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We will present here a new method for blowing up the power of a singular cardinal which

differs from those used in [1] and in [2] to deal with cofinality ω. The advantage of the

present technique is that it generalizes to singular cardinals of uncountable cofinality, which

was open.

Let us start with countable cofinality.

1 Blowing up the power of a singular cardinal of cofi-

nality ω.

Let 〈κn | n < ω〉 be an increasing sequence of cardinals and 〈En | n < ω〉 such that for every

n < ω

1. E(n) is a (κn, κ
++
ω )−extender,

i.e. jE(n) : V →ME(n) ' Ult(V,E(n)), crit(jE(n)) = κn, jE(n)(κn) > κ++
ω ,

ME(n) ⊇ Vκω+2,
κnME(n) ⊆ME(n);

2. E(n) C E(n+ 1),

where κω =
⋃
n<ω κn.

Denote by P(n) the one element extender based Prikry forcing with E(n). We would

like to combine P(n)’s together. It would be a kind of Magidor product, but will involve

restrictions and reflections. Namely, if for some n < ω a non-direct extension is made in

P(n), then be will restrict each E(m), m < n to the corresponding member of the Prikry

∗The work was partially supported by Israel Science Foundation Grant No. 58/14. We are grateful to
Carmi Merimovich for reading a draft of the paper and specially for the inspiration we got from his works
on extender based forcings.
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sequence for κn and reflect the information the condition contains about coordinates m < n

below κn.

Let us start with a simpler situation where instead of ω extenders we have only two.

1.1 A single extender.

Let us describe a variation of one element extender based Prikry forcing that will be used

here. It will be very close to those of C. Merimovich [7]. A difference will be that sequences

inside conditions will be either empty or of the length one only.

Let E be a (κ, λ)−extender. Define the corresponding forcing PE.

Let d ⊆ λ \κ of cardinality at most κ. Define a κ−ultrafilter E(d) on [d×κ]<κ as follows:

X ∈ E(d)⇔ {〈jE(α), α〉 | α ∈ d} ∈ jE(X).

Actually, E(d) concentrates on a smaller set called OB(d) in [7].

The advantage of using E(d) is that once A is typical set of E(d)−measure one and a ∈ A,

then a is of the form 〈〈αξ, βξ〉 | ξ < ρ〉, where

1. ρ < κ,

2. dom(a) = {αξ | ξ < ρ} ⊆ d,

3. βξ < κ, for every ξ < ρ.

So, already a measure one set provides an explicit connection between elements of Prikry

sequences and the measures to which they belong.

We assume further that always 〈αξ | ξ < ρ〉 and 〈βξ | ξ < ρ〉 are strictly increasing sequences

of ordinals.

Definition 1.1 Let P∗E be the set of all functions f such that

1. dom(f) ⊆ λ \ κ of cardinality at most κ,

2. κ ∈ dom(f),

3. for every α ∈ dom(f), f(α) is either empty or a one element sequence which consists

of an element of κ.

Definition 1.2 Let f, g ∈ P∗E. Set f ≥∗ g iff f ⊆ g.
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Definition 1.3 (One element extension) Let f ∈ P∗E and ~ν ∈ [dom(f) × κ]<κ. Define

g = f〈~ν〉 ∈ P∗E as follows:

1. dom(g) = dom(f),

2. for every α ∈ dom(g),

g(α) =


〈~ν(α)〉, if α ∈ dom(~ν) and f(α) is empty sequence;
〈~ν(α)〉, if α ∈ dom(~ν), f(α) is not empty and ~ν(α) > f(α);
f(α), otherwise.

The difference from the original definition by Merimovich in [7], is that we do not keep

f(α) if ~ν(α) > f(α), but rather replace f(α) by ~ν(α).

Define now the pure part P0
E of the main forcing PE.

Definition 1.4 A pure condition p ∈ P0
E is of the form 〈f, A〉, where

1. f ∈ P∗E,

2. f(κ) is the empty sequence,

3. A ∈ E(dom(f)).

Define the order on P0
E as follows:

Definition 1.5 Let p = 〈f, A〉, q = 〈g,B〉 ∈ P0
E. Set p ≥∗ q iff

1. f ≥∗ g in P∗E,

2. A � dom(g) ⊆ B.

The forcing PE will be the union of P0
E with

{f ∈ P∗E | f(κ) 6= 〈〉}.

The direct order extension will be just the union of ≤∗ orders of both parts. Let us define

the forcing order ≤ on P . We do this by defining one element extensions of members of P0
E.

Definition 1.6 Let p = 〈f, A〉 be in P0
E and ~ν ∈ A. Define p_~ν ∈ P∗E to be f〈~ν〉.

Definition 1.7 Let p = 〈f, A〉 be in P0
E and g be in P∗E. Set p ≤ g iff there is ~ν ∈ A such

that f〈~ν〉 ≤∗ g.
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The next lemma follows from the definitions:

Lemma 1.8 The forcing 〈PE,≤ 〉 is equivalent to the Cohen forcing for adding λ−many

Cohen subsets to κ+.

However, more can be deduced:

Lemma 1.9 〈P ,≤,≤∗ 〉 is a Prikry type forcing notion.

Proof. Let us sketch the basic argument following Merimovich presentation [7].

Let p = 〈fp, Ap〉 ∈ P0
E and σ be a statement of the forcing language.

We would like to find a direct extension of p which decides σ. Suppose that there is no such

extension.

Proceed as in 3.12 of [6]. Construct by induction an increasing chain of elementary

submodels 〈Nξ | ξ < κ〉 of Hχ, for χ large enough, and a sequence 〈fξ | ξ < κ〉 of members

of P∗E, such that

1. p,PE, σ ∈ N0,

2. N0 ⊇ κ,

3. for every ξ < κ,

(a) |Nξ| = κ,

(b) κ>Nξ ⊆ Nξ,

(c) 〈fζ | ζ < ξ〉 ∈ Nξ,

(d) fξ ∈
⋂
{D′ ∈ Nξ | D′ is a dense open subset of P∗E above fp},

(e) fp ≤∗ f0,

(f) fξ ≥∗ fζ , for every ζ < ξ.

Set N =
⋃
ξ<κNξ and f ∗ =

⋃
{fξ | ξ < κ}.1 to construct Let A ⊆ [dom(f ∗) × κ]<κ be

such that

• A � dom(fp) ⊆ Ap,

• A ∈ E(dom(f ∗)).

1Carmi Merimovich pointed out that there is no need here in elementary chain of models and it is possible
to define N directly. This observation applies also to our further constructions.
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Note that A ⊆ N , since dom(f ∗) ⊆ N , and so, [dom(f ∗)× κ]<κ ⊆ N .

Let ~ν ∈ A.

Define D~ν to be the set of all f ∈ P∗E, f ≥ fp such that

f~ν ‖ σ.

Then D~ν is a dense open subset of P∗E above fp.

It is definable with parameters in N , hence D~ν ∈ N .

Then, f ∗ ∈ D~ν .

Shrink now A to A∗ ∈ E(dom(f ∗)), if necessary, such that for every ~ν, ~ν ′ inside we will

have

f ∗~ν  σ iff f ∗~ν′  σ.

Suppose that for every ~ν ∈ A∗, f ∗~ν  σ.

Now, we claim that already 〈f ∗, A∗〉  σ.

Supose otherwise. Then there is g ≥ 〈f ∗, A∗〉 which forces ¬σ. Then for some ~ν ∈ A∗,

g ≥ f ∗~ν , by Definition 1.7. But f ∗ ∈ D~ν , hence already f ∗~ν  ¬σ, which is impossible by the

choice of A∗.

Contradiction.

�

1.2 Two extenders.

We deal now with E(0) C E(1).

Let P∗E(i),PE(i),P0
E(i), i < 2 be as defined in the previous subsection.

Define first components of the main forcing P〈E(0),E(1)〉.

Definition 1.10 The set of pure conditions P(0,0),(1,0)
〈E(0),E(1)〉 consists of all pairs 〈p(0), p(1)〉 such

that

1. p(0) = 〈f 0, A0〉 ∈ P0
E(0),

2. p(1) = 〈f 1, A1〉 ∈ P0
E(1),

3. dom(f 0) \ κ1 ⊆ dom(f 1),

4. for every α ∈ dom(f 0) \ κ1, if f 1(α) is not the empty sequence, then for every ~ν ∈ A1,

α ∈ dom(~ν) and ~ν(α) > f 1(α).

