Silver type theorems for collapses.

Moti Gitik

May 19, 2014

The classical theorem of Silver states that GCH cannot break for the first time over a singular cardinal of uncountable cofinality. On the other hand it is easy to obtain a situation where GCH breaks on a club below a singular cardinal κ of an uncountable cofinality but $2^{\kappa} = \kappa^{+}$.

We would like here to investigate the situation once blowing up power of singular cardinals is replaced by collapses of their successors.

1 ZFC results.

The following basic result should be well known and goes back to Silver:

Theorem 1.1 Suppose that $V \supseteq W$ are transitive models of ZFC with the same ordinals such that:

- 1. κ is a cardinal in W,
- 2. κ changes its cofinality to ω_1 in V witnessed by a club $\langle \kappa_{\alpha} \mid \alpha < \omega_1 \rangle$,
- 3. for every $\alpha < \omega_1, (\kappa_{\alpha}^+)^W < \kappa_{\alpha}^+$ (or only for stationary many α 's),
- 4. κ is a strong limit in V or just it is a limit cardinal and $\kappa_{\alpha}^{\omega_1} < \kappa$, for every $\alpha < \omega_1$.

Then
$$(\kappa^+)^W < \kappa^+$$
.

Proof. Suppose that $(\kappa^+)^W = \kappa^+$.

Fix in W a sequence $\langle f_i \mid i < \kappa^+ \rangle$ of κ^+ first canonical functions in $\langle \prod_{\nu < \kappa} \nu^+, <_{J_{\kappa}^{bd}} \rangle$ or just any sequence of κ^+ -many functions in $\prod_{\nu < \kappa} \nu^+$ increasing mod J_{κ}^{bd} .

Set in V

 $g_i = f_i \upharpoonright \{\kappa_\alpha \mid \alpha < \omega_1\}$, for every $i < \kappa^+$. Then $\langle g_i \mid i < \kappa^+ \rangle$ is an increasing sequence

of functions in $\langle \prod_{\alpha < \omega_1} (\kappa_{\alpha}^+)^W, <_{J_{\omega_1}^{bd}} \rangle$. By the assumption (3) we have that for every $\alpha < \omega_1, (\kappa_{\alpha}^+)^W < \kappa_{\alpha}^+$. Now, as in the Baumgartner-Prikry proof of the Silver Theorem (see K. Kunen [2] p.296 (H5)), it is impossible to have κ^+ -many such functions. Hence $(\kappa^+)^W < \kappa^+$.

Let us deal now with double successors.

Theorem 1.2 Suppose that $V \supseteq W$ are transitive models of ZFC with the same ordinals such that:

- 1. κ is a cardinal in W,
- 2. $2^{\kappa} \geq \kappa^{++}$, and moreover there is a sequence of κ^{++} -many functions in $\prod_{\nu < \kappa} \nu^{++}$ increasing mod J_{κ}^{bd} ,
- 3. κ changes its cofinality to ω_1 in V witnessed by a club $\langle \kappa_{\alpha} \mid \alpha < \omega_1 \rangle$,
- 4. for every $\alpha < \omega_1, (\kappa_{\alpha}^{++})^W < \kappa_{\alpha}^+$ (or only for stationary many α 's),
- 5. κ is a strong limit in V or just it is a limit cardinal and $\kappa_{\alpha}^{\omega_1} < \kappa$, for every $\alpha < \omega_1$.

Then $(\kappa^{++})^W < \kappa^+$.

The condition (2) allows to repeat the proof of 1.1.

Let state the following relevant result of Shelah ([3](4.9,p.304)), which says that once $(\kappa^+)^W$ changes its cofinality, then we must have $(\kappa^{++})^W < \kappa^+$ unless $\operatorname{cof}((\kappa^+)^W) = \operatorname{cof}(|(\kappa^+)^W|) = \operatorname{cof}(\kappa)$.

Proposition 1.3 Let \mathcal{F} be the κ -complete filter of co-bounded subsets of $\mathcal{P}_{\kappa}(\kappa^{+})$, i.e. the filter generated by the sets $\{P \in \mathcal{P}_{\kappa}(\kappa^{+}) \mid \alpha \in P\}$, $\alpha < \kappa^{+}$.

Then there is a sequence $\langle f_i \mid i < \kappa^{++} \rangle$ of functions such that

- 1. $f_i: \mathcal{P}_{\kappa}(\kappa^+) \to \kappa$,
- 2. $f_i(P) < |P|^+$, for all $P \in \mathcal{P}_{\kappa}(\kappa^+)$,
- 3. $f_i >_{\mathcal{F}} f_j$, whenever i > j.

Proof. We define a sequence $\langle f_i \mid i < \kappa^{++} \rangle$ by induction. Suppose that $\langle f_j \mid j < i \rangle$ is defined. Define f_i .

Case 1. i = i' + 1.

Set $f_i(P) = f_{i'}(P) + 1$.

Case 2. i is a limit ordinal of cofinality $\delta < \kappa$.

Pick a cofinal in i sequence $\langle i_{\tau} \mid \tau < \delta \rangle$. Set $f_i(P) = \bigcup_{\tau < \delta} f_{i_{\tau}}(P) + 1$.

