix. They are

P =

1 a
1 b

 Q =

1 a b
1


Since Q(1, 2, 3)t ̸= 0, then Q is not good. On the other hand P (1, 2, 3)t = 0 has a unique

solution which is a = −1/3 and b = −2/3. In other words we get

P =

1 −1/3
1 −2/3


The conclusion is that all matrices A which satisfies the requirements are EP where E is

any invertible matrix of size three.

4) Let u, v and w be three vectors in an inner product vector space over the Real numbers.

Assume that u+ v + w = 0 and that ||u|| = ||v|| = ||w|| = 1. Prove that (u, v) = −1
2
.

Solution : We have w = −(u+ v). Hence

1 = ||w||2 = || − (u+ v)||2 = ||(u+ v)||2 = (u+ v, u+ v) =

= (u, u) + (u, v) + (v, u) + (v, v) = 1 + 2(u, v) + 1

Here we used the fact that ||u|| = ||v|| = 1 and that (u, v) = (v, u) because it is a Real inner

product space. Comparing both sides of the above equation we get (u, v) = −1
2
.

5) Let A be a matrix of size four whose entries are all ±1. Prove that 8|det A.
Solution : If det A = 0 the result follows. Multiplying each column by ±1, the value of

|A| is changed by ±1. Hence we may assume that all the entries of the first row of A are all

one. Multiplying the last three rows by ±1, it is enough to prove the statement for

A =


1 1 1 1
−1 ±1 ±1 ±1
−1 ±1 ±1 ±1
−1 ±1 ±1 ±1
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Add the first row to each of the three last rows. Then

|A| =

∣∣∣∣∣∣∣∣
1 1 1 1
0 2a1 2a2 2a3
0 2a4 2a5 2a6
0 2a7 2a8 2a9

∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣
2a1 2a2 2a3
2a4 2a5 2a6
2a7 2a8 2a9

∣∣∣∣∣∣
From which the claim easily follows.
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