The intuition behind this condition is that the current value f 1(α) may interfere with
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values of one element Prikry sequences over κ0. Namely, with the α−th Prikry sequence

over κ0. Now, if ~ν(α) > f 1(α), then f 1
~ν (α) = ~ν(α), by Definition 1.3, and so, the value

f 1(α) just disappears.

5. For every γ ∈ dom(f 0) ∩ κ1,~ν ∈ A1 and α ∈ dom(~ν), ~ν(α) > γ.

Note that |dom(f 0)| ≤ κ0, so it is easy to arrange this.

6. For every ~ν ∈ A1, the measures E(0)(dom(f 0)) and

E(0)((dom(f 0)∩κ1)∪{~ν(α) | α ∈ dom(f 0)\κ1}) are basically the same in the following

sense:

X ∈ E(0)(dom(f 0)) iff Xref ∈ E(0)((dom(f 0) ∩ κ1) ∪ {~ν(α) | α ∈ dom(f 0) \ κ1}),

where

Xref = {(α, β) ∈ X | α < κ1} ∪ {(~ν(α), β) | (α, β) ∈ X,α ≥ κ1}.

Note that this property is true in the ultrapower by E(1), so it holds on a set of measure

one, as well.

Turn now to non-pure extensions.

First consider the situation with non-pure part over κ0.

Definition 1.11 The set of conditions P(1,0)
〈E(0),E(1)〉 consists of all pairs 〈f 0, p(1)〉 such that

1. f 0 ∈ P∗E(0),

2. p(1) = 〈f 1, A1〉 ∈ PE(1),

3. dom(f 0) \ κ1 ⊆ dom(f 1),

4. for every α ∈ dom(f 0) \ κ1, if f 1(α) is not the empty sequence, then for every ~ν ∈ A1,

α ∈ dom(~ν) and ~ν(α) > f 1(α),

5. for every γ ∈ dom(f 0) ∩ κ1,~ν ∈ A1 and α ∈ dom(~ν), ~ν(α) > γ.

Define conditions with a pure part over κ0 and a non-pure over κ1.

Assume for simplicity that there is hλ : κ1 → κ1 such that jE(1)(hλ)(κ1) = λ.

Definition 1.12 The set of conditions P(0,0)
〈E(0),E(1)〉 consists of all pairs 〈p(0), f 1〉 such that

1. f 1 ∈ P∗E(1),
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2. f 1(κ1) is non-empty,

3. p(0) ∈ PE(0)�hλ(f1(κ1)). The meaning is that if the value of the Prikry sequence for the

normal measure of E(1) is decided, then we cut E(0) to the reflection of λ below κ1,

i.e. to hλ(f
1(κ1)).

Define now a completely non-pure part of the forcing.

Definition 1.13 The set of conditions P∗〈E(0),E(1)〉 consists of all pairs 〈f 0, f 1〉 such that

1. f 1 ∈ P∗E(1),

2. f 1(κ1) is non-empty,

3. f 0 ∈ P∗E(0),

4. f 0(κ0) is non-empty,

5. dom(f 0) ⊆ hλ(f
1(κ1)).

The meaning is that if the value of the Prikry sequence for the normal measure of E(1)

is decided, then we add only hλ(f
1(κ1)) Cohen subsets to κ+

0 .

Now let us put everything together.

Definition 1.14 P〈E(0),E(1)〉 = P(0,0),(1,0)
〈E(0),E(1)〉 ∪ P

(1,0)
〈E(0),E(1)〉 ∪ P

(0,0)
〈E(0),E(1)〉 ∪ P∗〈E(0),E(1)〉.

Define the orders ≤,≤∗ over P〈E(0),E(1)〉.

≤∗ is just the union of the orders at each of the components.

Let us give now the main definition.

Definition 1.15 Let p, q ∈ P〈E(0),E(1)〉. If p, q are in the same component, then set p ≥ q iff

p ≥∗ q. Suppose that they are in different components.

Split into cases.

1. Suppose that q ∈ P(0,0),(1,0)
〈E(0),E(1)〉, i.e. in the pure part of P〈E(0),E(1)〉, p ∈ P(1,0)

〈E(0),E(1)〉, i.e.

only the part of p over κ1 is a pure condition.

Let then q = 〈〈g0, B0〉, 〈g1, B1〉〉, p = 〈f 0, 〈f 1, A1〉.
Set p ≥ q iff f 0 ≥ 〈g0, B0〉 in PE(0) and 〈f 1, A1〉 ≥∗ 〈g1, B1〉 in PE(1).
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2. Suppose that q ∈ P(0,0)
〈E(0),E(1)〉, i.e. in the part over κ0 is pure and those over κ1 is not

pure, p ∈ P∗〈E(0),E(1)〉, i.e. p is a completely non-pure condition.

Let then q = 〈〈g0, B0〉, g1〉 and p = 〈f 0, f 1〉.
Set p ≥ q iff f 0 ≥ 〈g0, B0〉 in PE(0) and f 1 ≥ g1 in PE(1).

3. (Principal case 1.)

Suppose that q ∈ P(1,0)
〈E(0),E(1)〉, i.e. in the part over κ1 is pure and those over κ0 is not

pure, p ∈ P∗〈E(0),E(1)〉, i.e. p is a completely non-pure condition.

Let then q = 〈g0, 〈g1, B1〉〉 and p = 〈f 0, f 1〉.
Set p ≥ q iff f 1 ≥ 〈g1, B1〉 in PE(1) and f 0 ≥ (g0)ref in P∗E(0)�hλ(f1(κ1)), where (g0)ref

the reflection of g0 below κ1 is defined as follows:

(a) dom((g0)ref ) = (dom(g0) ∩ κ1) ∪ {f 1(α) | α ∈ dom(g0) \ κ1},

(b) for every α ∈ dom(g0) ∩ κ1 = dom(g0) ∩ dom((g0)ref ), (g0)ref (α) = g0(α),

(c) for every α ∈ dom(g0) \ κ1, (g0)ref (f 1(α)) = g0(α).

It is crucial here that f 1 � (dom(g0) \ κ1) is one to one and the values there are

above rng(g0) ∩ κ1.

This follows by conditions (4),(5) of Definitions 1.10,1.11.

4. (Principal case 2.)

Suppose that q ∈ P(0.0),(1,0)
〈E(0),E(1)〉, i.e. both parts are pure, p ∈ P(0,0)

〈E(0),E(1)〉, i.e. only the

part over κ0 is pure.

Let then q = 〈〈g0, B0〉, 〈g1, B1〉〉 and p = 〈〈f 0, A0〉, f 1〉.
Set p ≥ q iff f 1 ≥ 〈g1, B1〉 in PE(1) and 〈f 0, A0〉 ≥ (〈g0, B0〉)ref in PE(0)�hλ(f1(κ1)), where

(〈g0, B0〉)ref the reflection of 〈g0, B0〉 below κ1 is defined as follows:

(a) dom((g0)ref ) = (dom(g0) ∩ κ1) ∪ {f 1(α) | α ∈ dom(g0) \ κ1},

(b) for every α ∈ dom(g0) ∩ κ1 = dom(g0) ∩ dom((g0)ref ), (g0)ref (α) = g0(α),

(c) for every α ∈ dom(g0) \ κ1, (g0)ref (f 1(α)) = g0(α).

Again, it is crucial here that f 1 � (dom(g0) \ κ1) is one to one and the values

there are above rng(g0) ∩ κ1, and this follows by conditions (4),(5) of Definitions

1.10,1.11.

One more crucial observation here is that the measure (E(0))(dom(g0), to which

B0 belongs, reflects to basically the same measure,

It follows by (6) of Definitions 1.10.
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(d) A0 � dom((g0)ref ) ⊆ (B0)ref , where (B0)ref = {~νref | ~ν ∈ B0} and if ~ν =

〈〈αξ, βξ〉 | ξ < ρ〉, then

~νref = 〈〈αξ, βξ〉 | ξ < ρ, α < κ1〉_〈〈f 1(αξ), βξ〉 | ξ < ρ, α ≥ κ1〉.

Denote further in this subsection P〈E(0),E(1)〉 by just P .

The next lemma follows from the definitions:

Lemma 1.16 The forcing 〈P ,≤ 〉 is equivalent to Cohen(κ+
0 , η)× Cohen(κ+

1 , λ), for some

η < κ1 which depends on choice of a non-pure condition for PE(1).