Case 3. *i* is a limit ordinal of cofinality $\delta \geq \kappa$, i.e. $\delta = \kappa$ or $\delta = \kappa^+$.

Pick a cofinal in i sequence $\langle i_{\tau} \mid \tau < \delta \rangle$. Set $f_i(P) = \bigcup_{\tau \in P} f_{i_{\tau}}(P) + 1$.

Theorem 1.4 Suppose that $V \supseteq W$ are transitive models of ZFC with the same ordinals such that:

- 1. κ is an inaccessible in W,
- 2. $\kappa > (\operatorname{cof}(\kappa))^V = \delta$ for some uncountable (in V) cardinal δ .
- 3. κ is a strong limit in V or just it is a limit cardinal and for every $\xi < \kappa$, $\xi^{\delta} < \kappa$.
- 4. There exist a club $\langle \kappa_{\alpha} \mid \alpha < \delta \rangle$ in κ (or just a stationary set) 1 and a sequence $\langle P_{\alpha} \mid \alpha < \delta \rangle$ such that
 - (a) $P_{\alpha} \in (\mathcal{P}_{\kappa}(\kappa^{+}))^{W}$, for each $\alpha < \delta$,
 - (b) $(|P_{\alpha}|^{+})^{W} < \kappa_{\alpha}^{+}$, for each $\alpha < \delta$,
 - (c) $(\kappa^+)^W = \bigcup_{\alpha < \delta} P_\alpha$,
 - (d) for every $Q \in (\mathcal{P}_{\kappa}(\kappa^{+}))^{W}$, there is $\alpha < \delta$ such that for every $\beta, \alpha \leq \beta < \delta$, $Q \subseteq P_{\beta}$.

Then $(\kappa^{++})^W < \kappa^+$.

Proof. Suppose otherwise. Then $(\kappa^{++})^W = \kappa^+$, by the assumption (b),(c) above.

Let $\langle f_i \mid i < \kappa^{++} \rangle$ be a sequence of functions in W given by Proposition 1.3.

We can repeat the argument of 1.1 with slight adaptations. Thus, set in ${\cal V}$

 $g_i(\alpha) = f_i(P_\alpha)$, for every $\alpha < \omega_1$ and $i < (\kappa^{++})^W = \kappa^+$. Let $\nu_\alpha := (|P_\alpha|^+)^W$. By the assumption, $\nu_\alpha < \kappa_\alpha^+$. Then $\langle g_i \mid i < \kappa^+ \rangle$ is an increasing sequence of functions in $\langle \prod_{\alpha < \delta} \nu_\alpha, <_{J_\delta^{bd}} \rangle$, since for every $A \in \mathcal{F}$ we have $\{P_\alpha \mid \alpha \geq \alpha_0\} \subseteq A$, for some $\alpha_0 < \delta$. This is impossible, since $\nu_\alpha < \kappa_\alpha^+$, for every $\alpha < \delta$. Contradiction.

¹Note that if $\delta = \omega_1$, then we can just force a club into it without effecting things above.

Theorem 1.5 Suppose that $V \supseteq W$ are transitive models of ZFC with the same ordinals such that for some inaccessible in W cardinal κ both κ and its successor in W change their cofinality to some uncountable (in V) cardinal δ and κ remains a cardinal in V. Then the following conditions are equivalent:

- 1. (*) There are a clubs $\langle \kappa_{\alpha} \mid \alpha < \delta \rangle$ in κ and $\langle \eta_{\alpha} \mid \alpha < \delta \rangle$ in $(\kappa^{+})^{W}$ such that for every limit $\alpha < \delta$ (or just for stationary many α 's)² the set $\{\eta_{\beta} \mid \beta < \alpha\}$ can be covered by a set $a_{\alpha} \in W$ with $(|a_{\alpha}|^{+})^{W} < \kappa_{\alpha}^{+}$.
- 2. (**) There are a clubs $\langle \kappa_{\alpha} \mid \alpha < \delta \rangle$ in κ and $\langle \eta_{\alpha} \mid \alpha < \delta \rangle$ in $(\kappa^{+})^{W}$ such that for every limit $\alpha < \delta$ (or just for stationary many α 's) the set $\{\eta_{\beta} \mid \beta < \alpha\}$ has an unbounded intersection with a set $b_{\alpha} \in W$ with $(|b_{\alpha}|^{+})^{W} < \kappa_{\alpha}^{+}$.
- 3. There exist a club $\langle \kappa_{\alpha} \mid \alpha < \delta \rangle$ in κ and a sequence $\langle P_{\alpha} \mid \alpha < \delta \rangle$ such that
 - (a) $P_{\alpha} \in (\mathcal{P}_{\kappa}(\kappa^{+}))^{W}$, for each $\alpha < \delta$,
 - (b) $P_{\alpha} \cap \kappa = \kappa_{\alpha}$, for each $\alpha < \delta$,
 - (c) $(|P_{\alpha}|^+)^W < \kappa_{\alpha}^+$, for each $\alpha < \delta$,
 - $(d) (\kappa^+)^W = \bigcup_{\alpha < \omega_1} P_\alpha,$
 - (e) for every $Q \in (\mathcal{P}_{\kappa}(\kappa^{+}))^{W}$, there is $\alpha < \omega_{1}$ such that for every $\beta, \alpha \leq \beta < \omega_{1}$, $Q \subseteq P_{\beta}$.
- 4. There exists an increasing sequence $\langle P_{\alpha} \mid \alpha < \delta \rangle$ which satisfies all the requirements of the previous item.

