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Abstract

Extender based Prikry-Magidor forcing for overlapping extenders is introduced. As
an application, models with strong forms of negations of the Shelah Weak Hypothesis
for various cofinalities are constructed.

1 An extender which overlaps a measure.

Assume GCH. Let k < A be measurable cardinals. Fix a normal measure U(\) over A.
Suppose that E is a (k, \TT)—extender. Let jp : V — Mg ~ Ult(V, E) be the corresponding
embedding. Then s = crit(E), Mg D Hy++. Assume that jp(k) > AT, "Mg C Mp.!

Let x € Hy++. Denote by E, the measure on V, generated by z, i.e.

E,={XCV,|z¢€jp(X)}

We would like to force using £ and U(\) in order to change cofinality of x to w simulta-
neously blowing up its power above A and changing the cofinality of A\ to w.
It is possible to achieve this either as in [6] using a preparation Prikry forcing below & or as
in [5] using a triangle type of construction.
Here we present an other more direct method. In particular, we will construct a generic
extension in which x is a strong limit, only w—many cardinals below it change cofinality and
26 > AT

1f one likes to add only A* —many Prikry sequences, then what is need here is Mg O Hy+ and U(\) € Mg.



Assume for simplicity that U()) is represented by the normal measure of E, i.e. U(\) =
Jje(s)(k) for some s : k — V. Assume also that s(«) is a normal ultrafilter U(a) over A4,
for each a < k.

Carmi Marimovich in [8, 9] have found a very elegant version of Extender Based Prikry
forcing. We will use here a variation of it adapted to the present situation.

Let us state briefly few basic definitions.

Let d C AT\ k of cardinality at most . Define a k—ultrafilter E(d) on [d x k]<" as

follows:

X € E(d) < {{jew(a),a) | a € d} € jp(X).

Actually, E(d) concentrates on a smaller set called in [9] by OB(d).
The advantage of using F(d) is that once A is typical set of E(d)—measure one and a € A,
then a is of the form ((ag, B¢) | £ < p), where

1. p<k,
2. dom(a) ={a¢ | £ < p} Cd,
3. Be < K, for every £ < p.

So, already a measure one set provides an explicit connection between elements of Prikry
sequences and the measures to which they belong.
Note that E(d) is actually equivalent to to the ultrafilter E; over V, defined by

YeE;<de jpY).

Thus, clearly, E(d) is Rudin-Kiesler above Fy, just project to the second coordinate. For
the opposite direction note Ult(V, Ey) is closed under k—sequences of ordinals, hence j” g,d

is there. Then using it, we can define E(d) easily.

Definition 1.1 Suppose now that B € U(\) and F': [B]<Y — P+ (AT \ k). We call F a

relevant function iff
1ok e F().

2. for every (&1, ...,&,) € [B]", {&, -, &} C F(&, - &n),

3. for every 1y, i in [B]<¥, if I/} extends i, then F () D F(ik),
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4. if Uy, U in [B]<¥ of the same length, then otp(F(7)) = otp(F(i%))

5. if 7y, vy in [B]<“ of the same length, then
Er@n) = Er@,)-
Note that the number of ultrafilters over V, is small relatively to A, and so this can be

easily arranged on U —measure one sets.

Note the size of a relevant function is A and so it belongs to Hy++. If its values are in
AT, then the function will belong to Hy+.

Definition 1.2 Let F G be relevant functions. Set F' >* G iff
1. dom(F) C dom(G),

2. for every (&1, ...,&,) € dom(F), F(&1,...,&0) 2 G(&1, -, 6n)-

Consider M = Ult(V, E) and j = jg : V — M the corresponding elementary embedding.
Then, F € M. Pick §p < A** and F : k — Vj, such that jg(F)(6r) = F.
We will fix this notation throughout, i.e. d and F for a given relevant function F. We fix
some wellordering < of V. and will use jg(=<). We have Vi o = (Viy2)™5, so je(=<) well
orders V) 1o.
Let Z C AT be a set of cardinality k. Denote by h? the jp(<)—least one to one function
from |Z]| onto Z.
A typical use of this will be as follows.
Let g € F(()). Then g <g 0p. We have |F({))| < . Hence there is a < |F(())| such that
B = h"O(a).
Let v be in a typical Es, set of measure one. Suppose that v"°", its canonical projection to
the (least) normal measure of E, is bigger than a.
Let hl(,%f))“» be < —least bijection between 1™ and (F(v))(()). Then h%ﬁ”“”(a) will
correspond to .

Turn now to the definition of the forcing.

Following [8, 9], define first Pj,.

Definition 1.3 Let Py, be the set of all functions f such that

1. dom(f) C [A]<¥ X P+ (AT \ k) which is a relevant function,



2. for every ({1, ...,&,) € dom(dom(f)) and for every a € (dom(f)) (&1, ..., 6n)),
(f(&1 s 6a))(@) = ((f(E1s s &) (@)os s (f(&1y s 6n))(@)k—1) is a finite sequence of

elements of V., for some k < w, which canonical projections to the normal measure

form an increasing sequence and such that for every i < k,

(a) (f(&1, -, €0))(@); is an ordinal

or

(b) for some v < k and a measurable cardinal \,,v < A, < k, a normal ultrafilter
U(A\,) over A, and a set By, € U(\,), (f(&,....&)) ()i = [By]" — AT 2
Require, in addition, that if o/ is an other member of (dom(f))(&1,...,&,)) and
some of the elements of (f(1, ..., &,))(a’) has the same v, then the set B, is also

the same.
3. For every (&1, ...,&,), (&1, -, &) € [A]" N dom(dom(f)),

(a) otp((dom(f)(&1, -, &n))) = otp((dom(f)(&1, -, €3))),
(b) for every 5 < otp((dom(f)(&1, ..., 6n))), if , @ are the f—th members of

dom(f)(&, ..., &) and dom(f)(&1, ..., &) respectively,
then (f(&y, -, &n)) (@) = (F(&1, - §)) (@)

4. if a sequence £ € [A]™ extends a sequence & € [A]* and o € (dom(f))(€)) (and hence,

a € (dom(f))(€))), then f(€)(a) = f(€)(a).

The intuition behind this definition is that f(()) acts exactly as in [8, 9]. In addition, we
have here A that is supposed to change its cofinality to w. So, (&1, ...,&,) € [\]" is a possible
initial segment of the Prikry sequence of A and f(&1,...,&,) provides the correspondence
between its domain, which is a subset of A** \ k of cardinality < x, and finite sequences in

Vi, again as in [8, 9].

Definition 1.4 Let f,g be in Pg. Set f >* g iff dom(f) >* dom(g), as relevant functions
and for every n < w,({,...,&,) € dom(dom(f)),a € dom(g)(&1, .-, &n), f(&1yy&n)() =
g(Sla 7671)(04)

Lemma 1.5 (Pj, <*) is kT —closed.

ZNote that further not every such )\, will change its cofinality. Moreover, only \,’s with v’s which the
members of the Prikry sequence for the normal measure of the extender, i.e. for E,, will change their
cofinality.



Proof. Let (f, | v < k) be a <* —increasing sequence of elements of Pj,.

For every v <k, let dom(dom(f,)) = [B,]<¥, for some B, € U(A). Set B =1, _, B,. Then
B e U()), since k < .

Define f € Pj,. Set dom(dom(f)) = [B]<“. Now, for every (&1, ...,&,) € dom(dom(f)), let
dom(f (&1, &) = U,cpdom(fy (&1, ..,&n)). Finally, if a € dom(f(&y, ..., &), then pick
v < K such that o € dom(f,(&1,...,&,)) and set f(&,..., &) () = fy (&1, .. &) ().

Clearly, f € Py and f >* f,, for every v < k.

U

Turn now to the definition of our forcing.

Define first conditions with empty stems 7.

Definition 1.6 The set Py consists of pairs ((f, A,0), ((), B)) such that
1. ((), B) is a condition in the Prikry forcing with U(\),
2. fePg,

3. dom(dom(f)) = [B]*¥,

5. 0 < AT,
6. f=jg(f)(0), where f : k — V, is the least function like this.?
7. A € Ejs or, alternatively, A is an w—tree with splittings in Ej.

Define the direct extension <* on Py in the usual fashion by extending support and by

shrinking measure one sets.

Definition 1.7 Let p = ((f, 4,9), ((), B)),
P ={f,A,0),(),B)) € Py. Set p>*piff

1. BC B,
2. f2>27f
3. 0>pd,

4. the canonical projection of A to 0’ is a subtree of A', i.e. ms5”" A C A’.

36 is essentially the maximal coordinate of the condition.
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Turn now to one element extensions of members of P.

Definition 1.8 Let p = ((f, A,9),((), B)) € Py and n € A or at the first level of A, if we

view A as a tree. Define the extension of p by n, p™n as follows.

Set p~n to be ((), dom(dom((f)(n))))" (f"n, (k. n""), {6, m), Awy). (0, B)),
where

1. ((),dom(dom((f)(n)))) is a condition in the Prikry forcing over Ajnor with U(A;nor).

