Blowing up the power of a singular cardinal of uncountable cofinality.

Moti Gitik*

February 13, 2018

We will present here a new method for blowing up the power of a singular cardinal which differs from those used in [1] and in [2] to deal with cofinality ω . The advantage of the present technique is that it generalizes to singular cardinals of uncountable cofinality, which was open.

Let us start with countable cofinality.

1 Blowing up the power of a singular cardinal of cofinality ω .

Let $\langle \kappa_n \mid n < \omega \rangle$ be an increasing sequence of cardinals and $\langle E_n \mid n < \omega \rangle$ such that for every $n < \omega$

- 1. E(n) is a $(\kappa_n, \kappa_{\omega}^{++})$ -extender, i.e. $j_{E(n)}: V \to M_{E(n)} \simeq \text{Ult}(V, E(n)), \operatorname{crit}(j_{E(n)}) = \kappa_n, j_{E(n)}(\kappa_n) > \kappa_{\omega}^{++},$ $M_{E(n)} \supseteq V_{\kappa_{\omega}+2}, {}^{\kappa_n}M_{E(n)} \subseteq M_{E(n)};$
- 2. $E(n) \triangleleft E(n+1),$ where $\kappa_{\omega} = \bigcup_{n < \omega} \kappa_n.$

Denote by $\mathcal{P}(n)$ the one element extender based Prikry forcing with E(n). We would like to combine $\mathcal{P}(n)$'s together. It would be a kind of Magidor product, but will involve restrictions and reflections. Namely, if for some $n < \omega$ a non-direct extension is made in $\mathcal{P}(n)$, then be will restrict each E(m), m < n to the corresponding member of the Prikry

^{*}The work was partially supported by Israel Science Foundation Grant No. 58/14. We are grateful to Carmi Merimovich for reading a draft of the paper and specially for the inspiration we got from his works on extender based forcings.

sequence for κ_n and reflect the information the condition contains about coordinates m < n below κ_n .

Let us start with a simpler situation where instead of ω extenders we have only two.

1.1 A single extender.

Let us describe a variation of one element extender based Prikry forcing that will be used here. It will be very close to those of C. Merimovich [7]. A difference will be that sequences inside conditions will be either empty or of the length one only.

Let E be a (κ, λ) -extender. Define the corresponding forcing \mathcal{P}_E .

Let $d \subseteq \lambda \setminus \kappa$ of cardinality at most κ . Define a κ -ultrafilter E(d) on $[d \times \kappa]^{<\kappa}$ as follows:

$$X \in E(d) \Leftrightarrow \{ \langle j_E(\alpha), \alpha \rangle \mid \alpha \in d \} \in j_E(X).$$

Actually, E(d) concentrates on a smaller set called OB(d) in [7].

The advantage of using E(d) is that once A is typical set of E(d)-measure one and $a \in A$, then a is of the form $\langle \langle \alpha_{\xi}, \beta_{\xi} \rangle | \xi < \rho \rangle$, where

- 1. $\rho < \kappa$,
- 2. dom $(a) = \{\alpha_{\xi} \mid \xi < \rho\} \subseteq d,$
- 3. $\beta_{\xi} < \kappa$, for every $\xi < \rho$.

So, already a measure one set provides an explicit connection between elements of Prikry sequences and the measures to which they belong.

We assume further that always $\langle \alpha_{\xi} | \xi < \rho \rangle$ and $\langle \beta_{\xi} | \xi < \rho \rangle$ are strictly increasing sequences of ordinals.

Definition 1.1 Let \mathcal{P}_E^* be the set of all functions f such that

- 1. dom $(f) \subseteq \lambda \setminus \kappa$ of cardinality at most κ ,
- 2. $\kappa \in \operatorname{dom}(f)$,
- 3. for every $\alpha \in \text{dom}(f)$, $f(\alpha)$ is either empty or a one element sequence which consists of an element of κ .

Definition 1.2 Let $f, g \in \mathcal{P}_E^*$. Set $f \geq^* g$ iff $f \subseteq g$.

Definition 1.3 (One element extension) Let $f \in \mathcal{P}_E^*$ and $\vec{\nu} \in [\operatorname{dom}(f) \times \kappa]^{<\kappa}$. Define $g = f_{\langle \vec{\nu} \rangle} \in \mathcal{P}_E^*$ as follows:

- 1. $\operatorname{dom}(g) = \operatorname{dom}(f),$
- 2. for every $\alpha \in \operatorname{dom}(g)$,

$$g(\alpha) = \begin{cases} \langle \vec{\nu}(\alpha) \rangle, & \text{if } \alpha \in \operatorname{dom}(\vec{\nu}) \text{ and } f(\alpha) \text{ is empty sequence;} \\ \langle \vec{\nu}(\alpha) \rangle, & \text{if } \alpha \in \operatorname{dom}(\vec{\nu}), \ f(\alpha) \text{ is not empty and } \vec{\nu}(\alpha) > f(\alpha); \\ f(\alpha), & \text{otherwise.} \end{cases}$$

The difference from the original definition by Merimovich in [7], is that we do not keep $f(\alpha)$ if $\vec{\nu}(\alpha) > f(\alpha)$, but rather replace $f(\alpha)$ by $\vec{\nu}(\alpha)$.

Define now the pure part \mathcal{P}_E^0 of the main forcing \mathcal{P}_E .

Definition 1.4 A pure condition $p \in \mathcal{P}_E^0$ is of the form $\langle f, A \rangle$, where

- 1. $f \in \mathcal{P}_E^*$,
- 2. $f(\kappa)$ is the empty sequence,
- 3. $A \in E(\operatorname{dom}(f))$.

Define the order on \mathcal{P}^0_E as follows:

Definition 1.5 Let $p = \langle f, A \rangle, q = \langle g, B \rangle \in \mathcal{P}_E^0$. Set $p \geq^* q$ iff

- 1. $f \geq^* g$ in \mathcal{P}_E^* ,
- 2. $A \upharpoonright \operatorname{dom}(g) \subseteq B$.

The forcing \mathcal{P}_E will be the union of \mathcal{P}_E^0 with

$$\{f \in \mathcal{P}_E^* \mid f(\kappa) \neq \langle \rangle \}.$$

The direct order extension will be just the union of \leq^* orders of both parts. Let us define the forcing order \leq on \mathcal{P} . We do this by defining one element extensions of members of \mathcal{P}_E^0 .

Definition 1.6 Let $p = \langle f, A \rangle$ be in \mathcal{P}^0_E and $\vec{\nu} \in A$. Define $p^{\frown}\vec{\nu} \in \mathcal{P}^*_E$ to be $f_{\langle \vec{\nu} \rangle}$.

Definition 1.7 Let $p = \langle f, A \rangle$ be in \mathcal{P}^0_E and g be in \mathcal{P}^*_E . Set $p \leq g$ iff there is $\vec{\nu} \in A$ such that $f_{\langle \vec{\nu} \rangle} \leq^* g$.

The next lemma follows from the definitions:

Lemma 1.8 The forcing $\langle \mathcal{P}_E, \leq \rangle$ is equivalent to the Cohen forcing for adding λ -many Cohen subsets to κ^+ .

However, more can be deduced:

Lemma 1.9 $\langle \mathcal{P}, \leq, \leq^* \rangle$ is a Prikry type forcing notion.

Proof. Let us sketch the basic argument following Merimovich presentation [7].

Let $p = \langle f^p, A^p \rangle \in \mathcal{P}^0_E$ and σ be a statement of the forcing language.

We would like to find a direct extension of p which decides σ . Suppose that there is no such extension.

Proceed as in 3.12 of [6]. Construct by induction an increasing chain of elementary submodels $\langle N_{\xi} | \xi < \kappa \rangle$ of H_{χ} , for χ large enough, and a sequence $\langle f_{\xi} | \xi < \kappa \rangle$ of members of \mathcal{P}_{E}^{*} , such that

- 1. $p, \mathcal{P}_E, \sigma \in N_0,$
- 2. $N_0 \supseteq \kappa$,
- 3. for every $\xi < \kappa$,
 - (a) $|N_{\xi}| = \kappa$,
 - (b) $^{\kappa>}N_{\xi} \subseteq N_{\xi},$
 - (c) $\langle f_{\zeta} \mid \zeta < \xi \rangle \in N_{\xi}$,
 - (d) $f_{\xi} \in \bigcap \{ D' \in N_{\xi} \mid D' \text{ is a dense open subset of } \mathcal{P}_{E}^{*} \text{ above } f^{p} \},$
 - (e) $f^p \leq^* f_0$,
 - (f) $f_{\xi} \geq^* f_{\zeta}$, for every $\zeta < \xi$.

Set $N = \bigcup_{\xi < \kappa} N_{\xi}$ and $f^* = \bigcup \{ f_{\xi} \mid \xi < \kappa \}^{1}$ to construct Let $A \subseteq [\operatorname{dom}(f^*) \times \kappa]^{<\kappa}$ be such that

- $A \upharpoonright \operatorname{dom}(f^p) \subseteq A^p$,
- $A \in E(\operatorname{dom}(f^*)).$

¹Carmi Merimovich pointed out that there is no need here in elementary chain of models and it is possible to define N directly. This observation applies also to our further constructions.

Note that $A \subseteq N$, since dom $(f^*) \subseteq N$, and so, $[\text{dom}(f^*) \times \kappa]^{<\kappa} \subseteq N$.

Let $\vec{\nu} \in A$.

Define $D_{\vec{\nu}}$ to be the set of all $f \in \mathcal{P}^*_E, f \geq f^p$ such that

 $f_{\vec{\nu}} \parallel \sigma.$

Then $D_{\vec{\nu}}$ is a dense open subset of \mathcal{P}_E^* above f^p . It is definable with parameters in N, hence $D_{\vec{\nu}} \in N$. Then, $f^* \in D_{\vec{\nu}}$.

Shrink now A to $A^* \in E(\operatorname{dom}(f^*))$, if necessary, such that for every $\vec{\nu}, \vec{\nu}'$ inside we will have

$$f^*_{\vec{\nu}} \Vdash \sigma \text{ iff } f^*_{\vec{\nu}'} \Vdash \sigma$$

Suppose that for every $\vec{\nu} \in A^*$, $f^*_{\vec{\nu}} \Vdash \sigma$.

Now, we claim that already $\langle f^*, A^* \rangle \Vdash \sigma$.

Suppose otherwise. Then there is $g \geq \langle f^*, A^* \rangle$ which forces $\neg \sigma$. Then for some $\vec{\nu} \in A^*$, $g \geq f^*_{\vec{\nu}}$, by Definition 1.7. But $f^* \in D_{\vec{\nu}}$, hence already $f^*_{\vec{\nu}} \Vdash \neg \sigma$, which is impossible by the choice of A^* .

Contradiction.

1.2 Two extenders.

We deal now with $E(0) \triangleleft E(1)$.

Let $\mathcal{P}_{E(i)}^*, \mathcal{P}_{E(i)}, \mathcal{P}_{E(i)}^0, i < 2$ be as defined in the previous subsection. Define first components of the main forcing $\mathcal{P}_{\langle E(0), E(1) \rangle}$.

Definition 1.10 The set of pure conditions $\mathcal{P}^{(0,0),(1,0)}_{\langle E(0),E(1)\rangle}$ consists of all pairs $\langle p(0), p(1) \rangle$ such that

- 1. $p(0) = \langle f^0, A^0 \rangle \in \mathcal{P}^0_{E(0)},$
- 2. $p(1) = \langle f^1, A^1 \rangle \in \mathcal{P}^0_{E(1)},$
- 3. dom $(f^0) \setminus \kappa_1 \subseteq \text{dom}(f^1)$,
- 4. for every $\alpha \in \operatorname{dom}(f^0) \setminus \kappa_1$, if $f^1(\alpha)$ is not the empty sequence, then for every $\vec{\nu} \in A^1$, $\alpha \in \operatorname{dom}(\vec{\nu})$ and $\vec{\nu}(\alpha) > f^1(\alpha)$.

The intuition behind this condition is that the current value $f^{1}(\alpha)$ may interfere with

values of one element Prikry sequences over κ_0 . Namely, with the α -th Prikry sequence over κ_0 . Now, if $\vec{\nu}(\alpha) > f^1(\alpha)$, then $f^1_{\vec{\nu}}(\alpha) = \vec{\nu}(\alpha)$, by Definition 1.3, and so, the value $f^1(\alpha)$ just disappears.

