Solutions Linear Algebra 1 Moed A 2014

D. Ginzburg

Problem 1: Let A and B of size n be two matrices such that AB = 0. Prove that
rankA + rankB < n.

Solution: Let V = {v € F" : Av = 0}. From a Theorem we proved in class we have
rankA = n—dimV. Plugging this into rankA+4rankB < n, it is equivalent to rank B < dimV'.
Thus it is enough to prove the last inequality. Let vy,...,v, € F™ denote the columns of
the matrix B. Then, from matrix multiplication we deduce that AB = 0 is equivalent
to Av;, = 0 for all 1 < 4 < n. Hence v; € V for all 1 < ¢ < n. From this we obtain
C(B) = Sp{v1,...,v,} C V. Hence rankB = dimC(B) < dimV'.

Problem 2: Let A be a matrix of size n such that rank A = 1 and that n — 2 rows of A
are the zero rows. Is it true that det(A + I) = tr(A) + 17
Solution: The above identity is true. To prove it, let ¢ and k be the non zero rows of A.

Since rank A = 1, these two rows are proportional. Assume that the k — th row is 3 times
the ¢ — th row. Thus
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In other words, all diagonal elements of A + I are ones except the i — th and k — th rows.
Expending the determinant |A + I| by the first row, then by the second, then by the i — 1,
then by the 7 + 1 and so on, we obtain that

a; + 1 Qy,

A+ =
[4+1] Bo;  Pag +1

= (o + 1)(Bar + 1) — apBa; = o + Bay + 1




On the other hand, the diagonal entries of A are all zeros except at the i —th and k —th
rows. In these rows the diagonal elements are a; and [Say. Hence trA+1 = «; + fap + 1 =
|A+ 1.

Problem 3: Let V' be a vector space over F'. Let T : V — V be a linear map. Suppose
that v, vo, v3 are nonzero vectors in V. Assume that there are scalers aq, as, as, all distinct,
such that Tv; = a;v;. Prove that {v1, vy, vs} is linearly independent.

Solution: By rearranging the order, we may assume that if one of the a; is zero then

1 = 3. Thus, we may assume that a;,ay # 0. Write
Prv1 + Bavz + Bauz = 0. (1)
Apply T to this equation, and use the fact that Tv; = a,;v; to obtain
a151v1 + azBav2 + azfsvz = 0. (2)
Multiply (1) by a; and subtract equation (2). We obtain
(a1 — ag)fovs + (a1 — ag)Psvs = 0. (3)
Apply T to this equation,
as(ay — ag)Povs + as(a; — az)Bzvz = 0. (4)
Multiply (3) by as and subtract equation (4). We obtain
(ag — az)(ay — az)Psvs =0

Since all the a; are distinct, we deduce that 53 = 0. Going back to equation (3) we obtain

B2 = 0, and then, from equation (1) we obtain ; = 0.
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Problem 4: For what values of ¢, the vector v = | ¢ | is in the column space of the

matrix

All values are assumed to be in a fixed field F.



Solution: For those values of ¢ such that |A| # 0, we have C(A) = F? and then
v € C(A). Performing the two row operations Ry — Ry — (1 +¢)R3 and Ry — Ry — R3, the

value of the determinant does not change and we obtain
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Hence, if ¢ # 0, —3 we have v € C(A).

When t =0, then v = (1) and C'(A) = Sp{ 1 }. Sowv ¢ C(A).

When t = —2, we see th(é)it the columns of A alll have the property that the sum of the
coordinates is zero. On the other hand, in this case v = —12 , and this vector does not

4

have this property. Hence v ¢ C'(A).

Problem 5: Let A, B and C be three square matrices of size n. Assume that C(I+AB) =
I, compute the matrix (I — BCA)(I + BA). Write it in the simplest form possible.

Solution: We have
(I—BCA)(I+BA)=1+BA—BCA—BCABA=1+BA—-BCA—-BC[(I+AB)—1]A =

=]+ BA—-BCA—-BC(I+AB)A—BCA=1+BA—-BCA—-BIA+ BCA

In the last equality we used the fact that C(/ + AB) = I. Thus

(I — BCA)(I+BA)=1+BA—BCA— BA+ BCA=1