However, as usual, more can be deduced:

Lemma 1.17 〈P ,≤,≤∗ 〉 is a Prikry type forcing notion.

Proof. The proof is similar to those of Lemma 1.9 (and in turn to those of Merimovich [7]).

Suppose otherwise.

Let p ∈ P be a pure condition and σ a statement of the forcing language which is undecided

by pure extensions of p. Then p is of the form 〈〈fp0, Ap0〉, 〈fp1, Ap1〉〉.
Proceed as in 3.12 of [6]. Construct by induction an increasing chain of elementary

submodels 〈N1
ξ | ξ < κ1〉 of Hχ, for χ large enough, and a sequence 〈f 1

ξ | ξ < κ1〉 of members

of P∗E(1), such that

1. p,P , σ ∈ N1
0 ,

2. N1
0 ⊇ κ1,

3. for every ξ < κ1,

(a) |N1
ξ | = κ1,

(b) κ1>N1
ξ ⊆ N1

ξ ,

(c) 〈f 1
ζ | ζ < ξ〉 ∈ N1

ξ ,

(d) f 1
ξ ∈

⋂
{D′ ∈ N1

ξ | D′ is a dense open subset of P∗E(1) above f 1p},

(e) f 1p ≤∗ f 1
0 ,

(f) f 1
ξ ≥∗ f 1

ζ , for every ζ < ξ.

Set N1 =
⋃
ξ<κ1

N1
ξ and f 1∗ =

⋃
{f 1

ξ | ξ < κ}. Let A ⊆ [dom(f 1∗)× κ1]<κ1 be such that

• A � dom(fp1) ⊆ Ap1,
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• A ∈ (E(1))(dom(f 1∗)).

Note that A ⊆ N1, since dom(f 1∗) ⊆ N1, and so, [dom(f 1∗)× κ1]<κ1 ⊆ N1.

Let ~ν ∈ A. Consider λ~ν1 := hλ(~ν(κ1)), i.e. the cardinal below κ1 that now corresponds

to λ. Suppose for simplicity that dom(fp0) ⊆ λ~ν1, otherwise just reflect the part above κ1

below as in Definition 1.15.

Consider PE(0)�λ~ν1
. Clearly, it is contained and belongs to N1.

Let 〈tξ | ξ < λ~ν1〉 be an enumeration of this forcing notion in N1.

Let f ∈ P∗E(1), f ≥∗ fp1.

Proceed by induction on ξ < λ~ν1 and define an ≤∗ −increasing sequence 〈fξ | ξ < λ~ν1〉 of

direct extensions of f such that, for every ξ < λ~ν1, either

(1) 〈tξ, (fξ)~ν〉 ‖ σ,
or

(2) for every g ≥∗ (fξ)~ν , 〈tξ, g〉 ∦ σ.

Let f̄ =
⋃
ξ<λ~ν1

fξ.

Then, for every t ∈ PE(0)�λ~ν1
either

(1) 〈t, f̄~ν〉 ‖ σ,
or

(2) for every g ≥∗ f̄~ν , 〈t, g〉 ∦ σ.

Consider now the following statement of the forcing language of PE(0)�λ~ν1
:

ϕ ≡ ∃t ∈ G∼(〈t, f̄~ν〉 ‖ σ).

By the Prikry condition of the forcing PE(0)�λ~ν1
(Lemma 1.9 ), there is t∗ ≥∗ 〈fp0, Ap0〉

which decides ϕ.

Claim 1 t∗  ϕ.

Proof. Suppose otherwise. Then t∗  ¬ϕ. This means that whenever t ∈ PE(0)�λ~ν1
and t ≥ t∗,

〈t, f̄~ν〉 ∦ σ.

Pick now some 〈t, g〉 ∈ PE(0),E(1), 〈t, g〉 ≥ 〈t∗, f̄~ν〉 which decides σ.

Then, for some ξ < λ~ν1, t = tξ, and then, 〈t, (fξ)~ν〉 ‖ σ. So, 〈t, f̄~ν〉 ‖ σ.
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Contradiction.

� of the claim.

Now use again the Prikry condition of the forcing PE(0)�λ~ν1
to decide the following state-

ment

ψ ≡ ∃t ∈ G∼(〈t, f̄~ν〉  σ).

Let t(~ν, f) ≥∗ t∗ be a condition which decides ψ.

Assume that t(~ν, f)  ψ. Then 〈t(~ν, f), f̄~ν〉  σ.
Define D~ν to be the set of all f ∈ P∗E(1), f ≥∗ fp1 such that

〈t(~ν, f), f~ν〉 ‖ σ.

The next claim follows now:

Claim 2 D~ν is a dense open subset of P∗E(1) above fp1.

D~ν is definable with parameters in N , hence D~ν ∈ N .

Then, f 1∗ ∈ D~ν , for every ~ν ∈ A.

So, 〈t(~ν, f 1∗), f 1∗
~ν 〉 ‖ σ, for every ~ν ∈ A. Shrink A, if necessary, to a set

A1∗ ∈ (E(1))(dom(f 1∗)), such that for any two ~ν, ~ν ′ ∈ A1∗ the decision is the same, say σ is

forced.

Consider now 〈f 1∗, A1∗〉. It is a pure condition in PE(1). Use the function ~ν 7→ t(~ν, f 1∗)

in order to get a pure condition in PE(0), just use the one which this function represents in

the ultrapower by (E(1))(dom(f 1∗)).

Let us explain how do we naturally combine the result into a condition in PE(0),E(1).

Let t(~ν, f 1∗) = 〈f 0~ν , A0~ν〉, for every ~ν ∈ A1∗. Consider f 0~ν . It is a set of at most κ0 many

pairs (α, β), where α < λ~ν1 < κ1 and β is either the empty sequence or an ordinal < κ0.

Shrinking A1∗ if necessary, we can assume that there are x and κ∗0 < κ+
0 such that for every

~ν, ~ν ′ ∈ A1∗ the following hold:

1. dom(f 0~ν) ∩ ~ν(κ1) = x,

2. dom(f 0~ν) \ ~ν(κ1) = {γ~ντ | τ < κ∗0} is an increasing enumeration,

3. for every α ∈ x, f 0~ν(α) = f 0~ν′(α),

4. for every τ < κ∗0, f 0~ν(γ~ντ ) = f 0~ν′(γ~ν
′
τ )
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Consider, for every τ < κ∗0 a function sτ on A1∗ defined by setting sτ (~ν) = γ~ντ .

Let

γτ = jE(1)(sτ )(〈(jE(1)(α), α) | α ∈ dom(f 1∗)〉).

Extend now f 1∗ to f 1∗∗ by adding all γτ , τ < κ∗0 to its domain and setting f 1∗∗(γτ ) to be

the empty sequence whenever γτ 6∈ dom(f 1∗).

Define A1∗∗ ∈ E(1)(dom(f 1∗∗) as follows.

Set ~ν ∈ A1∗∗ iff

1. ~ν � dom(f 1∗) ∈ A1∗,

2. dom(~ν) ⊇ {γτ | τ < κ∗0},

3. if γτ ∈ dom(f 1∗) and f 1∗(γτ ) is not the empty sequence, then ~ν(γτ ) > f 1∗(γτ ),

4. ~ν(γτ ) = sτ (~ν � dom(f 1∗)).

For every ~ν ∈ A1∗∗, set 〈f 0~ν , A0~ν〉 = 〈f 0~ν�dom(f1∗), A0~ν�dom(f1∗)〉.
Consider the function ~ν 7→ 〈f 0~ν , A0~ν〉, ~ν ∈ A1∗∗. Let 〈f 0∗, A0∗〉 be represented by it in the

ultrapower with E(1).

It follows that 〈〈f 0∗, A0∗〉, 〈f 1∗∗, A1∗∗〉〉 is a pure condition in PE(0),E(1) which extends p.

The next claim completes the argument:

Claim 3 〈〈f 0∗, A0∗〉, 〈f 1∗∗, A1∗∗〉〉  σ.

Proof. Suppose otherwise. Then there is 〈f, g〉 ≥ 〈〈f 0∗, A0∗〉, 〈f 1∗∗, A1∗∗〉〉 a non-pure in both

coordinates condition which forces ¬σ. There is ~ν ∈ A1∗∗ � dom(f 1∗) such that g ≥∗ f 1∗
~ν .

But then f ≥ t(~ν, f 1∗), and so, 〈f, f 1∗
~ν 〉  σ. Contradiction.

� of the claim.

