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Abstract

Extender based Prikry-Magidor forcing for overlapping extenders is introduced. As
an application, models with strong forms of negations of the Shelah Weak Hypothesis
for various cofinalities are constructed.

1 An extender which overlaps a measure.

Assume GCH. Let κ < λ be measurable cardinals. Fix a normal measure U(λ) over λ.

Suppose that E is a (κ, λ++)−extender. Let jE : V → ME ≃ Ult(V,E) be the corresponding

embedding. Then κ = crit(E), ME ⊇ Hλ++ . Assume that jE(κ) > λ++, κME ⊆ ME.
1

Let x ∈ Hλ++ . Denote by Ex the measure on Vκ generated by x, i.e.

Ex = {X ⊆ Vκ | x ∈ jE(X)}.

We would like to force using E and U(λ) in order to change cofinality of κ to ω simulta-

neously blowing up its power above λ and changing the cofinality of λ to ω.

It is possible to achieve this either as in [6] using a preparation Prikry forcing below κ or as

in [5] using a triangle type of construction.

Here we present an other more direct method. In particular, we will construct a generic

extension in which κ is a strong limit, only ω−many cardinals below it change cofinality and

2κ > λ+.

1If one likes to add only λ+−many Prikry sequences, then what is need here isME ⊇ Hλ+ and U(λ) ∈ ME .
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Assume for simplicity that U(λ) is represented by the normal measure of E, i.e. U(λ) =

jE(s)(κ) for some s : κ → Vκ. Assume also that s(α) is a normal ultrafilter U(α) over λα,

for each α < κ.

Carmi Marimovich in [8, 9] have found a very elegant version of Extender Based Prikry

forcing. We will use here a variation of it adapted to the present situation.

Let us state briefly few basic definitions.

Let d ⊆ λ++ \ κ of cardinality at most κ. Define a κ−ultrafilter E(d) on [d × κ]<κ as

follows:

X ∈ E(d) ⇔ {⟨jE(κ)(α), α⟩ | α ∈ d} ∈ jE(X).

Actually, E(d) concentrates on a smaller set called in [9] by OB(d).

The advantage of using E(d) is that once A is typical set of E(d)−measure one and a ∈ A,

then a is of the form ⟨⟨αξ, βξ⟩ | ξ < ρ⟩, where

1. ρ < κ,

2. dom(a) = {αξ | ξ < ρ} ⊆ d,

3. βξ < κ, for every ξ < ρ.

So, already a measure one set provides an explicit connection between elements of Prikry

sequences and the measures to which they belong.

Note that E(d) is actually equivalent to to the ultrafilter Ed over Vκ defined by

Y ∈ Ed ⇔ d ∈ jE(Y ).

Thus, clearly, E(d) is Rudin-Kiesler above Ed, just project to the second coordinate. For

the opposite direction note Ult(V,Ed) is closed under κ−sequences of ordinals, hence j”Ed
d

is there. Then using it, we can define E(d) easily.

Definition 1.1 Suppose now that B ∈ U(λ) and F : [B]<ω → Pκ+(λ++ \ κ). We call F a

relevant function iff

1. κ ∈ F (⟨⟩),

2. for every ⟨ξ1, ..., ξn⟩ ∈ [B]n, {ξ1, ..., ξn} ⊆ F (ξ1, ..., ξn),

3. for every ν⃗1, ν⃗2 in [B]<ω, if ν⃗1 extends ν⃗2, then F (ν⃗1) ⊇ F (ν⃗2),
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4. if ν⃗1, ν⃗2 in [B]<ω of the same length, then otp(F (ν⃗1)) = otp(F (ν⃗2))

5. if ν⃗1, ν⃗2 in [B]<ω of the same length, then

EF (ν⃗1) = EF (ν⃗2).

Note that the number of ultrafilters over Vκ is small relatively to λ, and so this can be

easily arranged on U−measure one sets.

Note the size of a relevant function is λ and so it belongs to Hλ++ . If its values are in

λ+, then the function will belong to Hλ+ .

Definition 1.2 Let F,G be relevant functions. Set F ≥∗ G iff

1. dom(F ) ⊆ dom(G),

2. for every ⟨ξ1, ..., ξn⟩ ∈ dom(F ), F (ξ1, ..., ξn) ⊇ G(ξ1, ..., ξn).

Consider M = Ult(V,E) and j = jE : V → M the corresponding elementary embedding.

Then, F ∈ M . Pick δF < λ++ and F̃ : κ → Vκ such that jE(F̃ )(δF ) = F .

We will fix this notation throughout, i.e. δF and F̃ for a given relevant function F . We fix

some wellordering ≺ of Vκ and will use jE(≺). We have Vλ+2 = (Vλ+2)
ME , so jE(≺) well

orders Vλ+2.

Let Z ⊆ λ++ be a set of cardinality κ. Denote by hZ the jE(≺)−least one to one function

from |Z| onto Z.

A typical use of this will be as follows.

Let β ∈ F (⟨⟩). Then β <E δF . We have |F (⟨⟩)| ≤ κ. Hence there is α < |F (⟨⟩)| such that

β = hF (⟨⟩)(α).

Let ν be in a typical EδF set of measure one. Suppose that νnor, its canonical projection to

the (least) normal measure of E, is bigger than α.

Let h
(F̃ (ν))(⟨⟩)
νnor be ≺ −least bijection between νnor and (F̃ (ν))(⟨⟩). Then h

(F̃ (ν))(⟨⟩)
νnor (α) will

correspond to β.

Turn now to the definition of the forcing.

Following [8, 9], define first P∗
E.

Definition 1.3 Let P∗
E be the set of all functions f such that

1. dom(f) ⊆ [λ]<ω × Pκ+(λ++ \ κ) which is a relevant function,
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2. for every ⟨ξ1, ..., ξn⟩ ∈ dom(dom(f)) and for every α ∈ (dom(f))(ξ1, ..., ξn)),

(f(ξ1, ..., ξn))(α) = ⟨(f(ξ1, ..., ξn))(α)0, ..., (f(ξ1, ..., ξn))(α)k−1⟩ is a finite sequence of

elements of Vκ, for some k < ω, which canonical projections to the normal measure

form an increasing sequence and such that for every i < k,

(a) (f(ξ1, ..., ξn))(α)i is an ordinal

or

(b) for some ν < κ and a measurable cardinal λν , ν < λν < κ, a normal ultrafilter

U(λν) over λν and a set Bλν ∈ U(λν), (f(ξ1, ..., ξn))(α)i : [Bλν ]
n → λ++

ν . 2

Require, in addition, that if α′ is an other member of (dom(f))(ξ1, ..., ξn)) and

some of the elements of (f(ξ1, ..., ξn))(α
′) has the same ν, then the set Bλν is also

the same.

3. For every ⟨ξ1, ..., ξn⟩, ⟨ξ′1, ..., ξ′n⟩ ∈ [λ]n ∩ dom(dom(f)),

(a) otp((dom(f)(ξ1, ..., ξn))) = otp((dom(f)(ξ′1, ..., ξ
′
n))),

(b) for every β < otp((dom(f)(ξ1, ..., ξn))), if α, α
′ are the β−th members of

dom(f)(ξ1, ..., ξn) and dom(f)(ξ′1, ..., ξ
′
n) respectively,

then (f(ξ1, ..., ξn))(α) = (f(ξ′1, ..., ξ
′
n))(α

′).

4. if a sequence ξ⃗ ∈ [λ]m extends a sequence ξ⃗′ ∈ [λ]n and α ∈ (dom(f))(ξ⃗)) (and hence,

α ∈ (dom(f))(ξ⃗′))), then f(ξ⃗)(α) = f(ξ⃗′)(α).

The intuition behind this definition is that f(⟨⟩) acts exactly as in [8, 9]. In addition, we

have here λ that is supposed to change its cofinality to ω. So, ⟨ξ1, ..., ξn⟩ ∈ [λ]n is a possible

initial segment of the Prikry sequence of λ and f(ξ1, ..., ξn) provides the correspondence

between its domain, which is a subset of λ++ \ κ of cardinality ≤ κ, and finite sequences in

Vκ, again as in [8, 9].

Definition 1.4 Let f, g be in P∗
E. Set f ≥∗ g iff dom(f) ≥∗ dom(g), as relevant functions

and for every n < ω,⟨ξ1, ..., ξn⟩ ∈ dom(dom(f)), α ∈ dom(g)(ξ1, ..., ξn), f(ξ1, ..., ξn)(α) =

g(ξ1, ..., ξn)(α).

Lemma 1.5 ⟨P∗
E,≤∗ ⟩ is κ+−closed.

2Note that further not every such λν will change its cofinality. Moreover, only λν ’s with ν’s which the
members of the Prikry sequence for the normal measure of the extender, i.e. for Eκ, will change their
cofinality.
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Proof. Let ⟨fγ | γ < κ⟩ be a ≤∗ −increasing sequence of elements of P∗
E.

For every γ < κ, let dom(dom(fγ)) = [Bγ]
<ω, for some Bγ ∈ U(λ). Set B =

∩
γ<κBγ. Then

B ∈ U(λ), since κ < λ.

Define f ∈ P∗
E. Set dom(dom(f)) = [B]<ω. Now, for every ⟨ξ1, ..., ξn⟩ ∈ dom(dom(f)), let

dom(f(ξ1, ..., ξn)) =
∪

γ<κ dom(fγ(ξ1, ..., ξn)). Finally, if α ∈ dom(f(ξ1, ..., ξn)), then pick

γ < κ such that α ∈ dom(fγ(ξ1, ..., ξn)) and set f(ξ1, ..., ξn)(α) = fγ(ξ1, ..., ξn)(α).

Clearly, f ∈ P∗
E and f ≥∗ fγ, for every γ < κ.

�
Turn now to the definition of our forcing.

Define first conditions with empty stems P0.

Definition 1.6 The set P0 consists of pairs ⟨⟨f,A, δ⟩, ⟨⟨⟩, B⟩⟩ such that

1. ⟨⟨⟩, B⟩ is a condition in the Prikry forcing with U(λ),

2. f ∈ P∗
E,

3. dom(dom(f)) = [B]<ω,

4. (f(⟨⟩))(κ) = ⟨⟩,

5. δ < λ++,

6. f = jE(f̃)(δ), where f̃ : κ → Vκ is the least function like this.3

7. A ∈ Eδ or, alternatively, A is an ω−tree with splittings in Eδ.

Define the direct extension ≤∗ on P0 in the usual fashion by extending support and by

shrinking measure one sets.

Definition 1.7 Let p = ⟨⟨f, A, δ⟩, ⟨⟨⟩, B⟩⟩,
p′ = ⟨⟨f ′, A′, δ′⟩, ⟨⟨⟩, B′⟩⟩ ∈ P0. Set p ≥∗ p′ iff

1. B ⊆ B′,

2. f ≥∗ f ′,

3. δ ≥E δ′,

4. the canonical projection of A to δ′ is a subtree of A′, i.e. πδδ′
′′A ⊆ A′.

3δ is essentially the maximal coordinate of the condition.
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Turn now to one element extensions of members of P0.

Definition 1.8 Let p = ⟨⟨f, A, δ⟩, ⟨⟨⟩, B⟩⟩ ∈ P0 and η ∈ A or at the first level of A, if we

view A as a tree. Define the extension of p by η, p⌢η as follows.

Set p⌢η to be ⟨⟨⟩, dom(dom((f̃)(η)))⟩⌢⟨f⌢η, ⟨κ, ηnor⟩, ⟨δ, η⟩, A⟨η⟩⟩, ⟨⟨⟩, B⟩⟩,
where

1. ⟨⟨⟩, dom(dom((f̃)(η)))⟩ is a condition in the Prikry forcing over ληnor with U(ληnor).

Note that dom(dom((jE(f̃)(δf ))) = B.

2. A⟨η⟩ is the tree A above ⟨η⟩ ( or A \ η if working with sets),

3. f⌢η is defined as follows:

its domain is identical to those of f ;

let n < ω and ⟨ξ1, ..., ξn⟩ ∈ [B]n and α ∈ dom(f)(ξ1, ..., ξn).