- 5. For every $\gamma \in \text{dom}(f^0) \cap \kappa_1, \vec{\nu} \in A^1$ and $\alpha \in \text{dom}(\vec{\nu}), \vec{\nu}(\alpha) > \gamma$. Note that $|\text{dom}(f^0)| \leq \kappa_0$, so it is easy to arrange this.
- 6. For every $\vec{\nu} \in A^1$, the measures $E(0)(\operatorname{dom}(f^0))$ and $E(0)((\operatorname{dom}(f^0) \cap \kappa_1) \cup \{\vec{\nu}(\alpha) \mid \alpha \in \operatorname{dom}(f^0) \setminus \kappa_1\})$ are basically the same in the following sense:

$$X \in E(0)(\operatorname{dom}(f^0)) \text{ iff } X^{ref} \in E(0)((\operatorname{dom}(f^0) \cap \kappa_1) \cup \{\vec{\nu}(\alpha) \mid \alpha \in \operatorname{dom}(f^0) \setminus \kappa_1\}),$$

where

$$X^{ref} = \{ (\alpha, \beta) \in X \mid \alpha < \kappa_1 \} \cup \{ (\vec{\nu}(\alpha), \beta) \mid (\alpha, \beta) \in X, \alpha \ge \kappa_1 \}.$$

Note that this property is true in the ultrapower by E(1), so it holds on a set of measure one, as well.

Turn now to non-pure extensions.

First consider the situation with non-pure part over κ_0 .

Definition 1.11 The set of conditions $\mathcal{P}_{\langle E(0), E(1) \rangle}^{(1,0)}$ consists of all pairs $\langle f^0, p(1) \rangle$ such that

1. $f^0 \in \mathcal{P}^*_{E(0)},$

2.
$$p(1) = \langle f^1, A^1 \rangle \in \mathcal{P}_{E(1)}$$

- 3. dom $(f^0) \setminus \kappa_1 \subseteq \text{dom}(f^1)$,
- 4. for every $\alpha \in \operatorname{dom}(f^0) \setminus \kappa_1$, if $f^1(\alpha)$ is not the empty sequence, then for every $\vec{\nu} \in A^1$, $\alpha \in \operatorname{dom}(\vec{\nu})$ and $\vec{\nu}(\alpha) > f^1(\alpha)$,
- 5. for every $\gamma \in \operatorname{dom}(f^0) \cap \kappa_1, \vec{\nu} \in A^1$ and $\alpha \in \operatorname{dom}(\vec{\nu}), \vec{\nu}(\alpha) > \gamma$.

Define conditions with a pure part over κ_0 and a non-pure over κ_1 . Assume for simplicity that there is $h_{\lambda} : \kappa_1 \to \kappa_1$ such that $j_{E(1)}(h_{\lambda})(\kappa_1) = \lambda$.

Definition 1.12 The set of conditions $\mathcal{P}^{(0,0)}_{\langle E(0), E(1) \rangle}$ consists of all pairs $\langle p(0), f^1 \rangle$ such that 1. $f^1 \in \mathcal{P}^*_{E(1)}$,

- 2. $f^1(\kappa_1)$ is non-empty,
- 3. $p(0) \in \mathcal{P}_{E(0) \restriction h_{\lambda}(f^{1}(\kappa_{1}))}$. The meaning is that if the value of the Prikry sequence for the normal measure of E(1) is decided, then we cut E(0) to the reflection of λ below κ_{1} , i.e. to $h_{\lambda}(f^{1}(\kappa_{1}))$.

Define now a completely non-pure part of the forcing.

Definition 1.13 The set of conditions $\mathcal{P}^*_{\langle E(0), E(1) \rangle}$ consists of all pairs $\langle f^0, f^1 \rangle$ such that

- 1. $f^1 \in \mathcal{P}^*_{E(1)},$
- 2. $f^1(\kappa_1)$ is non-empty,
- 3. $f^0 \in \mathcal{P}^*_{E(0)},$
- 4. $f^0(\kappa_0)$ is non-empty,
- 5. dom $(f^0) \subseteq h_{\lambda}(f^1(\kappa_1)).$

The meaning is that if the value of the Prikry sequence for the normal measure of E(1) is decided, then we add only $h_{\lambda}(f^1(\kappa_1))$ Cohen subsets to κ_0^+ .

Now let us put everything together.

 $\textbf{Definition 1.14} \hspace{0.1 in} \mathcal{P}_{\langle E(0), E(1) \rangle} = \mathcal{P}_{\langle E(0), E(1) \rangle}^{(0,0)} \cup \mathcal{P}_{\langle E(0), E(1) \rangle}^{(1,0)} \cup \mathcal{P}_{\langle E(0), E(1) \rangle}^{(0,0)} \cup \mathcal{P}_{\langle E(0), E(1) \rangle}^{*}.$

Define the orders $\leq \leq^*$ over $\mathcal{P}_{\langle E(0), E(1) \rangle}$.

 \leq^* is just the union of the orders at each of the components.

Let us give now the main definition.

Definition 1.15 Let $p, q \in \mathcal{P}_{\langle E(0), E(1) \rangle}$. If p, q are in the same component, then set $p \ge q$ iff $p \ge^* q$. Suppose that they are in different components. Split into cases.

1. Suppose that $q \in \mathcal{P}_{\langle E(0), E(1) \rangle}^{(0,0),(1,0)}$, i.e. in the pure part of $\mathcal{P}_{\langle E(0), E(1) \rangle}$, $p \in \mathcal{P}_{\langle E(0), E(1) \rangle}^{(1,0)}$, i.e. only the part of p over κ_1 is a pure condition. Let then $q = \langle \langle g^0, B^0 \rangle, \langle g^1, B^1 \rangle \rangle, p = \langle f^0, \langle f^1, A^1 \rangle$. Set $p \ge q$ iff $f^0 \ge \langle g^0, B^0 \rangle$ in $\mathcal{P}_{E(0)}$ and $\langle f^1, A^1 \rangle \ge^* \langle g^1, B^1 \rangle$ in $\mathcal{P}_{E(1)}$.

- 2. Suppose that $q \in \mathcal{P}_{\langle E(0), E(1) \rangle}^{(0,0)}$, i.e. in the part over κ_0 is pure and those over κ_1 is not pure, $p \in \mathcal{P}_{\langle E(0), E(1) \rangle}^*$, i.e. p is a completely non-pure condition. Let then $q = \langle \langle g^0, B^0 \rangle, g^1 \rangle$ and $p = \langle f^0, f^1 \rangle$. Set $p \ge q$ iff $f^0 \ge \langle g^0, B^0 \rangle$ in $\mathcal{P}_{E(0)}$ and $f^1 \ge g^1$ in $\mathcal{P}_{E(1)}$.
- 3. (Principal case 1.)

Suppose that $q \in \mathcal{P}_{\langle E(0), E(1) \rangle}^{(1,0)}$, i.e. in the part over κ_1 is pure and those over κ_0 is not pure, $p \in \mathcal{P}_{\langle E(0), E(1) \rangle}^*$, i.e. p is a completely non-pure condition. Let then $q = \langle g^0, \langle g^1, B^1 \rangle$ and $p = \langle f^0, f^1 \rangle$. Set $p \ge q$ iff $f^1 \ge \langle g^1, B^1 \rangle$ in $\mathcal{P}_{E(1)}$ and $f^0 \ge (g^0)^{ref}$ in $\mathcal{P}_{E(0) \upharpoonright h_{\lambda}(f^1(\kappa_1))}^*$, where $(g^0)^{ref}$ the reflection of g^0 below κ_1 is defined as follows:

- (a) $\operatorname{dom}((g^0)^{ref}) = (\operatorname{dom}(g^0) \cap \kappa_1) \cup \{f^1(\alpha) \mid \alpha \in \operatorname{dom}(g^0) \setminus \kappa_1\},\$
- (b) for every $\alpha \in \operatorname{dom}(g^0) \cap \kappa_1 = \operatorname{dom}(g^0) \cap \operatorname{dom}((g^0)^{ref}), (g^0)^{ref}(\alpha) = g^0(\alpha),$
- (c) for every α ∈ dom(g⁰) \ κ₁, (g⁰)^{ref}(f¹(α)) = g⁰(α).
 It is crucial here that f¹ ↾ (dom(g⁰) \ κ₁) is one to one and the values there are above rng(g⁰) ∩ κ₁.
 This follows by conditions (4),(5) of Definitions 1.10,1.11.
- 4. (Principal case 2.)

Suppose that $q \in \mathcal{P}_{\langle E(0), E(1) \rangle}^{(0,0),(1,0)}$, i.e. both parts are pure, $p \in \mathcal{P}_{\langle E(0), E(1) \rangle}^{(0,0)}$, i.e. only the part over κ_0 is pure.

Let then $q = \langle \langle g^0, B^0 \rangle, \langle g^1, B^1 \rangle \rangle$ and $p = \langle \langle f^0, A^0 \rangle, f^1 \rangle$. Set $p \ge q$ iff $f^1 \ge \langle g^1, B^1 \rangle$ in $\mathcal{P}_{E(1)}$ and $\langle f^0, A^0 \rangle \ge (\langle g^0, B^0 \rangle)^{ref}$ in $\mathcal{P}_{E(0) \upharpoonright h_{\lambda}(f^1(\kappa_1))}$, where $(\langle g^0, B^0 \rangle)^{ref}$ the reflection of $\langle g^0, B^0 \rangle$ below κ_1 is defined as follows:

- (a) $\operatorname{dom}((g^0)^{ref}) = (\operatorname{dom}(g^0) \cap \kappa_1) \cup \{f^1(\alpha) \mid \alpha \in \operatorname{dom}(g^0) \setminus \kappa_1\},\$
- (b) for every $\alpha \in \operatorname{dom}(g^0) \cap \kappa_1 = \operatorname{dom}(g^0) \cap \operatorname{dom}((g^0)^{ref}), (g^0)^{ref}(\alpha) = g^0(\alpha),$
- (c) for every $\alpha \in \operatorname{dom}(g^0) \setminus \kappa_1$, $(g^0)^{ref}(f^1(\alpha)) = g^0(\alpha)$.

Again, it is crucial here that $f^1 \upharpoonright (\operatorname{dom}(g^0) \setminus \kappa_1)$ is one to one and the values there are above $\operatorname{rng}(g^0) \cap \kappa_1$, and this follows by conditions (4),(5) of Definitions 1.10,1.11.

One more crucial observation here is that the measure $(E(0))(\operatorname{dom}(g^0))$, to which B^0 belongs, reflects to basically the same measure,

It follows by (6) of Definitions 1.10.

(d) $A^0 \upharpoonright \operatorname{dom}((g^0)^{ref}) \subseteq (B^0)^{ref}$, where $(B^0)^{ref} = \{\vec{\nu}^{ref} \mid \vec{\nu} \in B^0\}$ and if $\vec{\nu} = \langle \langle \alpha_{\xi}, \beta_{\xi} \rangle \mid \xi < \rho \rangle$, then $\vec{\nu}^{ref} = \langle \langle \alpha_{\xi}, \beta_{\xi} \rangle \mid \xi < \rho, \alpha < \kappa_1 \rangle^{\frown} \langle \langle f^1(\alpha_{\xi}), \beta_{\xi} \rangle \mid \xi < \rho, \alpha \ge \kappa_1 \rangle.$

Denote further in this subsection $\mathcal{P}_{\langle E(0), E(1) \rangle}$ by just \mathcal{P} . The next lemma follows from the definitions:

Lemma 1.16 The forcing $\langle \mathcal{P}, \leq \rangle$ is equivalent to $Cohen(\kappa_0^+, \eta) \times Cohen(\kappa_1^+, \lambda)$, for some $\eta < \kappa_1$ which depends on choice of a non-pure condition for $\mathcal{P}_{E(1)}$.

However, as usual, more can be deduced:

Lemma 1.17 $\langle \mathcal{P}, \leq, \leq^* \rangle$ is a Prikry type forcing notion.

Proof. The proof is similar to those of Lemma 1.9 (and in turn to those of Merimovich [7]). Suppose otherwise.

Let $p \in \mathcal{P}$ be a pure condition and σ a statement of the forcing language which is undecided by pure extensions of p. Then p is of the form $\langle \langle f^{p0}, A^{p0} \rangle, \langle f^{p1}, A^{p1} \rangle \rangle$.

Proceed as in 3.12 of [6]. Construct by induction an increasing chain of elementary submodels $\langle N_{\xi}^1 | \xi < \kappa_1 \rangle$ of H_{χ} , for χ large enough, and a sequence $\langle f_{\xi}^1 | \xi < \kappa_1 \rangle$ of members of $\mathcal{P}_{E(1)}^*$, such that

- 1. $p, \mathcal{P}, \sigma \in N_0^1$,
- 2. $N_0^1 \supseteq \kappa_1$,
- 3. for every $\xi < \kappa_1$,
 - (a) $|N_{\xi}^{1}| = \kappa_{1},$
 - (b) $\kappa_1 > N_{\xi}^1 \subseteq N_{\xi}^1$,
 - (c) $\langle f_{\zeta}^1 \mid \zeta < \xi \rangle \in N^1_{\xi}$,
 - (d) $f_{\xi}^1 \in \bigcap \{ D' \in N_{\xi}^1 \mid D' \text{ is a dense open subset of } \mathcal{P}_{E(1)}^* \text{ above } f^{1p} \},$
 - (e) $f^{1p} \leq^* f_0^1$,
 - (f) $f_{\xi}^1 \geq^* f_{\zeta}^1$, for every $\zeta < \xi$.