�

1.3 ω−many extenders.

So, we deal now with a sequence 〈E(n) | n < ω〉 where each E(n) is a (κn, λ)−extender and

〈κn | n < ω〉 is an increasing sequence.

Let P∗E(i),PE(i), i < ω be as defined before.

Define first components of the main forcing P〈E(n)|n<ω〉.

Definition 1.18 The set of pure conditions P〈E(n)|n<ω〉 consists of all sequences

〈p(n) | n < ω〉 such that for every n < ω, the following hold:
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1. p(n) = 〈fn, An〉 ∈ PE(n),

2. dom(fn) \ κn+1 ⊆ dom(fn+1),

3. for every m ≤ n, for every α ∈ dom(fm) \ κn+1, if fn+1(α) is not the empty sequence,

then for every ~ν ∈ An+1, α ∈ dom(~ν) and ~ν(α) > fn+1(α).

The idea behind is as in the case of two extenders.

4. For every ~ν ∈ An+1 and m ≤ n, the measures E(m)(dom(fm)) and

E(m)((dom(fm)∩ κn+1)∪ {~ν(α) | α ∈ dom(fm) \ κn+1}) are basically the same in the

following sense:

X ∈ E(m)(dom(fm)) iff

Xref ∈ E(m)((dom(fm) ∩ κn+1) ∪ {~ν(α) | α ∈ dom(fm) \ κn+1}),

where

Xref = {(α, β) ∈ X | α < κn+1} ∪ {(~ν(α), β) | (α, β) ∈ X,α ≥ κn+1}.

Note that this property is true in the ultrapower by E(n + 1), so it holds on a set of

measure one, as well.

Turn now to non-pure extensions. As usual, in Magidor type of iterations, non-pure

extensions are allowed only at finitely many coordinates.

Start with a non-pure extension at a single coordinate and then proceed by induction.

We assume that for each m < ω there is a function hmλ : κm → κm

such that jE(m)(h
m
λ )(κm) = λ.

Definition 1.19 Let m < ω. Define the set P{m}〈E(n)|n<ω〉 of conditions with only non-pure

part over the coordinate m. P(m)
〈E(n)|n<ω〉 consists of all sequences 〈p(n) | n < ω〉 such that for

every n < ω, the following hold:

1. 〈p(n) | n < ω, n 6= m〉 is a pure condition in P〈E(n)|n<ω,n6=m〉,

2. p(m) = fm ∈ P∗E(m),

3. dom(fm) \ κn ⊆ dom(fn), for every n,m < n < ω,

4. for every n,m < n < ω, for every α ∈ dom(fm)\κn, if fn(α) is not the empty sequence,

then for every ~ν ∈ An, α ∈ dom(~ν) and ~ν(α) > fn(α),
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5. for every n,m < n < ω, for every γ ∈ dom(fm)∩κn,~ν ∈ An and α ∈ dom(~ν), ~ν(α) > γ.

6. If m > 0, then the sequence 〈p(n) | n < m〉 will be a condition in the pure part of

P〈E(n)�hλ(fm(κm))|n<m〉. The meaning is that if the value of the Prikry sequence for the

normal measure of E(m) is decided, then we cut all extenders E(n), n < m to the

reflection of λ below κm, i.e. to hmλ (fm(κm)).

Let m1 < ... < mk < ω, 1 ≤ k < ω and suppose that P{m1,...,mk}
〈E(n)|n<ω〉 the set of conditions

with non-pure extensions over coordinates (m1, ...,mk) only, is defined.

Let m < ω,m 6∈ {m1, ...,mk}.
Define non-pure extensions at the set of coordinates {m1, ...,mk} ∪ {m}.

Definition 1.20 Let m < ω. Define the set P{m1,...,mk}∪{m}
〈E(n)|n<ω〉 of conditions with only non-

pure part over the coordinate m1, ...,mk and m. P{m1,...,mk}∪{m}
〈E(n)|n<ω〉 consists of all sequences

〈p(n) | n < ω〉 such that for every n < ω, the following hold:

1. 〈p(n) | n < ω, n 6= m〉 is a condition in P{m1,...,mk}
〈E(n)|n<ω,n6=m〉,

2. p(m) = fm ∈ P∗E(m).

3. If for every i, 1 ≤ i ≤ k, mi < m, then following hold:

(a) dom(fm) \ κn ⊆ dom(fn), for every n,m < n < ω,

(b) for every n,m < n < ω, for every α ∈ dom(fm) \ κn, if fn(α) is not the empty

sequence, then for every ~ν ∈ An, α ∈ dom(~ν) and ~ν(α) > fn(α),

(c) for every n,m < n < ω, for every γ ∈ dom(fm) ∩ κn,~ν ∈ An and α ∈ dom(~ν),

~ν(α) > γ.

(d) If m > 0, then the sequence 〈p(n) | n < m〉 will be a condition

in P{m1,...,mk}
〈E(n)�hλ(fm(κm))|n<m〉.

The meaning is that if the value of the Prikry sequence for the normal measure

of E(m) is decided, then we cut all extenders E(n), n < m to the reflection of λ

below κm, i.e. to hmλ (fm(κm)).

4. If there is i, 1 ≤ i ≤ k, mi > m, then let i∗ be the least such i. We require the following:

(a) 〈p(n) | n < mi∗〉 ∈ P
{m1,...,mi∗−1,m}
〈E(n)�hλ(fmi∗ (κmi∗ ))|n<mi∗ 〉

.
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Finally set

P〈E(n)|n<ω〉 =
⋃
{P{m1,...,mk}
〈E(n)|n<ω〉 | k < ω,m1 < ... < mk < ω}.

Define the direct extension order ≤∗ over P〈E(n)|n<ω〉 to be the union of such order over

every P{m1,...,mk}
〈E(n)|n<ω〉, for every k < ω,m1 < ... < mk < ω.

Turn now to the definition of the forcing order ≤ over P〈E(n)|n<ω〉.

Let m < ω,m 6∈ {m1, ...,mk}. Define a one element extension at coordinate m of a

condition in P{m1,...,mk}
〈E(n)|n<ω〉.

Definition 1.21 Let p ∈ P{m1,...,mk}∪{m}
〈E(n)|n<ω〉 and q ∈ P{m1,...,mk}

〈E(n)|n<ω〉. Set p ≥ q iff the following

hold:

1. Suppose that m = 0.

Then p(0) = f 0 ∈ P∗E(0) and q(0) = 〈g0, B0〉 is a pure condition in PE(0).

Set p ≥ q iff f 0 ≥ 〈g0, B0〉 in PE(0) and 〈p(n) | 0 < n < ω〉 ≥∗ 〈q(n) | 0 < n < ω〉 in

P〈E(n)|0<n<ω〉.

2. Suppose that m > 0.

Then p(m) = fm ∈ P∗E(m) and q(m) = 〈gm, Bm〉 is a pure condition in PE(m).

Set p ≥ q iff

(a) fm ≥ 〈gm, Bm〉 in PE(m) and 〈p(n) | m < n < ω〉 ≥∗ 〈q(n) | m < n < ω〉 in

P〈E(n)|m<n<ω〉.

And

(b) 〈p(n) | n < m〉 ≥∗ 〈q(n) | n < m〉ref in P〈E(n)|n<m〉, where 〈q(n) | n < m〉ref - the

reflection of 〈q(n) | n < m〉 below κm is defined as follows, where q(n) = 〈gn, Bn〉,
if n 6∈ {m1, ...,mk} and q(n) = 〈gn〉 otherwise.

i. Suppose first that n ∈ {m1, ...,mk}.
Then

A. dom((gn)ref ) = (dom(gn) ∩ κm) ∪ {fm(α) | α ∈ dom(gn) \ κm},
B. for every α ∈ dom(gn)∩κm = dom(gn)∩dom((gn)ref ), (gn)ref (α) = gn(α),

C. for every α ∈ dom(gn) \ κm, (gn)ref (fm(α)) = gn(α).

It is crucial here that fm � (dom(gn) \ κm) is one to one and the values

there are above rng(gn) ∩ κm.

This follows by conditions (4),(5) of Definitions 1.10,1.11.
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ii. Suppose now that n 6∈ {m1, ...,mk}.
Then

A. dom((gn)ref ) = (dom(gn) ∩ κm) ∪ {fm(α) | α ∈ dom(gn) \ κm},
B. for every α ∈ dom(gn)∩κm = dom(gn)∩dom((gn)ref ), (gn)ref (α) = gn(α),

C. for every α ∈ dom(gn) \ κm, (gn)ref (fm(α)) = gn(α).

Again, it is crucial here that fm � (dom(gn) \ κm) is one to one and the

values there are above rng(gn)∩κm, and this follows by conditions (3),(4)

of Definition 1.18 and (4),(5) of Definition 1.19.

