Silver type theorems for collapses.

Moti Gitik

May 19, 2014

The classical theorem of Silver states that GCH cannot break for the first time over a singular cardinal of uncountable cofinality. On the other hand it is easy to obtain a situation where GCH breaks on a club below a singular cardinal κ of an uncountable cofinality but $2^\kappa = \kappa^+$. We would like here to investigate the situation once blowing up power of singular cardinals is replaced by collapses of their successors.

1 ZFC results.

The following basic result should be well known and goes back to Silver:

Theorem 1.1 Suppose that $V \supseteq W$ are transitive models of ZFC with the same ordinals such that:

1. κ is a cardinal in W,
2. κ changes its cofinality to ω_1 in V witnessed by a club $\langle \kappa_\alpha \mid \alpha < \omega_1 \rangle$,
3. for every $\alpha < \omega_1$, $(\kappa^+_\alpha)^W < \kappa^+_\alpha$ (or only for stationary many α’s),
4. κ is a strong limit in V or just it is a limit cardinal and $\kappa^{< \omega_1}_\alpha < \kappa$, for every $\alpha < \omega_1$.

Then $(\kappa^+)^W < \kappa^+$.

Proof. Suppose that $(\kappa^+)^W = \kappa^+$.

Fix in W a sequence $\langle f_i \mid i < \kappa^+ \rangle$ of κ^+ first canonical functions in $\langle \prod_{\nu < \kappa} \nu^+, <_{j^{\text{bd}}_\kappa} \rangle$ or just any sequence of κ^+–many functions in $\prod_{\nu < \kappa} \nu^+$ increasing mod j^{bd}_κ.

Set in V

$g_i = f_i \upharpoonright \{ \kappa_\alpha \mid \alpha < \omega_1 \}$, for every $i < \kappa^+$. Then $\langle g_i \mid i < \kappa^+ \rangle$ is an increasing sequence
of functions in $\langle \prod_{\alpha<\omega_1} (\kappa^+_\alpha)^W, <_{J_{\kappa}^{bd}} \rangle$. By the assumption (3) we have that for every $\alpha < \omega_1$, $(\kappa^+_\alpha)^W < \kappa^+_\alpha$. Now, as in the Baumgartner-Prikry proof of the Silver Theorem (see K. Kunen [2] p.296 (H5)), it is impossible to have κ^+-many such functions. Hence $(\kappa^+)^W < \kappa^+$. □

Let us deal now with double successors.

Theorem 1.2 Suppose that $V \supseteq W$ are transitive models of ZFC with the same ordinals such that:

1. κ is a cardinal in W,
2. $2^\kappa \geq \kappa^{++}$, and moreover there is a sequence of κ^{++}-many functions in $\prod_{\nu<\kappa} \nu^{++}$ increasing mod J_{κ}^{bd},
3. κ changes its cofinality to ω_1 in V witnessed by a club $\langle \kappa_\alpha \mid \alpha < \omega_1 \rangle$,
4. for every $\alpha < \omega_1$, $(\kappa^{++}_\alpha)^W < \kappa^+_\alpha$ (or only for stationary many α’s),
5. κ is a strong limit in V or just it is a limit cardinal and $\kappa^{|\omega_1} < \kappa$, for every $\alpha < \omega_1$.

Then $(\kappa^{++})^W < \kappa^+$.

The condition (2) allows to repeat the proof of 1.1.

Let state the following relevant result of Shelah ([3](4.9,p.304)), which says that once $(\kappa^+)^W$ changes its cofinality, then we must have $(\kappa^{++})^W < \kappa^+$ unless $\text{cof}((\kappa^+)^W) = \text{cof}(|(\kappa^+)^W|) = \text{cof}(\kappa)$.

Proposition 1.3 Let F be the κ–complete filter of co-bounded subsets of $\mathcal{P}_\kappa(\kappa^+)$, i.e. the filter generated by the sets $\{ P \in \mathcal{P}_\kappa(\kappa^+) \mid \alpha \in P \}$, $\alpha < \kappa^+$.

Then there is a sequence $\langle f_i \mid i < \kappa^{++} \rangle$ of functions such that

1. $f_i : \mathcal{P}_\kappa(\kappa^+) \to \kappa$,
2. $f_i(P) < |P|^+$, for all $P \in \mathcal{P}_\kappa(\kappa^+)$,
3. $f_i >_F f_j$, whenever $i > j$.

Proof. We define a sequence $\langle f_i \mid i < \kappa^{++} \rangle$ by induction.

Suppose that $\langle f_j \mid j < i \rangle$ is defined. Define f_i.

2
Case 1. $i = i' + 1.$
Set $f_i(P) = f_{i'}(P) + 1.$

Case 2. i is a limit ordinal of cofinality $\delta < \kappa$.
Pick a cofinal in i sequence $\langle i_\tau \mid \tau < \delta \rangle$. Set $f_i(P) = \bigcup_{\tau < \delta} f_{i_\tau}(P) + 1$.