Proof. Split the proof into lemmas.

Lemma 1.6 (*) iff (**).

Proof. Clearly, (*) implies (**). Let us show the opposite direction.

We fix a bijection $\pi_{\xi} : \kappa \longleftrightarrow \xi$ in W, for every $\xi < (\kappa^+)^W$.

Fix in V a function $\pi: \kappa \longrightarrow^{onto} (\kappa^+)^W$. Set now for every $\alpha < \delta$, $\eta_{\alpha} = \sup(\pi^* \kappa_{\alpha})$. Then, clearly, $\{\eta_{\alpha} \mid \alpha < \delta\}$ is a club in $(\kappa^+)^W$. Now given a sequence which witnesses (**). Without loss of generality we can assume that it is the sequence $\langle \eta_{\alpha} \mid \eta < \delta \rangle$ defined above. Otherwise

²If $\delta = \omega_1$, then it is basically the same, since once we have only stationary many such α 's, then force a club into it. Everything is a the level of ω_1 , so this will have no effect on the cardinal arithmetic above.

just intersect two clubs.

Define an increasing continuous sequence $\langle N_{\alpha} \mid \alpha < \delta \rangle$ of elementary submodels of some H_{χ} , with χ big enough such that

- 1. $\delta, \kappa, \langle \kappa_{\alpha} \mid \alpha < \delta \rangle, \langle \pi_{\xi} \mid \xi < (\kappa^{+})^{W} \rangle, \pi \in N_{0},$
- 2. $|N_{\alpha}| < \delta$,
- 3. $N_{\alpha} \cap \delta$ is an ordinal,
- 4. $\langle N_{\beta} \mid \beta \leq \alpha \rangle \in N_{\alpha+1}$.

Denote $N_{\alpha} \cap \delta$ by δ_{α} .

Then $\sup(N_{\alpha} \cap \kappa) = \kappa_{\delta_{\alpha}}$ and $\sup(N_{\alpha} \cap (\kappa^{+})^{W}) = \eta_{\delta_{\alpha}}$. Clearly, $\delta_{\alpha} = \alpha$ for a club many α 's. Suppose now that for some $\alpha < \delta$ we have $\delta_{\alpha} = \alpha$ and there is a set $X \in W$ such that

- $(|X|^+)^W < \kappa_{\alpha}^+,$
- $X \cap \{\eta_{\beta} \mid \beta < \alpha\}$ is unbounded in η_{α} .

Note that $\eta_{\beta} \in N_{\alpha}$, for every $\beta < \alpha$ and then, also, $\pi_{\eta_{\beta}} \in N_{\alpha}$. By elementarity, then $\pi_{\eta_{\beta}} \upharpoonright (N_{\alpha} \cap \kappa_{\alpha}) : N_{\alpha} \cap \kappa_{\alpha} \longleftrightarrow N_{\alpha} \cap \eta_{\beta}$. In particular, $\pi_{\eta_{\beta}}$ " $\kappa_{\alpha} \supseteq \{\eta_{\gamma} \mid \gamma < \beta\}$. Set

$$Y := \{ \pi_{\zeta} \text{``} \kappa_{\alpha} \mid \zeta \in X \cap \eta_{\alpha} \}.$$

Then, $Y \in W$, $|Y|^W \le \kappa_{\alpha} + |X|^W$, and so $(|Y|^+)^W < \kappa_{\alpha}^+$. But, in addition, $Y \supseteq \{\eta_{\gamma} \mid \gamma < \alpha\}$, since for unboundedly many $\beta < \alpha$, we have $\eta_{\beta} \in X$ and so, $\pi_{\eta_{\beta}}$ " $\kappa_{\alpha} \supseteq \{\eta_{\gamma} \mid \gamma < \beta\}$.

 \square of the lemma.

Lemma 1.7 (1) implies (3)

Proof.

Fix clubs $\langle \kappa_{\alpha} \mid \alpha < \delta \rangle$ and $\langle \eta_{\alpha} \mid \alpha < \delta \rangle$ witnessing (1).

Let us build first a sequence $\langle R_{\alpha} \mid \alpha < \delta \rangle$ which satisfies all the requirements of (3), but probably is not increasing.

Set
$$R_0 = \kappa_0 \cup ((\pi_{\eta_0} "\kappa_0) \setminus \kappa)$$
.

Let $\alpha, 0 < \alpha < \delta$ be an ordinal. Pick $a_{\alpha} \in W, a_{\alpha} \subseteq \eta_{\alpha}$ to be a cover of $\{\eta_{\beta} \mid \beta < \alpha\}$ with $(|a_{\alpha}|^{+})^{W} < \kappa_{\alpha}^{+}$. Set $R'_{\alpha} = \bigcup \{\pi_{\xi} \text{``} \kappa_{\alpha} \mid \xi \in b_{\alpha} \cup \{\eta_{\alpha}\}\}$. Let $R_{\alpha} = \kappa_{\alpha} \cup (R'_{\alpha} \setminus \kappa)$.