One more crucial observation here is that the measure (E(n))(dom(gn),

to which Bn belongs, reflects to basically the same measure,

It follows by (4) of Definition 1.18.

D. An � dom((gn)ref ) ⊆ {(fm(α), β) | (α, β) ∈ Bn}.

Denote further in this subsection P〈E(n)|n<ω〉 by just P .

The next lemma follows from the definitions:

Lemma 1.22 For every m < ω, the forcing 〈P〈E(n)|n<m〉,≤ 〉 is equivalent to product of

Cohen forcings Cohen(κ+
n , ηn)’s, for some ηn < κn+1’s which depend on choice of a non-pure

condition for PE(n+1).

Lemma 1.23 For every m < ω, the forcing 〈P〈E(n)|m≤n<ω〉,≤∗ 〉 is κm−closed.

Lemma 1.24 The forcing 〈P ,≤ 〉 satisfies κ++
ω −c.c.

Proof. Use the standard ∆−system argument.

�

Lemma 1.25 〈P ,≤,≤∗ 〉 is a Prikry type forcing notion.

Proof. The proof is similar to those of Lemmas 1.9, 1.17 (and in turn to those of Merimovich

[7]).

Assume that for every m < ω, 〈P〈E(n)|n<m〉,≤,≤∗ 〉 is a Prikry type forcing notion.

Suppose that 〈P ,≤,≤∗ 〉 does not have the Prikry property.

Let p ∈ P be a pure condition and σ a statement of the forcing language which is undecided

by pure extensions of p. Then p is of the form 〈〈fpn, Apn〉 | n < ω〉.
Proceed by induction on m < ω and define an ≤∗ −increasing sequence 〈pm | m < ω〉 of

direct extensions of p.

16



Assume that for every n < m, pn is defined. Define pm. If m = 0, then let p−1 be p.

At stage m we deal with the coordinate m of the condition.

Construct by induction an increasing chain of elementary submodels 〈Nm
ξ | ξ < κm〉 of

Hχ, for χ large enough, and a sequence 〈fξ | ξ < κ〉 of members of P∗E(m), such that

1. p, pm−1,P , σ ∈ Nm
0 ,

2. Nm
0 ⊇ κm,

3. for every ξ < κm,

(a) |Nm
ξ | = κm,

(b) κm>Nm
ξ ⊆ Nm

ξ ,

(c) 〈fmζ | ζ < ξ〉 ∈ Nm
ξ ,

(d) fmξ ∈
⋂
{D′ ∈ Nm

ξ | D′ is a dense open subset of P∗E(m) above fmp},

(e) fmp ≤∗ fm0 ,

(f) fmξ ≥∗ fmζ , for every ζ < ξ.

Set Nm =
⋃
ξ<κ1

Nm
ξ and fm∗ =

⋃
{fmξ | ξ < κ}. Let A ⊆ [dom(fm∗) × κm]<κm be such

that

• A � dom(fpm) ⊆ Apm,

• A ∈ (E(m))(dom(fm∗)).

Note that A ⊆ Nm, since dom(fm∗) ⊆ Nm, and so, [dom(fm∗)× κm]<κm ⊆ Nm.

Let ~ν ∈ A. Consider λ~νm := hmλ (~ν(κm)), i.e. the cardinal below κm that now corresponds

to λ. Suppose for simplicity that dom(fpn) ⊆ λ~νm, for every n < m, otherwise just reflect

the part above κm below as in Definition 1.21.

Consider P〈E(n)�λ~νm|n<m〉. Clearly, it is contained and belongs to Nm.

Let 〈tξ | ξ < λ~νm〉 be an enumeration of this forcing notion in Nm.

Let f ∈ P∗E(m), f ≥∗ fpm.

Proceed by induction on ξ < λ~νm. Define an ≤∗ −increasing sequence 〈fξ | ξ < λ~νm〉 of direct

extensions of f and an ≤∗ −increasing sequence 〈p>mξ | ξ < λ~νm〉 of direct extensions of

〈pm(n) | m < n < ω〉
such that, for every ξ < λ~νm, either
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(1) 〈tξ, (fξ)~ν , p>mξ 〉 ‖ σ,
or

(2) for every q ≥∗ 〈(fξ)~ν , p>mξ 〉, 〈tξ, q〉 ∦ σ.

Let f̄ =
⋃
ξ<λ~ν1

fξ and p̄>m =
⋃
ξ<λ~ν1

p>mξ .

Then, for every t ∈ PE(0)�λ~ν1
either

(1) 〈t, f̄~ν , p̄>m〉 ‖ σ,
or

(2) for every q ≥∗ 〈f̄~ν , p̄>m〉, 〈t, q〉 ∦ σ.

Consider now the following statement of the forcing language of P〈E(n)�λ~νm|n<m〉:

ϕ ≡ ∃t ∈ G∼(〈t, f̄~ν , p̄>m〉 ‖ σ).

By the Prikry condition of the forcing P〈E(n)�λ~νm|n<m〉, there is t∗ ≥∗ 〈pm−1(n) | n < m〉
which decides ϕ.

If t∗  ¬ϕ, then set t(~ν, f) = t∗.

If t∗  ϕ. Use again the Prikry condition of the forcing P〈E(n)�λ~νm|n<m〉 to decide the following

statement

ψ ≡ ∃t ∈ G∼(〈t, f̄~ν , p̄>m〉  σ).

Let t(~ν, f) ≥∗ t∗ be a condition which decides ψ.

Claim 4 Let t ≥ t(~ν, f) in P〈E(n)�λ~νm|n<m〉, 〈g, q〉 ≥
∗ 〈f̄~ν , p̄>m〉 in P〈E(n)|m≤n<ω〉.

Suppose that 〈t, g, q〉  σ (or 〈t, g, q〉  ¬σ),

then already 〈t(~ν, f), f̄~ν , p̄
>m〉  σ (or 〈t(~ν, f̄~ν , p̄>m〉  ¬σ).

Proof. Let t ≥ t(~ν, f) in P〈E(n)�λ~νm|n<m〉, 〈g, q〉 ≥
∗ f̄~ν , p̄

>m〉 in P〈E(n)|m≤n<ω〉.

Suppose that 〈t, g, q〉  σ.

Then, for some ξ < λ~ν1, t = tξ, and then, 〈t, (fξ)~ν , p>mξ 〉 ‖ σ. So, 〈t, f̄~ν , p̄>m〉 ‖ σ.
Then t∗  ϕ. Hence, 〈t(~ν, f), f̄~ν , p̄

>m〉  σ.

� of the claim.

Define D~ν to be the set of all f ∈ P∗E(m), f ≥∗ fpm−1m so that there is p>mf ∈ P〈E(n)|m<n<ω〉,

p>mf ≥∗ p>mm−1, such that either
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(1) 〈t(~ν, f), f~ν , p
>m
f 〉 ‖ σ

or

(2) for every t ≥ t(~ν, f) in P〈E(n)�λ~νm|n<m〉, for every 〈g, q〉 ≥∗ 〈f~ν , p>mf 〉 in P〈E(n)|m≤n<ω〉,

〈t, g, q〉 ∦ σ.

The next claim follows now from the previous one:

Claim 5 D~ν is a dense open subset of P∗E(m) above fpm−1m.

D~ν is definable with parameters in Nm, hence D~ν ∈ Nm.

Then, fm∗ ∈ D~ν , for every ~ν ∈ A.

So, for every ~ν ∈ A we have either

(3) 〈t(~ν, fm∗), fm∗~ν , p>mfm∗〉 ‖ σ
or

(4) for every t ≥ t(~ν, fm∗) in P〈E(n)�λ~νm|n<m〉, for every 〈g, q〉 ≥∗ 〈fm∗~ν , p>mfm∗〉 in P〈E(n)|m≤n<ω〉,

〈t, g, q〉 ∦ σ.

Shrink A, if necessary, to a set Am∗ ∈ (E(m))(dom(fm∗)), such that for any two ~ν, ~ν ′ ∈
Am∗ the decision is the same.