Note that dom(dom((jz(f)(dy))) = B.
2. Ay is the tree A above (1) (or A\ n if working with sets),

3. f7n is defined as follows:
its domain is identical to those of f;
let n < w and (&1, ...,&,) € [B]" and o € dom(f) (&1, ..., &n)-
Set (f~n(&,....&n)) () = (f(&, ..., &) (), unless ™" is above all elements of the
sequence (f(&1,...,&))(a). For elements of the sequence (f(&1,...,&,))(a) which are

nor

names, we mean that 1™ is above the measurable (or its double successor) which

defines it.

Suppose that 7™ is above every element of (f(&1,...,&,)) ().

We include here also the case when the sequence is empty. This happens, in particular,
if @ = k.

Split into two cases.

(a) If a = &, then set (f71(&1, ..., &) () = (™),
(b) suppose that a # k. Let a be the f(a)—th member of dom(f)(y,...,&,)), for

Consider dom(f)(n) : [B(n)]< = Pppory+ (A(n™") ).
Define g : [B(n)]" — A(n™")™* by setting g(71, ..., 7,) to be the S(a)—th member

Add then g to the sequence, i.e. let
(708, - &) a) = (F(&rs -, &) (@) g

An additional way to extend conditions is to extend its Prikry parts. Start first over \.

Definition 1.9 p = ((f, A4,0y), (), B)) € Py and (&, ...,&y) € [B]™. Define the extension
Ofp by <€17 "')§m>’ pﬁ<§17 7§m> as follows.

,,,,,
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L. fier,..en is the obvious restriction of f to extensions of the sequence ({1, ..., &) inside

Note that &;’s need not be <g d;. Moreover, most of {’s mod U(A) are not below d;.

However, almost every Ee mod U(A) is Rudin-Keisler below Es,, since f = ju(f)(dy).

Let us add such extensions to P,.

Similar define extension in Prikry parts below x.

Definition 1.10 Let ¢ = ({), dom((dom(f))(n))~(f, Auy,8), ({b), B)) € P1. Suppose that

x € [dom((dom(f))(n)]=“. Then we put

¢~z = ((x),dom((dom(f))(n))" (f, Awy,0), ((b), B)) into Py, as well.

Let us start with the Prikry condition.

The next lemma is an analog of 3.12 from [8].

Lemma 1.11 Let p = ((f?, AP, 0P),((),B?)) € P and D C P be a dense open. Then there
are p* >* p and n < w such that p*" 7" 1"Z € D,

for every U = (v, ..., un_1) € [AP|", £ € [BY'|*, ¥ = (F4 | k < n) such that for every k < n,
T, € [BY)", where BY = dom(f*)(vy), i.e. the set of measure one corresponding to BY" at
the level k.

Proof. Suppose otherwise.
Proceed as in 3.12 of [8]. Construct by induction an increasing chain of elementary submodels

Ne | € < K) of H,, for x large enough, and a sequence (fe | £ < k) of members of Py, such
¢ X 3 E
that

1. P, PE, D e N(),
2. N() 2 K,
3. for every £ < K,

(a) |[Ne| =,
(b) "> N¢ C N,
(¢) (felC<§) €N,



(d) fe e N{D' € N¢ | D' is a dense open subset of Pg above fP},
(e) f7 <" fo,

(f) 67 € dom(fo(())),

(8) {0y | ¢ <&} S dom(fe(())),

(h) fe =" fe, for every ¢ <¢.

Set N = U£<N N¢ and f* the upper bound of (fe | £ < k).
Consider {dy, | £ < k}. Let 6 be the least code of this set in our fixed wellordering.
Define an ultrafilter E over [{x,d?, d,, ..., 0f, ... | € < £} x £]<* which is equivalent (Rudin-
Keisler) to E{H,5f£|§<,i} and is below Ej (in the order <g of E).
Set Z € Eiff {(j(r), x), (j2(67),67), (£(07,): 0g0), -+ 5B (07.), 05), - | € < K} € jr(Z).
Note that {x,0?,0y,,...,07,,... | § <Kk} € N, and so, {k,0”,05,, ..., 07, ... | { <K} x Kk CN.
Hence, also, [{r,d?, 85,05, ... | & < K} x k] € N. The function (3, | v < € <
k) = (K, Bo), (67, B1)s (Ofy, B2)s -5 (Ofer Bare)s - | § < €) witnesses the equivalence between
E{”’5f5‘5<”} and E. )

Let us define an additional ultrafilter E in order to take care of Prikry forcings below k.

It will concentrate on [{k, 07,0, ..., 05, ... | £ < K} X K]=" X K.
Set YV € E iff {(jE(K)v/i)a(jE((Sp)vép)v(jE((Sfo)»(sfo)?"'7jE(5f§>a5fg)>'" ‘ £ < H} € ]E(Y [ 1)

YIil={y|da<k((y,a)eY)}andif v eY [ 1, then Yy ={a <k | (¥,a) € Y}.
We will use closely related ultrafilters E,, for n,1 < n < w over [{x,d?,y,, ey Ofyoen |
<K} X K]SF x [K]"4

Set Y € Eﬂ iff {(jE(’i)”{L (jE(5P)75P)7 (jE<5f0)75fo>’"'7jE<5f5>’6f§)7”' | £ < ’i} S ]E(Y [ 1)

Let A € E be a set which projection to 67 is a subset of AP.
For each k < w and

(M0, Z0), - (Me—1, Th1)) € [[{K, 07,05, -, Oper o | § < K} X K] X [1]*]F
such that (ng, ..., k1) € [A]*, let
D ((no,70),.(ns 1,551y D€ the set of all f >* fP such that either

(1) 37T3B C BP3C, C dom(dom((fP)(1))), ..., Ce—r € dom(dom((fP)(1x—1)))

<<<507 CO>7 R <fk*17 Ck*1>>7 <f(770 77777 Mk—1)" T, <<>7 B>> € D)

4An alternative way to proceed is do deal only with £. This will be explored further in a more general
situation.




(2)Vg >* fYTVYB C BPYC, C dom(dom((f?)(10))), ..., Ce—1 € dom(dom((fP)(1e—1)))

(((‘%07 CO)? ERES) <fk—17 Ck—1>>’ <<g<770 ~~~~~ 77k71>7T’ <<>’ B>> ¢ D)
Such defined Dy 70)....,
<<770,f0>, ceey <?7]€,1,£f"]€,1>> € [[{H, (Sp,éfm ...,5f§, ‘ g < /ﬁ?} X KI]<R X [/’i]k]k with <770, ...,77]6,1> €

(mo_1,8x_1)) 18 obviously dense in Py above fP. Then, for each

If for some n < w, for a set of E"—measure one the possibility (1) occurs, then we get a
contradiction to our initial assumption.

So, suppose that for every n < w, there is a set Y, € Eﬁ— on which the possibility (2)
occurs.

Let us construct a condition in P which is based on f* and Y,,’s.

We will use the following observations.

Claim 1 Suppose that Y € E. Define a function g:Y [ 1=V, by setting g(17) = Y.
Then jE(g)({li,(sp,(st, ...7(5f§, | E< li}) € U(/\)

Proof. Follows by the definition of E.
O of the claim.

Claim 2 Suppose that Y € E2. Let Z = {(z1,2) | 381, Bo((21, B1, 22, B2) € Y)}. Then
there is Y* € F such that Z D [YV*]2.

Proof. Clear.
O of the claim.

Claim 3 Suppose that Y € E2, then there is Y’ C Y,Y’ € E? such that for some Z € E
and a function g : Z — V,, the following hold:

1. Y{4 = [Z]?, where Y/ is the projection of Y” to the first and third coordinate, i.e.
Yi 3 ={(21,2) | 3B1, B2((21, B1, 22, B2) € Y')}.

2. For every (z1,81,22) € Y{ o3, Y., 5, .,y = 9(22), where Y/, 5 is the projection of Y to

the first three coordinates.



Proof. First we pick Y* by the previous claim. Let (21, 81, 22) € Y123 with (21, 22) € [Y*]2.
We have then that Yi., 5, .,) € U(Asper), where 25" is the first element of z;, i.e. one
that corresponds to the normal measure E,. The ultrafilter U ()\Zéwr) is A,por —complete, so
V(z2) == (WY ,80,20) | (21, 51, 22) € Yis} € U(Azper).

Set g(z2) =Y (22).

(] of the claim.

The analogues statement holds for every n,1 < n < w with a similar proof.

Claim 4 Let n,1 < n < w. Suppose that Y € E?", then there is Y’ C Y,Y’ € E?" such
that for some Z € E and a function g : Z — V,, the following hold:

,,,,,

2. For every (21,01, 22,...,2k) € Y53 = g(z), where Y{,, , is the

/
k> Y(Z1,,31,Z27~-72k)

projection of Y’ to the first k—coordinates.