Set $N^1 = \bigcup_{\xi < \kappa_1} N^1_{\xi}$ and $f^{1*} = \bigcup \{ f^1_{\xi} \mid \xi < \kappa \}$. Let $A \subseteq [\operatorname{dom}(f^{1*}) \times \kappa_1]^{<\kappa_1}$ be such that • $A \upharpoonright \operatorname{dom}(f^{p_1}) \subseteq A^{p_1}$, • $A \in (E(1))(\operatorname{dom}(f^{1*})).$

Note that $A \subseteq N^1$, since dom $(f^{1*}) \subseteq N^1$, and so, $[\text{dom}(f^{1*}) \times \kappa_1]^{<\kappa_1} \subseteq N^1$.

Let $\vec{\nu} \in A$. Consider $\lambda_1^{\vec{\nu}} := h_{\lambda}(\vec{\nu}(\kappa_1))$, i.e. the cardinal below κ_1 that now corresponds to λ . Suppose for simplicity that dom $(f^{p0}) \subseteq \lambda_1^{\vec{\nu}}$, otherwise just reflect the part above κ_1 below as in Definition 1.15.

Consider $\mathcal{P}_{E(0)|\lambda_1^{\vec{\nu}}}$. Clearly, it is contained and belongs to N^1 . Let $\langle t_{\xi} | \xi < \lambda_1^{\vec{\nu}} \rangle$ be an enumeration of this forcing notion in N^1 . Let $f \in \mathcal{P}_{E(1)}^*$, $f \geq^* f^{p1}$. Proceed by induction on $\xi < \lambda_1^{\vec{\nu}}$ and define an \leq^* -increasing sequence $\langle f_{\xi} | \xi < \lambda_1^{\vec{\nu}} \rangle$ of

Proceed by induction on $\xi < \lambda_1^{\epsilon}$ and define an \leq^{ϵ} -increasing sequence $\langle J_{\xi} | \xi < \lambda_1^{\epsilon} \rangle$ of direct extensions of f such that, for every $\xi < \lambda_1^{\vec{\nu}}$, either

- (1) $\langle t_{\xi}, (f_{\xi})_{\vec{\nu}} \rangle \parallel \sigma$, or
- (2) for every $g \geq^* (f_{\xi})_{\vec{\nu}}, \langle t_{\xi}, g \rangle \not\parallel \sigma$.

Let $\bar{f} = \bigcup_{\xi < \lambda_1^{\vec{\nu}}} f_{\xi}$. Then, for every $t \in \mathcal{P}_{E(0) \upharpoonright \lambda_1^{\vec{\nu}}}$ either

- (1) $\langle t, \bar{f}_{\vec{\nu}} \rangle \parallel \sigma$, or
- (2) for every $g \geq^* \bar{f}_{\vec{\nu}}, \langle t, g \rangle \not\parallel \sigma$.

Consider now the following statement of the forcing language of $\mathcal{P}_{E(0)|\lambda_1^{\vec{v}}}$:

$$\varphi \equiv \exists t \in \mathcal{G}(\langle t, \bar{f}_{\vec{\nu}} \rangle \parallel \sigma).$$

By the Prikry condition of the forcing $\mathcal{P}_{E(0) \upharpoonright \lambda_1^{\vec{\nu}}}$ (Lemma 1.9), there is $t^* \geq^* \langle f^{p0}, A^{p0} \rangle$ which decides φ .

Claim 1 $t^* \Vdash \varphi$.

Proof. Suppose otherwise. Then $t^* \Vdash \neg \varphi$. This means that whenever $t \in \mathcal{P}_{E(0) \upharpoonright \lambda_1^{\vec{\nu}}}$ and $t \ge t^*$, $\langle t, \bar{f}_{\vec{\nu}} \rangle \not\models \sigma$. Pick now some $\langle t, g \rangle \in \mathcal{P}_{E(0), E(1)}, \langle t, g \rangle \ge \langle t^*, \bar{f}_{\vec{\nu}} \rangle$ which decides σ . Then, for some $\xi < \lambda_1^{\vec{\nu}}, t = t_{\xi}$, and then, $\langle t, (f_{\xi})_{\vec{\nu}} \rangle \parallel \sigma$. So, $\langle t, \bar{f}_{\vec{\nu}} \rangle \parallel \sigma$. Contradiction.

 \Box of the claim.

Now use again the Prikry condition of the forcing $\mathcal{P}_{E(0) \upharpoonright \lambda_1^{\vec{\nu}}}$ to decide the following statement

$$\psi \equiv \exists t \in G(\langle t, \bar{f}_{\vec{\nu}} \rangle \Vdash \sigma).$$

Let $t(\vec{\nu}, f) \geq^* t^*$ be a condition which decides ψ .

Assume that $t(\vec{\nu}, f) \Vdash \psi$. Then $\langle t(\vec{\nu}, f), \bar{f}_{\vec{\nu}} \rangle \Vdash \sigma$.

Define $D_{\vec{\nu}}$ to be the set of all $f \in \mathcal{P}^*_{E(1)}, f \geq^* f^{p_1}$ such that

$$\langle t(\vec{\nu}, f), f_{\vec{\nu}} \rangle \parallel \sigma.$$

The next claim follows now:

Claim 2 $D_{\vec{\nu}}$ is a dense open subset of $\mathcal{P}^*_{E(1)}$ above f^{p1} .

 $D_{\vec{\nu}}$ is definable with parameters in N, hence $D_{\vec{\nu}} \in N$. Then, $f^{1*} \in D_{\vec{\nu}}$, for every $\vec{\nu} \in A$. So, $\langle t(\vec{\nu}, f^{1*}), f_{\vec{\nu}}^{1*} \rangle \parallel \sigma$, for every $\vec{\nu} \in A$. Shrink A, if necessary, to a set $A^{1*} \in (E(1))(\operatorname{dom}(f^{1*}))$, such that for any two $\vec{\nu}, \vec{\nu}' \in A^{1*}$ the decision is the same, say σ is forced.

Consider now $\langle f^{1*}, A^{1*} \rangle$. It is a pure condition in $\mathcal{P}_{E(1)}$. Use the function $\vec{\nu} \mapsto t(\vec{\nu}, f^{1*})$ in order to get a pure condition in $\mathcal{P}_{E(0)}$, just use the one which this function represents in the ultrapower by $(E(1))(\operatorname{dom}(f^{1*}))$.

Let us explain how do we naturally combine the result into a condition in $\mathcal{P}_{E(0),E(1)}$. Let $t(\vec{\nu}, f^{1*}) = \langle f^{0\vec{\nu}}, A^{0\vec{\nu}} \rangle$, for every $\vec{\nu} \in A^{1*}$. Consider $f^{0\vec{\nu}}$. It is a set of at most κ_0 many pairs (α, β) , where $\alpha < \lambda_1^{\vec{\nu}} < \kappa_1$ and β is either the empty sequence or an ordinal $< \kappa_0$. Shrinking A^{1*} if necessary, we can assume that there are x and $\kappa_0^* < \kappa_0^+$ such that for every $\vec{\nu}, \vec{\nu}' \in A^{1*}$ the following hold:

1. dom $(f^{0\vec{\nu}}) \cap \vec{\nu}(\kappa_1) = x$,

2. dom $(f^{0\vec{\nu}}) \setminus \vec{\nu}(\kappa_1) = \{\gamma_{\tau}^{\vec{\nu}} \mid \tau < \kappa_0^*\}$ is an increasing enumeration,

- 3. for every $\alpha \in x$, $f^{0\vec{\nu}}(\alpha) = f^{0\vec{\nu}'}(\alpha)$,
- 4. for every $\tau < \kappa_0^*$, $f^{0\vec{\nu}}(\gamma_\tau^{\vec{\nu}}) = f^{0\vec{\nu}'}(\gamma_\tau^{\vec{\nu}'})$

Consider, for every $\tau < \kappa_0^*$ a function s_{τ} on A^{1*} defined by setting $s_{\tau}(\vec{\nu}) = \gamma_{\tau}^{\vec{\nu}}$. Let

$$\gamma_{\tau} = j_{E(1)}(s_{\tau})(\langle (j_{E(1)}(\alpha), \alpha) \mid \alpha \in \operatorname{dom}(f^{1*}) \rangle).$$

Extend now f^{1*} to f^{1**} by adding all $\gamma_{\tau}, \tau < \kappa_0^*$ to its domain and setting $f^{1**}(\gamma_{\tau})$ to be the empty sequence whenever $\gamma_{\tau} \notin \operatorname{dom}(f^{1*})$.

Define $A^{1**} \in E(1)(\text{dom}(f^{1**}) \text{ as follows.}$ Set $\vec{\nu} \in A^{1**}$ iff

- 1. $\vec{\nu} \upharpoonright \operatorname{dom}(f^{1*}) \in A^{1*}$,
- 2. dom $(\vec{\nu}) \supseteq \{\gamma_{\tau} \mid \tau < \kappa_0^*\},\$
- 3. if $\gamma_{\tau} \in \text{dom}(f^{1*})$ and $f^{1*}(\gamma_{\tau})$ is not the empty sequence, then $\vec{\nu}(\gamma_{\tau}) > f^{1*}(\gamma_{\tau})$,

4.
$$\vec{\nu}(\gamma_{\tau}) = s_{\tau}(\vec{\nu} \restriction \operatorname{dom}(f^{1*})).$$

For every $\vec{\nu} \in A^{1**}$, set $\langle f^{0\vec{\nu}}, A^{0\vec{\nu}} \rangle = \langle f^{0\vec{\nu} \restriction \operatorname{dom}(f^{1*})}, A^{0\vec{\nu} \restriction \operatorname{dom}(f^{1*})} \rangle$. Consider the function $\vec{\nu} \mapsto \langle f^{0\vec{\nu}}, A^{0\vec{\nu}} \rangle$, $\vec{\nu} \in A^{1**}$. Let $\langle f^{0*}, A^{0*} \rangle$ be represented by it in the ultrapower with E(1).

It follows that $\langle \langle f^{0*}, A^{0*} \rangle, \langle f^{1**}, A^{1**} \rangle \rangle$ is a pure condition in $\mathcal{P}_{E(0), E(1)}$ which extends p. The next claim completes the argument:

 $\textbf{Claim 3} \ \langle \langle f^{0*}, A^{0*} \rangle, \langle f^{1**}, A^{1**} \rangle \rangle \Vdash \sigma.$

Proof. Suppose otherwise. Then there is $\langle f, g \rangle \geq \langle \langle f^{0*}, A^{0*} \rangle, \langle f^{1**}, A^{1**} \rangle \rangle$ a non-pure in both coordinates condition which forces $\neg \sigma$. There is $\vec{\nu} \in A^{1**} \upharpoonright \operatorname{dom}(f^{1*})$ such that $g \geq^* f_{\vec{\nu}}^{1*}$. But then $f \geq t(\vec{\nu}, f^{1*})$, and so, $\langle f, f_{\vec{\nu}}^{1*} \rangle \Vdash \sigma$. Contradiction. \Box of the claim.

1.3 ω -many extenders.

So, we deal now with a sequence $\langle E(n) | n < \omega \rangle$ where each E(n) is a (κ_n, λ) -extender and $\langle \kappa_n | n < \omega \rangle$ is an increasing sequence.

Let $\mathcal{P}_{E(i)}^*, \mathcal{P}_{E(i)}, i < \omega$ be as defined before. Define first components of the main forcing $\mathcal{P}_{\langle E(n)|n < \omega \rangle}$.

Definition 1.18 The set of pure conditions $\mathcal{P}_{\langle E(n)|n < \omega \rangle}$ consists of all sequences $\langle p(n) | n < \omega \rangle$ such that for every $n < \omega$, the following hold:

- 1. $p(n) = \langle f^n, A^n \rangle \in \mathcal{P}_{E(n)},$
- 2. dom $(f^n) \setminus \kappa_{n+1} \subseteq \operatorname{dom}(f^{n+1}),$
- 3. for every $m \leq n$, for every $\alpha \in \text{dom}(f^m) \setminus \kappa_{n+1}$, if $f^{n+1}(\alpha)$ is not the empty sequence, then for every $\vec{\nu} \in A^{n+1}$, $\alpha \in \text{dom}(\vec{\nu})$ and $\vec{\nu}(\alpha) > f^{n+1}(\alpha)$. The idea behind is as in the case of two extenders.
- 4. For every $\vec{\nu} \in A^{n+1}$ and $m \leq n$, the measures $E(m)(\operatorname{dom}(f^m))$ and $E(m)((\operatorname{dom}(f^m) \cap \kappa_{n+1}) \cup \{\vec{\nu}(\alpha) \mid \alpha \in \operatorname{dom}(f^m) \setminus \kappa_{n+1}\})$ are basically the same in the following sense:

$$X \in E(m)(\operatorname{dom}(f^m)) \text{ iff}$$
$$X^{ref} \in E(m)((\operatorname{dom}(f^m) \cap \kappa_{n+1}) \cup \{\vec{\nu}(\alpha) \mid \alpha \in \operatorname{dom}(f^m) \setminus \kappa_{n+1}\}),$$

where

$$X^{ref} = \{ (\alpha, \beta) \in X \mid \alpha < \kappa_{n+1} \} \cup \{ (\vec{\nu}(\alpha), \beta) \mid (\alpha, \beta) \in X, \alpha \ge \kappa_{n+1} \}.$$

Note that this property is true in the ultrapower by E(n + 1), so it holds on a set of measure one, as well.