Case 3. i is a limit ordinal of cofinality $\delta \geq \kappa$, i.e. $\delta = \kappa$ or $\delta = \kappa^+$.
Pick a cofinal in i sequence $\langle i_\tau \mid \tau < \delta \rangle$. Set $f_i(P) = \bigcup_{\tau \in P} f_{i_\tau}(P) + 1$.

\[\square \]

Theorem 1.4 Suppose that $V \supseteq W$ are transitive models of ZFC with the same ordinals such that:

1. κ is an inaccessible in W,
2. $\kappa > (\text{cof}(\kappa))^V = \delta$ for some uncountable (in V) cardinal δ.
3. κ is a strong limit in V or just it is a limit cardinal and for every $\xi < \kappa$, $\xi^\delta < \kappa$.
4. There exist a club $\langle \kappa_\alpha \mid \alpha < \delta \rangle$ in κ (or just a stationary set) \(^1\) and a sequence $\langle P_\alpha \mid \alpha < \delta \rangle$ such that:
 (a) $P_\alpha \in (P_\kappa(\kappa^+))^W$, for each $\alpha < \delta$,
 (b) $(|P_\alpha|^+)^W < \kappa_\alpha^+$, for each $\alpha < \delta$,
 (c) $(\kappa^+)^W = \bigcup_{\alpha < \delta} P_\alpha$,
 (d) for every $Q \in (P_\kappa(\kappa^+))^W$, there is $\alpha < \delta$ such that for every $\beta, \alpha \leq \beta < \delta$, $Q \subseteq P_\beta$.

Then $(\kappa^{++})^W < \kappa^+$.

Proof. Suppose otherwise. Then $(\kappa^{++})^W = \kappa^+$, by the assumption (b),(c) above.
Let $\langle f_i \mid i < \kappa^{++} \rangle$ be a sequence of functions in W given by Proposition 1.3.
We can repeat the argument of 1.1 with slight adaptations. Thus, set in V
$g_i(\alpha) = f_i(P_\alpha)$, for every $\alpha < \omega_1$ and $i < (\kappa^{++})^W = \kappa^+$. Let $\nu_\alpha := (|P_\alpha|^+)^W$. By the assumption, $\nu_\alpha < \kappa_\alpha^+$. Then $\langle g_i \mid i < \kappa^+ \rangle$ is an increasing sequence of functions in $\langle \prod_{\alpha < \delta} \nu_\alpha; < J^{+} \rangle$, since for every $A \in \mathcal{F}$ we have $\{P_\alpha \mid \alpha \geq \alpha_0\} \subseteq A$, for some $\alpha_0 < \delta$. This is impossible, since $\nu_\alpha < \kappa_\alpha^+$, for every $\alpha < \delta$. Contradiction.

\[\square \]

\(^1\)Note that if $\delta = \omega_1$, then we can just force a club into it without effecting things above.
Theorem 1.5 Suppose that $V \supseteq W$ are transitive models of ZFC with the same ordinals such that for some inaccessible in W cardinal κ both κ and its successor in W change their cofinality to some uncountable (in V) cardinal δ and κ remains a cardinal in V. Then the following conditions are equivalent:

1. (*) There are a clubs $\langle \kappa_\alpha \mid \alpha < \delta \rangle$ in κ and $\langle \eta_\alpha \mid \alpha < \delta \rangle$ in $(\kappa^+)^W$ such that for every limit $\alpha < \delta$ (or just for stationary many α's)2 the set $\{\eta_\beta \mid \beta < \alpha\}$ can be covered by a set $a_\alpha \in W$ with $(|a_\alpha|^+)^W < \kappa^+$.

2. (**) There are a clubs $\langle \kappa_\alpha \mid \alpha < \delta \rangle$ in κ and $\langle \eta_\alpha \mid \alpha < \delta \rangle$ in $(\kappa^+)^W$ such that for every limit $\alpha < \delta$ (or just for stationary many α's) the set $\{\eta_\beta \mid \beta < \alpha\}$ has an unbounded intersection with a set $b_\alpha \in W$ with $(|b_\alpha|^+)^W < \kappa^+$.

3. There exist a club $\langle \kappa_\alpha \mid \alpha < \delta \rangle$ in κ and a sequence $\langle P_\alpha \mid \alpha < \delta \rangle$ such that

 a. $P_\alpha \in (\mathcal{P}_\kappa(\kappa^+))^W$, for each $\alpha < \delta$,
 b. $P_\alpha \cap \kappa = \kappa_\alpha$, for each $\alpha < \delta$,
 c. $(|P_\alpha|^+)^W < \kappa^+$, for each $\alpha < \delta$,
 d. $(\kappa^+)^W = \bigcup_{\alpha < \omega_1} P_\alpha$,
 e. for every $Q \in (\mathcal{P}_\kappa(\kappa^+))^W$, there is $\alpha < \omega_1$ such that for every $\beta, \alpha \leq \beta < \omega_1$, $Q \subseteq P_\beta$.