Now, for each n,1 < n < w we apply the claims to Y, € Eg and find Z, € E and
In : Zn — Vi Let Z* = (e, Zn- Set By = je(gn)({K, 07,655, ., 0g,, ... | € < K}). Then
each B, is in U(X). Set B* = B* N, Bn.

Now, based on f*, Z* and B* we fo_rm a condition in P in the obvious fashion.
Let p* = ((f*™, A*,6"),((), B*)) >* p, where A* is contained in the pre-image of Z* and f**
extends f*. Further let us abuse the notation and denote f** still by f*.

Claim 5 Suppose that ¢ > p* and the component of ¢ over X still have empty sequence, i.e.
it is of the form ((), B?). Then q € D.

Proof. Suppose otherwise. Then, for some k < w and

(N0, ZoY, vy (M1, T—1)) € [[{K: 07, 0ggs oy Oy o | € < B} X K]S" x [K]F]*

with (1o, ..., mr—1) € [A]F,

f9is a <* —extension of some f <* f*, f € Dy NN. But then, the possibility
(2) must occur for f. This means that ¢ cannot be in D. Contradiction.

(1 of the claim.

105805+ (Mo — 1,8k —1))

Now, we repeat the process above with the empty sequence over A replaced by any
b e [BY]<~.
Let py = p* = ((f*, A*,8),((), B?)). Denote by p; = ((f; Az 55), (b, By)) obtained as p*,
but with (b, By) instead of ((), B). Arrange also that if b extends b/, then (f5, A, 05) >*
{f5, Ap 0p)-
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Shrink B if necessary such that for every n < w, if 1;, Ve [B]™, then

1. pg, py give the same conclusion about being in D,

2. Es. = Es

5

3. Az = Aj.

Denote the constant values of the measures by E(n) and the corresponding sets of measures
one by A(n), for every n < w.

Consider F' = (p; | b € [B]<). Tt is an clement of Hy++. Pick F: k — Vy and § < At
such that jz(F)(8) = F.

Deal with n = 1. Let £ € B.

Consider a simpler (but typical) case when d(¢y = ¢ is just &.

We have then that for every £ € B, € € jrp(A(1)), since A(1) € E¢. So, B C jg(A(1))NA.
In particular, jg(A(1))NA € U(N).

Let js : V' — Ms ~ Ult(V, Es) be the canonical embedding and ks : Ms — Mg be defined
as follows: ks(js(g)([id]g,)) = jr(g)(0). By the choice of 6, B, A(1) etc. are in the range of
ks.

Denote Bj, A(1l)s the pre-images. Then, using the commutativity of the corresponding
diagrams, Bs C jg,(A(1)) N Ag, and jg,(A(1)) N Ag, € U(\s). Hence, the set

A1) ={n<r]| B, CA(1)nA, € U()‘n)}

is in Fs.

Such defined A*(1) will take care of compatibility with members of A(1). Namely, we
need to combine f;’s into a single element of Py and attach (A*(1),4) to the result.

Let us deal now with the general case.
First we combine in the natural fashion all f;’s into a single element f* of Py,
Then each ¢y will become a member of f *(E) By shrinking B, if necessary, we can assume
that for every n < w, there is 3(n) < r, such that for every b € [B]", 9z is B(n)—th element
of (dom(f*)(b), i.e. AT N®(5(n)) = 6.
Then, for every n < w, for every b € [B]", A(n) = A; € Es.. Now, A(n) € Es. implies that
RO (3(n)) = 55 € jp(A(n)) AT,

We have f* : k — V,, such that jg(f*)(8) = f*. For every n,1 < n < w, define

A*(n) = {n < k| B(n) < 0™ A (V&€ [B, (BT D@ (5(n)) € A(m) N AT+ € TU()))}-
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Then A*(n) € Es. Set A* =();.,,, A*(n).
Now we form a condition in_P in the obvious form based on f* and A*,
e (1, 4°,6), (0, B)).
The contradiction is derived then as in Claim 5.
O
Let us force now with the part of Pg over A, i.e. with the Prikry forcing with U()\). Let
X = (A\(n) | n < w) be a Prikry sequence.
Consider Pg/X. Its members are all p € Py with {A(n) | n < w} C b U BP.

Lemma 1.12 The forcing Pg/X satisfies k™ —c.c. in V).

Proof. Let {p(a) | @ < k™} C Pg/X. Assume that all of them have the same stem and
suppose for simplicity that it is just empty.

We interpret each fP(®) according to the Prikry sequence (A\(n) | n < w) and, then, using a
A—system find a # S for which this interpretations are compatible.

Let us argue that p(«) and p(/5) are compatible as well.

Consider B = BP(® N Br),

For every (n,...,nm,) € [B]" (or with increasing projections to the normals in more general

settings) find C,, o) either

.........

1. the finite sequences of the corresponding parts of

p(a) (N1, ...,nn)” n and p(B) " (n,...,n)" n do not contradict;
or

2. there are two finite sequences of the corresponding parts of
p(@) (1, .y )" mand p(B) " (n1, ...,mn)" 1 over the same place that are different (i.e.

contradict one an other).

Let C = Ay, m0)eB»Cin,.omyy- Then C' has measure one.
There is k < w such that for every n,k < n < w,A(n) € C. Extend both p(«) and p(5) by
(A(m) | m < k). Then the condition obtained by the obvious merging of p(a)xum)jm<k) and
P(B) \m)jm<ky Will be in Pg/ X and it will witness the desired compatibility.
O

12



2 An extender which overlaps an other extender.

It is possible to replace the measure U(\) with an extender E' over A such that E' < E. Let
i > X\ be regular cardinal and E' be a (), u)—extender.
This way the following is obtained:

There is a cardinals preserving extension V[G] of V such that

1. Kk remains a strong limit,

2. cof(k) = cof(\) = w,

3. only w—many cardinals below x change their cofinality and it is changed to w,

4. no cardinal bigger than « and different from A\ changed its cofinality,

5. pp(A) = p < 2% = pp(k).

Suppose that there are two extenders E(0) over ko and F(1) over k1 > ko such that
E0) > E(1).
The corresponding forcing P = Pg(),e(1)) is defined similar to those of the previous section
with obvious changes of the Prikry forcing over the larger cardinal by the extender based
Prikry with E(1) and its reflections below .
A typical pure condition is of the form p = ((f?, AP, §P), (¢P, BP)), where (g?, BP) is now a
condition in the extender based Prikry forcing with F(1). As before, we will have a function
f? which represents f? in the ultrapower with the measure 6? of the extender E(0), but let
us require here that also ¢” is represented there, i.e. (jE(O)(fp))((Sp) = (f?, ¢").

The only new point appears in the Prikry condition argument (Lemma 1.11). Let us deal

with a corresponding lemma in the present situation.

Lemma 2.1 Let p = ((f?, A?,67),(g”, BP))) € Pr),eq) and D C Pro)ea) be a dense
open. Then there are p* >* p and n < w such that p* "0t "% € D,

for every U = (vy, ..., vn_1) € [AP'|*, T € [BY'|*, ¥ = (F4 | k < n) such that for every k < n,
Ty, € [B']", where BY = dom(f*)(vy), i.e. the set of measure one corresponding to B at
the level k.

Proof. Suppose otherwise.
Let D' C Pgq) be the set of all (g, B) € Pg) satisfying the following:
there are f*, A*,0* such that
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L. <<f*a A*7 6*>7 <ga B>> € P(E(O),E(l));
2. ((f*,A%,6%), (9, B)) = p,

3. for every 7 € [A*]<¥,
(1) ((f*,A*,0"), (g, B))"ij € D°
or
(2) for every p’ 2" ((f*, A", 67), (g9, B)), P71 & D.
Moreover, the same conclusion valid for any two such 77,77 of the same length.

Let us argue that such D’ is dense in Pg1y above (g?, BP).
Claim 6 D’ is dense in Pgny above (g7, BP).

Proof.
Let (g, B) € Prq).
Define an elementary submodel N, £, A € E as in Lemma 1.11 with obvious adjustments.
Now instead of defining a dense set in PE(O), as it was done in Lemma 1.11, we proceed
by induction of the length ¢ and build increasing <* —sequences fe, (ge, Be), € < ko with
each stage inside N.
At limit stages union is taken. Let us deal with a successor stage. So, suppose that
fe, (ge, Be) € N is constructed.
Let (no,...,mk—1) € [A]*, be the é—th member of an enumeration of
[{K0, 07,05y, s Opcr o | ¢ < Ko} X hig| <.
Let f = fe, (g, B) = (ge, Be). We would like first to deal with the forcing below ¢ which
7 := (no, ..., Mk—1) induces and to use its Prikry property. Suppose for simplicity that k = 1,
so we deal with 9 and the corresponding extender based Prikry forcing over it.
There are f, >* f,{(g., Bs) >* (g, B) such that
for every (z,C) in the extender based Prikry over k1(n9)® there is (x, C) > (z, C) so that

either

(1) AT (2, C), (fatmoys T), {9+, B)) € D),

or

% Adding 77 requires to add a lower part of the condition f*(ﬁ'), where f* represents now (f*,g,B) in the
ultrapower.