Turn now to non-pure extensions. As usual, in Magidor type of iterations, non-pure extensions are allowed only at finitely many coordinates.

Start with a non-pure extension at a single coordinate and then proceed by induction.

We assume that for each $m < \omega$ there is a function $h_{\lambda}^m : \kappa_m \to \kappa_m$ such that $j_{E(m)}(h_{\lambda}^m)(\kappa_m) = \lambda$.

Definition 1.19 Let $m < \omega$. Define the set $\mathcal{P}_{\langle E(n)|n < \omega \rangle}^{\{m\}}$ of conditions with only non-pure part over the coordinate m. $\mathcal{P}_{\langle E(n)|n < \omega \rangle}^{(m)}$ consists of all sequences $\langle p(n) \mid n < \omega \rangle$ such that for every $n < \omega$, the following hold:

- 1. $\langle p(n) \mid n < \omega, n \neq m \rangle$ is a pure condition in $\mathcal{P}_{\langle E(n) \mid n < \omega, n \neq m \rangle}$,
- 2. $p(m) = f^m \in \mathcal{P}^*_{E(m)},$
- 3. dom $(f^m) \setminus \kappa_n \subseteq \text{dom}(f^n)$, for every $n, m < n < \omega$,
- 4. for every $n, m < n < \omega$, for every $\alpha \in \text{dom}(f^m) \setminus \kappa_n$, if $f^n(\alpha)$ is not the empty sequence, then for every $\vec{\nu} \in A^n$, $\alpha \in \text{dom}(\vec{\nu})$ and $\vec{\nu}(\alpha) > f^n(\alpha)$,

- 5. for every $n, m < n < \omega$, for every $\gamma \in \operatorname{dom}(f^m) \cap \kappa_n, \vec{\nu} \in A^n$ and $\alpha \in \operatorname{dom}(\vec{\nu}), \vec{\nu}(\alpha) > \gamma$.
- 6. If m > 0, then the sequence $\langle p(n) | n < m \rangle$ will be a condition in the pure part of $\mathcal{P}_{\langle E(n) | h_{\lambda}(f^m(\kappa_m)) | n < m \rangle}$. The meaning is that if the value of the Prikry sequence for the normal measure of E(m) is decided, then we cut all extenders E(n), n < m to the reflection of λ below κ_m , i.e. to $h_{\lambda}^m(f^m(\kappa_m))$.

Let $m_1 < ... < m_k < \omega, 1 \leq k < \omega$ and suppose that $\mathcal{P}_{\langle E(n)|n < \omega \rangle}^{\{m_1,...,m_k\}}$ the set of conditions with non-pure extensions over coordinates $(m_1, ..., m_k)$ only, is defined. Let $m < \omega, m \notin \{m_1, ..., m_k\}$.

Define non-pure extensions at the set of coordinates $\{m_1, ..., m_k\} \cup \{m\}$.

Definition 1.20 Let $m < \omega$. Define the set $\mathcal{P}_{\langle E(n)|n < \omega \rangle}^{\{m_1, \dots, m_k\} \cup \{m\}}$ of conditions with only nonpure part over the coordinate m_1, \dots, m_k and m. $\mathcal{P}_{\langle E(n)|n < \omega \rangle}^{\{m_1, \dots, m_k\} \cup \{m\}}$ consists of all sequences $\langle p(n) \mid n < \omega \rangle$ such that for every $n < \omega$, the following hold:

1. $\langle p(n) \mid n < \omega, n \neq m \rangle$ is a condition in $\mathcal{P}_{\langle E(n) \mid n < \omega, n \neq m \rangle}^{\{m_1, \dots, m_k\}}$

2.
$$p(m) = f^m \in \mathcal{P}^*_{E(m)}$$
.

- 3. If for every $i, 1 \leq i \leq k, m_i < m$, then following hold:
 - (a) $\operatorname{dom}(f^m) \setminus \kappa_n \subseteq \operatorname{dom}(f^n)$, for every $n, m < n < \omega$,
 - (b) for every $n, m < n < \omega$, for every $\alpha \in \text{dom}(f^m) \setminus \kappa_n$, if $f^n(\alpha)$ is not the empty sequence, then for every $\vec{\nu} \in A^n$, $\alpha \in \text{dom}(\vec{\nu})$ and $\vec{\nu}(\alpha) > f^n(\alpha)$,
 - (c) for every $n, m < n < \omega$, for every $\gamma \in \text{dom}(f^m) \cap \kappa_n, \vec{\nu} \in A^n$ and $\alpha \in \text{dom}(\vec{\nu}),$ $\vec{\nu}(\alpha) > \gamma$.
 - (d) If m > 0, then the sequence $\langle p(n) | n < m \rangle$ will be a condition in $\mathcal{P}_{\langle E(n) | h_{\lambda}(f^{m}(\kappa_{m})) | n < m \rangle}^{\{m_{1}, \dots, m_{k}\}}$. The meaning is that if the value of the Prikry sequence for the normal measure of E(m) is decided, then we cut all extenders E(n), n < m to the reflection of λ below κ_{m} , i.e. to $h_{\lambda}^{m}(f^{m}(\kappa_{m}))$.
- 4. If there is $i, 1 \leq i \leq k, m_i > m$, then let i^* be the least such i. We require the following:

(a)
$$\langle p(n) \mid n < m_{i^*} \rangle \in \mathcal{P}^{\{m_1, \dots, m_{i^*-1}, m\}}_{\langle E(n) \mid h_\lambda(f^{m_{i^*}}(\kappa_{m_{i^*}})) \mid n < m_{i^*} \rangle}$$

Finally set

$$\mathcal{P}_{\langle E(n)|n<\omega\rangle} = \bigcup \{ \mathcal{P}_{\langle E(n)|n<\omega\rangle}^{\{m_1,\ldots,m_k\}} \mid k<\omega, m_1<\ldots< m_k<\omega \}.$$

Define the direct extension order \leq^* over $\mathcal{P}_{\langle E(n)|n<\omega\rangle}$ to be the union of such order over every $\mathcal{P}^{\{m_1,\ldots,m_k\}}_{\langle E(n)|n<\omega\rangle}$, for every $k<\omega, m_1<\ldots< m_k<\omega$.

Turn now to the definition of the forcing order \leq over $\mathcal{P}_{\langle E(n)|n<\omega\rangle}$.

Let $m < \omega, m \notin \{m_1, ..., m_k\}$. Define a one element extension at coordinate m of a condition in $\mathcal{P}_{\langle E(n)|n<\omega\rangle}^{\{m_1,\dots,m_k\}}$

Definition 1.21 Let $p \in \mathcal{P}_{\langle E(n)|n < \omega \rangle}^{\{m_1, \dots, m_k\} \cup \{m\}}$ and $q \in \mathcal{P}_{\langle E(n)|n < \omega \rangle}^{\{m_1, \dots, m_k\}}$. Set $p \ge q$ iff the following hold:

1. Suppose that m = 0.

Then $p(0) = f^0 \in \mathcal{P}^*_{E(0)}$ and $q(0) = \langle g^0, B^0 \rangle$ is a pure condition in $\mathcal{P}_{E(0)}$. Set $p \ge q$ iff $f^0 \ge \langle g^0, B^0 \rangle$ in $\mathcal{P}_{E(0)}$ and $\langle p(n) \mid 0 < n < \omega \rangle \ge^* \langle q(n) \mid 0 < n < \omega \rangle$ in $\mathcal{P}_{\langle E(n)|0 < n < \omega \rangle}.$

2. Suppose that m > 0.

Then $p(m) = f^m \in \mathcal{P}^*_{E(m)}$ and $q(m) = \langle g^m, B^m \rangle$ is a pure condition in $\mathcal{P}_{E(m)}$. Set $p \ge q$ iff

- (a) $f^m \geq \langle q^m, B^m \rangle$ in $\mathcal{P}_{E(m)}$ and $\langle p(n) \mid m < n < \omega \rangle \geq^* \langle q(n) \mid m < n < \omega \rangle$ in $\mathcal{P}_{\langle E(n)|m < n < \omega \rangle}.$ And
- (b) $\langle p(n) \mid n < m \rangle \geq^* \langle q(n) \mid n < m \rangle^{ref}$ in $\mathcal{P}_{\langle E(n) \mid n < m \rangle}$, where $\langle q(n) \mid n < m \rangle^{ref}$ the reflection of $\langle q(n) \mid n < m \rangle$ below κ_m is defined as follows, where $q(n) = \langle g^n, B^n \rangle$, if $n \notin \{m_1, ..., m_k\}$ and $q(n) = \langle g^n \rangle$ otherwise.
 - i. Suppose first that $n \in \{m_1, ..., m_k\}$. Then
 - A. dom $((g^n)^{ref}) = (\operatorname{dom}(g^n) \cap \kappa_m) \cup \{f^m(\alpha) \mid \alpha \in \operatorname{dom}(g^n) \setminus \kappa_m\},\$
 - B. for every $\alpha \in \operatorname{dom}(g^n) \cap \kappa_m = \operatorname{dom}(g^n) \cap \operatorname{dom}((g^n)^{ref}), (g^n)^{ref}(\alpha) = g^n(\alpha),$
 - C. for every $\alpha \in \text{dom}(g^n) \setminus \kappa_m$, $(g^n)^{ref}(f^m(\alpha)) = g^n(\alpha)$. It is crucial here that $f^m \upharpoonright (\operatorname{dom}(g^n) \setminus \kappa_m)$ is one to one and the values there are above $\operatorname{rng}(g^n) \cap \kappa_m$. This follows by conditions (4),(5) of Definitions 1.10,1.11.

- ii. Suppose now that $n \notin \{m_1, ..., m_k\}$. Then
 - A. dom $((g^n)^{ref}) = (\operatorname{dom}(g^n) \cap \kappa_m) \cup \{f^m(\alpha) \mid \alpha \in \operatorname{dom}(g^n) \setminus \kappa_m\},\$
 - B. for every $\alpha \in \operatorname{dom}(g^n) \cap \kappa_m = \operatorname{dom}(g^n) \cap \operatorname{dom}((g^n)^{ref}), (g^n)^{ref}(\alpha) = g^n(\alpha),$
 - C. for every $\alpha \in \operatorname{dom}(g^n) \setminus \kappa_m$, $(g^n)^{ref}(f^m(\alpha)) = g^n(\alpha)$. Again, it is crucial here that $f^m \upharpoonright (\operatorname{dom}(g^n) \setminus \kappa_m)$ is one to one and the values there are above $\operatorname{rng}(g^n) \cap \kappa_m$, and this follows by conditions (3),(4) of Definition 1.18 and (4),(5) of Definition 1.19. One more crucial observation here is that the measure $(E(n))(\operatorname{dom}(g^n))$, to which B^n belongs, reflects to basically the same measure, It follows by (4) of Definition 1.18.
 - D. $A^n \upharpoonright \operatorname{dom}((g^n)^{ref}) \subseteq \{(f^m(\alpha), \beta) \mid (\alpha, \beta) \in B^n\}.$

Denote further in this subsection $\mathcal{P}_{\langle E(n)|n < \omega \rangle}$ by just \mathcal{P} . The next lemma follows from the definitions:

Lemma 1.22 For every $m < \omega$, the forcing $\langle \mathcal{P}_{\langle E(n)|n < m \rangle}, \leq \rangle$ is equivalent to product of Cohen forcings $Cohen(\kappa_n^+, \eta_n)$'s, for some $\eta_n < \kappa_{n+1}$'s which depend on choice of a non-pure condition for $\mathcal{P}_{E(n+1)}$.

Lemma 1.23 For every $m < \omega$, the forcing $\langle \mathcal{P}_{\langle E(n)|m \leq n < \omega \rangle}, \leq^* \rangle$ is κ_m -closed.

Lemma 1.24 The forcing $\langle \mathcal{P}, \leq \rangle$ satisfies $\kappa_{\omega}^{++} - c.c.$

Proof. Use the standard Δ -system argument.

Lemma 1.25 $\langle \mathcal{P}, \leq, \leq^* \rangle$ is a Prikry type forcing notion.

Proof. The proof is similar to those of Lemmas 1.9, 1.17 (and in turn to those of Merimovich [7]).