4. There exists an increasing sequence $\langle P_\alpha \mid \alpha < \delta \rangle$ which satisfies all the requirements of the previous item.

Proof. Split the proof into lemmas.

Lemma 1.6 (*) iff (**).

Proof. Clearly, (*) implies (**). Let us show the opposite direction.
We fix a bijection $\pi_\xi : \kappa \leftrightarrow \xi$ in W, for every $\xi < (\kappa^+)^W$.
Fix in V a function $\pi : \kappa \rightarrow^{onto} (\kappa^+)^W$. Set now for every $\alpha < \delta$, $\eta_\alpha = \sup(\pi^\alpha \kappa_\alpha)$. Then, clearly, $\{\eta_\alpha \mid \alpha < \delta\}$ is a club in $(\kappa^+)^W$. Now given a sequence which witnesses (**). Without loss of generality we can assume that it is the sequence $\langle \eta_\alpha \mid \eta < \delta \rangle$ defined above. Otherwise

2If $\delta = \omega_1$, then it is basically the same, since once we have only stationary many such α’s, then force a club into it. Everything is a the level of ω_1, so this will have no effect on the cardinal arithmetic above.
just intersect two clubs.
Define an increasing continuous sequence \(\langle N_\alpha \mid \alpha < \delta \rangle \) of elementary submodels of some \(H_\chi \), with \(\chi \) big enough such that

1. \(\delta, \kappa, \langle \kappa_\alpha \mid \alpha < \delta \rangle, \langle \pi_\xi \mid \xi < (\kappa^+)^W \rangle, \pi \in N_0, \)
2. \(|N_\alpha| < \delta, \)
3. \(N_\alpha \cap \delta \) is an ordinal,
4. \(\langle N_\beta \mid \beta \leq \alpha \rangle \in N_{\alpha + 1}. \)

Denote \(N_\alpha \cap \delta \) by \(\delta_\alpha. \)
Then \(\sup(N_\alpha \cap \kappa) = \kappa_\delta \) and \(\sup(N_\alpha \cap (\kappa^+)^W) = \eta_\delta. \) Clearly, \(\delta_\alpha = \alpha \) for a club many \(\alpha \)'s.

Suppose now that for some \(\alpha < \delta \) we have \(\delta_\alpha = \alpha \) and there is a set \(X \in W \) such that

- \((|X|)^W < \kappa_\alpha^+, \)
- \(X \cap \{ \eta_\beta \mid \beta < \alpha \} \) is unbounded in \(\eta_\alpha. \)

Note that \(\eta_\beta \in N_\alpha, \) for every \(\beta < \alpha \) and then, also, \(\pi_{\eta_\beta} \in N_\alpha. \) By elementarity, then \(\pi_{\eta_\beta} \upharpoonright (N_\alpha \cap \kappa_\alpha) : N_\alpha \cap \kappa_\alpha \leftrightarrow N_\alpha \cap \eta_\beta. \) In particular, \(\pi_{\eta_\beta} \upharpoonright \kappa_\alpha \supseteq \{ \eta_\gamma \mid \gamma < \beta \}. \)
Set
\[
Y := \{ \pi_\xi \upharpoonright \kappa_\alpha \mid \xi \in X \cap \eta_\alpha \}.
\]
Then, \(Y \in W, |Y|^W \leq \kappa_\alpha + |X|^W \), and so \((|X|)^W < \kappa_\alpha^+. \) But, in addition, \(Y \supseteq \{ \eta_\gamma \mid \gamma < \alpha \} \), since for unboundedly many \(\beta < \alpha, \) we have \(\eta_\beta \in X \) and so, \(\pi_{\eta_\beta} \upharpoonright \kappa_\alpha \supseteq \{ \eta_\gamma \mid \gamma < \beta \}. \)
\(\square \) of the lemma.

Lemma 1.7 (1) implies (3)

Proof.

Fix clubs \(\langle \kappa_\alpha \mid \alpha < \delta \rangle \) and \(\langle \eta_\alpha \mid \alpha < \delta \rangle \) witnessing (1).
Let us build first a sequence \(\langle R_\alpha \mid \alpha < \delta \rangle \) which satisfies all the requirements of (3), but probably is not increasing.

Set \(R_0 = \kappa_0 \cup ((\pi_{\eta_0} \upharpoonright \kappa_0) \setminus \kappa). \)
Let \(\alpha, 0 < \alpha < \delta \) be an ordinal. Pick \(a_\alpha \in W, a_\alpha \subseteq \eta_\alpha \) to be a cover of \(\{ \eta_\beta \mid \beta < \alpha \} \) with \((|a_\alpha|)^W < \kappa_\alpha^+. \) Set \(R'_\alpha = \bigcup \{ \pi_\xi \upharpoonright \kappa_\alpha \mid \xi \in b_\alpha \cup \{ \eta_\alpha \} \}. \) Let \(R_\alpha = \kappa_\alpha \cup (R'_\alpha \setminus \kappa). \)
The constructed sequence satisfies trivially the requirements \(a\), \(b\) and \(c\). Let us check \(e\). \(d\) clearly follows from \(e\).