6k1(no) denotes the reflection of k1 to the level of nfor.

14



V(2",C") = (@, OV [ =" [V, BY) 2" (gu, BOVI{{&, C"), ([, T). (g, B)) & D).

Just proceed by induction and use the fact the number of possibilities for (z, C') is much
less than the degree of completeness of <*.
This defines a dense open set D(1) in the extender based Prikry over 7. So, for every (x, C))
there are (z,,C.) >* (z,C) and m, minimal such that for every g € [Ci]™, (x.,Cs)” p'is
in this set. By shrinking C if necessary, we can assume that the same conclusion about
being in D or not holds. Note that if “not in D” conclusion (2) holds, then this will be true
already with (z., C,), and so, m, = 0.
Also note that all this lower parts (x,C) are in N. Hence, there are such f,, (g., B,), in N,
by elementarity.
We pick fei1, gey1, Beqi to be such a sequence inside N.

Finally, let f*, (¢*, B*) be the upper bound of (fe, (g¢, Be) | € < k).

Let 77 € [A]=¥. Again, assume for simplicity that 77 is just 7.
Consider f*(ny). Let (z(1), C(10)) be the part of f*(1) which is a condition in the extender
based Prikry forcing over ri(no). Then there are (z(ng)«, C(n0)s) =>* (x(no),C(no)) and
m(no). < w such that for every p € [C(n0)«]™, (x(10)«, C(n0)«)” p € D(no).
Now, use the function 1y — (x(n9)., C(no).) and extend directly
(£ 40" B to (f*, (g%, B))."

Now we shrink A in order to get the same conclusion (1) or (2) with (f**, (¢**, B*)).
If it is (1), then (g™, B**) € D’. Suppose that it is (2).
Let us argue that then for every 77 € [A*]<¥, for every p' >* ((f**, A*,0™), (g™, B™)),
P éD.
Oterwise, there are 17 € [A*]<“ and p’ >* ((f*, A*,0%), (¢**, B**)) such that p'~7j € D. But 7
was considered at a stage £ < k of the construction. The existence of p’ implies that already
fet1, (get1, Bega) forced this, which is impossible.
[ of the claim.

Now we use the Prikry condition for the extender Prikry forcing Pg(;) and find n < w
and (g, B) such that for every b € [B]", (¢, B) b e D'
Next, for each b € [B]", let fz, Ay, 0y be witnesses for (g, B)AI; € D'. We put them together

"There was no need to do this in the previous section, since the basic Prikry forcing was used, and any
two direct extension in this forcing are compatible. This is not the case with the extender based Prikry used
here.
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as in Lemma 1.11.
O

Turn now to the chain condition. The argument is similar to those of Lemma 1.12 with
obvious adaptations. Let us force now with the part of Pig) gn) over ki, i.e. with the
extender based Prikry forcing with E(1). Let G(1) be a generic subset of Pg).
Consider Pg)/G(1). Its members are all p = (p(0),p(1)) € Pg(o),eq) with p(1) € G(1).

Lemma 2.2 The forcing Pp)/G(1) satisfies kgt —c.c. in V[G(1)].

Proof. Let {pa = (pa(0), pa(1) | o < #ig "} C Py /G(1).

Let po(0) = (f2, A%, 80), for every a < kg +.

We interpret each f0 according to the Prikry sequence of the maximal coordinate of p,(1)
and, then, using a A—system find o # [ for which this interpretations are compatible.

Let us argue that p, and ps are compatible as well. First find p(1) = (fP1), APM §p)) €
G(1) which is stronger than both p, (1), ps(1).

Now use the Prikry condition for the forcing Ppqy and find g(1) = (f10, A1 1)y ¢
G(1),q(1) > p(1) such that for every (ni,...,n,) € [A9D]", ¢(1) decides (in Pg()) the

following statement:

the finite sequences of the corresponding parts of
—~,_EQ1 E(1 —~,_EQ1 E(1
Pa(0) (T at) sty (M) oos Tos) sy (1)) @0 p(0) (o) iy (1), ooes gt sty (M)

. B(1)
do not contradict, where T5a(1) so(1)

the coordinates 090, 5?1 of the extender F(1).

as usual, denotes the canonical projection between

By the choice of p, and pg, the decision should positive, i.e.
q(1) forces (in Ppq) that:

the finite sequences of the corresponding parts of

— E(1 E(1 — E(1 E(1
Pa(0) ™ (5t s (1) ooy Tts) sy (1)) and pa(0) ™ (w5t s (1), ooy Tt ) ()

do not contradict.

Then the condition obtained by the obvious merging of p,, pg and ¢(1) will witness the
desired compatibility.
O
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3 An extender which overlaps many extenders.
The argument of the previous section applies with minor changes to the following situation:

1. (ke | € < p) is an increasing sequence of measurable cardinals of a length p < ko;
2. E(¢) is an extender over Kg;
3. for every £ > 0, the length of E(¢) is at most keiq;

4. the length of E() is (U, re) ™
In particular, F(0) overlaps each E(§),& > 0.

5. (E(§) |0 <& < p) € Ult(V, £(0)).

The corresponding forcing P = Pg¢)e<p) is defined similar to those of the previous

sections. For every £,0 < £ < p, the extender E(&) is used only up to the first element of
the Prikry sequence of the normal measure of F(§ + 1).
A typical pure condition is of the form p = ((f?, AP, %), ((g¢, B{) | 0 < £ < p)), where
(9¢, B¢) is now a condition in the extender based Prikry forcing with E(£). As before, we
will have a function fP which represents fP in the ultrapower with the measure 6 of the
extender F(0), but let us require here that also (gf | 0 < § < p) is represented there, i.e.
o (FP)E) = (7, g2 |0 < € < p)).

The proof of the Prikry condition repeats the argument of Lemma 2.1. At the final stage
after showing that D’ is dense open in the forcing Pig()o<e<py, i-e. the forcing with all
extenders F(£),0 < £ < p, we use the fact that Pig)o<e<p) has the Prikry property. In
order to entre D' it is enough to find finitely many places &1, ..., & and n < w such that any
choice of n—elements from each set of measure one for all the places &1, ..., &, the resulting
extension will be in D'

Under the same lines it is possible to deal with more general situations. What is crucial
here is that the overlapped part satisfies the Prikry property and its direct extension ordering

is closed enough.

4 A partial overlapping.

Suppose that £ < A, there are two normal measures U(A,0) < U(A, 1) over A and a

(k, \)—extender E over k which ultrapower is closed under k—sequences.
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Consider jyniy : V' — Myny >~ Ult(V,U(X,1)). Use the embedding ji(x1) to stretch the
extender E. Thus, we consider jyx1)(E). It is a (k, jun,1) (X)) —extender over & in My(x 1)
which ultrapower is closed under k—sequences.
Consider E' := jyo)(E) | (AF)Meawn. Then, in V, it is extender over x of the length
(ATH)Muonn | with ultrapower Mg closed under xk—sequences, Hy+ C Mg and U(),0) €
Mpg:. Clearly, E* < U(),1).

We would like to describe the forcing that does the following:

1. it picks a one element Prikry sequence \io for U(A, 1);
2. adds a full Prikry sequence to Ajy using the reflection of U (A, 0);

3. adds A/, —many Prikry sequences to  using E'.

The forcing of the first section will be used here as a part of the present forcing notion.
Note that My 1) is closed under A—sequences of its elements, and so, cof (ATF)Mvow) = A+

and every relevant function (defined as in Section 1 using E' and U(\,0)) will be in My 1).
Definition 4.1 Ppg1 (x0),0(x1) consists of triples ((f, A,0), (b, B), ({), C)) such that
1. ((f, A, ), (b,B)) is as in the forcing of Section 1,
only with A** replaced by (AT+)Mvow,
2. ((),C)) is a condition in the Prikry forcing with U(\, 1) with min(C') > max(b).

The orders are defined in the obvious fashion. If an element v from C'is picked, then
we use the functions hs : A — A, hy : A = V) which represent 6 , f mod U(A, 1), and push
((f,A,0), (b, B)) down to v replacing it by ((hs(v), A, hs(v)), (b, BN v)).

The continuation is as in Section 1.
An other way of partial overlapping was considered in [3]. A typical situation there is

that we have, for example, ko < k1 < A and two extenders F(0), E(1) such
e F(0) is a (ko, A)—extender,
e F(1)is a (k1, \)—extender,
o E(0) < E(1).

A forcing Pg(0),e1)) that involves both of them is defined in a way that if a non-pure
extension is made using F(1), then the part of the forcing with £(0) is restricted to E(0) [ n,
for some n < K.

Further we will use this type of constructions.
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5

Uncountable cofinality.

Use the combination of C. Merimovich forcing [9] with Sections 1,2.