Set (f⌢η(ξ1, ..., ξn))(α) = (f(ξ1, ..., ξn))(α), unless ηnor is above all elements of the

sequence (f(ξ1, ..., ξn))(α). For elements of the sequence (f(ξ1, ..., ξn))(α) which are

names, we mean that ηnor is above the measurable (or its double successor) which

defines it.

Suppose that ηnor is above every element of (f(ξ1, ..., ξn))(α).

We include here also the case when the sequence is empty. This happens, in particular,

if α = κ.

Split into two cases.

(a) If α = κ, then set (f⌢η(ξ1, ..., ξn))(α) = ⟨ηnor⟩,

(b) suppose that α ̸= κ. Let α be the β(α)−th member of dom(f)(ξ1, ..., ξn)), for

some β(α) < ηnor, i.e. hdom(f)(ξ1,...,ξn))(β(α)) = α.

Consider dom(f̃)(η) : [B(η)]<ω → P(ηnor)+(λ(η
nor)++).

Define g : [B(η)]n → λ(ηnor)++ by setting g(τ1, ..., τn) to be the β(α)−th member

of dom(f̃)(η)(τ1, ..., τn), i.e. h
dom(f)(ξ1,...,ξn))
ηnor (β(α)).

Add then g to the sequence, i.e. let

(f⌢η(ξ1, ..., ξn))(α) = (f(ξ1, ..., ξn))(α)
⌢g.

An additional way to extend conditions is to extend its Prikry parts. Start first over λ.

Definition 1.9 p = ⟨⟨f, A, δf⟩, ⟨⟨⟩, B⟩⟩ ∈ P0 and ⟨ξ1, ..., ξm⟩ ∈ [B]m. Define the extension

of p by ⟨ξ1, ..., ξm⟩, p⌢⟨ξ1, ..., ξm⟩ as follows.
Set p⌢⟨ξ1, ..., ξm⟩ to be ⟨⟨f⟨ξ1,...,ξm⟩A

′, δf⟨ξ1,...,ξm⟩⟩, ⟨⟨ξ1, ..., ξm⟩, B \ ξm + 1⟩⟩, where
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1. f⟨ξ1,...,ξm⟩ is the obvious restriction of f to extensions of the sequence ⟨ξ1, ..., ξm⟩ inside
B.

2. A′ is the pre-image of A under the canonical projection πδf⟨ξ1,...,ξm⟩ ,δf
of Eδf⟨ξ1,...,ξm⟩

onto

Eδf .

Note that ξi’s need not be ≤E δf . Moreover, most of ξ’s mod U(λ) are not below δf .

However, almost every Eξ mod U(λ) is Rudin-Keisler below Eδf , since f = jE(f̃)(δf ).

Let us add such extensions to P0.

Similar define extension in Prikry parts below κ.

Definition 1.10 Let q = ⟨⟨⟩, dom((dom(f̃))(η)⟩⌢⟨f, A⟨η⟩, δ⟩, ⟨⟨b⟩, B⟩⟩ ∈ P1. Suppose that

x ∈ [dom((dom(f̃))(η)]<ω. Then we put

q⌢x = ⟨⟨x⟩, dom((dom(f̃))(η)⟩⌢⟨f, A⟨η⟩, δ⟩, ⟨⟨b⟩, B⟩⟩ into P1, as well.

Let us start with the Prikry condition.

The next lemma is an analog of 3.12 from [8].

Lemma 1.11 Let p = ⟨⟨fp, Ap, δp⟩, ⟨⟨⟩, Bp⟩⟩ ∈ P and D ⊆ P be a dense open. Then there

are p∗ ≥∗ p and n < ω such that p∗⌢ν⃗⌢t⃗⌢x⃗ ∈ D,

for every ν⃗ = ⟨ν0, ..., νn−1⟩ ∈ [Ap∗ ]n, t⃗ ∈ [Bp∗ ]n, x⃗ = ⟨x⃗k | k < n⟩ such that for every k < n,

x⃗k ∈ [Bp∗

k ]n, where Bp∗

k = dom(f̃ ∗)(νk), i.e. the set of measure one corresponding to Bp∗ at

the level k.

Proof. Suppose otherwise.

Proceed as in 3.12 of [8]. Construct by induction an increasing chain of elementary submodels

⟨Nξ | ξ < κ⟩ of Hχ, for χ large enough, and a sequence ⟨fξ | ξ < κ⟩ of members of P∗
E, such

that

1. p,PE, D ∈ N0,

2. N0 ⊇ κ,

3. for every ξ < κ,

(a) |Nξ| = κ,

(b) κ>Nξ ⊆ Nξ,

(c) ⟨fζ | ζ < ξ⟩ ∈ Nξ,
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(d) fξ ∈
∩
{D′ ∈ Nξ | D′ is a dense open subset of PE above fp},

(e) fp ≤∗ f0,

(f) δp ∈ dom(f0(⟨⟩)),

(g) {δfζ | ζ < ξ} ⊆ dom(fξ(⟨⟩)),

(h) fξ ≥∗ fζ , for every ζ < ξ.

Set N =
∪

ξ<κNξ and f ∗ the upper bound of ⟨fξ | ξ < κ⟩.
Consider {δfξ | ξ < κ}. Let δ be the least code of this set in our fixed wellordering.

Define an ultrafilter Ē over [{κ, δp, δf0 , ..., δfξ , ... | ξ < κ} × κ]<κ which is equivalent (Rudin-

Keisler) to E{κ,δfξ |ξ<κ} and is below Eδ (in the order <E of E).

Set Z ∈ Ē iff {(jE(κ), κ), (jE(δp), δp), (jE(δf0), δf0), ..., jE(δfξ), δfξ), ... | ξ < κ} ∈ jE(Z).

Note that {κ, δp, δf0 , ..., δfξ , ... | ξ < κ} ⊆ N , and so, {κ, δp, δf0 , ..., δfξ , ... | ξ < κ} × κ ⊆ N .

Hence, also, [{κ, δp, δf0 , ..., δfξ , ... | ξ < κ} × κ]<κ ⊆ N . The function ⟨βγ | γ < ϵ <

κ⟩ 7→ ⟨⟨κ, β0⟩, ⟨δp, β1⟩, ⟨δf0 , β2⟩, ..., ⟨δfξ , β2+ξ⟩, ... | ξ < ϵ⟩ witnesses the equivalence between

E{κ,δfξ |ξ<κ} and Ē.

Let us define an additional ultrafilter ¯̄E in order to take care of Prikry forcings below κ.

It will concentrate on [{κ, δp, δf0 , ..., δfξ , ... | ξ < κ} × κ]<κ × κ.

Set Y ∈ ¯̄E iff {(jE(κ), κ), (jE(δp), δp), (jE(δf0), δf0), ..., jE(δfξ), δfξ), ... | ξ < κ} ∈ jE(Y � 1)

and jE(Y )⟨(jE(κ),κ),(jE(δp),δp),(jE(δf0 ),δf0 ),...,jE(δfξ ),δfξ ),...|ξ<κ⟩ ∈ U(λ), where

Y � 1 = {y | ∃α < κ((y, α) ∈ Y )} and if ν⃗ ∈ Y � 1, then Yν⃗ = {α < κ | (ν⃗, α) ∈ Y }.
We will use closely related ultrafilters ¯̄En, for n, 1 ≤ n < ω over [{κ, δp, δf0 , ..., δfξ , ... |

ξ < κ} × κ]<κ × [κ]n.4

Set Y ∈ ¯̄En iff {(jE(κ), κ), (jE(δp), δp), (jE(δf0), δf0), ..., jE(δfξ), δfξ), ... | ξ < κ} ∈ jE(Y � 1)
and jE(Y )⟨(jE(κ),κ),(jE(δp),δp),(jE(δf0 ),δf0 ),...,jE(δfξ ),δfξ ),...|ξ<κ⟩ ∈ U(λ)n.

Let A ∈ Ē be a set which projection to δp is a subset of Ap.

For each k < ω and

⟨⟨η0, x⃗0⟩, ..., ⟨ηk−1, x⃗k−1⟩⟩ ∈ [[{κ, δp, δf0 , ..., δfξ , ... | ξ < κ} × κ]<κ × [κ]k]k

such that ⟨η0, ..., ηk−1⟩ ∈ [A]k, let

D⟨⟨η0,x⃗0⟩,...,⟨ηk−1,x⃗k−1⟩⟩ be the set of all f ≥∗ fp such that either

(1) ∃T∃B ⊆ Bp∃C0 ⊆ dom(dom((f̃p)(η0))), ..., Ck−1 ⊆ dom(dom((f̃p)(ηk−1)))

(⟨⟨x⃗0, C0⟩, ..., ⟨x⃗k−1, Ck−1⟩⟩, ⟨f⟨η0,...,ηk−1⟩, T, ⟨⟨⟩, B⟩⟩ ∈ D)

4An alternative way to proceed is do deal only with Ē. This will be explored further in a more general
situation.
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or

(2)∀g ≥∗ f∀T∀B ⊆ Bp∀C0 ⊆ dom(dom((f̃p)(η0))), ..., Ck−1 ⊆ dom(dom((f̃p)(ηk−1)))

(⟨⟨x⃗0, C0⟩, ..., ⟨x⃗k−1, Ck−1⟩⟩, ⟨⟨g⟨η0,...,ηk−1⟩, T, ⟨⟨⟩, B⟩⟩ ̸∈ D).

Such defined D⟨⟨η0,x⃗0⟩,...,⟨ηk−1,x⃗k−1⟩⟩ is obviously dense in P ∗
E above fp. Then, for each

⟨⟨η0, x⃗0⟩, ..., ⟨ηk−1, x⃗k−1⟩⟩ ∈ [[{κ, δp, δf0 , ..., δfξ , ... | ξ < κ} × κ]<κ × [κ]k]k with ⟨η0, ..., ηk−1⟩ ∈
[A]k, f ∗ ∈ D⟨⟨η0,x⃗0⟩,...,⟨ηk−1,x⃗k−1⟩⟩.

If for some n < ω, for a set of ¯̄En
n−measure one the possibility (1) occurs, then we get a

contradiction to our initial assumption.

So, suppose that for every n < ω, there is a set Yn ∈ ¯̄En
n− on which the possibility (2)

occurs.

Let us construct a condition in P which is based on f ∗ and Yn’s.

We will use the following observations.

Claim 1 Suppose that Y ∈ ¯̄E. Define a function g : Y � 1 → Vκ by setting g(η⃗) = Yη⃗.

Then jE(g)({κ, δp, δf0 , ..., δfξ , ... | ξ < κ}) ∈ U(λ).

Proof. Follows by the definition of ¯̄E.

� of the claim.

Claim 2 Suppose that Y ∈ ¯̄E2. Let Z = {(z1, z2) | ∃β1, β2((z1, β1, z2, β2) ∈ Y )}. Then

there is Y ∗ ∈ Ē such that Z ⊇ [Y ∗]2.

Proof. Clear.

� of the claim.

Claim 3 Suppose that Y ∈ ¯̄E2, then there is Y ′ ⊆ Y, Y ′ ∈ ¯̄E2 such that for some Z ∈ Ē

and a function g : Z → Vκ the following hold:

1. Y ′
1,3 = [Z]2, where Y ′

1,3 is the projection of Y ′ to the first and third coordinate, i.e.

Y ′
1,3 = {(z1, z2) | ∃β1, β2((z1, β1, z2, β2) ∈ Y ′)}.

2. For every (z1, β1, z2) ∈ Y ′
1,2,3, Y

′
(z1,β1,z2)

= g(z2), where Y ′
1,2,3 is the projection of Y ′ to

the first three coordinates.
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Proof. First we pick Y ∗ by the previous claim. Let (z1, β1, z2) ∈ Y1,2,3 with (z1, z2) ∈ [Y ∗]2.

We have then that Y(z1,β1,z2) ∈ U(λznor
2

), where znor2 is the first element of z2, i.e. one

that corresponds to the normal measure Eκ. The ultrafilter U(λznor
2

) is λznor
2

−complete, so

Y (z2) :=
∩
{Y(z′1,β

′
1,z2)

| (z′1, β′
1, z2) ∈ Y1,2,3} ∈ U(λznor

2
).