Let \(Q \in (P_\kappa(\kappa))^W\). There is \(\beta < \omega_1\) such that \(Q \subseteq \eta_\beta\). Consider \(\pi_{\eta_\beta}^{-1}Q\). It is a bounded subset of \(\kappa\). Hence there is \(\gamma < \omega_1\) such that \(\kappa_\gamma \supseteq \pi_{\eta_\beta}^{-1}Q\). So \(\pi_{\eta_\beta}^{-1} \kappa_\beta \supseteq Q\). Let \(\alpha < \omega_1\) be an ordinal above \(\beta, \gamma\). Then \(R_\delta \supseteq Q\), for every \(\delta \geq \alpha\).

\(\square\) of the lemma.

Lemma 1.8 \((3)\) iff \((4)\).

Proof. Clearly \((4)\) implies \((3)\). Let us show the opposite direction.

Let a club \(\langle \kappa_\alpha \mid \alpha < \delta \rangle\) in \(\kappa\) and a sequence \(\langle R_\alpha \mid \alpha < \delta \rangle\) witness \((3)\).

Define an increasing subsequence \(\langle P_\alpha \mid \alpha < \delta \rangle\)

Set \(P'_0 = R_0\). By \(e\) there is \(\alpha_0\) such that for every \(\beta, \alpha_0 \leq \beta < \delta\), \(P'_\beta \subseteq R_\beta\). Set \(P'_1 = R_{\alpha_1}\). Continue by induction. Suppose that \(\nu < \delta\) and for every \(\nu' < \nu\), increasing sequences \(\langle \alpha_{\nu'} \mid \nu' < \nu\rangle\) and \(\langle P'_{\nu'} \mid \nu' < \nu\rangle\) are defined and satisfy the following:

1. \(P'_{\nu'} = R_{\alpha_{\nu'}}\),

2. for every \(\beta, \alpha_{\nu'} \leq \beta < \delta\), \(P'_{\nu'} \subseteq R_\beta\).

If \(\nu\) is a successor ordinal, then let \(\nu = \mu + 1\), for some \(\mu\). Set \(P'_\nu = R_{\alpha_{\mu}}\) and let \(\alpha_{\nu} < \delta\) be such that for every \(\beta, \alpha_{\nu} \leq \beta < \delta\), \(P'_\beta \subseteq R_\beta\).

If \(\nu\) is a limit ordinal, then let \(P'_\nu = R_{\bigcup_{\nu' < \nu} \alpha_{\nu'}}\) and define \(\alpha_{\nu}\) as in the successor case.

Finally let us define an increasing subsequence of \(\langle P'_\alpha \mid \alpha < \delta \rangle\) which satisfies the properties \(a\)-\(e\) of \((3)\).

Let \(C := \{\nu < \delta \mid \nu = \bigcup_{\nu' < \nu} \alpha_{\nu'}\}\). Clearly it is a club. Set \(P_\nu = P'_\nu\), for every \(\nu \in C\).

Then \(\langle \kappa_\alpha \mid \alpha \in C \rangle\) and \(\langle P_\alpha \mid \alpha \in C \rangle\) are as desired.

\(\square\) of the lemma.

Lemma 1.9 \((3)\) implies \((1)\).

Proof. Let a club \(\langle \kappa_\alpha \mid \alpha < \delta \rangle\) in \(\kappa\) and a sequence \(\langle P_\alpha \mid \alpha < \delta \rangle\) witness \((3)\). Let \(\eta_\alpha \mid \alpha < \delta\) be a club in \((\kappa^+)^W\).

We claim that there is a club \(C \subseteq \delta\) such that for every \(\alpha \in C\), \(P_\alpha \supseteq \{\eta_\beta \mid \beta < \alpha\}\).

Suppose otherwise. Then there is a stationary \(S \subseteq \delta\) such that for every \(\alpha \in S\) there is \(\alpha' < \alpha\) with \(\eta_{\alpha'} \not\in P_\alpha\). Then there are a stationary set \(S^* \subseteq S\) and \(\alpha^* < \delta\) such that for every \(\alpha \in S^*, \eta_{\alpha^*} \not\in P_\alpha\). This is impossible by \((d)\).
Theorem 1.10 Suppose that $V \supseteq W$ are transitive models of ZFC with the same ordinals such that:

1. κ is an inaccessible in W,
2. $\kappa > (\text{cof}(\kappa))^V = \delta$ for some uncountable (in V) cardinal $\delta > \omega_1$. Let $\langle \kappa_\alpha \mid \alpha < \delta \rangle$ be a witnessing club.
3. For every $\alpha < \delta$, $(\kappa_\alpha^\alpha)^W < \kappa_\alpha^+$ (or only for stationary many α's),
4. κ is a strong limit in V or just it is a limit cardinal and $\kappa_\alpha^{\omega_1} < \kappa$, for every $\alpha < \delta$.
5. There is a regular cardinal δ^*, $\omega < \delta^* < \delta$ such that for every regular cardinal $\rho < \kappa$ of W which became a singular of cofinality δ^* in V, there is a club a club sequence $\langle \rho_i \mid i < \delta^* \rangle$ in ρ such that for every club $c \subseteq \delta^*$ the set $\{(\text{cof}(\rho_i))^W \mid i \in c\}$ is unbounded in $|\rho|$.