6

The main forcing.

We introduce here forcing notions that will be applied to the Shelah Weak Hypothesis in the

next section.

6.1

Basic settings.

Let 1,0 be arbitrary ordinals.

Let (ko | @ <m) be an increasing sequence of cardinals, with 7, < kg, and A be a cardinal

> Ua<17 Ko
Suppose that (E(«, 5) | a < n, 8 < §) be a sequence such that for every a, o/ <, 3,8 <

1.

2.

E(a, B) is a (kq, A)—extender, i.e.
(a) E(a,B) is an extender over K,
(b) Hx C Mg(ap), where jg@p) : V = Mgwg ~ Ut(V, E(a, B)),

(d) JB(a,p (ka) > A,

)
)

(c) crit(jpa,p) = Kas
)

(e) ”“ME (@8) & Mp(a,p)-

E(a,p) > E(d,0),if B> p or (=0 and a > ).

Assume in addition that for every a < n, 5 < 9,

there is a function hg(aﬁ) © Kq — Ko such that jE(a,B)(h%\(O“ﬁ))(K,a) = )\, lLe. A\is

represented already by the least normal measure of the extender E(«, ().

For every o/ < n,p’ < 4, so that § > ' or (6 = (' and a > o), there is a function

E(o/,8 . E(/,8 . .
hEgaﬂB)) Ko — Vi, such that ]E(aﬂ)(hEEaﬁﬂ)))(Fda) = E(d, ), i.e. E(d/,() is repre-

sented already by the least normal measure of the extender E(«, 3).

Note that due to the closure of the ultapowers, this implies that all the sequence

(E(a, ) | o/ <n,B" <0,(8> " or (B=p and a>d)))

is represented like this.
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The forcing P(g(a,8)ja<n,s<s) defined below will change the cofinality of each x,,a <7 to
) (assuming that § is a regular cardinal) and will make pp(ka,) > .
For example if n = w; and § = w, then we intend to change cofinality of all k,’s to w and to
make pp(kq) > A

Let us deal first with simpler situations.

Further let us denote (E(a, 8) | 8 < 8) by E(a), for every a < 1.

6.2 The first level forcing.

Suppose that 6 = 1. Then we have a < —increasing sequence of extenders (E(q,0) | o < n).

Use the forcing Pg(a,0)ja<n) of [3].

6.3 Two levels forcing.

Let us define the forcing for the first two levels.
Assume that n = w and 0 = 2.
So, we deal with extenders E(n,k),n < w,k < 2.

Recall that E(0,1) > E(n,0) and E(n+ 1,1) > E(n, 1), for every n < w.

We will use a setting similar to those of the first section. Instead of the Prikry forcing
there - the forcing of the fist level will be used. In addition, instead of the single extender
based forcing there - all extenders E(n,1)’s will come in to the play here. The interaction
between E(n, 1)’s will be organized similar to the one between E(n,0)’s in 6.2 or in [3].

We will need to deal with names of ordinals in the first level forcing 775(0).

Define relevant functions in the present context.

Here, as in [3], we will only one element sequences with each extender involved.

Definition 6.1 Let n < w. A function F is called a n—relevant function iff

1. thereis p € PE(O) such that the domain of F'is the set of all finite products of sets of

measure one of p, i.e.

dom(F) = U{H AV | s Cw,|s| < Ng,min(s) > n}.

kEs
2. F:dom(F) — Pﬁz((/{:JF)ME(n,l))‘

3. for every 1, v in dom(F'),
if /) extends 1, then F(v)) D F(ih),
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4. if 7y, Uy in [T, (A})% for some s C w, |s| < R, min(s) > n,{l; | k € s} Cw,
then otp(F(71)) = otp(F (7))

5. if 1y, 15 in [],., A}, for some s C w, |s| < Ry, min(s) > n,
then E(n,1)p@w) = E(n, 1) pe,).
Note that the number of ultrafilters over V, is small relatively to «,1, and so this

can be easily arranged on measure one sets.

6. If 7 € [ ], A}, for some s C w, |s| < Ny, min(s) > n,

and v, p € AP for some m < w, are above max(/), then
E(W™V) 0 Tine(pm) pn V) = F (77 0) O Tinc(pn) im (p) = F(F) N .

The intuition behind is that we like to use extender based forcing with E(n,1). The
forcings over smaller k,,’s, m < n, satisfy small chain condition. So we can cover names of
ordinals depending on them by sets in V' of size k,. What remains then is the part of PE(O)

above k,. There n—relevant functions come into the play.
Definition 6.2 Let F, G be n—relevant functions. Set F >* G iff
1. dom(F) C dom(G),
2. for every (&1, ...,&,) € dom(F), F(&,...,&) 2 G(&1, .., &)

Define now the set Pg(n 1) Again we will use here only one element sequences. An
other difference from Merimovich [9], will be that there a function f for every measure of a

condition, even for measures over the same cardinal.
Definition 6.3 Let PE(nJ) be the set of all functions f such that

1. dom(f) is an n—relevant function,

2. for every ({4, ...,&,) € dom(dom(f)) and for every a € (dom(f))(&1, ..., &n)),
(f(&,...,&n)) (@) is either the empty or one element sequence.

Require that if (f(&1,...,&,)) (@) is not the empty sequence, then

(a) (f(&,..-,&n)) (@) is an ordinal

or
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(b) for some v < k,, and a reflection P, of Py \ n+1 to v,
(f(&1, ., &) () is a relevant function corresponding to P,.

3. For every ({1, ...,&n), (€], ..., &) € dom(dom(f)), such that for every i,1 < i < n, &

and & are from the same place,

(a) otp((dom(f)(&1, -, &n))) = otp((dom(f)(&1, -, €1))),
(b) for every 8 < otp((dom(f)(&1,..,6n))), if , @ are the f—th members of

dom(f)(&, ..., &) and dom(f) (&1, ..., &),) respectively,
then (f(&y, - &n)) (@) = (F(&1, - §)) (@)

—

4. if a sequence & which extends a sequence £ and «a € (dom(f))(€)) (and hence, a €

(dom(f))(€))), then f(&)(a) = f(&)(«).

Definition 6.4 Let f,gbein Py, ). Set f >* giff dom(f) >* dom(g), as relevant functions
and for every n < w7<§17"'a§n> € dom(dom(f)),a € dom(g)(glw“vgn)? f(gla "'7€n)(a) =
g<€17 7571)(05)

The proof of the next lemma is as in Section 1.

Lemma 6.5 (Pg, ), <") is r,; —closed.

Turn now to the definition of our forcing.

Define first conditions with empty stems.

Definition 6.6 The set Py, 5, consists of all sequences p = (p(0), ((f", A", ") [ n <w))
such that

L. p(0) € Pg)»

2. for every n < w,

(c) [ = JEm (f")(é"), where f : k, — Vj, is the least function like this.
(d) A™ € E(n,1)sm,

8Note that further not at every such v the forcing P, will be used. Moreover, only for v’s which the
members of the Prikry sequence for the normal measure of the extender, i.e. for E(n, 1), P, will be used.
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(e) for every m,n < m < w, rng(dom(f™)) C rng(dom(f™)),
(f) rng(dom(f™)) 2 all the ordinals mentioned in p(0) [ n.

Define the direct extension <* in the usual fashion:

r >* q iff r is obtained from ¢ by extending support and by shrinking measure one sets.

Definition 6.7 Let p = (p(0), ((f", A",0") | n < w)),
=@ 0),((f", A" ") I n<w)) € Py say- Set p =" piff

L p(0) 25 7(0),

E(0)
2. for every n < w,

(a) f* 25 f"

E(n 1)

(b) 6" >p(m1) 0",

(c) the canonical projection of A" to ¢’ is a subtree of A'n, i.e. wﬁﬁ”’””A CA.

Let p = (p(0), ((f",A",6") | n < w)) be a pure condition in Py 5,y Suppose that
n<wandne A"
Define p™n the one-element extension of p by . The definition is under the usual lines and as
in [3], only we will move the part p(0) | 72, down to (1), and the part ((f*, A", §") | n’ < 7)
will be restricted and transferred the reflection of (k,, | » < m < w) over k(n), where
k(n) < kg denotes the cardinal which correspond to x; via the connection to the normal
measure of E(n,1). We will replace p(0) \ 7 + 1 over x(n) by the value of the representing
it function over 7. Still, p(0) \ 7 + 1 will be kept above as well.

Let us give a formal definition.

Definition 6.8 Set p™n to be

(), dom(dom((f™) (1))~ (0) \ 70+ 17 (f* "0 U {{kn, "), (67, 1) }) "
((f", A", 6") [0 <n <w)),

where

1. ((),dom(dom((f)(n)))) is a condition in the forcing Py, 5ym Over the level of 7"
with the reflections of the extenders in E(0) and E(1 ) [ 7. The extender E(n,0)

reflects as in the Merimovich extender based Magidor forcing [9].