The constructed sequence satisfies trivially the requirements (a),(b) and (c). Let us check (e). (d) clearly follows from (e).

Let $Q \in (\mathcal{P}_{\kappa}(\kappa^{+}))^{W}$. There is $\beta < \omega_{1}$ such that $Q \subseteq \eta_{\beta}$. Consider $\pi_{\eta_{\beta}}^{-1}$ "Q. It is a bounded subset of κ . Hence there is $\gamma < \omega_{1}$ such that $\kappa_{\gamma} \supseteq \pi_{\eta_{\beta}}^{-1}$ "Q. So $\pi_{\eta_{\beta}}$ " $\kappa_{\beta} \supseteq Q$. Let $\alpha < \omega_{1}$ be an ordinal above β, γ . Then $R_{\delta} \supseteq Q$, for every $\delta \ge \alpha$.

 \square of the lemma.

Lemma 1.8 (3) iff (4).

Proof. Clearly (4) implies(3). Let us show the opposite direction.

Let a club $\langle \kappa_{\alpha} \mid \alpha < \delta \rangle$ in κ and a sequence $\langle R_{\alpha} \mid \alpha < \delta \rangle$ witness (3).

Define an increasing subsequence $\langle P'_{\alpha} \mid \alpha < \delta \rangle$

Set $P'_0 = R_0$. By (e) there is α_0 such that for every $\beta, \alpha_0 \leq \beta < \delta, P'_0 \subseteq R_\beta$. Set $P'_1 = R_{\alpha_1}$. Continue by induction. Suppose that $\nu < \delta$ and for every $\nu' < \nu$, increasing sequences $\langle \alpha_{\nu'} \mid \nu' < \nu \rangle$ and $\langle P'_{\nu'} \mid \nu' < \nu \rangle$ are defined and satisfy the following:

- 1. $P'_{\nu'} = R_{\alpha_{\nu'}}$
- 2. for every $\beta, \alpha_{\nu'} \leq \beta < \delta, P'_{\nu'} \subseteq R_{\beta}$.

If ν is a successor ordinal, then let $\nu = \mu + 1$, for some μ . Set $P'_{\nu} = R_{\alpha_{\mu}}$ and let $\alpha_{\nu} < \delta$ be such that for every $\beta, \alpha_{\nu} \leq \beta < \delta, P'_{\nu} \subseteq R_{\beta}$.

If ν is a limit ordinal, then let $P'_{\nu} = R_{\bigcup_{\nu' < \nu} \alpha_{\nu'}}$ and define α_{ν} as in the successor case.

Finally let us define an increasing subsequence of $\langle P'_{\alpha} \mid \alpha < \delta \rangle$ which satisfies the properties (a)-(e) of (3).

Let $C := \{ \nu < \delta \mid \nu = \bigcup_{\nu' < \nu} \alpha_{\nu'} \}$. Clearly it is a club. Set $P_{\nu} = P'_{\nu}$, for every $\nu \in C$.

Then $\langle \kappa_{\alpha} \mid \alpha \in C \rangle$ and $\langle P_{\alpha} \mid \alpha \in C \rangle$ are as desired.

 \square of the lemma.

Lemma 1.9 (3) implies (1).

Proof. Let a club $\langle \kappa_{\alpha} \mid \alpha < \delta \rangle$ in κ and a sequence $\langle P_{\alpha} \mid \alpha < \delta \rangle$ witness (3). Let $\eta_{\alpha} \mid \alpha < \delta \rangle$ be a club in $(\kappa^{+})^{W}$.

We claim that there is a club $C \subseteq \delta$ such that for every $\alpha \in C$, $P_{\alpha} \supseteq \{\eta_{\beta} \mid \beta < \alpha\}$.

Suppose otherwise. Then there is a stationary $S \subseteq \delta$ such that for every $\alpha \in S$ there is $\alpha' < \alpha$ with $\eta_{\alpha'} \notin P_{\alpha}$. Then there are a stationary set $S^* \subseteq S$ and $\alpha^* < \delta$ such that for every $\alpha \in S^*$, $\eta_{\alpha^*} \notin P_{\alpha}$. This is impossible by (d).

 \square of the lemma.

Theorem 1.10 Suppose that $V \supseteq W$ are transitive models of ZFC with the same ordinals such that:

- 1. κ is an inaccessible in W,
- 2. $\kappa > (\operatorname{cof}(\kappa))^V = \delta$ for some uncountable (in V) cardinal $\delta > \omega_1$. Let $\langle \kappa_\alpha \mid \alpha < \delta \rangle$ be a witnessing club.
- 3. For every $\alpha < \delta$, $(\kappa_{\alpha}^{++})^W < \kappa_{\alpha}^+$ (or only for stationary many α 's),
- 4. κ is a strong limit in V or just it is a limit cardinal and $\kappa_{\alpha}^{\omega_1} < \kappa$, for every $\alpha < \delta$.
- 5. There is a regular cardinal $\delta^*, \omega < \delta^* < \delta$ such that for every regular cardinal $\rho < \kappa$ of W which became a singular of cofinality δ^* in V, there is a club a club sequence $\langle \rho_i \mid i < \delta^* \rangle$ in ρ such that for every club $c \subseteq \delta^*$ the set $\{(cof(\rho_i))^W \mid i \in c\}$ is unbounded in $|\rho|$.