Consider now 〈fm∗, Am∗〉 it is a pure condition in PE(m). Use the function ~ν 7→ t(~ν, fm∗)

in order to get a pure condition in P〈E(n)|n<m〉, just use the one this function represents in

the ultrapower by (E(m))(dom(fm∗)). Denote it by 〈〈fn∗, An∗〉 | n < m〉.
Let us explain how do we naturally combine the result into a condition in P〈E(n)|n<ω〉.

Let t(~ν, fm∗) = 〈〈fn~ν , An~ν〉 | n < m〉, for every ~ν ∈ Am∗. Consider fn~ν , n < m. It is a set of

at most κn many pairs (α, β), where α < λ~νm < κm and β is either the empty sequence or an

ordinal < κn.

Shrinking Am∗ if necessary, we can assume that there are 〈xn | n < m〉 and κ∗n < κ+
n , n < m

such that for every ~ν, ~ν ′ ∈ Am∗, for every n < m, the following hold:

1. dom(fn~ν) ∩ ~ν(κm) = xn,

2. dom(fn~ν) \ ~ν(κm) = {γ~ντn | τ < κ∗n} is an increasing enumeration,

3. for every α ∈ xn, fn~ν(α) = fn~ν
′
(α),

4. for every τ < κ∗n, fn~ν(γ~ντn) = fn~ν
′
(γ~ν

′
τn)
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Consider, for every n < m and τ < κ∗n a function sτn on Am∗ defined by setting sτn(~ν) =

γ~ντn.

Let

γτn = jE(m)(sτn)(〈(jE(m)(α), α) | α ∈ dom(fm∗)〉).

Extend now fm∗ to fm∗∗ by adding all γτn, τ < κ∗n, n < m to its domain and setting

fm∗∗(γτn) to be the empty sequence whenever γτn 6∈ dom(fm∗).

Define Am∗∗ ∈ E(m)(dom(fm∗∗) as follows.

Set ~ν ∈ Am∗∗ iff

1. ~ν � dom(fm∗) ∈ Am∗,

2. dom(~ν) ⊇ {γτn | τ < κ∗n, n < m},

3. if γτn ∈ dom(fm∗) and fm∗(γτn) is not the empty sequence, then ~ν(γτn) > fm∗(γτn),

for every n < m,

4. ~ν(γτn) = sτn(~ν � dom(fm∗)), for every n < m.

For every ~ν ∈ Am∗∗, n < m, set 〈fn~ν , An~ν〉 = 〈fn~ν�dom(fm∗), An~ν�dom(fm∗)〉.
Consider the function ~ν 7→ 〈〈fn~ν , An~ν〉 | n < m〉, ~ν ∈ Am∗∗. Let 〈〈fn∗, An∗〉 | n < m〉 be

represented by it in the ultrapower with E(m).

It follows that 〈〈〈fn∗, An∗〉 | n < m〉, 〈fm∗∗, Am∗∗〉〉 is a pure condition in P〈E(n)|n≤m〉

which extends pm−1 � P〈E(n)|n≤m〉.

Extend purely p>mfm∗ in the obvious fashion to a condition p>mfm∗∗ in P〈E(n)|m<n<ω〉 such that

〈〈〈fn∗, An∗〉 | n < m〉, 〈fm∗∗, Am∗∗〉, p>mfm∗∗〉 is a pure condition in P〈E(n)|n<ω〉. Then it extends

pm−1.

Set pm to be 〈〈〈fn∗, An∗〉 | n < m〉, 〈fm∗∗, Am∗∗〉, p>mfm∗∗〉.
This completes the recursive construction of 〈pm | m < ω〉. Let p∗ ≥ pm, for every m < ω.

The next claim completes the argument:

Claim 6 p∗ ‖ σ.

Proof. Suppose otherwise. Pick then q ≥ p∗ to be a condition which decides σ and such that

its last coordinate at which a non-direct extension was made is as small as possible.

Let q  σ and this coordinate is some m < ω.

Then there is ~ν ∈ Ap∗(m) such that q(m) ≥∗ fp∗(m)~ν in P∗E(m). In addition, q>m ≥∗ p>m∗ in

P〈E(n)|m<n<ω〉, by the choice of m.
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But, then the condition (4) above cannot hold. Hence (3) is true, which means, that

〈t(~ν, fm∗), fm∗~ν , p>mfm∗〉  σ.

Then the same holds for every ~ν ′ ∈ Ap∗(m). So, already p∗  σ.

Contradiction.

� of the claim.

�

It follows now that the forcing 〈P ,≤ 〉 preserves all the cardinals but κ+
ω . Using the

arguments of the previous lemma it is possible to show that κ+
ω is preserved as well.

Let G be a generic subset of 〈P ,≤ 〉.

Lemma 1.26 κω remains a strong limit cardinal in V [G].

Proof. Given p ∈ P and m < ω. Suppose that p(m) is non-pure. Then p(m)(κm) is

defined, and hence also the reflection hmλ (p(m)(κm)) of λ below κm. By the definition of the

forcing, then the part P〈E(n)|n<m〉 above p will act as P〈E(n)�hmλ (p(m)(κm))|n<m〉. In particular,

2κn ≤ hmλ (p(m)(κm)) < κm. The upper part of the forcing, i.e. P〈E(n)|m≤n<ω〉, does not add

new bounded subsets to κm.

So we are done.

�

Lemma 1.27 (κ+
ω )V remains a cardinal in V [G].

Let us state first the following:

Lemma 1.28 Let p ∈ P and ζ
∼

be a 〈P ,≤ 〉−name of an ordinal or just

p 〈P,≤〉 ζ∼
is an ordinal.

Then there are p∗ ≥∗ p and n1 < ... < nk, for some k < ω, such that

1. for every i, 1 ≤ i ≤ k, p∗(ni) = 〈fp∗ni , A
p∗
ni
〉,

2. for every ~ν1 ∈ Ap
∗
n1
, ..., ~νk ∈ Ap

∗
nk

,

p∗_~ν1...
_~νk decides ζ

∼
.

The proof of this lemma repeats the proof of the Prikry condition of the forcing.

Proof of 1.27. Suppose otherwise. Then there is µ < κω such that, in V [G], cof((κ+
ω )V ) = µ.

Back in V , let 〈 ζ
∼τ
| τ < µ〉 be a name of a witnessing sequence.
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Pick n̄ < ω with κn̄ > µ. Let p ∈ P be such that p(n̄) ∈ P∗E(n̄, i.e. its n̄−th coordinate

is non-pure. Then above p the part PE(n)|n<n̄〉 reflects down to P〈E(n)�hλn̄(p(n̄)(κn̄)|n<n̄〉, and so

has cardinality below κn̄.

Construct a sequence 〈pτ | τ < µ〉 of ≤∗ −extensions of p such that, for every τ < µ,

1. pτ satisfies the conclusion of Lemma 1.28 for ζ
∼τ

,

2. 〈pτ (n) | n̄ ≤ n < ω〉 ≤∗ 〈pτ ′(n) | n̄ ≤ n < ω〉 in the forcing P〈E(n)|n̄≤n<ω〉, for every

τ < τ ′ < µ.

Let s ≥∗ 〈pτ (n) | n̄ ≤ n < ω〉 in the forcing P〈E(n)|n̄≤n<ω〉, for every τ < µ. Set

r = p � n̄_s. Then, for every τ < µ, there is ξτ < κ+
ω such that

r 〈P,≤〉 ζ∼τ
< ξτ ,

since by the choice of pτ , the number of possibilities for ζ
∼τ

has cardinality < κω.

Set ξ =
⋃
τ<µ ξτ < κ+

ω .

r 〈P,≤〉 〈 ζ∼τ
| τ < µ〉 is bounded by ξ.

Contradiction.

�

Given p ∈ P . Denote by np(p) the set of all coordinates n of p such that p(n) ∈ P∗E(n),

i.e. a non-pure extension was made at the coordinate n.

Let β ∈ [κω, λ) we define in V [G] a function tβ : ω → κω as follows.

For every n < ω, find p ∈ G such that n ∈np(p) and if n1 < ... < nk is the increasing

enumeration of np(p) \ n (i.e. n = n1), then the following hold:

1. β ∈ dom(p(nk)).

Set βk = β.

2. For every i, 1 ≤ i ≤ k − 1, βi ∈ dom(p(ni)),

where βi = p(ni+1)(βi+1).

Set tβ(n) = p(n)(β1).