2. f""n is defined as follows:

its domain is identical to those of f™;
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let n < w and (&, ..., &,) € [dom(dom(f™)]™ and o € dom(f™)(&1, ., &n)-

Set (f"" (&, ..., &) () = (f"(&s -, &) (@), unless n™" is above all elements of the
sequence (fﬁ(fl,. &n))(a). For elements of the sequence (f™(&,...,&,))(a) which are
names, we mean that n""
defines it.

Suppose that n

is above the measurable (or its double successor) which
"" is above every element of (f(&1,...,&,)) ().

We include here also the case when the sequence is empty. This happens, in particular,
if @ = k.

Split into two cases.

(a) If @ = kK, then set (f""n(&,...,&)) () = (n"),

(b) suppose that o # k. Let a be the f(a)—th member of dom(f™)(&1,...,&,)), for
some B(a) < 0", i.e. hdomNEL&))(B(a)) = a.
Consider dom(f™)(n). Define a function g by setting g(74, ..., 7,,) to be the 3(a)—
member of dom(f™) (1) (71, .., 7a), i.e. hmUM €D (3(q))
Add then g to the sequence, i.e. let

("7 n(Ers - &) (@) = (F7 (61, -, €n)) (@)

6.4 General case.

Let oo < § and suppose that for every o’ < a the forcing 73< B is defined.

B)|8<a’)

Define 73 B(8)|B<a)" We proceed as in 6.3.

Assume for simplicity that 6 = w; and n = w.

Definition 6.9 The pure part of P 5 (p)|p<a) COnSists of sequences p = (p(5) | B < a) such
that for every o/ < a, p[ o = (p (5) | B < «) is in the pure part of P 5s)|p<ary-

The above defines P<E(B)\6<a> for a limit .

Deal with a successor case. Suppose that a = o’ + 1.

Then, as in 6.3, p = (P(B) | < o) ((f", A", 0™) | n < w), where

L (p(B) | B <o) € Pips<ar:
2. for every n < w,

(a> fn € P* E(n,a')’
(b) 0" < k1T,
(©) f™ = jman(f7)(07), where f*: k, — Vi, is the least function like this.
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(d) A" € E(n,a)sn,
(e) for every m,n < m < w, rng(dom(f™)) C rng(dom(f™)),

(f) rng(dom(f™)) D all the ordinals mentioned in p(3) [ n, 5 < .

Define the direct extension <* in the usual fashion:
r >* q iff r is obtained from ¢ by extending support and by shrinking measure one sets.

First deal with a limit «.

Definition 6.10 Let p = (5(8) | 8 < a).p' = (/(B) | B < @) € P i) 5-a)-

et p >* p/ iff for eve ! I > T
Set p >* p' iff for every « <oz,p[oz_7,<ﬁ(6)lﬁ<a,>p[oz

Now let us turn to a successor case. Let a = o + 1.

Definition 6.11 Let p = (5(B) | 5 < /)" ((f", A™,0") | n < w),
P=@B) B <o) (f" A" ") | n<w) € P sen- Setp>"piff

L (p(B) | B <) =p W(B)] 8 <),

(E(B)|p<a’)

2. for every n < w,

(a) f"=p, I

(b> on ZE(moc’) 5/71’

(¢) the canonical projection of A™ to ¢’ is a subtree of A™, i.e. ngn’a,)”A C A,

Let p = ((p(B) | B < &), ({(f", A", 6") | n < w)) be a pure condition in P(E(,B)|,B<a/+1>-

Suppose that 7 < w and n € A™.

Define p™n the one-element extension of p by 7. The definition is under the usual lines, only
we will move the part (5(3) | 8 < o) | 7, down to x(n), and the part ((f*, A", §") | n’ < 7)

will be restricted and transferred the reflection of (k,, | n < m < w) over k(n), where

k(n) < Kk denotes the cardinal which correspond to kj via the connection to the normal

measure of F(n,a’). We will replace (p(5) | B < o) \ 7+ 1 by the value of the representing

it function over n. Still, (p(B) | B < a’) \ n + 1 will be kept above as well.

Let us give a formal definition.

Definition 6.12 Set p™n to be

(), dom(dom((f") (1))~ (#(B) | B < &)\ 7 +17
(S U{{Ra, n"r), (07, m 1)~ ((f", A", 8") [ 1 <n < w)),

where
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L. ((),dom(dom((f)(n)))) is a condition in the forcing Py 5, over the level of 5™
with the reflections of the extenders in E(0) and E(1) | 7. The extender E(7,0)

reflects as in the Merimovich extender based Magidor forcing [9].

2. f""n is defined as follows:
its domain is identical to those of f™;
let n < w and (&, ...,&,) € [dom(dom(f™)]™ and a € dom(f™)(&1, ..., &n)-
Set (f""n(&1, .., &) () = (f"(&1y -y &) (@), unless n™°" is above all elements of the
sequence (f™(&1,...,&,)) (). For elements of the sequence (f™(&y, ..., &,))(a) which are

names, we mean that 1"
defines it.

is above the measurable (or its double successor) which

nor

Suppose that ™" is above every element of (f"(&1, ..., &,)) ().
We include here also the case when the sequence is empty. This happens, in particular,
if « = k.

Split into two cases.

(a) If @ = Kk, then set (f"7"n(&,...,&)) () = (n™"),
(b) suppose that o # k. Let o be the S(a)—th member of dom(f™)(&, ...,&)), for

Add then g to the sequence, i.e. let
("0, - &) (a) = (f" (& -, &) (@) g

A one element extension for a limit o < w; is defined similarly by reducing to a smaller
o below a.

Define non-pure members of 77< B(8)8<a) by making finitely many one step extensions.

Our next tusk will be to show that for each a < w; the forcing satisfies the Prikry

condition, and if n < w, then Pz 4 5., | kn satisfies kit—c.c. in V PiE@)i<a))>mn

Lemma 6.13 Let o < wy and n < w. Then (P s 5ca))>0a the part of Pigg)s<qy above

|B<a
Kn 18 closed under the pure extensions ordering <* up to the first cardinal above k, which

changes its cofinality (i.e. can be made arbitrary large below Ky1).

Proof. Suppose that p € (P<E(5)|5<a>)>nn is pure condition and § < K,41. Shrink sets of

measures one in order to be above . Let p’ denotes such extension of p. Then, above p/, we
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will have d—closure of (P z(s)5<a))>rmn> < )
O

Lemma 6.14 Let o < wy. Then the forcing (P(E(5)|5<a>)>nn satisfies the Prikry condition.
Lemma 6.15 The forcing Pz 550y Sotisfies ki T—c.c., for every a < wy.

Proof. Repeats the standard argument for extender based forcings.
O

Lemma 6.16 Let o < w; andn < w. Then the restriction of 73@(5)

P E@)s<ay | fin salisfies Kt —c.c. inside VPE@is<a)>n

B<a) 1O first n cardinals

Proof. Repeat the argument of Lemma 2.2 with obvious adjustments.
O
Proof of Lemma 6.14.
Suppose otherwise.
We proceed by induction on the length of sequences of extenders or its order type, simulta-
neously over different cardinals.

Let a < wjy.

Case 1. n<w, P = P(E(/B)|5<a>“(E(m,a)|mgn): p s a pure condition in P and D C P is
a dense open.

The argument is parallel to those of Lemma 2.1.

Consider a subset D" of P(> n) := P(g(m,8)jm>n,8<a) Which consists of all (> n) € P(> n)
so that there are f*, A* 0* such that

1. ((f*, A*,0%),r(>n)) € P,

2. ({f*, A%,6%),r(>n)) = p,

3. for every 7 € [A*]<,
(1) ((f*,A%,0%),r(>n))"if € D

or

(2) for every p’ >* ((f*, A*,6%),r(>n)), "1 & D.
Moreover, the same conclusion valid for any two such 77,7 of the same length.

9 Adding 7 requires to add a lower part of the condition f*(7), where f* represents now (f*,r(> n)) in
the ultrapower.
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Let us argue that such D’ is dense in P(> n) above 7P(> n), where 7?(> n) denotes the

relevant part of p.

Claim 7 D' is dense in P(> n) above rP(> n).

Proof.
Let s € P(>n),s > (> n).

Define an elementary submodel N, E, A € E as in Lemma 1.11 with obvious adjustments.
Namely, construct by induction an increasing chain of elementary submodels (N¢ | € < k)

of H,, for x large enough, and a sequence (fe | £ < k) of members of PE(TW), such that

L. p7877D7D7D/ eNOu
2. NO 2 Rn,
3. for every &€ < Ky,

(a> ‘N§| = Kn,

(b) "= N¢ C N,

(c) (fel¢ <& €N

(d) fee N{D" € N¢| D" is a dense open subset of P above f?},
(e) f7 <" fo,
(f) o7 € dom(fo(())),

() {9y, | ¢ <& S dom(fe(())),
(h) fe >* fe, for every ¢ < &.