Set g(z2) = Y (z2).

� of the claim.

The analogues statement holds for every n, 1 ≤ n < ω with a similar proof.

Claim 4 Let n, 1 ≤ n < ω. Suppose that Y ∈ ¯̄E2n, then there is Y ′ ⊆ Y, Y ′ ∈ ¯̄E2n such

that for some Z ∈ Ē and a function g : Z → Vκ the following hold:

1. Y ′
1,3,...,2n−1 = [Z]n, where Y ′

1,3,...,2n−1 is the projection of Y ′ to its odd coordinates.

2. For every (z1, β1, z2, ..., zk) ∈ Y ′
1,2,3,...,k, Y ′

(z1,β1,z2,...,zk)
= g(zk), where Y ′

1,2,3,...,k is the

projection of Y ′ to the first k−coordinates.

Now, for each n, 1 ≤ n < ω we apply the claims to Yn ∈ ¯̄En
n and find Zn ∈ Ē and

gn : Zn → Vκ. Let Z∗ =
∩

1≤n<ω Zn. Set Bn = jE(gn)({κ, δp, δf0 , ..., δfξ , ... | ξ < κ}). Then

each Bn is in U(λ). Set B∗ = Bp ∩
∩

1≤n<ω Bn.

Now, based on f ∗, Z∗ and B∗ we form a condition in P in the obvious fashion.

Let p∗ = ⟨⟨f ∗∗, A∗, δ∗⟩, ⟨⟨⟩, B∗⟩⟩ ≥∗ p, where A∗ is contained in the pre-image of Z∗ and f ∗∗

extends f ∗. Further let us abuse the notation and denote f ∗∗ still by f ∗.

Claim 5 Suppose that q ≥ p∗ and the component of q over λ still have empty sequence, i.e.

it is of the form ⟨⟨⟩, Bq⟩. Then q ̸∈ D.

Proof. Suppose otherwise. Then, for some k < ω and

⟨⟨η0, x⃗0⟩, ..., ⟨ηk−1, x⃗k−1⟩⟩ ∈ [[{κ, δp, δf0 , ..., δfξ , ... | ξ < κ} × κ]<κ × [κ]k]k

with ⟨η0, ..., ηk−1⟩ ∈ [A]k,

f q is a ≤∗ −extension of some f ≤∗ f ∗, f ∈ D⟨⟨η0,x⃗0⟩,...,⟨ηk−1,x⃗k−1⟩⟩∩N . But then, the possibility

(2) must occur for f . This means that q cannot be in D. Contradiction.

� of the claim.

Now, we repeat the process above with the empty sequence over λ replaced by any

b⃗ ∈ [Bp]<ω.

Let p⟨⟩ = p∗ = ⟨⟨f ∗, A∗, δ∗⟩, ⟨⟨⟩, Bp⟩⟩. Denote by p⃗b = ⟨⟨f⃗b, Ab⃗, δ⃗b⟩, ⟨⃗b, Bb⃗⟩⟩ obtained as p∗,

but with ⟨⃗b, Bb⃗⟩ instead of ⟨⟨⟩, B⟩. Arrange also that if b⃗ extends b⃗′, then ⟨f⃗b, Ab⃗, δ⃗b⟩ ≥∗

⟨f⃗b′ , Ab⃗′ , δ⃗b′⟩.

10



Shrink B if necessary such that for every n < ω, if b⃗, b⃗′ ∈ [B]n, then

1. p⃗b, p⃗b′ give the same conclusion about being in D,

2. Eδ⃗
b
= Eδ⃗

b′
,

3. Ab⃗ = Ab⃗′ .

Denote the constant values of the measures by E(n) and the corresponding sets of measures

one by A(n), for every n < ω.

Consider F = ⟨p⃗b | b⃗ ∈ [B]<ω⟩. It is an element of Hλ++ . Pick F̃ : κ → Vκ and δ < λ++

such that jE(F̃ )(δ) = F .

Deal with n = 1. Let ξ ∈ B.

Consider a simpler (but typical) case when δ⟨ξ⟩ = δξ is just ξ.

We have then that for every ξ ∈ B, ξ ∈ jE(A(1)), since A(1) ∈ Eξ. So, B ⊆ jE(A(1))∩λ.

In particular, jE(A(1)) ∩ λ ∈ U(λ).

Let jδ : V → Mδ ≃ Ult(V,Eδ) be the canonical embedding and kδ : Mδ → ME be defined

as follows: kδ(jδ(g)([id]Eδ
)) = jE(g)(δ). By the choice of δ, B,A(1) etc. are in the range of

kδ.

Denote Bδ, A(1)δ the pre-images. Then, using the commutativity of the corresponding

diagrams, Bδ ⊆ jEδ
(A(1)) ∩ λEδ

and jEδ
(A(1)) ∩ λEδ

∈ U(λδ). Hence, the set

A∗(1) = {η < κ | Bη ⊆ A(1) ∩ λη ∈ U(λη)}

is in Eδ.

Such defined A∗(1) will take care of compatibility with members of A(1). Namely, we

need to combine f⃗b’s into a single element of P∗
E and attach ⟨A∗(1), δ⟩ to the result.

Let us deal now with the general case.

First we combine in the natural fashion all f⃗b’s into a single element f ∗ of P∗
E.

Then each δ⃗b will become a member of f ∗(⃗b). By shrinking B, if necessary, we can assume

that for every n < ω, there is β(n) < κ, such that for every b⃗ ∈ [B]n, δ⃗b is β(n)−th element

of (dom(f ∗)(⃗b), i.e. h(dom(f∗))(⃗b)(β(n)) = δ⃗b.

Then, for every n < ω, for every b⃗ ∈ [B]n, A(n) = Ab⃗ ∈ Eδ⃗
b
. Now, A(n) ∈ Eδ⃗

b
implies that

h(dom(f∗))(⃗b)(β(n)) = δ⃗b ∈ jE(A(n)) ∩ λ++.

We have f̃ ∗ : κ → Vκ such that jE(f̃
∗)(δ) = f ∗. For every n, 1 ≤ n < ω, define

A∗(n) = {η < κ | β(n) < ηnor ∧ (∀c⃗ ∈ [Bη]
n(h

(dom(f̃∗(η))(c⃗)
ηnor (β(n)) ∈ A(n) ∩ λ++

η ∈ U(λη)))}.

11



Then A∗(n) ∈ Eδ. Set A
∗ =

∩
1≤n<ω A

∗(n).

Now we form a condition in P in the obvious form based on f ∗ and A∗,

i.e. ⟨⟨f ∗, A∗, δ⟩, ⟨⟨⟩, B⟩⟩.
The contradiction is derived then as in Claim 5.

�
Let us force now with the part of PE over λ, i.e. with the Prikry forcing with U(λ). Let

λ⃗ = ⟨λ(n) | n < ω⟩ be a Prikry sequence.

Consider PE/λ⃗. Its members are all p ∈ PE with {λ(n) | n < ω} ⊆ bp ∪Bp.

Lemma 1.12 The forcing PE/λ⃗ satisfies κ++−c.c. in V [λ⃗].

Proof. Let {p(α) | α < κ++} ⊆ PE/λ⃗. Assume that all of them have the same stem and

suppose for simplicity that it is just empty.

We interpret each fp(α) according to the Prikry sequence ⟨λ(n) | n < ω⟩ and, then, using a

∆−system find α ̸= β for which this interpretations are compatible.

Let us argue that p(α) and p(β) are compatible as well.

Consider B = Bp(α) ∩Bp(β).

For every ⟨η1, ..., ηn⟩ ∈ [B]n (or with increasing projections to the normals in more general

settings) find C⟨η1,...,ηn⟩ ⊆ B of measure one such that for every η ∈ C⟨η1,...,ηn⟩ either

1. the finite sequences of the corresponding parts of

p(α)⌢⟨η1, ..., ηn⟩⌢η and p(β)⌢⟨η1, ..., ηn⟩⌢η do not contradict;

or

2. there are two finite sequences of the corresponding parts of

p(α)⌢⟨η1, ..., ηn⟩⌢η and p(β)⌢⟨η1, ..., ηn⟩⌢η over the same place that are different (i.e.

contradict one an other).

Let C = ∆⟨η1,...,ηn⟩∈[B]nC⟨η1,...,ηn⟩. Then C has measure one.

There is k < ω such that for every n, k ≤ n < ω, λ(n) ∈ C. Extend both p(α) and p(β) by

⟨λ(m) | m < k⟩. Then the condition obtained by the obvious merging of p(α)⟨λ(m)|m<k⟩ and

p(β)⟨λ(m)|m<k⟩ will be in PE/λ⃗ and it will witness the desired compatibility.

�
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2 An extender which overlaps an other extender.

It is possible to replace the measure U(λ) with an extender E1 over λ such that E1▹E. Let

µ > λ be regular cardinal and E1 be a (λ, µ)−extender.

This way the following is obtained:

There is a cardinals preserving extension V [G] of V such that

1. κ remains a strong limit,

2. cof(κ) = cof(λ) = ω,

3. only ω−many cardinals below κ change their cofinality and it is changed to ω,

4. no cardinal bigger than κ and different from λ changed its cofinality,

5. pp(λ) = µ < 2κ = pp(κ).

Suppose that there are two extenders E(0) over κ0 and E(1) over κ1 > κ0 such that

E(0) ◃ E(1).

The corresponding forcing P = P⟨E(0),E(1)⟩ is defined similar to those of the previous section

with obvious changes of the Prikry forcing over the larger cardinal by the extender based

Prikry with E(1) and its reflections below κ0.

A typical pure condition is of the form p = ⟨⟨fp, Ap, δp⟩, ⟨gp, Bp⟩⟩, where ⟨gp, Bp⟩ is now a

condition in the extender based Prikry forcing with E(1). As before, we will have a function

f̃p which represents fp in the ultrapower with the measure δp of the extender E(0), but let

us require here that also gp is represented there, i.e. (jE(0)(f̃
p))(δp) = ⟨fp, gp⟩.

The only new point appears in the Prikry condition argument (Lemma 1.11). Let us deal

with a corresponding lemma in the present situation.

Lemma 2.1 Let p = ⟨⟨fp, Ap, δp⟩, ⟨gp, Bp⟩⟩⟩ ∈ P⟨E(0),E(1)⟩ and D ⊆ P⟨E(0),E(1)⟩ be a dense

open. Then there are p∗ ≥∗ p and n < ω such that p∗⌢ν⃗⌢t⃗⌢x⃗ ∈ D,

for every ν⃗ = ⟨ν0, ..., νn−1⟩ ∈ [Ap∗ ]n, t⃗ ∈ [Bp∗ ]n, x⃗ = ⟨x⃗k | k < n⟩ such that for every k < n,

x⃗k ∈ [Bp∗

k ]n, where Bp∗

k = dom(f̃ ∗)(νk), i.e. the set of measure one corresponding to Bp∗ at

the level k.

Proof. Suppose otherwise.

Let D′ ⊆ PE(1) be the set of all ⟨g,B⟩ ∈ PE(1) satisfying the following:

there are f ∗, A∗, δ∗ such that

13



1. ⟨⟨f ∗, A∗, δ∗⟩, ⟨g,B⟩⟩ ∈ P⟨E(0),E(1)⟩,

2. ⟨⟨f ∗, A∗, δ∗⟩, ⟨g,B⟩⟩ ≥ p,

3. for every η⃗ ∈ [A∗]<ω,

(1) ⟨⟨f ∗, A∗, δ∗⟩, ⟨g,B⟩⟩⌢η⃗ ∈ D5

or

(2) for every p′ ≥∗ ⟨⟨f ∗, A∗, δ∗⟩, ⟨g,B⟩⟩, p′⌢η⃗ ̸∈ D.

Moreover, the same conclusion valid for any two such η⃗, η⃗′ of the same length.

Let us argue that such D′ is dense in PE(1) above ⟨gp, Bp⟩.

