Applications of pcf for mild large cardinals to elementary embeddings.

Moti Gitik* and Saharon Shelah†

Abstract

The following pcf results are proved:
1. Assume that $\kappa > \aleph_0$ is a weakly compact cardinal. Let $\mu > 2^{\kappa}$ be a singular cardinal of cofinality κ. Then for every regular $\lambda < \text{pp}_{\Gamma(\kappa)}(\mu)$ there is an increasing sequence $(\lambda_i \mid i < \kappa)$ of regular cardinals converging to μ such that $\lambda = \text{tcf}(\prod_{i<\kappa} \lambda_i, <, J_{bd\kappa})$.

2. Let κ be a strong limit cardinal and θ a cardinal above μ. Suppose that at least one of them has an uncountable cofinality. Then there is $\sigma_\ast < \mu$ such that for every $\chi < \theta$ the following holds:

$$\theta > \sup\{\sup \text{pcf}_{\sigma_\ast, \text{complete}}(a) \mid a \subseteq \text{Reg} \cap (\mu^+, \chi) \text{ and } |a| < \mu\}.$$

As an application we show that:

if κ is a measurable cardinal and $j : V \rightarrow M$ is the elementary embedding by a κ-complete non-trivial ultrafilter over κ, then for every τ the following holds:

1. if $j(\tau)$ is a cardinal then $j(\tau) = \tau$;
2. $|j(\tau)| = |j(j(\tau))|$;
3. for any κ-complete ultrafilter W on κ, $|j(\tau)| = |j_W(\tau)|$.

The first two items provide affirmative answers to questions from [2] and the third to a question of D. Fremlin.

1 Introduction

We address here the following question:

Suppose κ is a measurable cardinal, U a κ-complete non-trivial ultrafilter over κ and $j : V \rightarrow M$ the corresponding elementary embedding. Can one characterize cardinals moved by j?

*We are grateful to Menachem Magidor for his comments. Gitik was partially supported by ISF grant 234/08
†Shelah was partially supported by ISF grant 1053/11. This is paper 1013 on Shelah’s publication list.
There are trivial answers. For example:

τ is moved by j iff \(\text{cof}(\tau) = \kappa \) or there is some \(\delta < \tau \) with \(j(\delta) \geq \tau \).

Also, assuming GCH, it is not hard to find a characterization in terms not mentioning \(j \).

However, it turns out that an answer is possible in terms not mentioning \(j \) already in ZFC (Theorem 3.12):

Let \(\tau \) be a cardinal. Then either

1. \(\tau < \kappa \) and then \(j(\tau) = \tau \),
 or

2. \(\kappa \leq \tau \leq 2^\kappa \) and then \(j(\tau) > \tau \), \(2^\kappa < j(\tau) < (2^\kappa)^+ \),
 or

3. \(\tau \geq (2^\kappa)^+ \) and then \(j(\tau) > \tau \) iff there is a singular cardinal \(\mu \leq \tau \) of cofinality \(\kappa \) above \(2^\kappa \) such that \(\text{pp}(\text{Pr}(\kappa)) \geq \tau \), and if \(\tau^* \) denotes the least such \(\mu \), then \(\tau \leq \text{pp}(\text{Pr}(\kappa))(\tau^*) < j(\tau) < \text{pp}(\text{Pr}(\kappa))(\tau^*)^+ \).

Straightforward conclusions of this result provide affirmative answers to questions mentioned in the abstract.

A crucial tool here is PCF–theory and specially Revisited GCH Theorem [5] Sh460.

A new result involving weakly compact cardinal is obtained (Theorem 2.1):

Assume that \(\kappa > \aleph_0 \) is a weakly compact cardinal. Let \(\mu > 2^\kappa \) be a singular cardinal of cofinality \(\kappa \). Then for every regular \(\lambda < \text{pp}(\text{Pr}(\kappa)) \) there is an increasing sequence \(\langle \lambda_i \mid i < \kappa \rangle \) of regular cardinals converging to \(\mu \) such that \(\lambda = \text{tcf}(\prod_{i<\kappa} \lambda_i, \prec_{J_{\text{bd}}(\kappa)}) \).