Lemma 1.29 In V [G], if β, γ ∈ [κω, λ) and β < γ, then there is n∗ < ω such that for every

n, n∗ ≤ n < ω, tβ(n) < tγ(n).
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Proof. Work in V . Let p ∈ P be any condition and β, γ ∈ [κω, λ), β < γ.

Let n∗ be a coordinate above np(p). Then p(n) = 〈fpn, Apn〉, for every n, n∗ ≤ n < ω.

Extend p to p∗ by adding β, γ to all dom(fpn) with n∗ ≤ n < ω.

Now, by the definition of the order on P , for every n, n∗ ≤ n < ω and every q ≥ p∗ such

that q defines tβ(n) and tγ(n), we will have tβ(n) < tγ(n).

So,

p∗  (∀n)(n∗ ≤ n < ω → t∼β(n) < t∼γ(n)).

�

It is possible to say a bit more. Namely, let in V [G], for every n < ω, λn be the reflection

of λ below κn, i.e. for some p ∈ G with p(n) = fpn, λn = hnλ(fpn(κn)). Then the following

holds:

Lemma 1.30 The sequence 〈tβ | β ∈ [κω, λ)〉 is a scale in 〈
∏

n<ω λn, <Jbd 〉.
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2 Arbitrary cofinality.

Let η be any ordinal. We generalize the construction of the previous section to sequences

of extenders of the length η. The generalization is straightforward. Let us repeat just the

main points.

So, we deal now with a sequence 〈E(α) | α < η〉, where each E(α) is a (κα, λ)−extender

and 〈κα | n < ω〉 is an increasing sequence with η < κ0.

Let P∗E(i),PE(i), i < η be as defined before.

Define components of the main forcing P〈E(α)|α<η〉.

Definition 2.1 The set of pure conditions P〈E(α)|α<η〉 consists of all sequences

〈p(α) | α < η〉 such that for every α < η, the following hold:

1. p(α) = 〈fα, Aα〉 ∈ PE(α),

2. dom(fα) \ κα+1 ⊆ dom(fα+1),

3. for every β ≤ α, for every ξ ∈ dom(fβ) \ κα+1, if fα+1(ξ) is not the empty sequence,

then for every ~ν ∈ Aα+1, ξ ∈ dom(~ν) and ~ν(ξ) > fα+1(ξ).

The idea behind is as in the case of two extenders.

4. For every ~ν ∈ Aα+1 and β ≤ α, the measures E(β)(dom(fβ)) and

E(β)((dom(fβ) ∩ κα+1) ∪ {~ν(ξ) | ξ ∈ dom(fβ) \ κα+1}) are basically the same in the

following sense:

X ∈ E(β)(dom(fβ)) iff

Xref ∈ E(β)((dom(fβ) ∩ κα+1) ∪ {~ν(ξ) | ξ ∈ dom(fβ) \ κα+1}),

where

Xref = {(ξ, β) ∈ X | ξ < κα+1} ∪ {(~ν(ξ), β) | (ξ, β) ∈ X, ξ ≥ κα+1}.

Note that this property is true in the ultrapower by E(α + 1), so it holds on a set of

measure one, as well.

Turn now to non-pure extensions. As usual, in Magidor type of iterations, non-pure

extensions are allowed only at finitely many coordinates.

Start with a non-pure extension at a single coordinate and then proceed by induction.

We assume that for each α < η there is a function hαλ : κα → κα

such that jE(α)(h
α
λ)(κα) = λ.
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Definition 2.2 Let β < η. Define the set P{β}〈E(α)|α<η〉 of conditions with only non-pure part

over the coordinate β. P(β)
〈E(α)|α<η〉 consists of all sequences 〈p(α) | α < η〉 such that for every

α < η, the following hold:

1. 〈p(α) | α < η, α 6= β〉 is a pure condition in P〈E(α)|α<η,α6=β〉,

2. p(β) = fβ ∈ P∗E(β),

3. dom(fβ) \ κα ⊆ dom(fα), for every α, β < α < η,

4. for every α, β < α < η, for every ξ ∈ dom(fβ) \κα, if fα(ξ) is not the empty sequence,

then for every ~ν ∈ Aα, ξ ∈ dom(~ν) and ~ν(ξ) > fα(ξ),

5. for every α, β < α < η, for every γ ∈ dom(fβ) ∩ κα,~ν ∈ Aα and ξ ∈ dom(~ν), ~ν(ξ) > γ.

6. If β > 0, then the sequence 〈p(α) | α < β〉 will be a condition in the pure part of

P〈E(α)�hλ(fβ(κβ))|α<β〉. The meaning is that if the value of the Prikry sequence for the

normal measure of E(β) is decided, then we cut all extenders E(α), α < β to the

reflection of λ below κβ, i.e. to hβλ(fβ(κβ)).

Let β1 < ... < βk < η, 1 ≤ k < ω and suppose that P{β1,...,βk}
〈E(α)|α<η〉 the set of conditions with

non-pure extensions over coordinates (β1, ..., βk) only, is defined.

Let β < η, β 6∈ {β1, ..., βk}.
Define non-pure extensions at the set of coordinates {β1, ..., βk} ∪ {β}.

Definition 2.3 Let β < η. Define the set P{β1,...,βk}∪{β}
〈E(α)|α<η〉 of conditions with only non-pure

part over the coordinate β1, ..., βk and β. P{β1,...,βk}∪{β}
〈E(α)|α<η〉 consists of all sequences 〈p(α) | α < η〉

such that for every α < η, the following hold:

1. 〈p(α) | α < η, α 6= β〉 is a condition in P{β1,...,βk}
〈E(α)|α<η,α6=β〉,

2. p(β) = fβ ∈ P∗E(β).

3. If for every i, 1 ≤ i ≤ k, βi < β, then following hold:

(a) dom(fβ) \ κα ⊆ dom(fα), for every α, β < α < η,

(b) for every α, β < α < η, for every ξ ∈ dom(fβ) \ κα, if fα(ξ) is not the empty

sequence, then for every ~ν ∈ Aα, ξ ∈ dom(~ν) and ~ν(ξ) > fα(ξ),
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(c) for every α, β < α < η, for every γ ∈ dom(fβ) ∩ κα,~ν ∈ Aα and ξ ∈ dom(~ν),

~ν(ξ) > γ.

(d) If β > 0, then the sequence 〈p(α) | α < β〉 will be a condition

in P{β1,...,βk}
〈E(α)�hλ(fβ(κβ))|α<β〉.

The meaning is that if the value of the Prikry sequence for the normal measure

of E(β) is decided, then we cut all extenders E(α), α < β to the reflection of λ

below κβ, i.e. to hβλ(fβ(κβ)).

4. If there is i, 1 ≤ i ≤ k, βi > β, then let i∗ be the least such i. We require the following:

(a) 〈p(α) | α < βi∗〉 ∈ P
{β1,...,βi∗−1,β}
〈E(α)�hλ(fβi∗ (κβi∗ ))|α<βi∗ 〉

.

Finally set

P〈E(α)|α<η〉 =
⋃
{P{β1,...,βk}
〈E(α)|α<η〉 | k < ω, β1 < ... < βk < ω}.

Define the direct extension order ≤∗ over P〈E(α)|α<η〉 to be the union of such order over

every P{β1,...,βk}
〈E(α)|α<η〉, for every k < ω, β1 < ... < βk < η.

Turn now to the definition of the forcing order ≤ over P〈E(α)|α<η〉.

Let β < η, β 6∈ {β1, ..., βk}. Define a one element extension at coordinate β of a condition

in P{β1,...,βk}
〈E(α)|α<η〉.

Definition 2.4 Let p ∈ P{β1,...,βk}∪{β}
〈E(α)|α<η〉 and q ∈ P{β1,...,βk}

〈E(α)|α<η〉. Set p ≥ q iff the following hold:

1. Suppose that β = 0.

Then p(0) = f 0 ∈ P∗E(0) and q(0) = 〈g0, B0〉 is a pure condition in PE(0).

Set p ≥ q iff f 0 ≥ 〈g0, B0〉 in PE(0) and 〈p(α) | 0 < α < η〉 ≥∗ 〈q(α) | 0 < α < η〉 in

P〈E(α)|0<α<η〉.

2. Suppose that β > 0.

Then p(β) = fβ ∈ P∗E(β) and q(β) = 〈gβ, Bβ〉 is a pure condition in PE(β).