Claim 6 D′ is dense in PE(1) above ⟨gp, Bp⟩.

Proof.

Let ⟨g,B⟩ ∈ PE(1).

Define an elementary submodel N , Ē, A ∈ Ē as in Lemma 1.11 with obvious adjustments.

Now instead of defining a dense set in P ∗
E(0), as it was done in Lemma 1.11, we proceed

by induction of the length κ0 and build increasing ≤∗ −sequences fξ, ⟨gξ, Bξ⟩, ξ < κ0 with

each stage inside N .

At limit stages union is taken. Let us deal with a successor stage. So, suppose that

fξ, ⟨gξ, Bξ⟩ ∈ N is constructed.

Let ⟨η0, ..., ηk−1⟩ ∈ [A]k, be the ξ−th member of an enumeration of

[[{κ0, δ
p, δf0 , ..., δfζ , ... | ζ < κ0} × κ0]

<κ0 .

Let f = fξ, ⟨g,B⟩ = ⟨gξ, Bξ⟩. We would like first to deal with the forcing below κ0 which

η⃗ := ⟨η0, ..., ηk−1⟩ induces and to use its Prikry property. Suppose for simplicity that k = 1,

so we deal with η0 and the corresponding extender based Prikry forcing over it.

There are f∗ ≥∗ f, ⟨g∗, B∗⟩ ≥∗ ⟨g,B⟩ such that

for every ⟨x̄, C̄⟩ in the extender based Prikry over κ1(η0)
6 there is ⟨x,C⟩ ≥ ⟨x̄, C̄⟩ so that

either

(1) ∃T ⟨⟨x,C⟩, ⟨f∗⟨η0⟩, T ⟩, ⟨g∗, B∗⟩⟩ ∈ D),

or

5Adding η⃗ requires to add a lower part of the condition f̃∗(η⃗), where f̃∗ represents now ⟨f∗, g, B⟩ in the
ultrapower.

6κ1(η0) denotes the reflection of κ1 to the level of ηnor0 .
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(2)∀⟨x′, C ′⟩ ≥ ⟨x,C⟩∀f ′ ≥∗ f∗∀⟨g′, B′⟩ ≥∗ ⟨g∗, B∗⟩∀T ⟨⟨x′, C ′⟩, ⟨f ′
⟨η0⟩, T ⟩, ⟨g

′, B′⟩⟩ ̸∈ D).

Just proceed by induction and use the fact the number of possibilities for ⟨x,C⟩ is much

less than the degree of completeness of ≤∗.

This defines a dense open set D(η0) in the extender based Prikry over η0. So, for every ⟨x,C⟩
there are ⟨x∗, C∗⟩ ≥∗ ⟨x,C⟩ and m∗ minimal such that for every ρ⃗ ∈ [C∗]

m∗ , ⟨x∗, C∗⟩⌢ρ⃗ is

in this set. By shrinking C∗ if necessary, we can assume that the same conclusion about

being in D or not holds. Note that if “not in D” conclusion (2) holds, then this will be true

already with ⟨x∗, C∗⟩, and so, m∗ = 0.

Also note that all this lower parts ⟨x,C⟩ are in N . Hence, there are such f∗, ⟨g∗, B∗⟩, in N ,

by elementarity.

We pick fξ+1, gξ+1, Bξ+1 to be such a sequence inside N .

Finally, let f ∗, ⟨g∗, B∗⟩ be the upper bound of ⟨fξ, ⟨gξ, Bξ⟩ | ξ < κ⟩.
Let η⃗ ∈ [A]<ω. Again, assume for simplicity that η⃗ is just η0.

Consider f̃ ∗(η0). Let ⟨x(η0), C(η0)⟩ be the part of f̃ ∗(η0) which is a condition in the extender

based Prikry forcing over κ1(η0). Then there are ⟨x(η0)∗, C(η0)∗⟩ ≥∗ ⟨x(η0), C(η0)⟩ and

m(η0)∗ < ω such that for every ρ⃗ ∈ [C(η0)∗]
m∗ , ⟨x(η0)∗, C(η0)∗⟩⌢ρ⃗ ∈ D(η0).

Now, use the function η0 7→ ⟨x(η0)∗, C(η0)∗⟩ and extend directly

⟨f ∗, ⟨g∗, B∗⟩⟩ to ⟨f ∗∗, ⟨g∗∗, B∗∗⟩⟩.7

Now we shrink A in order to get the same conclusion (1) or (2) with ⟨f ∗∗, ⟨g∗∗, B∗∗⟩⟩.
If it is (1), then ⟨g∗∗, B∗∗⟩ ∈ D′. Suppose that it is (2).

Let us argue that then for every η⃗ ∈ [A∗]<ω, for every p′ ≥∗ ⟨⟨f ∗∗, A∗, δ∗∗⟩, ⟨g∗∗, B∗∗⟩⟩,
p′⌢η⃗ ̸∈ D.

Oterwise, there are η⃗ ∈ [A∗]<ω and p′ ≥∗ ⟨⟨f ∗, A∗, δ∗⟩, ⟨g∗∗, B∗∗⟩⟩ such that p′⌢η⃗ ∈ D. But η⃗

was considered at a stage ξ < κ of the construction. The existence of p′ implies that already

fξ+1, ⟨gξ+1, Bξ+1⟩ forced this, which is impossible.

� of the claim.

Now we use the Prikry condition for the extender Prikry forcing PE(1) and find n < ω

and ⟨g,B⟩ such that for every b⃗ ∈ [B]n, ⟨g,B⟩⌢b⃗ ∈ D′.

Next, for each b⃗ ∈ [B]n, let f⃗b, Ab⃗, δ⃗b be witnesses for ⟨g,B⟩⌢b⃗ ∈ D′. We put them together

7There was no need to do this in the previous section, since the basic Prikry forcing was used, and any
two direct extension in this forcing are compatible. This is not the case with the extender based Prikry used
here.
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as in Lemma 1.11.

�
Turn now to the chain condition. The argument is similar to those of Lemma 1.12 with

obvious adaptations. Let us force now with the part of P⟨E(0),E(1)⟩ over κ1, i.e. with the

extender based Prikry forcing with E(1). Let G(1) be a generic subset of PE(1).

Consider PE(0)/G(1). Its members are all p = ⟨p(0), p(1)⟩ ∈ P⟨E(0),E(1)⟩ with p(1) ∈ G(1).

Lemma 2.2 The forcing PE(0)/G(1) satisfies κ++
0 −c.c. in V [G(1)].

Proof. Let {pα = ⟨pα(0), pα(1) | α < κ++
0 } ⊆ PE(0)/G(1).

Let pα(0) = ⟨f 0
α, A

0
α, δ

0
α⟩, for every α < κ++

0 .

We interpret each f 0
α according to the Prikry sequence of the maximal coordinate of pα(1)

and, then, using a ∆−system find α ̸= β for which this interpretations are compatible.

Let us argue that pα and pβ are compatible as well. First find p(1) = ⟨fp(1), Ap(1), δp(1)⟩ ∈
G(1) which is stronger than both pα(1), pβ(1).

Now use the Prikry condition for the forcing PE(1) and find q(1) = ⟨f q(1), Aq(1), δq(1)⟩ ∈
G(1), q(1) ≥ p(1) such that for every ⟨η1, ..., ηn⟩ ∈ [Aq(1)]n, q(1) decides (in PE(1)) the

following statement:

the finite sequences of the corresponding parts of

pα(0)
⌢⟨πE(1)

δq(1),δp(1)
(η1), ..., π

E(1)

δq(1),δp(1)
(ηn)⟩ and pβ(0)

⌢⟨πE(1)

δq(1),δp(1)
(η1), ..., π

E(1)

δq(1),δp(1)
(ηn)⟩

do not contradict, where π
E(1)

δq(1),δp(1)
, as usual, denotes the canonical projection between

the coordinates δq(1), δp(1) of the extender E(1).

By the choice of pα and pβ, the decision should positive, i.e.

q(1) forces (in PE(1)) that:

the finite sequences of the corresponding parts of

pα(0)
⌢⟨πE(1)

δq(1),δp(1)
(η1), ..., π

E(1)

δq(1),δp(1)
(ηn)⟩ and pβ(0)

⌢⟨πE(1)

δq(1),δp(1)
(η1), ..., π

E(1)

δq(1),δp(1)
(ηn)⟩

do not contradict.

Then the condition obtained by the obvious merging of pα, pβ and q(1) will witness the

desired compatibility.

�
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3 An extender which overlaps many extenders.

The argument of the previous section applies with minor changes to the following situation:

1. ⟨κξ | ξ < ρ⟩ is an increasing sequence of measurable cardinals of a length ρ < κ0;

2. E(ξ) is an extender over κξ;

3. for every ξ > 0, the length of E(ξ) is at most κξ+1;

4. the length of E(ξ) is (
∪

ξ<ρ κξ)
+;

In particular, E(0) overlaps each E(ξ), ξ > 0.

5. ⟨E(ξ) | 0 < ξ < ρ⟩ ∈ Ult(V,E(0)).

The corresponding forcing P = P⟨E(ξ)|ξ<ρ⟩ is defined similar to those of the previous

sections. For every ξ, 0 < ξ < ρ, the extender E(ξ) is used only up to the first element of

the Prikry sequence of the normal measure of E(ξ + 1).

A typical pure condition is of the form p = ⟨⟨fp, Ap, δp⟩, ⟨⟨gpξ , B
p
ξ ⟩ | 0 < ξ < ρ⟩⟩, where

⟨gpξ , B
p
ξ ⟩ is now a condition in the extender based Prikry forcing with E(ξ). As before, we

will have a function f̃p which represents fp in the ultrapower with the measure δp of the

extender E(0), but let us require here that also ⟨gpξ | 0 < ξ < ρ⟩ is represented there, i.e.

(jE(0)(f̃
p))(δp) = ⟨fp, ⟨gpξ | 0 < ξ < ρ⟩⟩.

The proof of the Prikry condition repeats the argument of Lemma 2.1. At the final stage

after showing that D′ is dense open in the forcing P⟨E(ξ)|0<ξ<ρ⟩, i.e. the forcing with all

extenders E(ξ), 0 < ξ < ρ, we use the fact that P⟨E(ξ)|0<ξ<ρ⟩ has the Prikry property. In

order to entre D′ it is enough to find finitely many places ξ1, ..., ξk and n < ω such that any

choice of n−elements from each set of measure one for all the places ξ1, ..., ξk, the resulting

extension will be in D′.

Under the same lines it is possible to deal with more general situations. What is crucial

here is that the overlapped part satisfies the Prikry property and its direct extension ordering

is closed enough.

4 A partial overlapping.

Suppose that κ < λ, there are two normal measures U(λ, 0) ▹ U(λ, 1) over λ and a

(κ, λ)−extender E over κ which ultrapower is closed under κ−sequences.
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Consider jU(λ,1) : V → MU(λ,1) ≃ Ult(V, U(λ, 1)). Use the embedding jU(λ,1) to stretch the

extender E. Thus, we consider jU(λ,1)(E). It is a (κ, jU(λ,1)(λ))−extender over κ in MU(λ,1)

which ultrapower is closed under κ−sequences.

Consider E1 := jU(λ,1)(E) � (λ++)MU(λ,1) . Then, in V , it is extender over κ of the length

(λ++)MU(λ,1) , with ultrapower ME1 closed under κ−sequences, Hλ+ ⊆ ME1 and U(λ, 0) ∈
ME1 . Clearly, E1 ▹ U(λ, 1).

We would like to describe the forcing that does the following:

1. it picks a one element Prikry sequence λ10 for U(λ, 1);

2. adds a full Prikry sequence to λ10 using the reflection of U(λ, 0);

3. adds λ++
10 −many Prikry sequences to κ using E1.

The forcing of the first section will be used here as a part of the present forcing notion.

Note that MU(λ,1) is closed under λ−sequences of its elements, and so, cof((λ++)MU(λ,1)) = λ+

and every relevant function (defined as in Section 1 using E1 and U(λ, 0)) will be in MU(λ,1).