Or

6. Like the previous item but only for ρ's of the form $(\text{cof}(\eta_\alpha))^W$ with $\alpha < \delta$ of cofinality δ^*, where $\langle \eta_\alpha \mid \alpha < \delta \rangle$ is a club in $\langle \kappa^+ \rangle^W$.

Then $(\kappa^\alpha^\alpha)^W < \kappa^+$.

Proof.

Let us argue that $(\ast \ast)$ of 1.4 holds.

Assume for simplicity that $\delta^* = \omega_1$.

Let $\langle N_\alpha \mid \alpha < \delta \rangle$ and $\langle \eta_\alpha \mid \alpha < \delta \rangle$ be as in 1.6. Pick $\alpha < \delta$ of cofinality ω_1 with $\delta_\alpha = \alpha$. Consider η_α. Then $\text{cof}(\eta_\alpha) = \omega_1$. If $(\text{cof}(\eta_\alpha))^W < \kappa_\alpha^+$, then we pick in W a club X in η_α of the order type $(\text{cof}(\eta_\alpha))^W$. Then $X \cap \{\eta_\beta \mid \beta < \alpha\}$ is a club, and so, unbounded in η_α.

Suppose now that $(\text{cof}(\eta_\alpha))^W \geq \kappa_\alpha^+$. Denote $(\text{cof}(\eta_\alpha))^W$ by ρ. Then $\rho \leq \kappa$, since $\eta_\alpha < (\kappa^+)^W$. It is impossible to have $\rho = \kappa$, since $\text{cof}(\kappa) > \omega_1 = \text{cof}(\alpha) = \text{cof}(\eta_\alpha) = \text{cof}(\rho)$. Hence $\kappa_\alpha^+ \leq \rho < \kappa$. In particular, $|\rho| \geq \kappa_\alpha^+$.

By the assumption (5) of the theorem, there is a club a club sequence $\langle \rho_i \mid i < \omega_1 \rangle$ such that for every club $c \subseteq \omega_1$ the set $\{(\text{cof}(\rho_i))^W \mid i \in c\}$ is unbounded in $|\rho|$. Let $e = \{e_\xi \mid \xi < \rho\} \in W$ be a club in η_α. Consider $d := \{\eta_\beta \mid \beta < \alpha\} \cap e$. It is a club in η_α. So there are some
\(\gamma < \alpha \) and \(j < \omega_1 \) such that \(\eta_\gamma = e_{\rho_j} \) and \((\text{cof}(\rho_j))^W > \kappa_\alpha \). But this is impossible, since \(\eta_\gamma \in N_\alpha \), and hence, \((\text{cof}(\eta_\gamma))^W = (\text{cof}(\rho_j))^W \in N_\alpha \cap \kappa \subseteq \kappa_\alpha \).

Hence, always \((\text{cof}(\eta_\alpha))^W < \kappa_\alpha^+ \).

So, the set \(\{ \eta_\alpha : \alpha < \delta \text{ and cof}(\alpha) = \omega_1 \} \) witnesses \((**)\) and we are done.

\[\Box \]

Lemma 1.11 For every \(\beta < \delta \),
\[
\{ (\text{cof}(\eta_\gamma))^W : \gamma < \beta \} \subseteq \kappa_\beta.
\]

Proof. Otherwise there is \(\gamma < \beta \) such that \((\text{cof}(\eta_\gamma))^W \geq \kappa_\beta \). Recall that \(\kappa < \eta_\gamma < (\kappa^+)^W \).

Hence, \((\text{cof}(\eta_\gamma))^W \leq \kappa \). It is impossible to have \((\text{cof}(\eta_\gamma))^W = \kappa \), since \(\text{cof}(\kappa) = \delta > |N_\gamma| \geq \text{cof}(\eta_\gamma) = \text{cof}((\text{cof}(\eta_\gamma))^W) \). So, \((\text{cof}(\eta_\gamma))^W < \kappa \). But \((\text{cof}(\eta_\gamma))^W \in N_\beta \) and \(\sup(N_\beta \cap \kappa) = \kappa_\beta \).

\[\Box \]

Lemma 1.12 Suppose that for every \(\beta < \delta \), \(\kappa_\beta^+ \) is is successor cardinal in \(W \) and \(\nu_\beta \) is its immediate predecessor, then, for a club many \(\beta < \delta \) of uncountable cofinality
\[
(\text{cof}(\eta_\beta))^W \geq \nu_\beta.
\]

Proof. Otherwise there will be stationary many \(\beta \)'s of uncountable cofinality with \((\text{cof}(\eta_\beta))^W < \nu_\beta \). Then \((**)\) holds on this stationary set.