Or

6. Like the previous item but only for ρ 's of the form $(\operatorname{cof}(\eta_{\alpha}))^{W}$ with $\alpha < \delta$ of cofinality δ^{*} , where $\langle \eta_{\alpha} \mid \alpha < \delta \rangle$ is a club in $(\kappa^{+})^{W}$.

Then
$$(\kappa^{++})^W < \kappa^+$$
.

Proof.

Let us argue that (**) of 1.4 holds.

Assume for simplicity that $\delta^* = \omega_1$.

Let $\langle N_{\alpha} \mid \alpha < \delta \rangle$ and $\langle \eta_{\alpha} \mid \alpha < \delta \rangle$ be as in 1.6. Pick $\alpha < \delta$ of cofinality ω_1 with $\delta_{\alpha} = \alpha$. Consider η_{α} . Then $\operatorname{cof}(\eta_{\alpha}) = \omega_1$. If $(\operatorname{cof}(\eta_{\alpha}))^W < \kappa_{\alpha}^+$, then we pick in W a club X in η_{α} of the order type $(\operatorname{cof}(\eta_{\alpha}))^W$. Then $X \cap \{\eta_{\beta} \mid \beta < \alpha\}$ is a club, and so, unbounded in η_{α} .

Suppose now that $(\operatorname{cof}(\eta_{\alpha}))^{W} \geq \kappa_{\alpha}^{+}$. Denote $(\operatorname{cof}(\eta_{\alpha}))^{W}$ by ρ . Then $\rho \leq \kappa$, since $\eta_{\alpha} < (\kappa^{+})^{W}$. It is impossible to have $\rho = \kappa$, since $\operatorname{cof}(\kappa) > \omega_{1} = \operatorname{cof}(\alpha) = \operatorname{cof}(\eta_{\alpha}) = \operatorname{cof}(\rho)$. Hence $\kappa_{\alpha}^{+} \leq \rho < \kappa$. In particular, $|\rho| \geq \kappa_{\alpha}^{+}$.

By the assumption (5) of the theorem, there is a club a club sequence $\langle \rho_i \mid i < \omega_1 \rangle$ such that for every club $c \subseteq \omega_1$ the set $\{(\operatorname{cof}(\rho_i))^W \mid i \in c\}$ is unbounded in $|\rho|$. Let $e = \{e_\xi \mid \xi < \rho\} \in W$ be a club in η_α . Consider $d := \{\eta_\beta \mid \beta < \alpha\} \cap e$. It is a club in η_α . So there are some

 $\gamma < \alpha$ and $j < \omega_1$ such that $\eta_{\gamma} = e_{\rho_j}$ and $(\operatorname{cof}(\rho_j))^W > \kappa_{\alpha}$. But this is impossible, since $\eta_{\gamma} \in N_{\alpha}$, and hence, $(\operatorname{cof}(\eta_{\gamma}))^W = (\operatorname{cof}(\rho_j))^W \in N_{\alpha} \cap \kappa \subseteq \kappa_{\alpha}$.

Hence, always $(cof(\eta_{\alpha}))^W < \kappa_{\alpha}^+$.

So, the set $\{\eta_{\alpha} \mid \alpha < \delta \text{ and } \operatorname{cof}(\alpha) = \omega_1\}$ witnesses (**) and we are done.

Lemma 1.11 For every $\beta < \delta$, $\{(cof(\eta_{\gamma}))^W \mid \gamma < \beta\} \subseteq \kappa_{\beta}$.

Proof. Otherwise there is $\gamma < \beta$ such that $(\operatorname{cof}(\eta_{\gamma}))^{W} \geq \kappa_{\beta}$. Recall that $\kappa < \eta_{\gamma} < (\kappa^{+})^{W}$. Hence, $(\operatorname{cof}(\eta_{\gamma}))^{W} \leq \kappa$. It is impossible to have $(\operatorname{cof}(\eta_{\gamma}))^{W} = \kappa$, since $\operatorname{cof}(\kappa) = \delta > |N_{\gamma}| \geq \operatorname{cof}(\eta_{\gamma}) = \operatorname{cof}((\operatorname{cof}(\eta_{\gamma}))^{W})$. So, $(\operatorname{cof}(\eta_{\gamma}))^{W} < \kappa$. But $(\operatorname{cof}(\eta_{\gamma}))^{W} \in N_{\beta}$ and $\sup(N_{\beta} \cap \kappa) = \kappa_{\beta}$.

Lemma 1.12 Suppose that for every $\beta < \delta$, κ_{β}^{+} is is successor cardinal in W and ν_{β} is its immediate predecessor, then, for a club many $\beta < \delta$ of uncountable cofinality $(\operatorname{cof}(\eta_{\beta}))^{W} \geq \nu_{\beta}$.