Definition 4.1 PE1,U(λ,0),U(λ,1) consists of triples ⟨⟨f,A, δ⟩, ⟨b, B⟩, ⟨⟨⟩, C⟩⟩ such that

1. ⟨⟨f, A, δ⟩, ⟨b, B⟩⟩ is as in the forcing of Section 1,

only with λ++ replaced by (λ++)MU(λ,1) ,

2. ⟨⟨⟩, C⟩⟩ is a condition in the Prikry forcing with U(λ, 1) with min(C) > max(b).

The orders are defined in the obvious fashion. If an element ν from C is picked, then

we use the functions hδ : λ → λ, hf : λ → Vλ which represent δ , f mod U(λ, 1), and push

⟨⟨f, A, δ⟩, ⟨b, B⟩⟩ down to ν replacing it by ⟨⟨hf (ν), A, hδ(ν)⟩, ⟨b, B ∩ ν⟩⟩.
The continuation is as in Section 1.

An other way of partial overlapping was considered in [3]. A typical situation there is

that we have, for example, κ0 < κ1 < λ and two extenders E(0), E(1) such

• E(0) is a (κ0, λ)−extender,

• E(1) is a (κ1, λ)−extender,

• E(0) ▹ E(1).

A forcing P⟨E(0),E(1)⟩ that involves both of them is defined in a way that if a non-pure

extension is made using E(1), then the part of the forcing with E(0) is restricted to E(0) � η,
for some η < κ1.

Further we will use this type of constructions.
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5 Uncountable cofinality.

Use the combination of C. Merimovich forcing [9] with Sections 1,2.

6 The main forcing.

We introduce here forcing notions that will be applied to the Shelah Weak Hypothesis in the

next section.

6.1 Basic settings.

Let η, δ be arbitrary ordinals.

Let ⟨κα | α < η⟩ be an increasing sequence of cardinals, with η, δ < κ0, and λ be a cardinal

>
∪

α<η κα.

Suppose that ⟨E(α, β) | α < η, β < δ⟩ be a sequence such that for every α, α′ < η, β, β′ <

δ

1. E(α, β) is a (κα, λ)−extender, i.e.

(a) E(α, β) is an extender over κα,

(b) Hλ ⊆ ME(α,β), where jE(α,β) : V → ME(α,β) ≃ Ult(V,E(α, β)),

(c) crit(jE(α,β)) = κα,

(d) jE(α,β)(κα) > λ,

(e) καME(α,β) ⊆ ME(α,β).

2. E(α, β) ◃ E(α′, β′), if β > β′ or (β = β′ and α > α′).

Assume in addition that for every α < η, β < δ,

• there is a function hλ
E(α,β) : κα → κα such that jE(α,β)(h

λ
E(α,β))(κα) = λ, i.e. λ is

represented already by the least normal measure of the extender E(α, β).

• For every α′ < η, β′ < δ, so that β > β′ or (β = β′ and α > α′), there is a function

h
E(α′,β′)
E(α,β) : κα → Vκα such that jE(α,β)(h

E(α′,β′)
E(α,β) )(κα) = E(α′, β′), i.e. E(α′, β′) is repre-

sented already by the least normal measure of the extender E(α, β).

Note that due to the closure of the ultapowers, this implies that all the sequence

⟨E(α′, β′) | α′ < η, β′ < δ, (β > β′ or (β = β′ and α > α′))⟩

is represented like this.
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The forcing P⟨E(α,β)|α<η,β<δ⟩ defined below will change the cofinality of each κα, α < η to

δ (assuming that δ is a regular cardinal) and will make pp(κα) ≥ λ.

For example if η = ω1 and δ = ω, then we intend to change cofinality of all κα’s to ω and to

make pp(κα) ≥ λ.

Let us deal first with simpler situations.

Further let us denote ⟨E(α, β) | β < δ⟩ by E⃗(α), for every α < η.

6.2 The first level forcing.

Suppose that δ = 1. Then we have a ▹ −increasing sequence of extenders ⟨E(α, 0) | α < η⟩.
Use the forcing P⟨E(α,0)|α<η⟩ of [3].

6.3 Two levels forcing.

Let us define the forcing for the first two levels.

Assume that η = ω and δ = 2.

So, we deal with extenders E(n, k), n < ω, k < 2.

Recall that E(0, 1) ◃ E(n, 0) and E(n+ 1, 1) ◃ E(n, 1), for every n < ω.

We will use a setting similar to those of the first section. Instead of the Prikry forcing

there - the forcing of the fist level will be used. In addition, instead of the single extender

based forcing there - all extenders E(n, 1)’s will come in to the play here. The interaction

between E(n, 1)’s will be organized similar to the one between E(n, 0)’s in 6.2 or in [3].

We will need to deal with names of ordinals in the first level forcing PE⃗(0).

Define relevant functions in the present context.

Here, as in [3], we will only one element sequences with each extender involved.

Definition 6.1 Let n < ω. A function F is called a n−relevant function iff

1. there is p ∈ PE⃗(0) such that the domain of F is the set of all finite products of sets of

measure one of p, i.e.

dom(F ) =
∪

{
∏
k∈s

Ap
k | s ⊆ ω, |s| < ℵ0,min(s) > n}.

2. F : dom(F ) → Pκ+
n
((κ++

ω )ME(n,1)).

3. for every ν⃗1, ν⃗2 in dom(F ),

if ν⃗1 extends ν⃗2, then F (ν⃗1) ⊇ F (ν⃗2),
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4. if ν⃗1, ν⃗2 in
∏

k∈s(A
p
k)

ℓk for some s ⊆ ω, |s| < ℵ0,min(s) > n, {ℓk | k ∈ s} ⊆ ω,

then otp(F (ν⃗1)) = otp(F (ν⃗2));

5. if ν⃗1, ν⃗2 in
∏

k∈s A
p
k for some s ⊆ ω, |s| < ℵ0,min(s) > n,

then E(n, 1)F (ν⃗1) = E(n, 1)F (ν⃗2).

Note that the number of ultrafilters over Vκn is small relatively to κn+1, and so this

can be easily arranged on measure one sets.

6. If ν⃗ ∈
∏

k∈sA
p
k, for some s ⊆ ω, |s| < ℵ0,min(s) > n,

and ν, ρ ∈ Ap
m, for some m < ω, are above max(ν⃗), then

F (ν⃗⌢ν) ∩ πmc(pm),κm(ν) = F (ν⃗⌢ρ) ∩ πmc(pm),κm(ρ) = F (ν⃗) ∩ κm.

The intuition behind is that we like to use extender based forcing with E(n, 1). The

forcings over smaller κm’s, m < n, satisfy small chain condition. So we can cover names of

ordinals depending on them by sets in V of size κn. What remains then is the part of PE⃗(0)

above κn. There n−relevant functions come into the play.

Definition 6.2 Let F,G be n−relevant functions. Set F ≥∗ G iff

1. dom(F ) ⊆ dom(G),

2. for every ⟨ξ1, ..., ξn⟩ ∈ dom(F ), F (ξ1, ..., ξn) ⊇ G(ξ1, ..., ξn).

Define now the set P∗
E(n,1). Again we will use here only one element sequences. An

other difference from Merimovich [9], will be that there a function f for every measure of a

condition, even for measures over the same cardinal.

Definition 6.3 Let P∗
E(n,1) be the set of all functions f such that

1. dom(f) is an n−relevant function,

2. for every ⟨ξ1, ..., ξn⟩ ∈ dom(dom(f)) and for every α ∈ (dom(f))(ξ1, ..., ξn)),

(f(ξ1, ..., ξn))(α) is either the empty or one element sequence.

Require that if (f(ξ1, ..., ξn))(α) is not the empty sequence, then

(a) (f(ξ1, ..., ξn))(α) is an ordinal

or
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(b) for some ν < κn and a reflection Pν of PE⃗(0) \ n+ 1 to ν,

(f(ξ1, ..., ξn))(α) is a relevant function corresponding to Pν .
8

3. For every ⟨ξ1, ..., ξn⟩, ⟨ξ′1, ..., ξ′n⟩ ∈ dom(dom(f)), such that for every i, 1 ≤ i ≤ n, ξi

and ξ′i are from the same place,

(a) otp((dom(f)(ξ1, ..., ξn))) = otp((dom(f)(ξ′1, ..., ξ
′
n))),

(b) for every β < otp((dom(f)(ξ1, ..., ξn))), if α, α
′ are the β−th members of

dom(f)(ξ1, ..., ξn) and dom(f)(ξ′1, ..., ξ
′
n) respectively,

then (f(ξ1, ..., ξn))(α) = (f(ξ′1, ..., ξ
′
n))(α

′).

4. if a sequence ξ⃗′ which extends a sequence ξ⃗ and α ∈ (dom(f))(ξ⃗)) (and hence, α ∈
(dom(f))(ξ⃗′))), then f(ξ⃗)(α) = f(ξ⃗′)(α).

Definition 6.4 Let f, g be in P∗
E(n,1). Set f ≥∗ g iff dom(f) ≥∗ dom(g), as relevant functions

and for every n < ω,⟨ξ1, ..., ξn⟩ ∈ dom(dom(f)), α ∈ dom(g)(ξ1, ..., ξn), f(ξ1, ..., ξn)(α) =

g(ξ1, ..., ξn)(α).

The proof of the next lemma is as in Section 1.

Lemma 6.5 ⟨P∗
E(n,1),≤∗ ⟩ is κ+

n−closed.

Turn now to the definition of our forcing.

Define first conditions with empty stems.

Definition 6.6 The set PE⃗(0),E⃗(1) consists of all sequences p = ⟨p⃗(0), ⟨⟨fn, An, δn⟩ | n < ω⟩⟩
such that

1. p⃗(0) ∈ PE⃗(0),

2. for every n < ω,

(a) fn ∈ P∗
E(n,1),

(b) δn < κ++
n ,

(c) fn = jE(n,1)(f̃
n)(δn), where f̃n : κn → Vκn is the least function like this.

(d) An ∈ E(n, 1)δn ,

8Note that further not at every such ν the forcing Pν will be used. Moreover, only for ν’s which the
members of the Prikry sequence for the normal measure of the extender, i.e. for E(n, 1)κ, Pν will be used.
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(e) for every m,n ≤ m < ω, rng(dom(fn)) ⊆ rng(dom(fm)),

(f) rng(dom(fn)) ⊇ all the ordinals mentioned in p⃗(0) � n.

Define the direct extension ≤∗ in the usual fashion:

r ≥∗ q iff r is obtained from q by extending support and by shrinking measure one sets.

Definition 6.7 Let p = ⟨p⃗(0), ⟨⟨fn, An, δn⟩ | n < ω⟩⟩,
p′ = ⟨p⃗′(0), ⟨⟨f ′n, A

′n, δ
′n⟩ | n < ω⟩⟩ ∈ PE⃗(0),E⃗(1). Set p ≥∗ p′ iff

1. p⃗(0) ≥∗
P
E⃗(0)

p⃗′(0),

2. for every n < ω,

(a) fn ≥∗
P∗
E(n,1)

f
′n,

(b) δn ≥E(n,1) δ
′n,

(c) the canonical projection of An to δ′ is a subtree of A′n, i.e. π
E(n,1)
δδ′

′′A ⊆ A′.

Let p = ⟨p⃗(0), ⟨⟨fn, An, δn⟩ | n < ω⟩⟩ be a pure condition in PE⃗(0),E⃗(1). Suppose that

n̄ < ω and η ∈ An̄.

Define p⌢η the one-element extension of p by η. The definition is under the usual lines and as

in [3], only we will move the part p⃗(0) � n̄, down to κ(η), and the part ⟨⟨fn′
, An′

, δn
′⟩ | n′ < n̄⟩

will be restricted and transferred the reflection of ⟨κm | n̄ ≤ m < ω⟩ over κ(η), where

κ(η) < κn̄ denotes the cardinal which correspond to κn̄ via the connection to the normal

measure of E(n̄, 1). We will replace p⃗(0) \ n̄ + 1 over κ(η) by the value of the representing

it function over η. Still, p⃗(0) \ n̄+ 1 will be kept above as well.