\[\Box \]

Lemma 1.13 Suppose that for every \(\beta < \delta \), \(\kappa_\beta^+ \) is a limit cardinal of \(W \), then, for a club many \(\beta < \delta \) of uncountable cofinality
\[
(\text{cof}(\eta_\beta))^W > \kappa_\beta^+.
\]

Proof. Otherwise there will be stationary many \(\beta \)'s of uncountable cofinality with \((\text{cof}(\eta_\beta))^W < \kappa_\beta^+ \). Then \((**)\) holds on this stationary set.

\[\Box \]

Theorem 1.14 Suppose that \(V \supseteq W \) are transitive models of ZFC with the same ordinals such that:

1. \(\kappa \) is an inaccessible in \(W \),

2. \(\kappa > (\text{cof}(\kappa))^V = \delta \) for some uncountable (in \(V \)) cardinal \(\delta > \omega_1 \). Let \(\langle \kappa_\alpha : \alpha < \delta \rangle \) be a witnessing club.
3. For every $\alpha < \delta$, $(\kappa_\alpha^{++})^W < \kappa_\alpha^+$ (or only for stationary many α's),

4. κ is a strong limit in V or just it is a limit cardinal and $\kappa_\omega^{=1} < \kappa$, for every $\alpha < \delta$.

Assume that $(\kappa^{++})^W \geq \kappa^+$.

Then there is an increasing unbounded in κ sequence $\langle \rho_\alpha \mid \alpha < \delta \rangle$ such that

- ρ_α is a regular cardinal in W,
- for every limit α, $\text{cof}(\rho_\alpha) = \text{cof}(\alpha)$,
- for every limit α of uncountable cofinality, $\rho_\alpha \geq |\rho_\alpha| \geq \kappa_\alpha \geq \sup(\{\rho_\beta \mid \beta < \alpha\})$,
- for every limit α of uncountable cofinality, there is a club c_α in ρ_α such that for every $\tau \in c_\alpha$ we have $(\text{cof}(\tau))^W \in \{\rho_\beta \mid \beta < \alpha\}$.

Proof. Just take $\rho_\alpha = (\text{cof}(\eta_\alpha))^W$.

Suppose that α has an uncountable cofinality. Then, by 1.13, $\rho_\alpha \geq |\rho_\alpha| \geq \kappa_\alpha^+$, and by 1.11, $\{\rho_\beta \mid \beta < \alpha\} \subseteq \kappa_\alpha$.

Fix some increasing continuous function $\varphi_\alpha : \rho_\alpha \to \eta_\alpha$ in W with $\text{ran}(\varphi_\alpha)$ unbounded in η_α.

Set $c_\alpha := \{\varphi_\alpha^{-1}(\eta_\beta) \mid \beta < \alpha \text{ limit and } \eta_\beta \text{ is a limit point of } \text{ran}(\varphi_\alpha)\}$.

Let $\tau \in c_\alpha$. Then $\tau = \varphi_\alpha^{-1}(\eta_\beta)$ for a limit $\beta < \alpha$ and η_β is a limit point of $\text{ran}(\varphi_\alpha)$. Now the continuity of φ_α implies that $(\text{cof}(\tau))^W = (\text{cof}(\eta_\beta))^W$ which is ρ_β.

\square

2 A forcing construction.

We would like to show the following:

Theorem 2.1 Suppose that κ is a κ^{+3}–supercompact cardinal. Let S be subset of ω_1. Then there are generic extensions $V^* \subseteq V^{**}$ such that

1. κ changes its cofinality to ω_1 in V^{**},
2. there is a closed unbounded in κ sequence $\langle \kappa_\alpha \mid \alpha < \omega_1 \rangle$ of cardinals in V^{**} such that $S = \{\alpha < \omega_1 \mid (\kappa_\alpha^{+})^{V^*} = (\kappa_\alpha^{+})^{V^{**}}\}$ and $\omega_1 \setminus S = \{\alpha < \omega_1 \mid (\kappa_\alpha^{+})^{V^*} < (\kappa_\alpha^{+})^{V^{**}}\}$.

9
Let us describe the construction. Assume GCH, κ is a κ^{+3}-supercompact cardinal and S is a subset of ω_1.

Fix a coherent sequence

$$\vec{W} = \langle W(\alpha, \beta) \mid \alpha \in \text{dom}(\vec{W}), \beta < o^{\vec{W}}(\alpha) \rangle$$

such that

1. $\kappa = \text{max}(\text{dom}(\vec{W}))$,
2. $o^{\vec{W}}(\kappa) = \omega_1$,
3. for every $\alpha \in \text{dom}(\vec{W}), \beta < o^{\vec{W}}(\alpha), W(\alpha, \beta)$ is a normal ultrafilter over $\mathcal{P}_\alpha(\alpha^{++})$,
4. $\vec{W} \upharpoonright (\alpha, \beta) = j_{W(\alpha, \beta)}(f)(\alpha)$, for some $f : \alpha \to V$.