Assume that for every $m < \omega$, $\langle \mathcal{P}_{\langle E(n)|n < m \rangle}, \leq \leq^* \rangle$ is a Prikry type forcing notion.

Suppose that $\langle \mathcal{P}, \leq, \leq^* \rangle$ does not have the Prikry property.

Let $p \in \mathcal{P}$ be a pure condition and σ a statement of the forcing language which is undecided by pure extensions of p. Then p is of the form $\langle \langle f^{pn}, A^{pn} \rangle | n < \omega \rangle$.

Proceed by induction on $m < \omega$ and define an \leq^* -increasing sequence $\langle p_m \mid m < \omega \rangle$ of direct extensions of p.

Assume that for every n < m, p_n is defined. Define p_m . If m = 0, then let p_{-1} be p. At stage m we deal with the coordinate m of the condition.

Construct by induction an increasing chain of elementary submodels $\langle N_{\xi}^m | \xi < \kappa_m \rangle$ of H_{χ} , for χ large enough, and a sequence $\langle f_{\xi} | \xi < \kappa \rangle$ of members of $\mathcal{P}^*_{E(m)}$, such that

- 1. $p, p_{m-1}, \mathcal{P}, \sigma \in N_0^m$,
- 2. $N_0^m \supseteq \kappa_m$,
- 3. for every $\xi < \kappa_m$,
 - (a) $|N^m_{\xi}| = \kappa_m$,
 - (b) $\kappa_m > N_{\xi}^m \subseteq N_{\xi}^m$,
 - (c) $\langle f_{\zeta}^m \mid \zeta < \xi \rangle \in N_{\xi}^m$,
 - (d) $f_{\xi}^m \in \bigcap \{ D' \in N_{\xi}^m \mid D' \text{ is a dense open subset of } \mathcal{P}_{E(m)}^* \text{ above } f^{mp} \},$
 - (e) $f^{mp} \leq^* f_0^m$,
 - (f) $f_{\xi}^m \geq^* f_{\zeta}^m$, for every $\zeta < \xi$.

Set $N^m = \bigcup_{\xi < \kappa_1} N^m_{\xi}$ and $f^{m*} = \bigcup \{ f^m_{\xi} \mid \xi < \kappa \}$. Let $A \subseteq [\operatorname{dom}(f^{m*}) \times \kappa_m]^{<\kappa_m}$ be such that

- $A \upharpoonright \operatorname{dom}(f^{pm}) \subseteq A^{pm}$,
- $A \in (E(m))(\operatorname{dom}(f^{m*})).$

Note that $A \subseteq N^m$, since dom $(f^{m*}) \subseteq N^m$, and so, $[dom(f^{m*}) \times \kappa_m]^{<\kappa_m} \subseteq N^m$.

Let $\vec{\nu} \in A$. Consider $\lambda_m^{\vec{\nu}} := h_{\lambda}^m(\vec{\nu}(\kappa_m))$, i.e. the cardinal below κ_m that now corresponds to λ . Suppose for simplicity that dom $(f^{pn}) \subseteq \lambda_m^{\vec{\nu}}$, for every n < m, otherwise just reflect the part above κ_m below as in Definition 1.21.

Consider $\mathcal{P}_{\langle E(n) | \lambda_m^{\vec{\nu}} | n < m \rangle}$. Clearly, it is contained and belongs to N^m . Let $\langle t_{\xi} | \xi < \lambda_m^{\vec{\nu}} \rangle$ be an enumeration of this forcing notion in N^m . Let $f \in \mathcal{P}^*_{E(m)}, f \geq^* f^{pm}$.

Proceed by induction on $\xi < \lambda_m^{\vec{\nu}}$. Define an \leq^* -increasing sequence $\langle f_{\xi} | \xi < \lambda_m^{\vec{\nu}} \rangle$ of direct extensions of f and an \leq^* -increasing sequence $\langle p_{\xi}^{>m} | \xi < \lambda_m^{\vec{\nu}} \rangle$ of direct extensions of $\langle p_m(n) | m < n < \omega \rangle$

such that, for every $\xi < \lambda_m^{\vec{\nu}}$, either

- (1) $\langle t_{\xi}, (f_{\xi})_{\vec{\nu}}, p_{\xi}^{>m} \rangle \parallel \sigma,$ or
- (2) for every $q \geq^* \langle (f_{\xi})_{\vec{\nu}}, p_{\xi}^{>m} \rangle, \langle t_{\xi}, q \rangle \not\parallel \sigma$.

Let $\bar{f} = \bigcup_{\xi < \lambda_1^{\vec{\nu}}} f_{\xi}$ and $\bar{p}^{>m} = \bigcup_{\xi < \lambda_1^{\vec{\nu}}} p_{\xi}^{>m}$. Then, for every $t \in \mathcal{P}_{E(0) \upharpoonright \lambda_1^{\vec{\nu}}}$ either

- (1) $\langle t, \bar{f}_{\vec{\nu}}, \bar{p}^{>m} \rangle \parallel \sigma$, or
- (2) for every $q \geq^* \langle \bar{f}_{\vec{\nu}}, \bar{p}^{>m} \rangle$, $\langle t, q \rangle \not\parallel \sigma$.

Consider now the following statement of the forcing language of $\mathcal{P}_{\langle E(n) \mid \lambda_m^{\vec{\nu}} \mid n < m \rangle}$:

$$\varphi \equiv \exists t \in \underline{G}(\langle t, \bar{f}_{\vec{\nu}}, \bar{p}^{>m} \rangle \parallel \sigma).$$

By the Prikry condition of the forcing $\mathcal{P}_{\langle E(n) \upharpoonright \lambda_m^{\vec{\nu}} \mid n < m \rangle}$, there is $t^* \geq^* \langle p_{m-1}(n) \mid n < m \rangle$ which decides φ .

If $t^* \Vdash \neg \varphi$, then set $t(\vec{\nu}, f) = t^*$. If $t^* \Vdash \varphi$. Use again the Prikry condition of the forcing $\mathcal{P}_{\langle E(n) \upharpoonright \lambda_m^{\vec{\nu}} \mid n < m \rangle}$ to decide the following statement

$$\psi \equiv \exists t \in G(\langle t, \bar{f}_{\vec{\nu}}, \bar{p}^{>m} \rangle \Vdash \sigma).$$

Let $t(\vec{\nu}, f) \geq^* t^*$ be a condition which decides ψ .

Claim 4 Let $t \ge t(\vec{\nu}, f)$ in $\mathcal{P}_{\langle E(n) \mid \lambda_m^{\vec{\nu}} \mid n < m \rangle}$, $\langle g, q \rangle \ge^* \langle \bar{f}_{\vec{\nu}}, \bar{p}^{>m} \rangle$ in $\mathcal{P}_{\langle E(n) \mid m \le n < \omega \rangle}$. Suppose that $\langle t, g, q \rangle \Vdash \sigma$ (or $\langle t, g, q \rangle \Vdash \neg \sigma$), then already $\langle t(\vec{\nu}, f), \bar{f}_{\vec{\nu}}, \bar{p}^{>m} \rangle \Vdash \sigma$ (or $\langle t(\vec{\nu}, \bar{f}_{\vec{\nu}}, \bar{p}^{>m} \rangle \Vdash \neg \sigma)$.

Proof. Let $t \ge t(\vec{\nu}, f)$ in $\mathcal{P}_{\langle E(n) | \lambda_m^{\vec{\nu}} | n < m \rangle}$, $\langle g, q \rangle \ge^* \bar{f}_{\vec{\nu}}, \bar{p}^{>m} \rangle$ in $\mathcal{P}_{\langle E(n) | m \le n < \omega \rangle}$. Suppose that $\langle t, g, q \rangle \Vdash \sigma$. Then, for some $\xi < \lambda_1^{\vec{\nu}}, t = t_{\xi}$, and then, $\langle t, (f_{\xi})_{\vec{\nu}}, p_{\xi}^{>m} \rangle \parallel \sigma$. So, $\langle t, \bar{f}_{\vec{\nu}}, \bar{p}^{>m} \rangle \parallel \sigma$. Then $t^* \Vdash \varphi$. Hence, $\langle t(\vec{\nu}, f), \bar{f}_{\vec{\nu}}, \bar{p}^{>m} \rangle \Vdash \sigma$. \Box of the claim.

Define $D_{\vec{\nu}}$ to be the set of all $f \in \mathcal{P}^*_{E(m)}, f \geq^* f^{p_{m-1}m}$ so that there is $p_f^{>m} \in \mathcal{P}_{\langle E(n)|m < n < \omega \rangle}, p_f^{>m} \geq^* p_{m-1}^{>m}$, such that either

- (1) $\langle t(\vec{\nu}, f), f_{\vec{\nu}}, p_f^{>m} \rangle \parallel \sigma$ or
- (2) for every $t \ge t(\vec{\nu}, f)$ in $\mathcal{P}_{\langle E(n) \restriction \lambda_m^{\vec{\nu}} \mid n < m \rangle}$, for every $\langle g, q \rangle \ge^* \langle f_{\vec{\nu}}, p_f^{>m} \rangle$ in $\mathcal{P}_{\langle E(n) \mid m \le n < \omega \rangle}$, $\langle t, g, q \rangle \not\models \sigma$.

The next claim follows now from the previous one:

Claim 5 $D_{\vec{\nu}}$ is a dense open subset of $\mathcal{P}^*_{E(m)}$ above $f^{p_{m-1}m}$.

 $D_{\vec{\nu}}$ is definable with parameters in N^m , hence $D_{\vec{\nu}} \in N^m$. Then, $f^{m*} \in D_{\vec{\nu}}$, for every $\vec{\nu} \in A$. So, for every $\vec{\nu} \in A$ we have either

- (3) $\langle t(\vec{\nu}, f^{m*}), f^{m*}_{\vec{\nu}}, p^{>m}_{f^{m*}} \rangle \parallel \sigma$ or
- (4) for every $t \ge t(\vec{\nu}, f^{m*})$ in $\mathcal{P}_{\langle E(n) \upharpoonright \lambda_m^{\vec{\nu}} \mid n < m \rangle}$, for every $\langle g, q \rangle \ge^* \langle f_{\vec{\nu}}^{m*}, p_{f^{m*}}^{>m} \rangle$ in $\mathcal{P}_{\langle E(n) \mid m \le n < \omega \rangle}$, $\langle t, g, q \rangle \not\models \sigma$.

Shrink A, if necessary, to a set $A^{m*} \in (E(m))(\operatorname{dom}(f^{m*}))$, such that for any two $\vec{\nu}, \vec{\nu}' \in A^{m*}$ the decision is the same.

Consider now $\langle f^{m*}, A^{m*} \rangle$ it is a pure condition in $\mathcal{P}_{E(m)}$. Use the function $\vec{\nu} \mapsto t(\vec{\nu}, f^{m*})$ in order to get a pure condition in $\mathcal{P}_{\langle E(n)|n < m \rangle}$, just use the one this function represents in the ultrapower by $(E(m))(\operatorname{dom}(f^{m*}))$. Denote it by $\langle \langle f^{n*}, A^{n*} \rangle \mid n < m \rangle$.

Let us explain how do we naturally combine the result into a condition in $\mathcal{P}_{\langle E(n)|n<\omega\rangle}$. Let $t(\vec{\nu}, f^{m*}) = \langle \langle f^{n\vec{\nu}}, A^{n\vec{\nu}} \rangle | n < m \rangle$, for every $\vec{\nu} \in A^{m*}$. Consider $f^{n\vec{\nu}}, n < m$. It is a set of at most κ_n many pairs (α, β) , where $\alpha < \lambda_m^{\vec{\nu}} < \kappa_m$ and β is either the empty sequence or an ordinal $< \kappa_n$.

Shrinking A^{m*} if necessary, we can assume that there are $\langle x_n \mid n < m \rangle$ and $\kappa_n^* < \kappa_n^+, n < m$ such that for every $\vec{\nu}, \vec{\nu'} \in A^{m*}$, for every n < m, the following hold:

- 1. dom $(f^{n\vec{\nu}}) \cap \vec{\nu}(\kappa_m) = x_n,$
- 2. dom $(f^{n\vec{\nu}}) \setminus \vec{\nu}(\kappa_m) = \{\gamma_{\tau n}^{\vec{\nu}} \mid \tau < \kappa_n^*\}$ is an increasing enumeration,
- 3. for every $\alpha \in x_n$, $f^{n\vec{\nu}}(\alpha) = f^{n\vec{\nu}'}(\alpha)$,
- 4. for every $\tau < \kappa_n^*$, $f^{n\vec{\nu}}(\gamma_{\tau n}^{\vec{\nu}}) = f^{n\vec{\nu}'}(\gamma_{\tau n}^{\vec{\nu}'})$

Consider, for every n < m and $\tau < \kappa_n^*$ a function $s_{\tau n}$ on A^{m*} defined by setting $s_{\tau n}(\vec{\nu}) = \gamma_{\tau n}^{\vec{\nu}}$.