Let us give a formal definition.

Definition 6.8 Set p⌢η to be

⟨⟨⟩, dom(dom((f̃ n̄)(η)))⟩⌢p⃗(0) \ n̄+ 1⌢⟨f n̄⌢η ∪ {⟨κn̄, η
nor⟩, ⟨δn̄, η⟩}⟩⌢

⟨⟨fn, An, δn⟩ | n̄ < n < ω⟩⟩,
where

1. ⟨⟨⟩, dom(dom((f̃)(η)))⟩ is a condition in the forcing PE⃗(0),E⃗(1)�n̄ over the level of ηnor

with the reflections of the extenders in E⃗(0) and E⃗(1) � n̄. The extender E(n̄, 0)

reflects as in the Merimovich extender based Magidor forcing [9].

2. f n̄⌢η is defined as follows:

its domain is identical to those of f n̄;
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let n < ω and ⟨ξ1, ..., ξn⟩ ∈ [dom(dom(f n̄)]n and α ∈ dom(f n̄)(ξ1, ..., ξn).

Set (f n̄⌢η(ξ1, ..., ξn))(α) = (f n̄(ξ1, ..., ξn))(α), unless ηnor is above all elements of the

sequence (f n̄(ξ1, ..., ξn))(α). For elements of the sequence (f n̄(ξ1, ..., ξn))(α) which are

names, we mean that ηnor is above the measurable (or its double successor) which

defines it.

Suppose that ηnor is above every element of (f n̄(ξ1, ..., ξn))(α).

We include here also the case when the sequence is empty. This happens, in particular,

if α = κ.

Split into two cases.

(a) If α = κ, then set (f n̄⌢η(ξ1, ..., ξn))(α) = ⟨ηnor⟩,

(b) suppose that α ̸= κ. Let α be the β(α)−th member of dom(f n̄)(ξ1, ..., ξn)), for

some β(α) < ηnor, i.e. hdom(f)(ξ1,...,ξn))(β(α)) = α.

Consider dom(f̃ n̄)(η). Define a function g by setting g(τ1, ..., τn) to be the β(α)−th

member of dom(f̃ n̄)(η)(τ1, ..., τn), i.e. h
dom(f̃ n̄)(ξ1,...,ξn))
ηnor (β(α)).

Add then g to the sequence, i.e. let

(f n̄⌢η(ξ1, ..., ξn))(α) = (f n̄(ξ1, ..., ξn))(α)
⌢g.

6.4 General case.

Let α ≤ δ and suppose that for every α′ < α the forcing P⟨E⃗(β)|β<α′⟩ is defined.

Define P⟨E⃗(β)|β<α⟩. We proceed as in 6.3.

Assume for simplicity that δ = ω1 and η = ω.

Definition 6.9 The pure part of P⟨E⃗(β)|β<α⟩ consists of sequences p = ⟨p⃗(β) | β < α⟩ such
that for every α′ < α, p � α′ = ⟨p⃗(β) | β < α⟩ is in the pure part of P⟨E⃗(β)|β<α′⟩.

The above defines P⟨E⃗(β)|β<α⟩ for a limit α.

Deal with a successor case. Suppose that α = α′ + 1.

Then, as in 6.3, p = ⟨p⃗(β) | β < α′⟩⌢⟨⟨fn, An, δn⟩ | n < ω⟩, where

1. ⟨p⃗(β) | β < α′⟩ ∈ P⟨E⃗(β)|β<α′⟩,

2. for every n < ω,

(a) fn ∈ P∗
E(n,α′),

(b) δn < κ++
n ,

(c) fn = jE(n,α′)(f̃
n)(δn), where f̃n : κn → Vκn is the least function like this.
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(d) An ∈ E(n, α′)δn ,

(e) for every m,n ≤ m < ω, rng(dom(fn)) ⊆ rng(dom(fm)),

(f) rng(dom(fn)) ⊇ all the ordinals mentioned in p⃗(β) � n, β < α′.

Define the direct extension ≤∗ in the usual fashion:

r ≥∗ q iff r is obtained from q by extending support and by shrinking measure one sets.

First deal with a limit α.

Definition 6.10 Let p = ⟨p⃗(β) | β < α⟩,p′ = ⟨p⃗′(β) | β < α⟩ ∈ P⟨E⃗(β)|β<α⟩.

Set p ≥∗ p′ iff for every α′ < α, p � α′ ≥∗
P⟨E⃗(β)|β<α′⟩

p′ � α′.

Now let us turn to a successor case. Let α = α′ + 1.

Definition 6.11 Let p = ⟨p⃗(β) | β < α′⟩⌢⟨⟨fn, An, δn⟩ | n < ω⟩,
p′ = ⟨p⃗′(β) | β < α′⟩⌢⟨⟨f ′n, A

′n, δ
′n⟩ | n < ω⟩ ∈ P⟨E⃗(β)|β<α⟩. Set p ≥∗ p′ iff

1. ⟨p⃗(β) | β < α′⟩ ≥∗
P⟨E⃗(β)|β<α′⟩

⟨p⃗′(β) | β < α′⟩,

2. for every n < ω,

(a) fn ≥∗
P∗
E(n,α′)

f
′n,

(b) δn ≥E(n,α′) δ
′n,

(c) the canonical projection of An to δ′ is a subtree of A
′n, i.e. π

E(n,α′)
δδ′

′′A ⊆ A′.

Let p = ⟨⟨p⃗(β) | β < α′⟩, ⟨⟨fn, An, δn⟩ | n < ω⟩⟩ be a pure condition in P⟨E⃗(β)|β<α′+1⟩.

Suppose that n̄ < ω and η ∈ An̄.

Define p⌢η the one-element extension of p by η. The definition is under the usual lines, only

we will move the part ⟨p⃗(β) | β < α′⟩ � n̄, down to κ(η), and the part ⟨⟨fn′
, An′

, δn
′⟩ | n′ < n̄⟩

will be restricted and transferred the reflection of ⟨κm | n̄ ≤ m < ω⟩ over κ(η), where

κ(η) < κn̄ denotes the cardinal which correspond to κn̄ via the connection to the normal

measure of E(n̄, α′). We will replace ⟨p⃗(β) | β < α′⟩ \ n̄+ 1 by the value of the representing

it function over η. Still, ⟨p⃗(β) | β < α′⟩ \ n̄+ 1 will be kept above as well.

Let us give a formal definition.

Definition 6.12 Set p⌢η to be

⟨⟨⟩, dom(dom((f̃ n̄)(η)))⟩⌢⟨p⃗(β) | β < α′⟩ \ n̄+ 1⌢

⟨f n̄⌢η ∪ {⟨κn̄, η
nor⟩, ⟨δn̄, η⟩}⟩⌢⟨⟨fn, An, δn⟩ | n̄ < n < ω⟩⟩,

where
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1. ⟨⟨⟩, dom(dom((f̃)(η)))⟩ is a condition in the forcing PE⃗(0),E⃗(1)�n̄ over the level of ηnor

with the reflections of the extenders in E⃗(0) and E⃗(1) � n̄. The extender E(n̄, 0)

reflects as in the Merimovich extender based Magidor forcing [9].

2. f n̄⌢η is defined as follows:

its domain is identical to those of f n̄;

let n < ω and ⟨ξ1, ..., ξn⟩ ∈ [dom(dom(f n̄)]n and α ∈ dom(f n̄)(ξ1, ..., ξn).

Set (f n̄⌢η(ξ1, ..., ξn))(α) = (f n̄(ξ1, ..., ξn))(α), unless ηnor is above all elements of the

sequence (f n̄(ξ1, ..., ξn))(α). For elements of the sequence (f n̄(ξ1, ..., ξn))(α) which are

names, we mean that ηnor is above the measurable (or its double successor) which

defines it.

Suppose that ηnor is above every element of (f n̄(ξ1, ..., ξn))(α).

We include here also the case when the sequence is empty. This happens, in particular,

if α = κ.

Split into two cases.

(a) If α = κ, then set (f n̄⌢η(ξ1, ..., ξn))(α) = ⟨ηnor⟩,

(b) suppose that α ̸= κ. Let α be the β(α)−th member of dom(f n̄)(ξ1, ..., ξn)), for

some β(α) < ηnor, i.e. hdom(f)(ξ1,...,ξn))(β(α)) = α.

Consider dom(f̃ n̄)(η). Define a function g by setting g(τ1, ..., τn) to be the β(α)−th

member of dom(f̃ n̄)(η)(τ1, ..., τn), i.e. h
dom(f̃ n̄)(ξ1,...,ξn))
ηnor (β(α)).

Add then g to the sequence, i.e. let

(f n̄⌢η(ξ1, ..., ξn))(α) = (f n̄(ξ1, ..., ξn))(α)
⌢g.

A one element extension for a limit α ≤ ω1 is defined similarly by reducing to a smaller

α′ below α.

Define non-pure members of P⟨E⃗(β)|β<α⟩ by making finitely many one step extensions.

Our next tusk will be to show that for each α ≤ ω1 the forcing satisfies the Prikry

condition, and if n < ω, then P⟨E⃗(β)|β<α⟩ � κn satisfies κ++
n −c.c. in V (P⟨E⃗(β)|β<α⟩)>κn .

Lemma 6.13 Let α ≤ ω1 and n < ω. Then (P⟨E⃗(β)|β<α⟩)>κn the part of P⟨E⃗(β)|β<α⟩ above

κn is closed under the pure extensions ordering ≤∗ up to the first cardinal above κn which

changes its cofinality (i.e. can be made arbitrary large below κn+1).

Proof. Suppose that p ∈ (P⟨E⃗(β)|β<α⟩)>κn is pure condition and δ < κn+1. Shrink sets of

measures one in order to be above δ. Let p′ denotes such extension of p. Then, above p′, we
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will have δ−closure of ⟨(P⟨E⃗(β)|β<α⟩)>κn ,≤∗ ⟩.
�

Lemma 6.14 Let α ≤ ω1. Then the forcing (P⟨E⃗(β)|β<α⟩)>κn satisfies the Prikry condition.

Lemma 6.15 The forcing P⟨E⃗(β)|β<α⟩ satisfies κ++
ω −c.c., for every α ≤ ω1.

Proof. Repeats the standard argument for extender based forcings.

�

Lemma 6.16 Let α ≤ ω1 and n < ω. Then the restriction of P⟨E⃗(β)|β<α⟩ to first n cardinals

P⟨E⃗(β)|β<α⟩ � κn satisfies κ++
n −c.c. inside V (P⟨E⃗(β)|β<α⟩)>κn .

Proof. Repeat the argument of Lemma 2.2 with obvious adjustments.

�
Proof of Lemma 6.14.

Suppose otherwise.

We proceed by induction on the length of sequences of extenders or its order type, simulta-

neously over different cardinals.

Let α ≤ ω1.

Case 1. n < ω, P = P⟨E⃗(β)|β<α⟩⌢⟨E(m,α)|m≤n⟩, p is a pure condition in P and D ⊆ P is

a dense open.

The argument is parallel to those of Lemma 2.1.

Consider a subsetD′ of P(> n) := P⟨E(m,β)|m>n,β<α⟩ which consists of all r(> n) ∈ P(> n)

so that there are f ∗, A∗, δ∗ such that

1. ⟨⟨f ∗, A∗, δ∗⟩, r(> n)⟩ ∈ P ,

2. ⟨⟨f ∗, A∗, δ∗⟩, r(> n)⟩ ≥ p,

3. for every η⃗ ∈ [A∗]<ω,

(1) ⟨⟨f ∗, A∗, δ∗⟩, r(> n)⟩⌢η⃗ ∈ D9

or

(2) for every p′ ≥∗ ⟨⟨f ∗, A∗, δ∗⟩, r(> n)⟩, p′⌢η⃗ ̸∈ D.

Moreover, the same conclusion valid for any two such η⃗, η⃗′ of the same length.

9Adding η⃗ requires to add a lower part of the condition f̃∗(η⃗), where f̃∗ represents now ⟨f∗, r(> n)⟩ in
the ultrapower.
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Let us argue that such D′ is dense in P(> n) above rp(> n), where rp(> n) denotes the

relevant part of p.

