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1) Consider the following system of equations over the Real numbers.

ar +y+bz=1
—r+3y—z=1
r—y+3z=1

For what values of a and b, the system has infinite number of solutions?

Solution : Write the extended matrix of the system. We have

a 1 b 1 1 -1 3 1 1 -1 3 1
-1 3 -1 1 —1-1 3 -11 — 10 2 2 2 —
1 -1 3 1 a 1 b 1 0 14a b—3a 1—a

1 -1 3 1 1 -1 3 1

0 1 1 1 — (0 1 1 1

0 14a b—3a 1—a 0 0 b—4a—-1 —2a

If b—4a — 1 # 0, then the system has a unique solution. Hence b — 4a — 1 = 0. If —2a # 0,
the system has no solution. Hence a = 0 and then b = 1. In this case the system has infinite

number of solutions.

2) Let f(x) be a polynomial of degree n over the Real numbers. Prove that for all
polynomial g(z) whose degree is at most n, there are Real numbers «; for 0 < i < n such
that

g(x) = aof(x) + arfD(@) + -+ au f7V (@) + anf (@)

Here f@)(z) is the i-th derivative of f(z).
Solution : This can be proved by induction on n. Its easy to check for n = 1. Assume

its true for n — 1, and prove for n. Assume that

f(x) = apa” + -+ + a1z + ag 9(x) = bna™ 4+ +brz + bo



where we know that a,, # 0. Define the polynomial h(z) = g(z)— Z—Zf(m) Then the degree of
h(z) is at most n— 1. By the induction hypothesis, applied to f)(z), which is a polynomial

of degree n — 1, we have constants (; such that

W) = Buf (@) + Bof O (a) + -+ Buer S (@)

Plugging the definition of h(z) into the last equation, the result follows for g(z).

3) Let A be a matrix of size 2 over the Real numbers, and assume that there is a Real
number a > 0 such that |[A% + al| = 0.
a) Prove that there is a nonzero vector v € R? such that (A% + al)v = 0.
b) Prove that the set {v, Av} is a linearly independent set.
c) Express |A| in terms of @ only.

Solution : a) This follows immediately from the fact that |A% + al| = 0. Indeed, if the
homogeneous system (A? 4+ al)z = 0 has only the trivial solution then |A? + al| # 0.
b) Suppose that the set {v, Av} is a linearly dependent set. Then there is a nonzero Real
number A such that Av = Av. Hence

0= (A% +al)v = (A%v + av) = A(Av) + av = A(\) + av = N0 + av = (A’ + a)v

By assumption v # 0, and since a > 0 is a Real number, then A\? + a # 0. Hence we obtain
a contradiction, and hence the set {v, Av} is a linearly independent set.
c) It follows from the first two parts that {v, Av} is a base for R?. Also, we have

(A% +al)Av = A(A? +al)v =0

Hence v and Av is a basic for the solution space of the system (A2 + al)x = 0. This implies
that rank(A% + al) = 0 or that A% + al = 0. Hence A? = —al and |A|*> = @®. Since a > 0,
then |A| = a.

4) Let T : Mat,xn(F) = Mat,x,(F) denote the map defined by T'(A) = A + aA". Here
Fis a field and a € F.
a) If a # +1, prove that T is an isomorphism.
b) Give an explicit formula for 7.

Solution : a) To prove that T is linear we have
T(aA + BB) = (eA+ BB) + a(aA + B)" = a(A + aA") + (B + aB") = oT(A) + BT (B)
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To prove that it is one to one we consider its kernel. Assume that T(A) = 0. Then A+aA* =0
or A = —aA®. Taking transpose on this last equation we obtain A® = —aA. Plugging this
into the first equation we obtain A = a?A. Since a # £1 we obtain that A = 0. Hence
ker T" = 0. Since every one to one linear map from a vector space to itself is an isomorphism,
the first part follows.

b) Assume that T-'(B) = A. Then B = T(A) = A + aA’. Taking transpose we
obtain B! = A' + aA. Hence A' = B! — aA. Plugging into the first equation we obtain
B=A+a(B"—aA), or A= —5(B—aB?).

1—a?

5) Let v - u denote the standard inner product on R™. In other words, if v = (x1,...,z,)
and u = (y1,...,Yn), then v -u = zyy; + - -+ + 2, y,. Let A denote a matrix of order n with
entries in R. Prove that < v,u >= (Av) - (Au) defines an inner product on R™ if and only
if rankA = n.

Solution : We apply the definition. First, linearity. We have

< av+ pw,u >= (A(av + fw)) - (Au) = (c¢Av + fAwW) - (Au) =

= a(Av) - (Au) + B(Aw) - (Au) = a <v,u >+ < v,w >

where the third equality follows from the fact that v - w is a linear map. Next we prove that

< v,u >=<u,v >. Indeed,
<wv,u>= (Av) - (Au) = (Au) - (Av) =< v,u >

Finally, we need to prove that if < v,v >= 0, then v = 0. By definition < v,v >= 0
is equivalent to (Av) - (Av) = 0. Since v - u is an inner product, then (Av) - (Av) = 0 is
equivalent to Av = 0. If rankA = n, then the only solution to the system Az = 0is z = 0.
This follows from the theorem we proved that the dimension of the space of all solutions to

Ax = 0 is equal to n — rankA.