Set p ≥ q iff

(a) fβ ≥ 〈gβ, Bβ〉 in PE(β) and 〈p(α) | β < α < η〉 ≥∗ 〈q(α) | β < α < η〉 in

P〈E(α)|β<α<η〉.

And
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(b) 〈p(α) | α < β〉 ≥∗ 〈q(α) | α < β〉ref in P〈E(α)|α<β〉, where 〈q(α) | α < β〉ref - the

reflection of 〈q(α) | α < β〉 below κβ is defined as follows, where q(α) = 〈gα, Bα〉,
if β 6∈ {α1, ..., αk} and q(α) = 〈gα〉 otherwise.

i. Suppose first that α ∈ {β1, ..., βk}.
Then

A. dom((gα)ref ) = (dom(gα) ∩ κβ) ∪ {fβ(ξ) | ξ ∈ dom(gα) \ κβ},
B. for every ξ ∈ dom(gα)∩κβ = dom(gα)∩dom((gα)ref ), (gα)ref (ξ) = gn(ξ),

C. for every ξ ∈ dom(gα) \ κβ, (gα)ref (fβ(ξ)) = gα(ξ).

It is crucial here that fm � (dom(gn) \ κm) is one to one and the values

there are above rng(gn) ∩ κm.

This follows by conditions (4),(5) of Definitions 1.10,1.11.

ii. Suppose now that α 6∈ {β1, ..., βk}.
Then

A. dom((gα)ref ) = (dom(gα) ∩ κβ) ∪ {fβ(ξ) | ξ ∈ dom(gα) \ κβ},
B. for every ξ ∈ dom(gα)∩κβ = dom(gα)∩dom((gα)ref ), (gα)ref (ξ) = gα(ξ),

C. for every ξ ∈ dom(gα) \ κβ, (gα)ref (fβ(ξ)) = gα(ξ).

Again, it is crucial here that fβ � (dom(gα) \ κβ) is one to one and the

values there are above rng(gα)∩κβ, and this follows by conditions (3),(4)

of Definition 2.1 and (4),(5) of Definition 2.2.

One more crucial observation here is that the measure (E(α))(dom(gα),

to which Bα belongs, reflects to basically the same measure,

It follows by (4) of Definition 2.1.

D. Aα � dom((gα)ref ) ⊆ {(fβ(ξ, ζ) | (ξ, ζ) ∈ Bα}.

Denote further in this subsection P〈E(α)|α<η〉 by just P .

The next lemma follows from the definitions:

Lemma 2.5 For every β < η and p ∈ P with p(β) ∈ P∗E(β) (i.e. non-pure on the coordinate

β), the part 〈P〈E(α)|α<β〉,≤ 〉 of P above p has cardinality fλβ (p(β)(κβ) < κβ.

Lemma 2.6 For every β < η, the forcing 〈P〈E(α)|β≤α<η〉,≤∗ 〉 is κβ−closed.

Lemma 2.7 The forcing 〈P ,≤ 〉 satisfies κ++
η −c.c.

Lemma 2.8 〈P ,≤,≤∗ 〉 is a Prikry type forcing notion.
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Proof. The proof proceeds by induction on the length of the sequence of extenders,i.e. on η.

The argument repeats those of Lemma 1.25.

�

Denote for every limit α, 0 < α ≤ η,
⋃
γ<α κγ by κ̄α.

It follows, by the previous lemmas, that the forcing 〈P ,≤ 〉 preserves all the cardinals,

but κ̄+
α , 0 < α ≤ η a limit ordinal. Using the arguments of the previous lemma it is possible

to show that all such cardinals are preserved as well.

Let G be a generic subset of 〈P ,≤ 〉.

Lemma 2.9 For every limit ordinal µ, 0 < µ ≤ η, κ̄µ remains a strong limit cardinal in

V [G].

Proof. Given p ∈ P and β < η. Suppose that p(β) is non-pure. Then p(β)(κβ) is defined,

and hence also the reflection hβλ(p(β)(κβ)) of λ below κβ. By the definition of the forcing,

then the part P〈E(α)|α<β〉 above p will act as P〈E(α)�hβλ(p(β)(κβ))|α<β〉. In particular, 2κα ≤
hβλ(p(β)(κβ)) < κβ. The upper part of the forcing, i.e. P〈E(α)|β≤α<η〉, does not add new

bounded subsets to κβ.

So we are done.

�

As in the case η = ω, the next lemma is just a variation of the Prikry condition of the

forcing.

Lemma 2.10 Let p ∈ P and ζ
∼

be a 〈P ,≤ 〉−name of an ordinal or just

p 〈P,≤〉 ζ∼
is an ordinal.

Then there are p∗ ≥∗ p and α1 < ... < αk < η, for some k < ω, such that

1. for every i, 1 ≤ i ≤ k, p∗(αi) = 〈fp∗αi , A
p∗
αi
〉,

2. for every ~ν1 ∈ Ap
∗
α1
, ..., ~νk ∈ Ap

∗
αk

,

p∗_~ν1...
_~νk decides ζ

∼
.

Lemma 2.11 For every limit ordinal µ, 0 < µ ≤ η, (κ̄+
µ )V remains a cardinal in V [G].

The proof of this lemma repeats those of Lemma 1.27.

Given p ∈ P . Denote by np(p) the set of all coordinates α of p such that p(α) ∈ P∗E(α),

i.e. a non-pure extension was made at the coordinate α.

Assume that η is a limit ordinal.
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Let τ ∈ [κ̄η, λ) we define in V [G] a function tτ : η → κ̄η as follows.

For every α < η, find p ∈ G such that α ∈np(p) and if α1 < ... < αk is the increasing

enumeration of np(p) \ α (i.e. α = α1), then the following hold:

1. τ ∈ dom(p(αk)).

Set τk = τ .

2. For every i, 1 ≤ i ≤ k − 1, τi ∈ dom(p(αi)),

where τi = p(αi+1)(τi+1).

Set tτ (α) = p(α)(τ1).

Lemma 2.12 In V [G], if τ, ρ ∈ [κ̄η, λ) and τ < ρ, then there is α∗ < η such that for every

α, α∗ ≤ α < η, tτ (α) < tρ(α).

Proof. Work in V . Let p ∈ P be any condition and τ, ρ ∈ [κ̄η, λ) ,τ < ρ.

Let α∗ be a coordinate above np(p). Then p(α) = 〈fpα, Apα〉, for every α, α∗ ≤ α < η.

Extend p to p∗ by adding τ, ρ to all dom(fpα) with α∗ ≤ α < η.

Now, by the definition of the order on P , for every α, α∗ ≤ α < η and every q ≥ p∗ such

that q defines tτ (α) and tρ(α), we will have tτ (α) < tρ(α).

So,

p∗  (∀α)(α∗ ≤ α < η → t∼τ (α) < t∼ρ(α)).

�

It is possible to say a bit more. Namely, let in V [G], for every α < η, λα be the reflection

of λ below κα, i.e. for some p ∈ G with p(α) = fpα, λα = hαλ(fpα(κα)). Then the following

holds:

Lemma 2.13 The sequence 〈tτ | τ ∈ [κ̄η, λ)〉 is a scale in 〈
∏

α<η λα, <Jbd 〉.

In particular, we obtain the following:

Corollary 2.14 It is possible to blow up the power of a singular in the core model2 cardinal

of arbitrary cofinality in a cardinal preserving extension.

2Core model with strong cardinals, but below o−hand grenade. It was defined and studied by Ralf
Schindler in [8]
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3 One generalization.

In the previous section we assumed that η < κ0 in order to blow up the power of a singular

cardinal of cofinality η.

Let us now take η to be an inaccessible cardinal.

Let 〈κα | α < η〉 be now an increasing sequence with limit η and each E(α), for α < η, be a

(κα, η)−extender.

Assume that η is the least inaccessible limit of κα’s.

We proceed as in the previous section and define 〈P〈E(α)|α<η〉,≤,≤∗ 〉. It shares the

properties of the forcing of the previous section.

Let G be a generic subset of 〈P〈E(α)|α<η〉,≤ 〉.
Denote

⋃
β<α κβ by κ̄α, for every α < η. Then the following holds:

Theorem 3.1 V [G] is a cofinality preserving extension of V such that for every α < η,

κ̄α is a strong limit singular cardinal with 2κ̄α > κ̄+
α .

In addition η remains inaccessible.

By passing to V [G]η we obtain the following:

Corollary 3.2 It is possible to blow up the power of a proper class club of singular cardinals

in the core model in a cofinality preserving extension.
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