Consider the Levy collapse $\text{Col}(\kappa, \kappa^+)$. Let $p \in \text{Col}(\kappa, \kappa^+)$. Set

$$\mathcal{F}_p = \{ D \subseteq \text{Col}(\kappa, \kappa^+) \mid D \text{ is a dense open above } p \}.$$

Then \mathcal{F}_p is a κ-complete filter over a set of cardinality κ^+, for every $p \in \text{Col}(\kappa, \kappa^+)$. It is also fine in a sense that for every $\eta < \kappa^+$,

$$\{ q \in \text{Col}(\kappa, \kappa^+) \mid \eta \in \text{ran}(q) \} \in \mathcal{F}_p.$$

Let $j : V \to M$ be an elementary embedding with κ a critical point and $\kappa^+ M \subseteq M$. For every $p \in \text{Col}(\kappa, \kappa^+)$, pick $\tilde{p} \in \bigcap j'' \mathcal{F}_p$. So, $\tilde{p} \in (\text{Col}(j(\kappa), j(\kappa^+)))^M$. Set

$$\tilde{\mathcal{F}}_p = \{ X \subseteq \text{Col}(\kappa, \kappa^+) \mid \tilde{p} \in j(X) \}.$$

Then $\tilde{\mathcal{F}}_p$ is a κ-complete ultrafilter which extends \mathcal{F}_p.

Note that \mathcal{F}_p is a filter on $\mathcal{P}_\kappa(\kappa \times \kappa^+)$, hence $\tilde{\mathcal{F}}_p$ is an ultrafilter there.

Now find, in M, some (least) $\eta < j(\kappa^+)$ which codes $\langle \tilde{p} \mid p \in \text{Col}(\kappa, \kappa^+) \rangle$.

Define a κ-complete ultrafilter \hat{W} over $\mathcal{P}_\kappa(\kappa^+) \times \kappa^+$ as follows:

$$X \in \hat{W} \text{ iff } \langle j''^{\kappa^+}, \eta \rangle \in j(X).$$

For every $p \in \text{Col}(\kappa, \kappa^+)$, fix a projection $\pi_p : \mathcal{P}_\kappa(\kappa^+) \times \kappa^+ \to \text{Col}(\kappa, \kappa^+)$ of \hat{W} onto $\tilde{\mathcal{F}}_p$.

3 The interesting case is when S and its compliment are both stationary.

4 In some fixed in advance well ordering.
Now use the coherent sequence \(\tilde{W} \) to define in the obvious fashion a new coherent sequence \(\tilde{W} \) where each \(\tilde{W}(\alpha, \beta) \) is an \(\alpha \)-complete ultrafilter over \(\mathcal{P}_\alpha(\alpha^+) \times \alpha^+ \) defined from \(W(\alpha, \beta) \) as above.

Note that \(\tilde{W} \upharpoonright (\alpha, \beta) \) will belong already to the ultrapower by \(\tilde{W}(\alpha, \beta) \upharpoonright \mathcal{P}_\alpha(\alpha^+) = W(\alpha, \beta) \upharpoonright \mathcal{P}_\alpha(\alpha^+) \). Thus, \(\tilde{W} \upharpoonright (\alpha, \beta) \) belongs to the ultrapower by \(W(\alpha, \beta) \), by coherency. By the condition (4) above it will be in the ultrapower by \(W(\alpha, \beta) \upharpoonright \mathcal{P}_\alpha(\alpha^+) \), since this ultrapower is closed under \(\kappa^+ \)-sequences.

Force the supercompact Magidor forcing with \(\tilde{W} \).\(^5\)

Denote by \(V^{**} \) a resulting generic extension.

Let \(\{ \{ P_\nu, \eta_\nu \} \mid \nu < \omega_1 \} \) be the generic sequence. Then \(\{ P_\nu \mid \nu < \omega_1 \} \) be the supercompact Magidor sequence. Denote \(P_\nu \cap \kappa \) by \(\kappa_\nu \). If \(\nu' < \nu < \omega_1 \), then \(\langle P_\nu', \eta_\nu' \rangle \subseteq \langle P_\nu, \eta_\nu \rangle \). In particular, \(\eta_\nu \in P_\nu \). Also, \(\eta_\nu \) codes elements of \(Col(\kappa_\nu, P_\nu) \).\(^6\)

For every \(\nu \in S \) fix a cofinal sequence \(\langle \nu_n \mid n < \omega \rangle \).

Let \(\nu \in S \). Consider \(\langle \eta_{n_\nu} \mid n < \omega \rangle \). Denote by \(\langle t_{\nu,n}^i \mid i < \kappa_{n_\nu}^+ \rangle \) the sequence of members of \(Col(\kappa_{n_\nu}+1, P_{n_\nu+1}) \) codd by \(\eta_{n_\nu} \).

Let \(tr_\nu : P_\nu \rightarrow \kappa_\nu^+ \) be the transitive collapse of \(P_\nu \).