Proof. Otherwise there will be stationary many β 's of uncountable cofinality with $(\operatorname{cof}(\eta_{\beta}))^W < \nu_{\beta}$. Then (**) holds on this stationary set.

Lemma 1.13 Suppose that for every $\beta < \delta$, κ_{β}^{+} is a limit cardinal of W, then, for a club many $\beta < \delta$ of uncountable cofinality $(\operatorname{cof}(\eta_{\beta}))^{W} > \kappa_{\beta}^{+}$.

Proof. Otherwise there will be stationary many β 's of uncountable cofinality with $(\operatorname{cof}(\eta_{\beta}))^W < \kappa_{\beta}^+$. Then (**) holds on this stationary set.

Theorem 1.14 Suppose that $V \supseteq W$ are transitive models of ZFC with the same ordinals such that:

- 1. κ is an inaccessible in W,
- 2. $\kappa > (\operatorname{cof}(\kappa))^V = \delta$ for some uncountable (in V) cardinal $\delta > \omega_1$. Let $\langle \kappa_\alpha \mid \alpha < \delta \rangle$ be a witnessing club.

- 3. For every $\alpha < \delta$, $(\kappa_{\alpha}^{++})^W < \kappa_{\alpha}^+$ (or only for stationary many α 's),
- 4. κ is a strong limit in V or just it is a limit cardinal and $\kappa_{\alpha}^{\omega_1} < \kappa$, for every $\alpha < \delta$.

Assume that $(\kappa^{++})^W \geq \kappa^+$.

Then there is an increasing unbounded in κ sequence $\langle \rho_{\alpha} \mid \alpha < \delta \rangle$ such that

- ρ_{α} is a regular cardinal in W,
- for every limit α , $\operatorname{cof}(\rho_{\alpha}) = \operatorname{cof}(\alpha)$,
- for every limit α of uncountable cofinality, $\rho_{\alpha} \geq |\rho_{\alpha}| > \kappa_{\alpha} \geq \sup(\{\rho_{\beta} \mid \beta < \alpha\}),$
- for every limit α of uncountable cofinality, there is a club c_{α} in ρ_{α} such that for every $\tau \in c_{\alpha}$ we have $(\cot(\tau))^W \in \{\rho_{\beta} \mid \beta < \alpha\}$.

Proof. Just take $\rho_{\alpha} = (\operatorname{cof}(\eta_{\alpha}))^{W}$.

Suppose that α has an uncountable cofinality. Then, by 1.13, $\rho_{\alpha} \geq |\rho_{\alpha}| \geq \kappa_{\alpha}^{+}$, and by 1.11, $\{\rho_{\beta} \mid \beta < \alpha\} \subseteq \kappa_{\alpha}$.

Fix some increasing continuous function $\varphi_{\alpha}: \rho_{\alpha} \to \eta_{\alpha}$ in W with ran (φ_{α}) unbounded in η_{α} . Set

 $c_{\alpha} := \{ \varphi_{\alpha}^{-1}(\eta_{\beta}) \mid \beta < \alpha \text{ limit and } \eta_{\beta} \text{ is a limit point of } \operatorname{ran}(\varphi_{\alpha}) \}.$

Let $\tau \in c_{\alpha}$. Then $\tau = \varphi_{\alpha}^{-1}(\eta_{\beta})$ for a limit $\beta < \alpha$ and η_{β} is a limit point of $\operatorname{ran}(\varphi_{\alpha})$. Now the continuity of φ_{α} implies that $(\operatorname{cof}(\tau))^{W} = (\operatorname{cof}(\eta_{\beta}))^{W}$ which is ρ_{β} .

2 A forcing construction.

We would like to show the following:

Theorem 2.1 Suppose that κ is a κ^{+3} -supercompact cardinal. Let S be subset of ω_1 . Then there are generic extensions $V^* \subseteq V^{**}$ such that

- 1. κ changes its cofinality to ω_1 in V^{**} ,
- 2. there is a closed unbounded in κ sequence $\langle \kappa_{\alpha} \mid \alpha < \omega_1 \rangle$ of cardinals in V^{**} such that

$$S = \{ \alpha < \omega_1 \mid (\kappa_{\alpha}^+)^{V^*} = (\kappa_{\alpha}^+)^{V^{**}} \}$$

and

$$\omega_1 \setminus S = \{ \alpha < \omega_1 \mid (\kappa_{\alpha}^+)^{V^*} < (\kappa_{\alpha}^+)^{V^{**}} \}.$$

Let us describe the construction. Assume GCH, κ is a κ^{+3} -supercompact cardinal and S is a subset of ω_1 .³

Fix a coherent sequence

$$\vec{W} = \langle W(\alpha, \beta) \mid \alpha \in \text{dom}(\vec{W}), \beta < o^{\vec{W}}(\alpha) \rangle$$

such that

- 1. $\kappa = \max(\operatorname{dom}(\vec{W}),$
- 2. $o^{\vec{W}}(\kappa) = \omega_1$,
- 3. for every $\alpha \in \text{dom}(\vec{W}), \beta < o^{\vec{W}}(\alpha), W(\alpha, \beta)$ is a normal ultrafilter over $\mathcal{P}_{\alpha}(\alpha^{++})$,
- 4. $\vec{W} \upharpoonright (\alpha, \beta) = j_{W(\alpha, \beta)}(f)(\alpha)$, for some $f : \alpha \to V$.