Also a bit sharper version of [5] Sh460, 2.1 for uncountable cofinality is proved (Theorem 2.5):

Let \(\mu \) be a strong limit cardinal and \(\theta \) a cardinal above \(\mu \). Suppose that at least one of them has an uncountable cofinality. Then there is \(\sigma_* < \mu \) such that for every \(\chi < \theta \) the following holds:

\[\theta > \sup \{ \sup \text{pcf}_{\sigma_*-\text{complete}}(a) \mid a \subseteq \text{Reg} \cap (\mu^+, \chi) \text{ and } |a| < \mu \}. \]

The first author proved a version of 3.12 assuming certain weak form of the Shelah Weak Hypothesis (SWH)\(^1\) and using [3] Sh371. Then the second author was able to show that the actual assumption used holds in ZFC. All PCF results of the paper are due solely to him.

\(^1\)Consistency of negations of SWH is widely open except very few instances.
Let us recall the definitions of few basic notions of PCF theory that will be used here.

Let a be a set of regular cardinals above $|a|$.

$$\text{pcf}(a) = \{\text{tcf}((\prod a, <_J)) \mid J \text{ is an ideal on } a$$

and $(\prod a, <_J)$ has true cofinality $\}.$

Let ρ a cardinal.

$$\text{pcf}_{\rho-\text{complete}}(a) = \{\text{tcf}((\prod a, <_J)) \mid J \text{ is a } \rho - \text{complete ideal on } a$$

and $(\prod a, <_J)$ has true cofinality $\}.$

Let η be a cardinal.

$$J_{<_\eta}[a] = \{b \subseteq a \mid \text{for every ultrafilter } D \text{ on } b, \text{cf}(\prod b, <_D) < \lambda\}.$$

Let λ be a singular cardinal.

$$\text{pp}_{\Gamma(\kappa)}^{+}(\lambda) = \text{pp}_{\Gamma(\kappa, \kappa)}^{+}(\lambda) = \sup\{\text{tcf}((\prod a, <_J)) \mid a \text{ is a set of } \kappa \text{ regular cardinals unbounded in } \lambda,$$

J is a $\kappa - \text{complete ideal on } a$ which includes J_{bd}^a and $(\prod a, <_J)$ has true cofinality $\}.$

$$\text{pp}_{\Gamma(\kappa)}^{+}(\lambda)$$

denotes the first regular without such representation. 2

\section{PCF results.}

\textbf{Theorem 2.1} Assume that $\kappa > \aleph_0$ is a weakly compact cardinal. Let $\mu > 2^{\kappa}$ be a singular cardinal of cofinality κ. Then for every regular $\lambda < \text{pp}_{\Gamma(\kappa)}^{+}(\mu)$ there is an increasing sequence $\langle \lambda_i \mid i < \kappa \rangle$ of regular cardinals converging to μ such that $\lambda = \text{tcf}(\prod_{i<\kappa} \lambda_i, <_{\text{bd}}^\mu).$

\textbf{Remark 2.2} It is possible to remove the assumption $\mu > 2^{\kappa}$. Just [4](Sh430) § 6, 6.7A should be used to find the pcf-generators in the proof below. See also 6.3 of Abraham -Magidor handbook article [1].

2Note that $\text{pp}_{\Gamma(\kappa)}^{+}(\lambda) \leq (\text{pp}_{\Gamma(\kappa)}(\lambda))^{+}$ and it is open if $\text{pp}_{\Gamma(\kappa)}^{+}(\lambda) < (\text{pp}_{\Gamma(\kappa)}(\lambda))^{+}$ can ever occur (see [3],Sh355, p.41.)
Proof. By No Hole Theorem (2.3, p.57 [3]), there are a κ–complete ideal I_1 on κ and a sequence of regular cardinals $\vec{\lambda}^1 = \langle \lambda^1_i \mid i < \kappa \rangle$ with $\mu = \lim_{I_1} \vec{\lambda}^1$ such that $\lambda = \text{tcf}(\prod_{i<\kappa} \lambda^1_i, <_{I_1})$.

