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1) Consider the following system of equations over the Real numbers.

ax+ y + bz = 1

−x+ 3y − z = 1

x− y + 3z = 1

For what values of a and b, the system has infinite number of solutions?

Solution : Write the extended matrix of the system. We have a 1 b 1
−1 3 −1 1
1 −1 3 1

 →

 1 −1 3 1
−1 3 −1 1
a 1 b 1

 →

1 −1 3 1
0 2 2 2
0 1 + a b− 3a 1− a

 →

1 −1 3 1
0 1 1 1
0 1 + a b− 3a 1− a

 →

1 −1 3 1
0 1 1 1
0 0 b− 4a− 1 −2a


If b− 4a− 1 ̸= 0, then the system has a unique solution. Hence b− 4a− 1 = 0. If −2a ̸= 0,

the system has no solution. Hence a = 0 and then b = 1. In this case the system has infinite

number of solutions.

2) Let f(x) be a polynomial of degree n over the Real numbers. Prove that for all

polynomial g(x) whose degree is at most n, there are Real numbers αi for 0 ≤ i ≤ n such

that

g(x) = α0f(x) + α1f
(1)(x) + · · ·+ αn−1f

(n−1)(x) + αnf
(n)(x)

Here f (i)(x) is the i-th derivative of f(x).

Solution : This can be proved by induction on n. Its easy to check for n = 1. Assume

its true for n− 1, and prove for n. Assume that

f(x) = anx
n + · · ·+ a1x+ a0 g(x) = bnx

n + · · ·+ b1x+ b0
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where we know that an ̸= 0. Define the polynomial h(x) = g(x)− bn
an
f(x). Then the degree of

h(x) is at most n−1. By the induction hypothesis, applied to f (1)(x), which is a polynomial

of degree n− 1, we have constants βi such that

h(x) = β1f
(1)(x) + β2f

(2)(x) + · · ·+ βn−1f
(n−1)(x)

Plugging the definition of h(x) into the last equation, the result follows for g(x).

3) Let A be a matrix of size 2 over the Real numbers, and assume that there is a Real

number a > 0 such that |A2 + aI| = 0.

a) Prove that there is a nonzero vector v ∈ R2 such that (A2 + aI)v = 0.

b) Prove that the set {v,Av} is a linearly independent set.

c) Express |A| in terms of a only.

Solution : a) This follows immediately from the fact that |A2 + aI| = 0. Indeed, if the

homogeneous system (A2 + aI)x = 0 has only the trivial solution then |A2 + aI| ̸= 0.

b) Suppose that the set {v, Av} is a linearly dependent set. Then there is a nonzero Real

number λ such that Av = λv. Hence

0 = (A2 + aI)v = (A2v + av) = A(Av) + av = A(λv) + av = λ2v + av = (λ2 + a)v

By assumption v ̸= 0, and since a > 0 is a Real number, then λ2 + a ̸= 0. Hence we obtain

a contradiction, and hence the set {v, Av} is a linearly independent set.

c) It follows from the first two parts that {v, Av} is a base for R2. Also, we have

(A2 + aI)Av = A(A2 + aI)v = 0

Hence v and Av is a basic for the solution space of the system (A2 + aI)x = 0. This implies

that rank(A2 + aI) = 0 or that A2 + aI = 0. Hence A2 = −aI and |A|2 = a2. Since a > 0,

then |A| = a.

4) Let T : Matn×n(F ) → Matn×n(F ) denote the map defined by T (A) = A+ aAt. Here

F is a field and a ∈ F .

a) If a ̸= ±1, prove that T is an isomorphism.

b) Give an explicit formula for T−1.

Solution : a) To prove that T is linear we have

T (αA+ βB) = (αA+ βB) + a(αA+ βB)t = α(A+ aAt) + β(B + aBt) = αT (A) + βT (B)
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To prove that it is one to one we consider its kernel. Assume that T (A) = 0. ThenA+aAt = 0

or A = −aAt. Taking transpose on this last equation we obtain At = −aA. Plugging this

into the first equation we obtain A = a2A. Since a ̸= ±1 we obtain that A = 0. Hence

ker T = 0. Since every one to one linear map from a vector space to itself is an isomorphism,

the first part follows.

b) Assume that T−1(B) = A. Then B = T (A) = A + aAt. Taking transpose we

obtain Bt = At + aA. Hence At = Bt − aA. Plugging into the first equation we obtain

B = A+ a(Bt − aA), or A = 1
1−a2

(B − aBt).

5) Let v ·u denote the standard inner product on Rn. In other words, if v = (x1, . . . , xn)

and u = (y1, . . . , yn), then v · u = x1y1 + · · ·+ xnyn. Let A denote a matrix of order n with

entries in R. Prove that < v, u >= (Av) · (Au) defines an inner product on Rn if and only

if rankA = n.

Solution : We apply the definition. First, linearity. We have

< αv + βw, u >= (A(αv + βw)) · (Au) = (αAv + βAw) · (Au) =

= α(Av) · (Au) + β(Aw) · (Au) = α < v, u > +β < v,w >

where the third equality follows from the fact that v · u is a linear map. Next we prove that

< v, u >=< u, v >. Indeed,

< v, u >= (Av) · (Au) = (Au) · (Av) =< v, u >

Finally, we need to prove that if < v, v >= 0, then v = 0. By definition < v, v >= 0

is equivalent to (Av) · (Av) = 0. Since v · u is an inner product, then (Av) · (Av) = 0 is

equivalent to Av = 0. If rankA = n, then the only solution to the system Ax = 0 is x = 0.

This follows from the theorem we proved that the dimension of the space of all solutions to

Ax = 0 is equal to n− rankA.
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