Set N = U, Ne and f* the upper bound of (f¢ | § < k).
Consider {dy, | £ < kn}. Let § be the least code of this set in our fixed wellordering.
Define an ultrafilter E over [{#n, 7, 0fy,...;0fes - | € < Kn} X k)< which is equivalent
(Rudin-Keisler) to E(n, Od){ﬁﬂ,’§f£|£<ﬁn} and is below FE(n,a)s (in the order <gp (n,a) of
E(n,a)).
Set Z € Eiff {(jemq)(n)s £n)s (180 (07), 07), (1B (050)s 050)s -+ B (Ofc)s g )y oo | § <
K} € JB(mm(Z)-
Note that {#,, 7, 05y, s Oy oo | € < K} © N, and 50, {Kn, 07, 6py5 oy Oy e | € < Bin} X Ky C
N. Hence, also, [{fn, 07,65y, ...;0p, o | € < Kn} X k)™ € N. The function (3, [ p < € <
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Kn) = {{Kn,s Bo), (67, B1), (0fy, B2)s s (Ofe s Bare)s - | § < €) witnesses the equivalence between
E(n, ’y){,ﬁn’(;fg‘gQi} and E

Let A € E be a set which projection to 67 is a subset of AP.
Let k < w and {(no, ...,mr_1) € [A]*.
Consider r := p~ (1o, ..., Mk—1). Then r can be written as r., " r, " rs,, where r_, is the part
of r below k,, and, in particular it includes the reflection of E(m, 3)’s which are < F(n, «),
r, is a part over k, and r-, the part above x,,.

We proceed by induction of the length x,, and build increasing <* —sequences
(fe, (> n)e) = ((ggnﬁ, Bg”5> | m > n,p < a) | £ < ko) with each stage inside N and
s <*r(>n)o.

At limit stages union is taken. Let us deal with a successor stage. So, suppose that
(fe,r(>n)e) = ((ggnﬂ,Bglﬁ> | m >n,B <a) €N is constructed.

Let (no,...,mk—1) € [A]¥, be the é—th member of an enumeration of
[[{K0, 07, 0y ey Opcs o | € < Ko} X hig] <1,

Let f = fe,r(>n) =r(>n)e = ((gg”ﬂ, Bgnﬁ> | m >n, B < a). We would like first to deal
with the forcing below k,, which 77 := (1o, ..., nx_1) induces and to use its Prikry property.
Suppose for simplicity that & = 1, so we deal with 7y and the corresponding forcing over
it, i.e. the reflection of P(< n) = Pigim,g)jm<n,B<a)™ (E(n,8)3<a)- Denote such reflection by
P(< n,mo).

There are f, >* f,r(>n), >* r(> n) such that

for every Z in P(< n,np)

there is x > ¥ so that either

(1) E|T<l‘, <f*<770>7T>7T(> n)*> S D)>

or

(2)Va' > 2 f' >* f.9r(>n) > r(> n)VT{, (f, ,,T),r(>n)) ¢ D).

(no)?

Just proceed by induction and use the fact the number of possibilities for x is much less
than the degree of completeness of <*.
This defines a dense open set D(1) in the forcing P(< n,ng) over ny. Apply the induction.
So, for every x there are x, >* x, finitely many coordinates in z, with C},..,C}y sets of
measure one at this coordinates and m, < w minimal such that for every
p1 € [C1]™ s Pk € [CR]™, 27 (p1, ., Pk) € D(mo).
By shrinking (71, ..., C}, if necessary, we can assume that the same conclusion about being in
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D or not holds. Note that if “not in D” conclusion (2) holds, then this will be true already
with z, itself, and so, m, = 0.
Also note that all this lower parts x are in N. Hence, there are such f,,7(> n), in N, by
elementarity.
We pick feir1,7(> n)erq to be such a sequence inside N.

Finally, let f*,7(> n)* be the upper bound of (fe,r(> n)e | £ < k).

Let 77 € [A]<¥. Again, assume for simplicity that 77 is just np.
Consider f*(no). Let x(19) be the part of f*(1) which is a condition in P(< n, ).
Then there are x(n). >* x(no) finitely many coordinates in z, with C1, .., Cy sets of measure
one at this coordinates and m, < w minimal such that for every
p1 € [Ch]™ s Pk € [Ckl™ 27 (P, ., pr) € Do)
Now, use the function 7y — x(19). and extend directly
(f*,r(>n)7) to (f,r(>n)™).

Now we shrink A in order to get the same conclusion (1) or (2) with (f**,r(> n)**).
If it is (1), then r(> n)** € D’. Suppose that it is (2).
Let us argue that then for every 77 € [A*]<¥, for every p' >* ((f**, A*,6*"),r(> n)™),
P g D.
Oterwise, there are 77 € [A*]<¥ and p’ >* ((f*, A*,0%),r(> n)*™*) such that p"~17 € D. But 7
was considered at a stage £ < k of the construction. The existence of p’ implies that already
fex1,7(> n)eqq forced this, which is impossible.
[ of the claim.

Now, we apply the induction and use the Prikry condition for P(> n). There will be
r(> n) >* r?(> n), finitely many coordinates in r(> n) with C}, .., Cy sets of measure one
at this coordinates and m < w such that for every g € [C1]™, ..., pi € [Ck]™,
r(>n)"{(p1, ..., p6) € D'

Next, for every such sequences gy € [C4]™, ..., pr € [Ci]™ let f Y be

Frein)r Aari)s 051, )

witnesses for r(> n)~(pi, ..., ox) € D'. We put them together as in Lemma 1.11.
O of the successor case.
Case 2. P = Pgm,p)m<w,s<a), P 18 a pure condition in P and D C P is a dense open.
Now we do not have the last n. However, the argument of the previous successor case
still can be applied, but rather inductively going through all n’s.
Define by induction an <* —increasing sequence (p, | n < w) of direct extensions of p.
Let n < w. Suppose that for every m < n, p,, was defined. Set p = p,,_1, if n > 0, and
p =p, if n =0. We need to define p,, >* p.

30



Set 'P(> n) = P(E(m,ﬁ)|m>n,,8§a>~
By the choice of the extenders, E(m, ) < E(n,«), for every m < w, < « and for every
m < n, = a. We are specially interested in (E(m,f) | n < m < w,5 < a), i.e. the
extenders which F(n,«) overlaps.
Recall also that if a non-direct extension was made over the coordinate (n + 1,«) (i.e. the
one that corresponds to F(n + 1,a)), then the coordinates ((m, ) | n < m, 5 < «) reflect
down below k,4; and E(n, «) is restricted below k,.; accordingly.

Let (fP(nthe) Ap(ntla) §p.(n+1.0)) he the coordinate (n + 1,a) of p. Pick some 7 €
AP(t1e) - Consider the part of f7("*1:)(r) that represents the reflection of
p 1 {(B,m)|n<m,B < a} tothe level of 7"". Denote it by p(> n, 7). Denote the reflection
of the forcing P(g(m,g)jn<m,p<a) by P(>n,7). Then p(>n,7) € P(>n,7).

Let r(> n) € P(> n),r(>n) >* (p—1) | P(> n). Consider a subset D'(r(> n),7) of
P(> n,7) which consists of all r(> n,7) € P(>n,7),7(>n,7) > p(> n, ) so that there are
f*, A*, 6% such that

2. ((f*, A%, 6"),r(>n,7),r(>n)) > p,

3. for every 7 € [A*]<,
(1) ((f* A*,0*),r(>n,7),r(>n))y" 7€ D
or
(2) for every p’ >* ((f*, A*,6*),r(>n,7),r(>n)), "7 & D.

Moreover, the same conclusion valid for any two such 77,77 of the same length.

Claim 8 There exists r(>n)* € P(>n),r(>n)" >*p [ P(> n) such that D'(r(>n)*,7) is
dense in P(> n,T) above p(> n, ).

Proof. We use the fact that |P(> n,7)| is much less than x,.1, which is a degree of com-
pleteness of the forcing (P(> n),<* ). Enumerate P(> n,7) and build a <* —increasing
sequence conditions there each responsible for a particular member of P(> n, 7).

Let s € P(> n,7) be above #(> n,7) and (> n)™* € P(> n) is an upper bound of
<* —increasing sequence of conditions in P(> n) corresponding predecessors of s in a fixed
enumeration of P(> n, 7).

Proceed as in Claim 7. Only make the following change - at successor stages of the inductive
construction there pick in addition to f. >* f,r(> n,7). >* r(> n,7) in P(> n,7) also
r(>mn), >* r(>n)"* in P(> n) such that
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for every T in P(< n,7,10)

there is x > Z so that either

(1) ATz, (fene), T)s7(> 1, 7)s, v (> n)y) € D),

or

(V2 > aVf' >* f.r(>n, 1) > (> n,7).r(>n) >* r(>n) VT

(2, <f<'m>,T>,T(> n,7),r(>n)") € D).

This process will produce r(> n)* >* r(>n)~* (in P(> n)).

At the final stage of the argument we will take (> n)* to be an upper bound of all such
r(>n)s.