Claim 7 D′ is dense in P(> n) above rp(> n).

Proof.

Let s ∈ P(> n), s ≥ rp(> n).

Define an elementary submodel N , Ē, A ∈ Ē as in Lemma 1.11 with obvious adjustments.

Namely, construct by induction an increasing chain of elementary submodels ⟨Nξ | ξ < κn⟩
of Hχ, for χ large enough, and a sequence ⟨fξ | ξ < κ⟩ of members of P∗

E(n,γ), such that

1. p, s,P , D,D′ ∈ N0,

2. N0 ⊇ κn,

3. for every ξ < κn,

(a) |Nξ| = κn,

(b) κn>Nξ ⊆ Nξ,

(c) ⟨fζ | ζ < ξ⟩ ∈ Nξ,

(d) fξ ∈
∩
{D′′ ∈ Nξ | D′′ is a dense open subset of P above fp},

(e) fp ≤∗ f0,

(f) δp ∈ dom(f0(⟨⟩)),

(g) {δfζ | ζ < ξ} ⊆ dom(fξ(⟨⟩)),

(h) fξ ≥∗ fζ , for every ζ < ξ.

Set N =
∪

ξ<κn
Nξ and f ∗ the upper bound of ⟨fξ | ξ < κn⟩.

Consider {δfξ | ξ < κn}. Let δ be the least code of this set in our fixed wellordering.

Define an ultrafilter Ē over [{κn, δ
p, δf0 , ..., δfξ , ... | ξ < κn} × κn]

<κn which is equivalent

(Rudin-Keisler) to E(n, α){κn,δfξ |ξ<κn} and is below E(n, α)δ (in the order <E (n, α) of

E(n, α)).

Set Z ∈ Ē iff {(jE(n,γ)(κn), κn), (jE(n,γ)(δ
p), δp), (jE(n,γ)(δf0), δf0), ..., jE(n,γ)(δfξ), δfξ), ... | ξ <

κ} ∈ jE(n,γ)(Z).

Note that {κn, δ
p, δf0 , ..., δfξ , ... | ξ < κn} ⊆ N , and so, {κn, δ

p, δf0 , ..., δfξ , ... | ξ < κn}×κn ⊆
N . Hence, also, [{κn, δ

p, δf0 , ..., δfξ , ... | ξ < κn} × κn]
<κn ⊆ N . The function ⟨βρ | ρ < ϵ <
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κn⟩ 7→ ⟨⟨κn, β0⟩, ⟨δp, β1⟩, ⟨δf0 , β2⟩, ..., ⟨δfξ , β2+ξ⟩, ... | ξ < ϵ⟩ witnesses the equivalence between
E(n, γ){κn,δfξ |ξ<κ} and Ē.

Let A ∈ Ē be a set which projection to δp is a subset of Ap.

Let k < ω and ⟨η0, ..., ηk−1⟩ ∈ [A]k.

Consider r := p⌢⟨η0, ..., ηk−1⟩. Then r can be written as r<n
⌢rn

⌢r>n, where r<n is the part

of r below κn and, in particular it includes the reflection of E(m,β)’s which are ▹ E(n, α),

rn is a part over κn and r>n the part above κn.

We proceed by induction of the length κn and build increasing ≤∗ −sequences

⟨fξ, r(> n)ξ⟩ = ⟨⟨gmβ
ξ , Bmβ

ξ ⟩ | m > n, β < α⟩ | ξ < κ0⟩ with each stage inside N and

s ≤∗ r(> n)0.

At limit stages union is taken. Let us deal with a successor stage. So, suppose that

⟨fξ, r(> n)ξ⟩ = ⟨⟨gmβ
ξ , Bmβ

ξ ⟩ | m > n, β < α⟩ ∈ N is constructed.

Let ⟨η0, ..., ηk−1⟩ ∈ [A]k, be the ξ−th member of an enumeration of

[[{κ0, δ
p, δf0 , ..., δfζ , ... | ζ < κ0} × κ0]

<κ0 .

Let f = fξ, r(> n) = r(> n)ξ = ⟨⟨gmβ
ξ , Bmβ

ξ ⟩ | m > n, β < α⟩. We would like first to deal

with the forcing below κn which η⃗ := ⟨η0, ..., ηk−1⟩ induces and to use its Prikry property.

Suppose for simplicity that k = 1, so we deal with η0 and the corresponding forcing over

it, i.e. the reflection of P(< n) = P⟨E(m,β)|m<n,β<α⟩⌢⟨E(n,β)|β<α⟩. Denote such reflection by

P(< n, η0).

There are f∗ ≥∗ f, r(> n)∗ ≥∗ r(> n) such that

for every x̄ in P(< n, η0)

there is x ≥ x̄ so that either

(1) ∃T ⟨x, ⟨f∗⟨η0⟩, T ⟩, r(> n)∗⟩ ∈ D),

or

(2)∀x′ ≥ x∀f ′ ≥∗ f∗∀r(> n)′ ≥∗ r(> n)∗∀T ⟨x′, ⟨f ′
⟨η0⟩, T ⟩, r(> n)′⟩ ̸∈ D).

Just proceed by induction and use the fact the number of possibilities for x is much less

than the degree of completeness of ≤∗.

This defines a dense open set D(η0) in the forcing P(< n, η0) over η0. Apply the induction.

So, for every x there are x∗ ≥∗ x, finitely many coordinates in x∗ with C1, .., Ck sets of

measure one at this coordinates and m∗ < ω minimal such that for every

ρ⃗1 ∈ [C1]
m∗ , ..., ρ⃗k ∈ [Ck]

m∗ , x∗
⌢⟨ρ⃗1, ..., ρ⃗k⟩ ∈ D(η0).

By shrinking C1, ..., Ck if necessary, we can assume that the same conclusion about being in
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D or not holds. Note that if “not in D” conclusion (2) holds, then this will be true already

with x∗ itself, and so, m∗ = 0.

Also note that all this lower parts x are in N . Hence, there are such f∗, r(> n)∗ in N , by

elementarity.

We pick fξ+1, r(> n)ξ+1 to be such a sequence inside N .

Finally, let f ∗, r(> n)∗ be the upper bound of ⟨fξ, r(> n)ξ | ξ < κ⟩.
Let η⃗ ∈ [A]<ω. Again, assume for simplicity that η⃗ is just η0.

Consider f̃ ∗(η0). Let x(η0) be the part of f̃ ∗(η0) which is a condition in P(< n, η0).

Then there are x(η0)∗ ≥∗ x(η0) finitely many coordinates in x∗ with C1, .., Ck sets of measure

one at this coordinates and m∗ < ω minimal such that for every

ρ⃗1 ∈ [C1]
m∗ , ..., ρ⃗k ∈ [Ck]

m∗ , x∗
⌢⟨ρ⃗1, ..., ρ⃗k⟩ ∈ D(η0).

Now, use the function η0 7→ x(η0)∗ and extend directly

⟨f ∗, r(> n)∗⟩ to ⟨f ∗∗, r(> n)∗∗⟩.
Now we shrink A in order to get the same conclusion (1) or (2) with ⟨f ∗∗, r(> n)∗∗⟩.

If it is (1), then r(> n)∗∗ ∈ D′. Suppose that it is (2).

Let us argue that then for every η⃗ ∈ [A∗]<ω, for every p′ ≥∗ ⟨⟨f ∗∗, A∗, δ∗∗⟩, r(> n)∗∗⟩,
p′⌢η⃗ ̸∈ D.

Oterwise, there are η⃗ ∈ [A∗]<ω and p′ ≥∗ ⟨⟨f ∗, A∗, δ∗⟩, r(> n)∗∗⟩ such that p′⌢η⃗ ∈ D. But η⃗

was considered at a stage ξ < κ of the construction. The existence of p′ implies that already

fξ+1, r(> n)ξ+1 forced this, which is impossible.

� of the claim.

Now, we apply the induction and use the Prikry condition for P(> n). There will be

r(> n) ≥∗ rp(> n), finitely many coordinates in r(> n) with C1, .., Ck sets of measure one

at this coordinates and m < ω such that for every ρ⃗1 ∈ [C1]
m, ..., ρ⃗k ∈ [Ck]

m,

r(> n)⌢⟨ρ⃗1, ..., ρ⃗k⟩ ∈ D′.

Next, for every such sequences ρ⃗1 ∈ [C1]
m, ..., ρ⃗k ∈ [Ck]

m let f⟨ρ⃗1,...,ρ⃗k⟩, A⟨ρ⃗1,...,ρ⃗k⟩, δ⟨ρ⃗1,...,ρ⃗k⟩ be

witnesses for r(> n)⌢⟨ρ⃗1, ..., ρ⃗k⟩ ∈ D′. We put them together as in Lemma 1.11.

� of the successor case.

Case 2. P = P⟨E(m,β)|m<ω,β≤α⟩, p is a pure condition in P and D ⊆ P is a dense open.

Now we do not have the last n. However, the argument of the previous successor case

still can be applied, but rather inductively going through all n’s.

Define by induction an ≤∗ −increasing sequence ⟨pn | n < ω⟩ of direct extensions of p.
Let n < ω. Suppose that for every m < n, pm was defined. Set p̄ = pn−1, if n > 0, and

p̄ = p, if n = 0. We need to define pn ≥∗ p̄.
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Set P(> n) = P⟨E(m,β)|m>n,β≤α⟩.

By the choice of the extenders, E(m,β) ▹ E(n, α), for every m < ω, β < α and for every

m < n, β = α. We are specially interested in ⟨E(m,β) | n < m < ω, β < α⟩, i.e. the

extenders which E(n, α) overlaps.

Recall also that if a non-direct extension was made over the coordinate (n + 1, α) (i.e. the

one that corresponds to E(n + 1, α)), then the coordinates ⟨(m,β) | n < m, β < α⟩ reflect
down below κn+1 and E(n, α) is restricted below κn+1 accordingly.

Let ⟨f p̄,(n+1,α), Ap̄,(n+1,α), δp̄,(n+1,α)⟩ be the coordinate (n + 1, α) of p̄. Pick some τ ∈
Ap̄,(n+1,α). Consider the part of f̃ p̄,(n+1,α)(τ) that represents the reflection of

p̄ � {(β,m) | n < m, β < α} to the level of τnor. Denote it by p̄(> n, τ). Denote the reflection

of the forcing P⟨E(m,β)|n<m,β<α⟩ by P(> n, τ). Then p̄(> n, τ) ∈ P(> n, τ).

Let r(> n) ∈ P(> n), r(> n) ≥∗ (p̄⌢τ) � P(> n). Consider a subset D′(r(> n), τ) of

P(> n, τ) which consists of all r(> n, τ) ∈ P(> n, τ), r(> n, τ) ≥ p̄(> n, τ) so that there are

f ∗, A∗, δ∗ such that

1. ⟨⟨f ∗, A∗, δ∗⟩, r(> n, τ), r(> n)⟩ ∈ P⟨E⃗(β)|β<α⟩,

2. ⟨⟨f ∗, A∗, δ∗⟩, r(> n, τ), r(> n)⟩ ≥ p̄,

3. for every η⃗ ∈ [A∗]<ω,

(1) ⟨⟨f ∗, A∗, δ∗⟩, r(> n, τ), r(> n)⟩⌢η⃗ ∈ D

or

(2) for every p′ ≥∗ ⟨⟨f ∗, A∗, δ∗⟩, r(> n, τ), r(> n)⟩, p′⌢η⃗ ̸∈ D.

Moreover, the same conclusion valid for any two such η⃗, η⃗′ of the same length.

Claim 8 There exists r(> n)∗ ∈ P(> n), r(> n)∗ ≥∗ p̄ � P(> n) such that D′(r(> n)∗, τ) is

dense in P(> n, τ) above p̄(> n, τ).

Proof. We use the fact that |P(> n, τ)| is much less than κn+1, which is a degree of com-

pleteness of the forcing ⟨P(> n),≤∗ ⟩. Enumerate P(> n, τ) and build a ≤∗ −increasing

sequence conditions there each responsible for a particular member of P(> n, τ).

