Solutions Linear Algebra 1 Moed A 2014

D. Ginzburg

Problem 1: Let A and B of size n be two matrices such that AB = 0. Prove that rank $A + \operatorname{rank} B \leq n$.

Solution: Let $V = \{v \in F^n : Av = 0\}$. From a Theorem we proved in class we have rank $A = n - \dim V$. Plugging this into rank $A + \operatorname{rank} B \leq n$, it is equivalent to rank $B \leq \dim V$. Thus it is enough to prove the last inequality. Let $v_1, \ldots, v_n \in F^n$ denote the columns of the matrix B. Then, from matrix multiplication we deduce that AB = 0 is equivalent to $Av_i = 0$ for all $1 \leq i \leq n$. Hence $v_i \in V$ for all $1 \leq i \leq n$. From this we obtain $C(B) = Sp\{v_1, \ldots, v_n\} \subset V$. Hence rank $B = \dim C(B) \leq \dim V$.

Problem 2: Let A be a matrix of size n such that rank A = 1 and that n - 2 rows of A are the zero rows. Is it true that det(A + I) = tr(A) + 1?

Solution: The above identity is true. To prove it, let i and k be the non zero rows of A. Since rank A = 1, these two rows are proportional. Assume that the k - th row is β times the i - th row. Thus

$$A + I = \begin{pmatrix} 1 & & & & \\ & \ddots & & & & \\ & & & 1 & & \\ & & & 1 & & \\ & & & \ddots & & \\ & & & & 1 & & \\ & & & & \ddots & \\ & & & & & 1 & \\ & & & & & & \beta\alpha_{k} + 1 & \\ & & & & & & & 1 \\ & & & & & & & \ddots \end{pmatrix}$$

In other words, all diagonal elements of A + I are ones except the i - th and k - th rows. Expending the determinant |A + I| by the first row, then by the second, then by the i - 1, then by the i + 1 and so on, we obtain that

$$|A+I| = \begin{vmatrix} \alpha_i + 1 & \alpha_k \\ \beta \alpha_i & \beta \alpha_k + 1 \end{vmatrix} = (\alpha_i + 1)(\beta \alpha_k + 1) - \alpha_k \beta \alpha_i = \alpha_i + \beta \alpha_k + 1$$

On the other hand, the diagonal entries of A are all zeros except at the i - th and k - throws. In these rows the diagonal elements are α_i and $\beta \alpha_k$. Hence $\operatorname{tr} A + 1 = \alpha_i + \beta \alpha_k + 1 = |A + I|$.

Problem 3: Let V be a vector space over F. Let $T: V \mapsto V$ be a linear map. Suppose that v_1, v_2, v_3 are nonzero vectors in V. Assume that there are scalers a_1, a_2, a_3 , all distinct, such that $Tv_i = a_iv_i$. Prove that $\{v_1, v_2, v_3\}$ is linearly independent.

Solution: By rearranging the order, we may assume that if one of the a_i is zero then i = 3. Thus, we may assume that $a_1, a_2 \neq 0$. Write

$$\beta_1 v_1 + \beta_2 v_2 + \beta_3 v_3 = 0. \tag{1}$$

Apply T to this equation, and use the fact that $Tv_i = a_i v_i$ to obtain

$$a_1\beta_1v_1 + a_2\beta_2v_2 + a_3\beta_3v_3 = 0. (2)$$

Multiply (1) by a_1 and subtract equation (2). We obtain

$$(a_1 - a_2)\beta_2 v_2 + (a_1 - a_3)\beta_3 v_3 = 0.$$
(3)

Apply T to this equation,

$$a_2(a_1 - a_2)\beta_2 v_2 + a_3(a_1 - a_3)\beta_3 v_3 = 0.$$
(4)

Multiply (3) by a_2 and subtract equation (4). We obtain

$$(a_2 - a_3)(a_1 - a_3)\beta_3 v_3 = 0$$

Since all the a_i are distinct, we deduce that $\beta_3 = 0$. Going back to equation (3) we obtain $\beta_2 = 0$, and then, from equation (1) we obtain $\beta_1 = 0$.

Problem 4: For what values of t, the vector $v = \begin{pmatrix} 1 \\ t \\ t^2 \end{pmatrix}$ is in the column space of the matrix

$$A = \begin{pmatrix} 1+t & 1 & 1\\ 1 & 1+t & 1\\ 1 & 1 & 1+t \end{pmatrix}$$

All values are assumed to be in a fixed field F.

Solution: For those values of t such that $|A| \neq 0$, we have $C(A) = F^3$ and then $v \in C(A)$. Performing the two row operations $R_1 \rightarrow R_1 - (1+t)R_3$ and $R_2 \rightarrow R_2 - R_3$, the value of the determinant does not change and we obtain

$$|A| = \begin{vmatrix} 0 & -t & 1 - (1+t)^2 \\ 0 & t & -t \\ 1 & 1 & 1+t \end{vmatrix} = \begin{vmatrix} -t & 1 - (1+t)^2 \\ t & -t \end{vmatrix} = t^2(t+3)$$

Hence, if $t \neq 0, -3$ we have $v \in C(A)$.

When
$$t = 0$$
, then $v = \begin{pmatrix} 1\\0\\0 \end{pmatrix}$ and $C(A) = Sp\{\begin{pmatrix} 1\\1\\1 \end{pmatrix}\}$. So $v \notin C(A)$.

When t = -2, we see that the columns of A all have the property that the sum of the coordinates is zero. On the other hand, in this case $v = \begin{pmatrix} 1 \\ -2 \\ 4 \end{pmatrix}$, and this vector does not have this property. Hence $v \notin C(A)$.

Problem 5: Let A, B and C be three square matrices of size n. Assume that C(I+AB) = I, compute the matrix (I - BCA)(I + BA). Write it in the simplest form possible. Solution: We have

$$(I - BCA)(I + BA) = I + BA - BCA - BCABA = I + BA - BCA - BC[(I + AB) - I]A =$$
$$= I + BA - BCA - BC(I + AB)A - BCA = I + BA - BCA - BIA + BCA$$

In the last equality we used the fact that C(I + AB) = I. Thus

$$(I - BCA)(I + BA) = I + BA - BCA - BA + BCA = I$$