Consider the Levy collapse $Col(\kappa, \kappa^+)$. Let $p \in Col(\kappa, \kappa^+)$. Set

$$\mathcal{F}_p = \{ D \subseteq Col(\kappa, \kappa^+) \mid D \text{ is a dense open above } p \}.$$

Then \mathcal{F}_p is a κ -complete filter over a set of cardinality κ^+ , for every $p \in Col(\kappa, \kappa^+)$. It is also fine in a sense that for every $\eta < \kappa^+$,

$$\{q \in Col(\kappa, \kappa^+) \mid \eta \in ran(q)\} \in \mathcal{F}_p.$$

Let $j: V \to M$ be an elementary embedding with κ a critical point and $\kappa^{++}M \subseteq M$. For every $p \in Col(\kappa, \kappa^+)$, pick $\tilde{p} \in \bigcap j'' \mathcal{F}_p$. So, $\tilde{p} \in (Col(j(\kappa), j(\kappa^+)))^M$. Set

$$\tilde{F}_p = \{ X \subseteq Col(\kappa, \kappa^+) \mid \tilde{p} \in j(X) \}.$$

Then \tilde{F}_p is a κ -complete ultrafilter which extends \mathcal{F}_p .

Note that \mathcal{F}_p is a filter on $\mathcal{P}_{\kappa}(\kappa \times \kappa^+)$, hence \tilde{F}_p is an ultrafilter there.

Now find, in M, some (least) $\eta < j(\kappa^+)$ which codes $\langle \tilde{p} \mid p \in Col(\kappa, \kappa^+) \rangle$.

Define a κ -complete ultrafilter \tilde{W} over $\mathcal{P}_{\kappa}(\kappa^{+}) \times \kappa^{+}$ as follows:

$$X \in \tilde{W} \text{ iff } \langle j''\kappa^+, \eta \rangle \in j(X).$$

For every $p \in Col(\kappa, \kappa^+)$, fix a projection $\pi_p : \mathcal{P}_{\kappa}(\kappa^+) \times \kappa^+ \to Col(\kappa, \kappa^+)$ of \tilde{W} onto \tilde{F}_p .

 $^{^{3}}$ The interesting case is when S and its compliment are both stationary.

⁴In some fixed in advance well ordering.

Now use the coherent sequence \vec{W} to define in the obvious fashion a new coherent sequence \vec{W} where each $\tilde{W}(\alpha,\beta)$ is an α -complete ultrafilter over $\mathcal{P}_{\alpha}(\alpha^{+}) \times \alpha^{+}$ defined from $W(\alpha,\beta)$ as above.

Note that $\tilde{W} \upharpoonright (\alpha, \beta)$ will belong already to the ultrapower by $\tilde{W}(\alpha, \beta) \upharpoonright P_{\alpha}(\alpha^{+}) = W(\alpha, \beta) \upharpoonright P_{\alpha}(\alpha^{+})$. Thus, $\tilde{W} \upharpoonright (\alpha, \beta)$ belongs to the ultrapower by $W(\alpha, \beta)$, by coherency. By the condition (4) above it will be in the ultrapower by $W(\alpha, \beta) \upharpoonright P_{\alpha}(\alpha^{+})$, since this ultrapower is closed under κ^{+} -sequences.

Force the supercompact Magidor forcing with $\vec{\tilde{W}}$.

Denote by V^{**} a resulting generic extension.

Let $\langle \langle P_{\nu}, \eta_{\nu} \rangle \mid \nu < \omega_{1} \rangle$ be the generic sequence. Then $\langle P_{\nu} \mid \nu < \omega_{1} \rangle$ be the supercompact Magidor sequence. Denote $P_{\nu} \cap \kappa$ by κ_{ν} . If $\nu' < \nu < \omega_{1}$, then $\langle P_{\nu'}, \eta_{\nu'} \rangle \sqsubseteq \langle P_{\nu}, \eta_{\nu} \rangle$. In particular, $\eta_{\nu'} \in P_{\nu}$. Also, $\eta_{\nu'}$ codes elements of $Col(\kappa_{\nu}, P_{\nu})$.

For every $\nu \in S$ fix a cofinal sequence $\langle \nu_n \mid n < \omega \rangle$.

Let $\nu \in S$. Consider $\langle \eta_{\nu_n} \mid n < \omega \rangle$. Denote by $\langle t_{\nu,n}^i \mid i < \kappa_{\nu_n}^+ \rangle$ the sequence of members of $Col(\kappa_{\nu_{n+1}}, P_{\nu_{n+1}})$ codded by η_{ν_n} .

Let $tr_{\nu}: P_{\nu} \longleftrightarrow \kappa_{\nu}^{+}$ be the transitive collapse of P_{ν} .