Let

$$\gamma_{\tau n} = j_{E(m)}(s_{\tau n})(\langle (j_{E(m)}(\alpha), \alpha) \mid \alpha \in \operatorname{dom}(f^{m*}) \rangle).$$

Extend now f^{m*} to f^{m**} by adding all $\gamma_{\tau n}, \tau < \kappa_n^*, n < m$ to its domain and setting $f^{m**}(\gamma_{\tau n})$ to be the empty sequence whenever $\gamma_{\tau n} \notin \operatorname{dom}(f^{m*})$. Define $A^{m**} \in E(m)(\operatorname{dom}(f^{m**}))$ as follows.

Set $\vec{\nu} \in A^{m**}$ iff

- 1. $\vec{\nu} \upharpoonright \operatorname{dom}(f^{m*}) \in A^{m*}$,
- 2. dom $(\vec{\nu}) \supseteq \{\gamma_{\tau n} \mid \tau < \kappa_n^*, n < m\},\$
- 3. if $\gamma_{\tau n} \in \text{dom}(f^{m*})$ and $f^{m*}(\gamma_{\tau n})$ is not the empty sequence, then $\vec{\nu}(\gamma_{\tau n}) > f^{m*}(\gamma_{\tau n})$, for every n < m,
- 4. $\vec{\nu}(\gamma_{\tau n}) = s_{\tau n}(\vec{\nu} \upharpoonright \operatorname{dom}(f^{m*})), \text{ for every } n < m.$

For every $\vec{\nu} \in A^{m**}$, n < m, set $\langle f^{n\vec{\nu}}, A^{n\vec{\nu}} \rangle = \langle f^{n\vec{\nu} | \operatorname{dom}(f^{m*})}, A^{n\vec{\nu} | \operatorname{dom}(f^{m*})} \rangle$. Consider the function $\vec{\nu} \mapsto \langle \langle f^{n\vec{\nu}}, A^{n\vec{\nu}} \rangle | n < m \rangle$, $\vec{\nu} \in A^{m**}$. Let $\langle \langle f^{n*}, A^{n*} \rangle | n < m \rangle$ be represented by it in the ultrapower with E(m).

It follows that $\langle\langle\langle f^{n*}, A^{n*}\rangle \mid n < m\rangle, \langle f^{m**}, A^{m**}\rangle\rangle$ is a pure condition in $\mathcal{P}_{\langle E(n)|n \leq m\rangle}$ which extends $p_{m-1} \upharpoonright \mathcal{P}_{\langle E(n)|n \leq m\rangle}$.

Extend purely $p_{f^{m*}}^{>m}$ in the obvious fashion to a condition $p_{f^{m**}}^{>m}$ in $\mathcal{P}_{\langle E(n)|m < n < \omega \rangle}$ such that $\langle \langle \langle f^{n*}, A^{n*} \rangle \mid n < m \rangle, \langle f^{m**}, A^{m**} \rangle, p_{f^{m**}}^{>m} \rangle$ is a pure condition in $\mathcal{P}_{\langle E(n)|n < \omega \rangle}$. Then it extends p_{m-1} .

Set p_m to be $\langle \langle \langle f^{n*}, A^{n*} \rangle \mid n < m \rangle, \langle f^{m**}, A^{m**} \rangle, p_{f^{m**}}^{>m} \rangle$.

This completes the recursive construction of $\langle p_m \mid m < \omega \rangle$. Let $p_* \ge p_m$, for every $m < \omega$. The next claim completes the argument:

Claim 6 $p_* \parallel \sigma$.

Proof. Suppose otherwise. Pick then $q \ge p_*$ to be a condition which decides σ and such that its last coordinate at which a non-direct extension was made is as small as possible. Let $q \Vdash \sigma$ and this coordinate is some $m < \omega$.

Then there is $\vec{\nu} \in A^{p_*}(m)$ such that $q(m) \geq^* f^{p_*}(m)_{\vec{\nu}}$ in $\mathcal{P}^*_{E(m)}$. In addition, $q^{>m} \geq^* p_*^{>m}$ in $\mathcal{P}_{\langle E(n) \mid m < n < \omega \rangle}$, by the choice of m.

But, then the condition (4) above cannot hold. Hence (3) is true, which means, that

$$\langle t(\vec{\nu}, f^{m*}), f^{m*}_{\vec{\nu}}, p^{>m}_{f^{m*}} \rangle \Vdash \sigma.$$

Then the same holds for every $\vec{\nu}' \in A^{p_*}(m)$. So, already $p_* \Vdash \sigma$.

Contradiction.

 \Box of the claim.

It follows now that the forcing $\langle \mathcal{P}, \leq \rangle$ preserves all the cardinals but κ_{ω}^+ . Using the arguments of the previous lemma it is possible to show that κ_{ω}^+ is preserved as well.

Let G be a generic subset of $\langle \mathcal{P}, \leq \rangle$.

Lemma 1.26 κ_{ω} remains a strong limit cardinal in V[G].

Proof. Given $p \in \mathcal{P}$ and $m < \omega$. Suppose that p(m) is non-pure. Then $p(m)(\kappa_m)$ is defined, and hence also the reflection $h_{\lambda}^m(p(m)(\kappa_m))$ of λ below κ_m . By the definition of the forcing, then the part $\mathcal{P}_{\langle E(n)|n < m \rangle}$ above p will act as $\mathcal{P}_{\langle E(n)|h_{\lambda}^m(p(m)(\kappa_m))|n < m \rangle}$. In particular, $2^{\kappa_n} \leq h_{\lambda}^m(p(m)(\kappa_m)) < \kappa_m$. The upper part of the forcing, i.e. $\mathcal{P}_{\langle E(n)|m \leq n < \omega \rangle}$, does not add new bounded subsets to κ_m . So we are done.

_

Lemma 1.27 $(\kappa_{\omega}^+)^V$ remains a cardinal in V[G].

Let us state first the following:

Lemma 1.28 Let $p \in \mathcal{P}$ and ζ be a $\langle \mathcal{P}, \leq \rangle$ -name of an ordinal or just $p \Vdash_{\langle \mathcal{P}, \leq \rangle} \zeta$ is an ordinal. Then there are $p^* \geq^* p$ and $n_1 < \ldots < n_k$, for some $k < \omega$, such that

- 1. for every $i, 1 \le i \le k, \ p^*(n_i) = \langle f_{n_i}^{p^*}, A_{n_i}^{p^*} \rangle$,
- 2. for every $\vec{\nu}_1 \in A_{n_1}^{p^*}, ..., \vec{\nu}_k \in A_{n_k}^{p^*},$ $p^* \cap \vec{\nu}_1 ... \cap \vec{\nu}_k \text{ decides } \zeta.$

The proof of this lemma repeats the proof of the Prikry condition of the forcing. *Proof of 1.27.* Suppose otherwise. Then there is $\mu < \kappa_{\omega}$ such that, in V[G], $\operatorname{cof}((\kappa_{\omega}^{+})^{V}) = \mu$. Back in V, let $\langle \zeta_{\tau} | \tau < \mu \rangle$ be a name of a witnessing sequence. Pick $\bar{n} < \omega$ with $\kappa_{\bar{n}} > \mu$. Let $p \in \mathcal{P}$ be such that $p(\bar{n}) \in \mathcal{P}^*_{E(\bar{n})}$, i.e. its \bar{n} -th coordinate is non-pure. Then above p the part $\mathcal{P}_{E(n)|n<\bar{n}\rangle}$ reflects down to $\mathcal{P}_{\langle E(n)|h_{\bar{n}}^{\lambda}(p(\bar{n})(\kappa_{\bar{n}})|n<\bar{n}\rangle)}$, and so has cardinality below $\kappa_{\bar{n}}$.

Construct a sequence $\langle p_{\tau} | \tau < \mu \rangle$ of \leq^* -extensions of p such that, for every $\tau < \mu$,

- 1. p_{τ} satisfies the conclusion of Lemma 1.28 for ζ_{τ} ,
- 2. $\langle p_{\tau}(n) \mid \bar{n} \leq n < \omega \rangle \leq^* \langle p_{\tau'}(n) \mid \bar{n} \leq n < \omega \rangle$ in the forcing $\mathcal{P}_{\langle E(n) \mid \bar{n} \leq n < \omega \rangle}$, for every $\tau < \tau' < \mu$.

Let $s \geq^* \langle p_{\tau}(n) \mid \bar{n} \leq n < \omega \rangle$ in the forcing $\mathcal{P}_{\langle E(n) \mid \bar{n} \leq n < \omega \rangle}$, for every $\tau < \mu$. Set $r = p \restriction \bar{n} \land s$. Then, for every $\tau < \mu$, there is $\xi_{\tau} < \kappa_{\omega}^+$ such that

$$r \Vdash_{\langle \mathcal{P}, \leq \rangle} \zeta_{\tau} < \xi_{\tau},$$

since by the choice of p_{τ} , the number of possibilities for ζ_{τ} has cardinality $< \kappa_{\omega}$. Set $\xi = \bigcup_{\tau < \mu} \xi_{\tau} < \kappa_{\omega}^+$.

$$r \Vdash_{\langle \mathcal{P}, \leq \rangle} \langle \zeta_{\tau} \mid \tau < \mu \rangle$$
 is bounded by ξ .

Contradiction.

Given $p \in \mathcal{P}$. Denote by np(p) the set of all coordinates n of p such that $p(n) \in \mathcal{P}^*_{E(n)}$, i.e. a non-pure extension was made at the coordinate n.

Let $\beta \in [\kappa_{\omega}, \lambda)$ we define in V[G] a function $t_{\beta} : \omega \to \kappa_{\omega}$ as follows.

For every $n < \omega$, find $p \in G$ such that $n \in \operatorname{np}(p)$ and if $n_1 < \ldots < n_k$ is the increasing enumeration of $\operatorname{np}(p) \setminus n$ (i.e. $n = n_1$), then the following hold:

- 1. $\beta \in \operatorname{dom}(p(n_k))$. Set $\beta_k = \beta$.
- 2. For every $i, 1 \leq i \leq k 1$, $\beta_i \in \text{dom}(p(n_i))$, where $\beta_i = p(n_{i+1})(\beta_{i+1})$.

Lemma 1.29 In V[G], if $\beta, \gamma \in [\kappa_{\omega}, \lambda)$ and $\beta < \gamma$, then there is $n^* < \omega$ such that for every $n, n^* \leq n < \omega, t_{\beta}(n) < t_{\gamma}(n)$.

Set $t_{\beta}(n) = p(n)(\beta_1)$.

Proof. Work in V. Let $p \in \mathcal{P}$ be any condition and $\beta, \gamma \in [\kappa_{\omega}, \lambda), \beta < \gamma$. Let n^* be a coordinate above np(p). Then $p(n) = \langle f_n^p, A_n^p \rangle$, for every $n, n^* \leq n < \omega$. Extend p to p^* by adding β, γ to all $dom(f_n^p)$ with $n^* \leq n < \omega$. Now, by the definition of the order on \mathcal{P} , for every $n, n^* \leq n < \omega$ and every $q \geq p^*$ such that q defines $t_{\beta}(n)$ and $t_{\gamma}(n)$, we will have $t_{\beta}(n) < t_{\gamma}(n)$. So,

 $p^* \Vdash (\forall n) (n^* \le n < \omega \to \underset{\alpha,\beta}{t}(n) < \underset{\alpha,\gamma}{t}(n)).$

It is possible to say a bit more. Namely, let in V[G], for every $n < \omega$, λ_n be the reflection of λ below κ_n , i.e. for some $p \in G$ with $p(n) = f_n^p$, $\lambda_n = h_{\lambda}^n(f_n^p(\kappa_n))$. Then the following holds:

Lemma 1.30 The sequence $\langle t_{\beta} \mid \beta \in [\kappa_{\omega}, \lambda) \rangle$ is a scale in $\langle \prod_{n < \omega} \lambda_n, <_{J^{bd}} \rangle$.

2 Arbitrary cofinality.

Let η be any ordinal. We generalize the construction of the previous section to sequences of extenders of the length η . The generalization is straightforward. Let us repeat just the main points.

So, we deal now with a sequence $\langle E(\alpha) \mid \alpha < \eta \rangle$, where each $E(\alpha)$ is a $(\kappa_{\alpha}, \lambda)$ -extender and $\langle \kappa_{\alpha} \mid n < \omega \rangle$ is an increasing sequence with $\eta < \kappa_0$.

Let $\mathcal{P}_{E(i)}^*, \mathcal{P}_{E(i)}, i < \eta$ be as defined before.

Define components of the main forcing $\mathcal{P}_{\langle E(\alpha)|\alpha < \eta \rangle}$.