Consider a set

\[
Z_\nu := \{ tr_\nu^n t_{\nu,n}^i \mid n < \omega, i < \kappa_{n_\nu}^+ \}.
\]

It is a subset of \(Col(\kappa_\nu, \kappa_\nu^+) \). Define a partial order \(\leq_\nu \) on \(Z_\nu \) as follows:

\[
tr_\nu^n t_{\nu,n}^i \leq_\nu tr_\nu^n t_{\nu,m}^j
\]

iff \(n \leq m \) and \(tr_\nu^n t_{\nu,n}^i \leq_{Col(\kappa_\nu, \kappa_\nu^+)} tr_\nu^n t_{\nu,m}^j \).

Set \(G_\nu \) to be the set of all unions of all \(<_\nu \) -increasing \(\omega \)-sequences of elements of \(Z_\nu \).

Lemma 2.2 There is \(g \in G_\nu \) which is generic for \(Col(\kappa_\nu, \kappa_\nu^+) \) over \(V \).

Proof. Work in \(V^{**} \). Define a function \(g \) as follows. Start with \(tr_\nu^n t_{\nu,0}^0 \). Pick \(i_1 < \kappa_{n_\nu}^+ \) such that \(t_{\nu,1}^{i_1} \) comes from the ultrafilter \(\tilde{F}_{\nu,0} \) over \(Col(\kappa_\nu, \kappa_\nu^+) \).

Continue by induction. Suppose that \(t_{\nu,n}^i \) is defined. Pick \(i_{n+1} < \kappa_{n_\nu}^+ \) such that \(t_{\nu,n+1}^{i_{n+1}} \) comes from the ultrafilter \(\tilde{F}_{\nu,n} \) over \(Col(\kappa_\nu, \kappa_\nu^+) \).

Finally set

\[
g = \bigcup_{n < \omega} tr_\nu^n t_{\nu,n}^i.
\]

We claim that \(g \) is as desired.

\(^5\)Set here \(\langle Q, \xi \rangle \subseteq \langle P, \eta \rangle \) iff \(Q \cup \{ \xi \} \subseteq P \) and \(|Q| < P \cap \kappa \).

\(^6\)Note that \(\eta_\nu \) need not code only members of \(Col(\kappa_\nu, P_\nu) \), or even of \(Col(\kappa_\nu, P_\nu) \).
Work in V above a condition which already decides κ_ν. Suppose for simplicity that none of $\kappa_{\nu_n}, n < \omega$ is decided yet. Let D be a dense open subset of $Col(\kappa_\nu, \kappa_\nu^+)$. Intersect the measure one set of \tilde{F}_0 with D. The resulting condition will force

$$g$$ extends a member of \tilde{D}.

□

The next lemma follows from the definition of G_ν.

Lemma 2.3 For every $n_0 < \omega$, $G_\nu \in V[\langle tr_\nu''P_{\nu_n} \mid n_0 < n < \omega \rangle]$.

Set $V^* = V[\langle G_\nu \mid \nu \in S \rangle]$.

Let now $\rho \in \omega_1 \setminus S$. We need to argue that $(\kappa_\rho^+)^V = (\kappa_\rho^+)^{V^*}$. By Lemma 2.3, it follows that

$$V[\langle G_\nu \mid \nu \in S \setminus \rho \rangle] \subseteq V[\langle \langle P_\tau, \eta_\tau \rangle \mid \rho < \tau < \omega_1 \rangle],$$

i.e. the extension of V by the same forcing but which only starts above κ_ρ. Such extension does not add new bounded subsets to κ_ρ^+ and below. Hence, it is enough to deal with the forcing up to κ_ρ.

Let us split the argument into two cases.

Case 1. ρ is a limit point of $\rho \in \omega_1 \setminus S$.

Let then $\langle \rho_k \mid k < \omega \rangle$ be a cofinal sequence consisting of elements of $\omega_1 \setminus S$. Assume for simplicity that $\rho_0 = 0$.

For every $\nu \in S \cap \rho$ find the least $k(\nu)$ such that $\nu < \rho_{k(\nu)}$. Let n_ν be the least $n < \omega$ such that $nu_n > \rho_{k(\nu)-1}$, if $k(\nu) \geq 1$ and 0 otherwise.

Consider

$$V^\rho := V[\langle \kappa_\tau \mid \tau < \rho \rangle, \langle \langle tr_\nu''P_{\nu_n}, tr_\nu''\eta_{\nu_n} \rangle \mid n_\nu \leq n < \omega \rangle, \nu \in S \cap \rho].$$

Then

$$V[\langle G_\nu \mid \nu \in S \cap \rho \rangle] \subseteq V^\rho.$$

Lemma 2.4 V^ρ is a generic extension of V by a Prikry type forcing which satisfies $\kappa_\rho^+ - \text{c.c.}$

Case 2. ρ is not a limit point of $\rho \in \omega_1 \setminus S$.

The treatment of this case is similar and even a bit simpler than the previous one.
References

[1] Gitik, Prikry type forcings, Handbook of Set Theory