Let s ∈ P(> n, τ) be above p̄(> n, τ) and r(> n)
<s ∈ P(> n) is an upper bound of

≤∗ −increasing sequence of conditions in P(> n) corresponding predecessors of s in a fixed

enumeration of P(> n, τ).

Proceed as in Claim 7. Only make the following change - at successor stages of the inductive

construction there pick in addition to f∗ ≥∗ f, r(> n, τ)∗ ≥∗ r(> n, τ) in P(> n, τ) also

r(> n)∗ ≥∗ r(> n)
<s in P(> n) such that
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for every x̄ in P(< n, τ, η0)

there is x ≥ x̄ so that either

(1) ∃T ⟨x, ⟨f∗⟨η0⟩, T ⟩, r(> n, τ)∗, r(> n)∗⟩ ∈ D),

or

(2)∀x′ ≥ x∀f ′ ≥∗ f∗∀r(> n, τ)′ ≥∗ r(> n, τ)∗∀r(> n)′ ≥∗ r(> n)∗∀T

⟨x′, ⟨f ′
⟨η0⟩, T ⟩, r(> n, τ)′, r(> n)′⟩ ̸∈ D).

This process will produce r(> n)s ≥∗ r(> n)
<s (in P(> n)).

At the final stage of the argument we will take r(> n)∗ to be an upper bound of all such

r(> n)s’s.

� of the claim.

Next step would be to do the above for different τ ’s. Note that the set of measure one

of the coordinate (n+1, α) of r(> n)∗, given by the claim, may move to a different measure

(or a different place) from those of p̄.

In order to deal with this, let us pick an elementary submodel M defined as N of Claim 7

but with κn replaced by κn+1. Define ĒM and a set AM ∈ ĒM accordingly. Now, we pick

τ ’s from AM and preform each stage of the construction inside M .

The rest of the argument is straightforward.

Case 3. α is a limit ordinal, n < ω, P = P⟨E(m,β)|m≤n,β<α⟩, p is a pure condition in P
and D ⊆ P is a dense open.

If n = 0, then this just an extender based Prikry-Magidor forcing. It satisfies the Prikry

condition by [9].

If n > 1, then we combine Lemma 4.11 of Merimovich [9] with the arguments of Case 1.

A new point here is that given a coordinate (n, β), for some β < α, extenders E(m, γ),m <

n, β < γ < α will overlap E(n, β) and such extenders are over cardinals κm < κn.

However, going through possible non-direct extensions over a coordinate (n, β) we can accu-

mulate the information in the components f of coordinates (m, γ),m < n, β < γ < α, as it

was done before.

Case 4. α is a limit ordinal, P = P⟨E(m,β)|m<ω,β<α⟩, p is a pure condition in P and

D ⊆ P is a dense open.

Here we just combine the arguments of Cases 2 and 3 in a straightforward fashion.
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7 Applications to the Shelah Weak Hypothesis.

The Shelah weak hypothesis was introduced by S. Shelah in [11], see also [12].

For uncountable cofinality it states that

for every λ the set {κ < λ | ω < cof(κ) < κ, pp(κ) ≥ λ} is finite.

It was shown in [6] that any finite size is realizable.

For countable cofinality it states that

for every λ the set {κ < λ | ω = cof(κ) < κ, pp(κ) ≥ λ} is at most countable.

It was shown in [6] that any finite size is realizable, then in [5] that this set can be countable

and, finally, in [4], that it can have size ℵ1.

Here we would like to analyze the cardinal arithmetic of the forcing extension by

P = P⟨E(α,β)|α<η,β<δ⟩ and argue that the set {κα | α < η} witnesses the failure of the

hypothesis.

Let G be a generic subset of P .

By Lemmas 6.13, 6.14, 6.15,6.16, all cardinals are preserved in V [G]. Clearly, each κα changes

its cofinality to δ, provided δ is a regular cardinal.

We would like to argue that, in V [G], pp(κα) ≥ λ, for every α < η.

Given p ∈ P . Denote by np(p) the set of all coordinates α of p such that for some

β < δ,p(α, β) ∈ P∗
E(α,β), i.e. a non-pure extension was made at the coordinate α. Denote

the largest (for α) β like this by βα.

Given ℓ < ω, denote by np(p)≥ℓ the set of all coordinates α in np(p) such that βα ≥ ℓ.

The meaning behind is that if α ∈ np(p)≥ℓ, then, for every α′ < α and every β ≤ ℓ the

extender E(α′, β) over the coordinate α′ shrinks to E(α′, β � hα,ℓ
λ (p(α, ℓ)(κα)),

where hα,ℓ
λ : κα → κα is the fixed function such that jE(α,ℓ)(h

α,ℓ
λ )(κα) = λ.

Assume that η is a limit ordinal.

Set κ̄α =
∪

β<α κβ, for every α ≤ η.

Fix α < η.

Let τ ∈ [κ̄η, λ). Define in V [G] a function tτ : δ → κα as follows.

For every ℓ < δ, find p ∈ G such that α ∈ np(p)≥ℓ and if α1 < ... < αk is the increasing

enumeration of np(p)≥ℓ \ α (i.e. α = α1), then the following hold:

1. τ ∈ dom(p(αk, ℓ)).

Set τk = τ .

2. For every i, 1 ≤ i ≤ k − 1, τi ∈ dom(p(αi, ℓ)),

where τi = p(αi+1, ℓ)(τi+1).
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Set tτ (ℓ) = p(α, ℓ)(τ1).

Lemma 7.1 In V [G], if τ, ρ ∈ [κ̄η, λ) and τ < ρ, then there is ℓ∗ < ω such that for every

ℓ, ℓ∗ ≤ ℓ < δ, tτ (ℓ) < tρ(ℓ).

Proof. Work in V . Let p ∈ P be any condition and τ, ρ ∈ [κ̄η, λ) ,τ < ρ.

Let ℓ∗ be a coordinate above every βθ, with θ ∈ np(p). Then p(γ, ℓ) = ⟨fp
γ,ℓ, A

p
γ,ℓ⟩ is un-

restricted condition, i.e. with Ap
γ,ℓ ∈ (E(γ, ℓ))(dom(fp

γ,ℓ)), for every γ < η and for every

ℓ, ℓ∗ ≤ ℓ < δ.

Extend p to p∗ by adding τ, ρ to all dom(fp
γ,ℓ) with α ≤ γ < η and ℓ∗ ≤ ℓ < δ.

Now, by the definition of the order on P , for every ℓ∗ ≤ ℓ < δ and every q ≥ p∗ such that q

defines tτ (ℓ) and tρ(ℓ), we will have tτ (ℓ) < tρ(ℓ).

So,

p∗  (∀ℓ)(ℓ∗ ≤ ℓ < ω → t∼τ (ℓ) < t∼ρ(ℓ)).

�
It is possible to say a bit more. Namely, let in V [G], for every ℓ < ω, λα,ℓ be the reflection

of λ below κα using, E(κα, ℓ) and the representing function hα,ℓ
λ , i.e. for some p ∈ G with

p(α, ℓ) = fp
α,ℓ, λα,ℓ = hα,ℓ

λ (fp
α,ℓ(κα)). Then the following holds:

Lemma 7.2 The sequence ⟨tτ | τ ∈ [κ̄η, λ)⟩ is a scale in ⟨
∏

ℓ<δ λα,ℓ, <Jbd ⟩.

The desired result follows now:

Theorem 7.3 In V [G], for every α < η, pp(κα) ≥ λ.

The meaning is that it is possible to arrange arbitrary long failures of the Shelah Weak

Hypothesis in any given cofinality.

It turns out that in V [G], pp(κ) > κ+ for many κ’s different from κα’s, as will be shown

below. However, if δ is a regular cardinal above, say ℵ0 and cof(η) > ℵ0, then there will be

no cardinals of countable cofinality below λ with pp above λ.

Proposition 7.4 Suppose that δ is a regular cardinal and cof(η) ≥ δ. Then in V [G], for

every regular δ′ < δ, for every cardinal κ < λ of cofinality δ′, pp(κ) < λ.

Proof. Let κ be a such cardinal. Then it changed cofinality in V [G] or is a limit of cardinals

that changed their cofinality. In particular κ < κ̄η =
∪

α<η κα.
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Suppose for simplicity that cof(κ) = ω and δ > ω.

Pick ᾱ < η to be the least such that κ ≤ κᾱ.

Let a ⊆ κ be a countable unbounded subset of κ which consists of regular cardinals.

The next claim will complete the argument.

Claim 9 max(pcf(a)) < κᾱ+1.

Proof. The point is that by the Prikry condition arguments, a depends only on countably

many extenders. Namely, there are at most countable sets b ⊆ ᾱ and c ⊆ δ, such that a is

reconstructible from Magidor sequences for extenders ⟨E(α, β) | α ∈ b, β ∈ c⟩. Pick some

τ, sup(c) < τ < δ. Then, by the definition of the order ≤ on P , the element of the Magidor

sequence for the normal measure of E(ᾱ + 1, τ) will bound pcf(a), since all the extenders

⟨E(α, β) | α ∈ b, β ∈ c⟩ relevant to a, will be restricted below this element.

� of the claim.

�
Assume that δ is a regular cardinal.

We denote κ̄α =
∪

β<α κβ, for every limit α ≤ η. Let us clarify the situation with ⟨κ̄α | α ≤
η a limit ordinal ⟩.

Proposition 7.5 Let α < η be a limit ordinal of cofinality less than δ.

Then, in V [G], κ̄+
α < pp(κ̄α) < κα.

Proof. The argument combines the previous observation (7.4)(in order to bound pp(κ̄α))

with those of [3](Lemma 2.12), in order to argue that pp(κ̄α) > κ̄+
α .

�

Proposition 7.6 Let α ≤ η be a limit ordinal of cofinality ≥ δ.

Then, in V [G], pp(κ̄α) ≥ λ.

In particular, if η = ℵ9, then this produces a set of cardinality ℵ9 which violates the Shelah

Weak Hypothesis for every cofinality ≤ ℵ8.

Proof. Fix a cofinal in α sequence ⟨αε | ε < cof(α)⟩.
Set aε = {λαε,ℓ | ℓ < δ}, for every ε < cof(α), where, as above, λαε,ℓ is the reflection of

λ below καε using, E(καε , ℓ) and the representing function hαε,ℓ
λ , i.e. for some p ∈ G with

p(αε, ℓ) = fp
αε,ℓ

, λαε,ℓ = hαε,ℓ
λ (fp

αε,ℓ
(καε)). By Lemma 7.2, tcf(

∏
aε, <Jbd

aε
) = λ.
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Set a =
∪

ε<cof(α) aε.

Define the ideal J to be the set

{x ⊆ a | ∃ε0 < cof(α)∀ε ∈ [ε0, cof(α))(x ∩ aε ∈ J bd
aε )}.

Now, as in Lemma 7.2, tcf(
∏

a, <J) = λ.

�
Note that the ideals involved in computing pp(κ)’s here are δ−additive. S. Shelah pointed

out that by [13], Theorem 1.1, we cannot hope to get more additivity.

Let us examine what exactly happen in the present construction in this respect.

Proposition 7.7 Let α < η be a limit ordinal of cofinality > δ. Let b be a set of regular

cardinals of cardinality cof(α) unbounded in κ̄α. Suppose that J ⊇ J bd
b is a δ+−complete

ideal on b.

Then, in V [G], if tcf(
∏

b, <J) exists, then tcf(
∏

b, <J) < κα.

Proof. Split b into sets ⟨bξ | ξ < δ⟩, where bξ consists of all members of b which are not

members of the Prikry-Magidor sequences of G, or are the members of such sequences of

order < ξ. Then, as in Proposition 7.4, max(pcf(bξ)) < κα, for every ξ < δ.

Now, if tcf(
∏

b, <J) ≥ κα, then bξ ∈ J , for every ξ < δ. However, the δ+−completeness of

J implies then that b =
∪

ξ<cof(α) bξ ∈ J , which is impossible.

Contradiction.

�
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