(] of the claim.

Next step would be to do the above for different 7’s. Note that the set of measure one
of the coordinate (n+ 1, ) of (> n)*, given by the claim, may move to a different measure
(or a different place) from those of p.

In order to deal with this, let us pick an elementary submodel M defined as N of Claim 7
but with k, replaced by k,.1. Define Ey and a set Ay € Eyy accordingly. Now, we pick
7’s from Aj; and preform each stage of the construction inside M.

The rest of the argument is straightforward.

Case 3. « is a limit ordinal, n < w, P = Pgm,g)jm<n,p<a), P 15 a pure condition in P
and D C P is a dense open.

If n = 0, then this just an extender based Prikry-Magidor forcing. It satisfies the Prikry
condition by [9].

If n > 1, then we combine Lemma 4.11 of Merimovich [9] with the arguments of Case 1.

A new point here is that given a coordinate (n, ), for some 5 < «, extenders E(m, ), m <
n, < v < a will overlap E(n, $) and such extenders are over cardinals k,, < k.

However, going through possible non-direct extensions over a coordinate (n, 5) we can accu-
mulate the information in the components f of coordinates (m,~),m < n, < v < «, as it
was done before.

Case 4. « is a limit ordinal, P = Pgim.g)m<w,8<a), P 18 a pure condition in P and
D C P is a dense open.

Here we just combine the arguments of Cases 2 and 3 in a straightforward fashion.
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7 Applications to the Shelah Weak Hypothesis.

The Shelah weak hypothesis was introduced by S. Shelah in [11], see also [12].
For uncountable cofinality it states that

for every X the set {k < X\ | w < cof(k) < k,pp(k) > A} is finite.
It was shown in [6] that any finite size is realizable.

For countable cofinality it states that

for every X the set {k < X\ | w = cof(k) < k,pp(k) > A} is al most countable.
It was shown in [6] that any finite size is realizable, then in [5] that this set can be countable
and, finally, in [4], that it can have size N;.

Here we would like to analyze the cardinal arithmetic of the forcing extension by
P = Pig(ap)a<ns<s) and argue that the set {r, | a < n} witnesses the failure of the
hypothesis.

Let G be a generic subset of P.
By Lemmas 6.13, 6.14, 6.15,6.16, all cardinals are preserved in V[G]. Clearly, each k, changes
its cofinality to ¢, provided ¢ is a regular cardinal.
We would like to argue that, in V[G], pp(ka) > A, for every o < .

Given p € P. Denote by np(p) the set of all coordinates a of p such that for some
B < dpla,p) € Pg(aﬁ), i.e. a non-pure extension was made at the coordinate a. Denote
the largest (for ) g like this by f,.
Given ¢ < w, denote by np(p)=* the set of all coordinates  in np(p) such that 3, > .
The meaning behind is that if o € np(p)=*, then, for every o/ < a and every 8 < { the
extender E(o, 8) over the coordinate o’ shrinks to E(a’, 8 | hS" (p(, £)(Ka)),
where hf‘\"g : Ko — Kq 1s the fixed function such that jE(a,g)(hf’g)(/ia) =\

Assume that 7 is a limit ordinal.

Set Ko = Ugq kg, for every a <.

Fix a <.
Let 7 € [Ry, A). Define in V]G] a function ¢, : 6 — k, as follows.
For every { < ¢, find p € G such that a € np(p)=* and if a; < ... < qy is the increasing

enumeration of np(p)=*\ a (i.e. a = ay), then the following hold:

1. 7 € dom(p(ay, {)).

Set 1, = 7.

2. For every i,1 <i<k—1, 7, € dom(p(a;, 1)),

where T, = p(ai+1, g)(Ti+1).
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Set t,(¢) = p(a, ) ().

Lemma 7.1 In V|G|, if ,p € [Ry, ) and T < p, then there is (* < w such that for every
00 <0<, t.(0) <t,(0).

Proof. Work in V. Let p € P be any condition and 7, p € [k, A) ,7 < p.

Let £* be a coordinate above every [y, with 6 € np(p). Then p(v,¢) = (f,, A ,) is un-
restricted condition, i.e. with A? , € (E(y,{))(dom(f],)), for every v < n and for every
00 <l <.

Extend p to p* by adding 7, p to all dom( 5,4) with a <y <npand £ < /¢ <94.

Now, by the definition of the order on P, for every ¢* < ¢ < § and every ¢ > p* such that ¢
defines ¢-(¢) and t,(¢), we will have ¢, (¢) < t,(¢).

So,

prIE (VO <0< w— ,(0) < L,(0).

O
It is possible to say a bit more. Namely, let in V[G], for every ¢ < w, A, be the reflection

of A below k,, using, E(kq.,¥) and the representing function hi"g, i.e. for some p € G with
pla, ) = fh ) Aav = R (7 ,(Ka)). Then the following holds:

a,l
Lemma 7.2 The sequence (t. | T € [Fy, \)) is a scale in ([], 5 Ao, <gva ).

The desired result follows now:

Theorem 7.3 In V[G], for every o < n, pp(ka) > A
The meaning is that it is possible to arrange arbitrary long failures of the Shelah Weak
Hypothesis in any given cofinality.

It turns out that in V[G], pp(k) > kT for many «’s different from r,’s, as will be shown
below. However, if § is a regular cardinal above, say Ny and cof(n) > Ry, then there will be

no cardinals of countable cofinality below A with pp above .

Proposition 7.4 Suppose that § is a reqular cardinal and cof(n) > 6. Then in V|G|, for
every reqular 0" < 9, for every cardinal k < X of cofinality &', pp(k) < A.

Proof. Let k be a such cardinal. Then it changed cofinality in V[G] or is a limit of cardinals
that changed their cofinality. In particular x < &, = |J,, < Fa-
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Suppose for simplicity that cof(k) = w and § > w.
Pick & < n to be the least such that k < k5.
Let a C k be a countable unbounded subset of x which consists of regular cardinals.

The next claim will complete the argument.

Claim 9 max(pcf(a)) < Kgi1.

Proof. The point is that by the Prikry condition arguments, a depends only on countably
many extenders. Namely, there are at most countable sets b C @ and ¢ C ¢, such that a is
reconstructible from Magidor sequences for extenders (E(«, ) | a € b, € ¢). Pick some
T, sup(c) < 7 < 0. Then, by the definition of the order < on P, the element of the Magidor
sequence for the normal measure of E(a + 1,7) will bound pcf(a), since all the extenders
(E(a, B) | a € b, B € ¢) relevant to a, will be restricted below this element.
U of the claim.
O

Assume that ¢ is a regular cardinal.
We denote &o = Uz, kg, for every limit a < 7. Let us clarify the situation with (%, | @ <

n a limit ordinal ).

Proposition 7.5 Let a < n be a limit ordinal of cofinality less than .
Then, in V|G], i < pp(Fa) < Ka-

Proof. The argument combines the previous observation (7.4)(in order to bound pp(&,.))
with those of [3](Lemma 2.12), in order to argue that pp(ks) > F}.
0

Proposition 7.6 Let a < n be a limit ordinal of cofinality > .

Then, in V|G|, pp(Ra) > .

In particular, if n = Vg, then this produces a set of cardinality Ng which violates the Shelah
Weak Hypothesis for every cofinality < Ng.

Proof. Fix a cofinal in a sequence (o, | € < cof(a)).

Set a. = {Aa.s | £ < 0}, for every € < cof(a), where, as above, A,_, is the reflection of
A below kg, using, E(fq,,?) and the representing function h%", i.e. for some p € G with
plac, ) = fL s Aace = WS (f° (Ka.)). By Lemma 7.2, tcf([] a., <gea) = A

Qe,
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Set a = Ue<cof(o¢) Cle.
Define the ideal J to be the set

{z Ca| ey < cof(a)Ve € [gg, cof(a))(z Na. € JX)}.

Now, as in Lemma 7.2, tcf([] a, <;) = A.
O

Note that the ideals involved in computing pp()’s here are 0 —additive. S. Shelah pointed
out that by [13], Theorem 1.1, we cannot hope to get more additivity.

Let us examine what exactly happen in the present construction in this respect.

Proposition 7.7 Let a < n be a limit ordinal of cofinality > 0. Let b be a set of reqular
cardinals of cardinality cof(«) unbounded in R,. Suppose that J 2 J is a 6T—complete
ideal on b.

Then, in V|G|, if tcf(J] b, <;) exists, then tcf(]] b, <;) < Kaq.

Proof. Split b into sets (be | £ < ), where be consists of all members of b which are not
members of the Prikry-Magidor sequences of GG, or are the members of such sequences of
order < £. Then, as in Proposition 7.4, max(pcf(be)) < ko, for every € < 0.

Now, if tcf([[ b, <) > Ka, then be € J, for every £ < 0. However, the §*—completeness of
J implies then that b = U§<C0f(a) be € J, which is impossible.

Contradiction.

]
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