Definition 2.1 The set of pure conditions $\mathcal{P}_{\langle E(\alpha) | \alpha < \eta \rangle}$ consists of all sequences $\langle p(\alpha) | \alpha < \eta \rangle$ such that for every $\alpha < \eta$, the following hold:

1.
$$p(\alpha) = \langle f^{\alpha}, A^{\alpha} \rangle \in \mathcal{P}_{E(\alpha)},$$

- 2. dom $(f^{\alpha}) \setminus \kappa_{\alpha+1} \subseteq \text{dom}(f^{\alpha+1}),$
- 3. for every $\beta \leq \alpha$, for every $\xi \in \text{dom}(f^{\beta}) \setminus \kappa_{\alpha+1}$, if $f^{\alpha+1}(\xi)$ is not the empty sequence, then for every $\vec{\nu} \in A^{\alpha+1}$, $\xi \in \text{dom}(\vec{\nu})$ and $\vec{\nu}(\xi) > f^{\alpha+1}(\xi)$. The idea behind is as in the case of two extenders.
- 4. For every $\vec{\nu} \in A^{\alpha+1}$ and $\beta \leq \alpha$, the measures $E(\beta)(\operatorname{dom}(f^{\beta}))$ and $E(\beta)((\operatorname{dom}(f^{\beta}) \cap \kappa_{\alpha+1}) \cup \{\vec{\nu}(\xi) \mid \xi \in \operatorname{dom}(f^{\beta}) \setminus \kappa_{\alpha+1}\})$ are basically the same in the following sense:

$$X \in E(\beta)(\operatorname{dom}(f^{\beta})) \text{ iff}$$
$$X^{ref} \in E(\beta)((\operatorname{dom}(f^{\beta}) \cap \kappa_{\alpha+1}) \cup \{\vec{\nu}(\xi) \mid \xi \in \operatorname{dom}(f^{\beta}) \setminus \kappa_{\alpha+1}\}),$$

where

$$X^{ref} = \{(\xi, \beta) \in X \mid \xi < \kappa_{\alpha+1}\} \cup \{(\vec{\nu}(\xi), \beta) \mid (\xi, \beta) \in X, \xi \ge \kappa_{\alpha+1}\}.$$

Note that this property is true in the ultrapower by $E(\alpha + 1)$, so it holds on a set of measure one, as well.

Turn now to non-pure extensions. As usual, in Magidor type of iterations, non-pure extensions are allowed only at finitely many coordinates.

Start with a non-pure extension at a single coordinate and then proceed by induction.

We assume that for each $\alpha < \eta$ there is a function $h_{\lambda}^{\alpha} : \kappa_{\alpha} \to \kappa_{\alpha}$ such that $j_{E(\alpha)}(h_{\lambda}^{\alpha})(\kappa_{\alpha}) = \lambda$. **Definition 2.2** Let $\beta < \eta$. Define the set $\mathcal{P}_{\langle E(\alpha) | \alpha < \eta \rangle}^{\{\beta\}}$ of conditions with only non-pure part over the coordinate β . $\mathcal{P}_{\langle E(\alpha) | \alpha < \eta \rangle}^{(\beta)}$ consists of all sequences $\langle p(\alpha) | \alpha < \eta \rangle$ such that for every $\alpha < \eta$, the following hold:

- 1. $\langle p(\alpha) \mid \alpha < \eta, \alpha \neq \beta \rangle$ is a pure condition in $\mathcal{P}_{\langle E(\alpha) \mid \alpha < \eta, \alpha \neq \beta \rangle}$,
- 2. $p(\beta) = f^{\beta} \in \mathcal{P}^*_{E(\beta)},$
- 3. dom $(f^{\beta}) \setminus \kappa_{\alpha} \subseteq \text{dom}(f^{\alpha})$, for every $\alpha, \beta < \alpha < \eta$,
- 4. for every $\alpha, \beta < \alpha < \eta$, for every $\xi \in \text{dom}(f^{\beta}) \setminus \kappa_{\alpha}$, if $f^{\alpha}(\xi)$ is not the empty sequence, then for every $\vec{\nu} \in A^{\alpha}, \xi \in \text{dom}(\vec{\nu})$ and $\vec{\nu}(\xi) > f^{\alpha}(\xi)$,
- 5. for every $\alpha, \beta < \alpha < \eta$, for every $\gamma \in \text{dom}(f^{\beta}) \cap \kappa_{\alpha}, \vec{\nu} \in A^{\alpha}$ and $\xi \in \text{dom}(\vec{\nu}), \vec{\nu}(\xi) > \gamma$.
- 6. If $\beta > 0$, then the sequence $\langle p(\alpha) \mid \alpha < \beta \rangle$ will be a condition in the pure part of $\mathcal{P}_{\langle E(\alpha) \mid h_{\lambda}(f^{\beta}(\kappa_{\beta})) \mid \alpha < \beta \rangle}$. The meaning is that if the value of the Prikry sequence for the normal measure of $E(\beta)$ is decided, then we cut all extenders $E(\alpha), \alpha < \beta$ to the reflection of λ below κ_{β} , i.e. to $h_{\lambda}^{\beta}(f^{\beta}(\kappa_{\beta}))$.

Let $\beta_1 < ... < \beta_k < \eta, 1 \le k < \omega$ and suppose that $\mathcal{P}_{\langle E(\alpha) | \alpha < \eta \rangle}^{\{\beta_1,...,\beta_k\}}$ the set of conditions with non-pure extensions over coordinates $(\beta_1, ..., \beta_k)$ only, is defined. Let $\beta < \eta, \beta \notin \{\beta_1, ..., \beta_k\}$.

Define non-pure extensions at the set of coordinates $\{\beta_1, ..., \beta_k\} \cup \{\beta\}$.

Definition 2.3 Let $\beta < \eta$. Define the set $\mathcal{P}_{\{\mathcal{E}(\alpha)\mid\alpha<\eta\rangle}^{\{\beta_1,...,\beta_k\}\cup\{\beta\}}$ of conditions with only non-pure part over the coordinate $\beta_1, ..., \beta_k$ and β . $\mathcal{P}_{\langle \mathcal{E}(\alpha)\mid\alpha<\eta\rangle}^{\{\beta_1,...,\beta_k\}\cup\{\beta\}}$ consists of all sequences $\langle p(\alpha) \mid \alpha < \eta \rangle$ such that for every $\alpha < \eta$, the following hold:

- 1. $\langle p(\alpha) \mid \alpha < \eta, \alpha \neq \beta \rangle$ is a condition in $\mathcal{P}^{\{\beta_1, \dots, \beta_k\}}_{\langle E(\alpha) \mid \alpha < \eta, \alpha \neq \beta \rangle}$,
- 2. $p(\beta) = f^{\beta} \in \mathcal{P}^*_{E(\beta)}$.
- 3. If for every $i, 1 \leq i \leq k, \beta_i < \beta$, then following hold:
 - (a) $\operatorname{dom}(f^{\beta}) \setminus \kappa_{\alpha} \subseteq \operatorname{dom}(f^{\alpha})$, for every $\alpha, \beta < \alpha < \eta$,
 - (b) for every $\alpha, \beta < \alpha < \eta$, for every $\xi \in \text{dom}(f^{\beta}) \setminus \kappa_{\alpha}$, if $f^{\alpha}(\xi)$ is not the empty sequence, then for every $\vec{\nu} \in A^{\alpha}, \xi \in \text{dom}(\vec{\nu})$ and $\vec{\nu}(\xi) > f^{\alpha}(\xi)$,

- (c) for every $\alpha, \beta < \alpha < \eta$, for every $\gamma \in \text{dom}(f^{\beta}) \cap \kappa_{\alpha}, \vec{\nu} \in A^{\alpha}$ and $\xi \in \text{dom}(\vec{\nu})$, $\vec{\nu}(\xi) > \gamma$.
- (d) If $\beta > 0$, then the sequence $\langle p(\alpha) \mid \alpha < \beta \rangle$ will be a condition in $\mathcal{P}_{\langle E(\alpha) \mid h_{\lambda}(f^{\beta}(\kappa_{\beta})) \mid \alpha < \beta \rangle}^{\{\beta_{1}, \dots, \beta_{k}\}}$. The meaning is that if the value of the Prikry sequence for the normal measure of $E(\beta)$ is decided, then we cut all extenders $E(\alpha), \alpha < \beta$ to the reflection of λ below κ_{β} , i.e. to $h_{\lambda}^{\beta}(f^{\beta}(\kappa_{\beta}))$.
- 4. If there is $i, 1 \leq i \leq k, \beta_i > \beta$, then let i^* be the least such *i*. We require the following:

(a)
$$\langle p(\alpha) \mid \alpha < \beta_{i^*} \rangle \in \mathcal{P}^{\{\beta_1, \dots, \beta_{i^*-1}, \beta\}}_{\langle E(\alpha) \mid h_\lambda(f^{\beta_{i^*}}(\kappa_{\beta_{i^*}})) \mid \alpha < \beta_{i^*} \rangle}$$

Finally set

$$\mathcal{P}_{\langle E(\alpha) \mid \alpha < \eta \rangle} = \bigcup \{ \mathcal{P}_{\langle E(\alpha) \mid \alpha < \eta \rangle}^{\{\beta_1, \dots, \beta_k\}} \mid k < \omega, \beta_1 < \dots < \beta_k < \omega \}.$$

Define the direct extension order \leq^* over $\mathcal{P}_{\langle E(\alpha) | \alpha < \eta \rangle}$ to be the union of such order over every $\mathcal{P}_{\langle E(\alpha) | \alpha < \eta \rangle}^{\{\beta_1, \dots, \beta_k\}}$, for every $k < \omega, \beta_1 < \dots < \beta_k < \eta$.

Turn now to the definition of the forcing order \leq over $\mathcal{P}_{\langle E(\alpha) | \alpha < \eta \rangle}$.

Let $\beta < \eta, \beta \notin \{\beta_1, ..., \beta_k\}$. Define a one element extension at coordinate β of a condition in $\mathcal{P}_{\langle E(\alpha) \mid \alpha < \eta \rangle}^{\{\beta_1, ..., \beta_k\}}$.

Definition 2.4 Let $p \in \mathcal{P}_{\langle E(\alpha) | \alpha < \eta \rangle}^{\{\beta_1, \dots, \beta_k\} \cup \{\beta\}}$ and $q \in \mathcal{P}_{\langle E(\alpha) | \alpha < \eta \rangle}^{\{\beta_1, \dots, \beta_k\}}$. Set $p \ge q$ iff the following hold:

- 1. Suppose that $\beta = 0$. Then $p(0) = f^0 \in \mathcal{P}^*_{E(0)}$ and $q(0) = \langle g^0, B^0 \rangle$ is a pure condition in $\mathcal{P}_{E(0)}$. Set $p \ge q$ iff $f^0 \ge \langle g^0, B^0 \rangle$ in $\mathcal{P}_{E(0)}$ and $\langle p(\alpha) \mid 0 < \alpha < \eta \rangle \ge^* \langle q(\alpha) \mid 0 < \alpha < \eta \rangle$ in $\mathcal{P}_{\langle E(\alpha) \mid 0 < \alpha < \eta \rangle}$.
- 2. Suppose that $\beta > 0$. Then $p(\beta) = f^{\beta} \in \mathcal{P}^*_{E(\beta)}$ and $q(\beta) = \langle g^{\beta}, B^{\beta} \rangle$ is a pure condition in $\mathcal{P}_{E(\beta)}$. Set $p \ge q$ iff
 - (a) $f^{\beta} \geq \langle g^{\beta}, B^{\beta} \rangle$ in $\mathcal{P}_{E(\beta)}$ and $\langle p(\alpha) \mid \beta < \alpha < \eta \rangle \geq^{*} \langle q(\alpha) \mid \beta < \alpha < \eta \rangle$ in $\mathcal{P}_{\langle E(\alpha) \mid \beta < \alpha < \eta \rangle}$. And

- (b) $\langle p(\alpha) \mid \alpha < \beta \rangle \geq^* \langle q(\alpha) \mid \alpha < \beta \rangle^{ref}$ in $\mathcal{P}_{\langle E(\alpha) \mid \alpha < \beta \rangle}$, where $\langle q(\alpha) \mid \alpha < \beta \rangle^{ref}$ the reflection of $\langle q(\alpha) \mid \alpha < \beta \rangle$ below κ_{β} is defined as follows, where $q(\alpha) = \langle g^{\alpha}, B^{\alpha} \rangle$, if $\beta \notin \{\alpha_1, ..., \alpha_k\}$ and $q(\alpha) = \langle g^{\alpha} \rangle$ otherwise.
 - i. Suppose first that $\alpha \in \{\beta_1, ..., \beta_k\}$. Then
 - A. dom $((g^{\alpha})^{ref}) = (dom(g^{\alpha}) \cap \kappa_{\beta}) \cup \{f^{\beta}(\xi) \mid \xi \in dom(g^{\alpha}) \setminus \kappa_{\beta}\},\$
 - B. for every $\xi \in \operatorname{dom}(g^{\alpha}) \cap \kappa_{\beta} = \operatorname{dom}(g^{\alpha}) \cap \operatorname{dom}((g^{\alpha})^{ref}), (g^{\alpha})^{ref}(\xi) = g^{n}(\xi),$
 - C. for every $\xi \in \operatorname{dom}(g^{\alpha}) \setminus \kappa_{\beta}$, $(g^{\alpha})^{ref}(f^{\beta}(\xi)) = g^{\alpha}(\xi)$. It is crucial here that $f^m \upharpoonright (\operatorname{dom}(g^n) \setminus \kappa_m)$ is one to one and the values there are above $\operatorname{rng}(g^n) \cap \kappa_m$.