Consider a set

$$Z_{\nu} := \{ tr_{\nu}'' t_{\nu,n}^i \mid n < \omega, i < \kappa_{\nu_n}^+ \}.$$

It is a subset of $Col(\kappa_{\nu}, \kappa_{\nu}^{+})$. Define a partial order \leq_{ν} on Z_{ν} as follows:

$$tr_{\nu}''t_{\nu,n}^{i} \leq_{\nu} tr_{\nu}''t_{\nu,m}^{j} \text{ iff } n \leq m \text{ and } tr_{\nu}''t_{\nu,n}^{i} \leq_{Col(\kappa_{\nu},\kappa_{\nu}^{+})} tr_{\nu}''t_{\nu,m}^{j}.$$

Set G_{ν} to be the set of all unions of all $<_{\nu}$ -increasing ω -sequences of elements of Z_{ν} .

Lemma 2.2 There is $g \in G_{\nu}$ which is generic for $Col(\kappa_{\nu}, \kappa_{\nu}^{+})$ over V.

Proof. Work in V^{**} . Define a function g as follows. Start with $tr_{\nu}''t_{\nu,0}^0$. Pick $i_1 < \kappa_{\nu_1}^+$ such that $t_{\nu,1}^{i_1}$ comes from the ultrafilter $\tilde{F}_{t_{\nu,0}^0}$ over $Col(\kappa,\kappa^+)$.

Continue by induction. Suppose that t_{ν,i_n}^n is defined. Pick $i_{n+1} < \kappa_{\nu_n}^+$ such that $t_{\nu,n+1}^{i_{n+1}}$ comes from the ultrafilter $\tilde{F}_{t_{\nu,n}^{i_n}}$ over $Col(\kappa, \kappa^+)$.

Finally set

$$g = \bigcup_{n < \omega} tr_{\nu}'' t_{\nu,n}^{i_n}.$$

We claim that g is as desired.

⁵Set here $\langle Q, \xi \rangle \sqsubset \langle P, \eta \rangle$ iff $Q \cup \{\xi\} \subseteq P$ and $|Q| < P \cap \kappa$.

⁶Note that $\eta_{\nu'}$ need not code only members of $Col(\kappa_{\nu'}, P_{\nu'})$, or even of $Col(\kappa_{\nu'}, P_{\nu})$.

Work in V above a condition which already decides κ_{ν} . Suppose for simplicity that none of κ_{ν_n} , $n < \omega$ is decided yet. Let D be a dense open subset of $Col(\kappa_{\nu}, \kappa_{\nu}^+)$. Intersect the measure one set of \tilde{F}_{\emptyset^0} with D. The resulting condition will force

$$g \approx \text{extends a member of } \check{D}.$$

The next lemma follows from the definition of G_{ν} .

Lemma 2.3 For every $n_0 < \omega$, $G_{\nu} \in V[\langle tr_{\nu}"P_{\nu_n} \mid n_0 < n < \omega \rangle]$.

Set
$$V^* = V[\langle G_{\nu} \mid \nu \in S \rangle].$$

Let now $\rho \in \omega_1 \setminus S$. We need to argue that $(\kappa_{\rho}^+)^V = (\kappa_{\rho}^+)^{V^*}$. By Lemma 2.3, it follows that

$$V[\langle G_{\nu} \mid \nu \in S \setminus \rho \rangle] \subseteq V[\langle \langle P_{\tau}, \eta_{\tau} \rangle \mid \rho < \tau < \omega_{1} \rangle],$$

i.e. the extension of V by the same forcing but which only starts above κ_{ρ} . Such extension does not add new bounded subsets to κ_{ρ}^+ and below. Hence, it is enough to deal with the forcing up to κ_{ρ} .

Let us split the argument into two cases.

Case 1. ρ is a limit point of $\rho \in \omega_1 \setminus S$.

Let then $\langle \rho_k \mid k < \omega \rangle$ be a cofinal sequence consisting of elements of $\omega_1 \setminus S$. Assume for simplicity that $\rho_0 = 0$.

For every $\nu \in S \cap \rho$ find the least $k(\nu)$ such that $\nu < \rho_{k(\nu)}$. Let n_{ν} be the least $n < \omega$ such that

 $nu_n > \rho_{k(\nu)-1}$, if $k(\nu) \ge 1$ and 0 otherwise.

Consider

$$V^{\rho} := V[\langle \kappa_{\tau} \mid \tau < \rho \rangle, \langle \langle \langle tr_{\nu}^{"} P_{\nu_{n}}, tr_{\nu}^{"} \eta_{\nu_{n}} \rangle \mid n_{\nu} \leq n < \omega \rangle \mid \nu \in S \cap \rho \rangle].$$

Then

$$V[\langle G_{\nu} \mid \nu \in S \cap \rho \rangle] \subseteq V^{\rho}.$$

Lemma 2.4 V^{ρ} is a generic extension of V by a Prikry type forcing which satisfies $\kappa_{\rho}^{+}-c.c.$

Case 2. ρ is not a limit point of $\rho \in \omega_1 \setminus S$.

The treatment of this case is similar and even a bit simpler than the previous one.

References

- $\left[1\right]$. Gitik, Prikry type forcings, Handbook of Set Theory
- [2] K. Kunen, Set Theory.
- [3] S. Shelah, Cardinal arithmetic