This follows by conditions (4),(5) of Definitions 1.10,1.11.

ii. Suppose now that $\alpha \notin \{\beta_1, ..., \beta_k\}$.

Then

- A. dom $((g^{\alpha})^{ref}) = (\operatorname{dom}(g^{\alpha}) \cap \kappa_{\beta}) \cup \{f^{\beta}(\xi) \mid \xi \in \operatorname{dom}(g^{\alpha}) \setminus \kappa_{\beta}\},\$
- B. for every $\xi \in \operatorname{dom}(g^{\alpha}) \cap \kappa_{\beta} = \operatorname{dom}(g^{\alpha}) \cap \operatorname{dom}((g^{\alpha})^{ref}), (g^{\alpha})^{ref}(\xi) = g^{\alpha}(\xi),$
- C. for every $\xi \in \text{dom}(g^{\alpha}) \setminus \kappa_{\beta}, (g^{\alpha})^{ref}(f^{\beta}(\xi)) = g^{\alpha}(\xi).$

Again, it is crucial here that $f^{\beta} \upharpoonright (\operatorname{dom}(g^{\alpha}) \setminus \kappa_{\beta})$ is one to one and the values there are above $\operatorname{rng}(g^{\alpha}) \cap \kappa_{\beta}$, and this follows by conditions (3),(4) of Definition 2.1 and (4),(5) of Definition 2.2.

One more crucial observation here is that the measure $(E(\alpha))(\operatorname{dom}(g^{\alpha}))$, to which B^{α} belongs, reflects to basically the same measure,

It follows by (4) of Definition 2.1.

D. $A^{\alpha} \upharpoonright \operatorname{dom}((g^{\alpha})^{ref}) \subseteq \{(f^{\beta}(\xi,\zeta) \mid (\xi,\zeta) \in B^{\alpha}\}.$

Denote further in this subsection $\mathcal{P}_{\langle E(\alpha) | \alpha < \eta \rangle}$ by just \mathcal{P} .

The next lemma follows from the definitions:

Lemma 2.5 For every $\beta < \eta$ and $p \in \mathcal{P}$ with $p(\beta) \in \mathcal{P}^*_{E(\beta)}$ (i.e. non-pure on the coordinate β), the part $\langle \mathcal{P}_{\langle E(\alpha) | \alpha < \beta \rangle}, \leq \rangle$ of \mathcal{P} above p has cardinality $f^{\lambda}_{\beta}(p(\beta)(\kappa_{\beta}) < \kappa_{\beta}$.

Lemma 2.6 For every $\beta < \eta$, the forcing $\langle \mathcal{P}_{\langle E(\alpha) | \beta \leq \alpha < \eta \rangle}, \leq^* \rangle$ is κ_{β} -closed.

Lemma 2.7 The forcing $\langle \mathcal{P}, \leq \rangle$ satisfies $\kappa_n^{++} - c.c.$

Lemma 2.8 $\langle \mathcal{P}, \leq, \leq^* \rangle$ is a Prikry type forcing notion.

Proof. The proof proceeds by induction on the length of the sequence of extenders, i.e. on η . The argument repeats those of Lemma 1.25.

Denote for every limit $\alpha, 0 < \alpha \leq \eta, \bigcup_{\gamma < \alpha} \kappa_{\gamma}$ by $\bar{\kappa}_{\alpha}$.

It follows, by the previous lemmas, that the forcing $\langle \mathcal{P}, \leq \rangle$ preserves all the cardinals, but $\bar{\kappa}^+_{\alpha}, 0 < \alpha \leq \eta$ a limit ordinal. Using the arguments of the previous lemma it is possible to show that all such cardinals are preserved as well.

Let G be a generic subset of $\langle \mathcal{P}, \leq \rangle$.

Lemma 2.9 For every limit ordinal $\mu, 0 < \mu \leq \eta$, $\bar{\kappa}_{\mu}$ remains a strong limit cardinal in V[G].

Proof. Given $p \in \mathcal{P}$ and $\beta < \eta$. Suppose that $p(\beta)$ is non-pure. Then $p(\beta)(\kappa_{\beta})$ is defined, and hence also the reflection $h_{\lambda}^{\beta}(p(\beta)(\kappa_{\beta}))$ of λ below κ_{β} . By the definition of the forcing, then the part $\mathcal{P}_{\langle E(\alpha)|\alpha<\beta\rangle}$ above p will act as $\mathcal{P}_{\langle E(\alpha)|h_{\lambda}^{\beta}(p(\beta)(\kappa_{\beta}))|\alpha<\beta\rangle}$. In particular, $2^{\kappa_{\alpha}} \leq h_{\lambda}^{\beta}(p(\beta)(\kappa_{\beta})) < \kappa_{\beta}$. The upper part of the forcing, i.e. $\mathcal{P}_{\langle E(\alpha)|\beta\leq\alpha<\eta\rangle}$, does not add new bounded subsets to κ_{β} .

So we are done.

As in the case $\eta = \omega$, the next lemma is just a variation of the Prikry condition of the forcing.

Lemma 2.10 Let $p \in \mathcal{P}$ and ζ be a $\langle \mathcal{P}, \leq \rangle$ -name of an ordinal or just $p \Vdash_{\langle \mathcal{P}, \leq \rangle} \zeta$ is an ordinal. Then there are $p^* \geq^* p$ and $\alpha_1 < \ldots < \alpha_k < \eta$, for some $k < \omega$, such that

- 1. for every $i, 1 \leq i \leq k$, $p^*(\alpha_i) = \langle f_{\alpha_i}^{p^*}, A_{\alpha_i}^{p^*} \rangle$,
- 2. for every $\vec{\nu}_1 \in A^{p^*}_{\alpha_1}, ..., \vec{\nu}_k \in A^{p^*}_{\alpha_k},$ $p^* \cap \vec{\nu}_1 ... \cap \vec{\nu}_k \text{ decides } \zeta.$

Lemma 2.11 For every limit ordinal $\mu, 0 < \mu \leq \eta$, $(\bar{\kappa}^+_{\mu})^V$ remains a cardinal in V[G].

The proof of this lemma repeats those of Lemma 1.27.

Given $p \in \mathcal{P}$. Denote by np(p) the set of all coordinates α of p such that $p(\alpha) \in \mathcal{P}^*_{E(\alpha)}$, i.e. a non-pure extension was made at the coordinate α .

Assume that η is a limit ordinal.

Let $\tau \in [\bar{\kappa}_{\eta}, \lambda)$ we define in V[G] a function $t_{\tau} : \eta \to \bar{\kappa}_{\eta}$ as follows.

For every $\alpha < \eta$, find $p \in G$ such that $\alpha \in \operatorname{np}(p)$ and if $\alpha_1 < \ldots < \alpha_k$ is the increasing enumeration of $\operatorname{np}(p) \setminus \alpha$ (i.e. $\alpha = \alpha_1$), then the following hold:

- 1. $\tau \in \operatorname{dom}(p(\alpha_k))$. Set $\tau_k = \tau$.
- 2. For every $i, 1 \leq i \leq k-1, \tau_i \in \text{dom}(p(\alpha_i))$, where $\tau_i = p(\alpha_{i+1})(\tau_{i+1})$.

Set
$$t_{\tau}(\alpha) = p(\alpha)(\tau_1)$$
.

Lemma 2.12 In V[G], if $\tau, \rho \in [\bar{\kappa}_{\eta}, \lambda)$ and $\tau < \rho$, then there is $\alpha^* < \eta$ such that for every $\alpha, \alpha^* \leq \alpha < \eta, t_{\tau}(\alpha) < t_{\rho}(\alpha)$.

Proof. Work in V. Let $p \in \mathcal{P}$ be any condition and $\tau, \rho \in [\bar{\kappa}_{\eta}, \lambda)$, $\tau < \rho$. Let α^* be a coordinate above np(p). Then $p(\alpha) = \langle f_{\alpha}^p, A_{\alpha}^p \rangle$, for every $\alpha, \alpha^* \leq \alpha < \eta$. Extend p to p^* by adding τ, ρ to all dom (f_{α}^p) with $\alpha^* \leq \alpha < \eta$. Now, by the definition of the order on \mathcal{P} , for every $\alpha, \alpha^* \leq \alpha < \eta$ and every $q \geq p^*$ such that q defines $t_{\tau}(\alpha)$ and $t_{\rho}(\alpha)$, we will have $t_{\tau}(\alpha) < t_{\rho}(\alpha)$. So,

$$p^* \Vdash (\forall \alpha) (\alpha^* \le \alpha < \eta \to \underset{\sim}{t_{\tau}}(\alpha) < \underset{\sim}{t_{\rho}}(\alpha)).$$

It is possible to say a bit more. Namely, let in V[G], for every $\alpha < \eta$, λ_{α} be the reflection of λ below κ_{α} , i.e. for some $p \in G$ with $p(\alpha) = f_{\alpha}^p$, $\lambda_{\alpha} = h_{\lambda}^{\alpha}(f_{\alpha}^p(\kappa_{\alpha}))$. Then the following holds:

Lemma 2.13 The sequence $\langle t_{\tau} \mid \tau \in [\bar{\kappa}_{\eta}, \lambda) \rangle$ is a scale in $\langle \prod_{\alpha < \eta} \lambda_{\alpha}, <_{J^{bd}} \rangle$.

In particular, we obtain the following:

Corollary 2.14 It is possible to blow up the power of a singular in the core model² cardinal of arbitrary cofinality in a cardinal preserving extension.

 $^{^2 \}rm Core$ model with strong cardinals, but below $o-\rm hand$ grenade. It was defined and studied by Ralf Schindler in [8]

3 One generalization.

In the previous section we assumed that $\eta < \kappa_0$ in order to blow up the power of a singular cardinal of cofinality η .

Let us now take η to be an inaccessible cardinal.

Let $\langle \kappa_{\alpha} \mid \alpha < \eta \rangle$ be now an increasing sequence with limit η and each $E(\alpha)$, for $\alpha < \eta$, be a (κ_{α}, η) -extender.

Assume that η is the least inaccessible limit of κ_{α} 's.

We proceed as in the previous section and define $\langle \mathcal{P}_{\langle E(\alpha) | \alpha < \eta \rangle}, \leq, \leq^* \rangle$. It shares the properties of the forcing of the previous section.

Let G be a generic subset of $\langle \mathcal{P}_{\langle E(\alpha) | \alpha < \eta \rangle}, \leq \rangle$.

Denote $\bigcup_{\beta < \alpha} \kappa_{\beta}$ by $\bar{\kappa}_{\alpha}$, for every $\alpha < \eta$. Then the following holds:

Theorem 3.1 V[G] is a cofinality preserving extension of V such that for every $\alpha < \eta$, $\bar{\kappa}_{\alpha}$ is a strong limit singular cardinal with $2^{\bar{\kappa}_{\alpha}} > \bar{\kappa}_{\alpha}^{+}$. In addition η remains inaccessible.

By passing to $V[G]_{\eta}$ we obtain the following:

Corollary 3.2 It is possible to blow up the power of a proper class club of singular cardinals in the core model in a cofinality preserving extension.

References

- [1] M. Gitik, Prikry type forcings, in Handbook of Set Theory, Foreman, Kanamori, eds.
- [2] M. Gitik, Short extenders forcings,
- [3] M. Gitik and M. Magidor, Extender based forcings. J.of Symbolic Logic 59:2 (1994), 445-460.
- [4] M. Gitik and S. Shelah, On certain indestructibility of strong cardinals and a question of Hajnal. Archive of Math. Logic 28 (1989), 35-42.
- [5] M. Gitik and S. Shelah, On some configurations related to SWH. Arch of Math. Logic 40 (2001), 639-650.
- [6] C. Merimovich, Supercompact extender based Prikry forcing, Annals of Pure and Applied Logic, Volume 168 Number 8, August 2017, pages 15711587.
- [7] C. Merimovich, Extender based Magidor-Radin forcing, Israel Journal of Mathematics, Volume 182 Number 1, April 2011, pages 439-480.
- [8] R. Schindler, The core model for almost linear iterations, Annals of Pure and Applied Logic, Volume 116, Issues 13, 15 August 2002, Pages 205-272.
- [9] S. Shelah, Cardinal arithmetic for sceptics, Bull. Amer. Math. Soc. 26 (1992), 197-210.
- [10] S. Shelah, Logical Dreams, Bull. Amer. Math. Soc. 40 (2003), 203-228.