Denote the set $\{\lambda^1_i \mid i < \kappa \}$ by \vec{a}^1. Let $a^2 = \text{pcf}(\vec{a}^1)$. Without loss of generality assume that $\lambda = \text{max} \text{pcf}(\vec{a}^1)$. Note that by [3] the following holds:

1. $a^1 \subseteq a^2 \subseteq \text{Reg} \setminus \kappa^+$,
2. $\text{pcf}(a^2) = a^2$,
3. $|\text{pcf}(a^2)| \leq 2^\kappa$.

By [3][[Sh345a, 3.6, 3.8(3)] there is a smooth and closed generating sequence for a^1 (here we use $2^\kappa < \mu$) which means a sequence $\langle b_\theta \mid \theta \in a^2 \rangle$ such that

1. $\theta \in b_\theta \subseteq a^2$,
2. $\theta \not\in \text{pcf}(a^2 \setminus b_\theta)$,
3. $b_\theta = \text{pcf}(b_\theta)$,
4. $\theta_1 \in b_{\theta_2}$ implies $b_{\theta_1} \subseteq b_{\theta_2}$,
5. $\theta = \text{max} \text{pcf}(b_\theta)$.

Then by [3][[Sh345a,3.2(5)]:

(*)$_1$: if $c \subseteq a^2$, then for some finite $\delta \subseteq \text{pcf}(c)$ we have $c \subseteq \text{pcf}(c) \subseteq \bigcup \{b_\theta \mid \theta \in \delta\}$.

The next claim is a consequence of [5][Sh460, 2.1]:

Claim 1 There is $\sigma_* < \kappa$ such that for every $\vec{a} \subset \text{Reg} \cap (\kappa^+, \mu)$ of cardinality less than κ there is a sequence $\langle a_\alpha \mid \alpha < \sigma_* \rangle$ such that

1. $\vec{a} = \bigcup_{\alpha<\sigma_*} a_\alpha$,
2. $\text{max} \text{pcf}(a_\alpha) < \mu$, for every $\alpha < \sigma_*$.

Proof. The cardinal κ is a strong limit, so we can apply [5][Sh460, 2.1] to κ and μ. Hence there is $\sigma_* < \kappa$ such that for every $\vec{a} \subset \text{Reg} \cap (\kappa^+, \mu)$ of cardinality less than κ we have pcf_{σ_*+}–complete$(\vec{a}) \subseteq \mu$. This means that the $\sigma_*+–$complete ideal generated by $J_{<\mu}(\vec{a})$ is everything, i.e. $\mathcal{P}(\vec{a})$. See 8.5 of [1] for the detailed argument. So there are a_α’s in $J_{<\mu}(\vec{a})$, for
\(\alpha < \sigma_s \) such that \(a = \bigcup_{\alpha < \sigma_s} a_\alpha \). But then also \(\max \operatorname{pcf}(a_\alpha) < \mu \), for every \(\alpha < \sigma_s \).

\(\Box \) of the claim.

Let \(\sigma_s < \kappa \) be given by the claim. Let \(i < \kappa \). Apply the claim to the set \(a_i^1 := \{ \lambda_j^1 \mid j < i \} \). So there is a sequence \(\langle a_{\alpha} \mid \alpha < \sigma_s \rangle \) such that

1. \(a_i^1 = \bigcup_{\alpha < \sigma_s} a_{\alpha} \),
2. \(\max \operatorname{pcf}(a_{\alpha}) < \mu \), for every \(\alpha < \sigma_s \).

Now, by \((\ast)_1\), for every \(\alpha < \sigma_s \),

\[\operatorname{pcf}(a_{\alpha}) \subseteq \bigcup \{ b_\theta \mid \theta \in \mathcal{d}_{\alpha} \}, \]

for some finite \(\mathcal{d}_{\alpha} \subseteq \operatorname{pcf}(a_{\alpha}) \).

Set \(\mathcal{d}_i = \bigcup_{\alpha < \sigma_s} \mathcal{d}_{\alpha} \). Then \(\mathcal{d}_i \) is a subset of \(\mu \) of cardinality \(\leq \sigma_s \). In addition we have \(\mathcal{d}_i \subseteq \operatorname{pcf}(a_i^1) \) and \(a_i^1 \subseteq \bigcup \{ b_\theta \mid \theta \in \mathcal{d}_i \} \).

Let \(\langle \theta_{i, \epsilon} \mid \epsilon < \sigma_s \rangle \) be a listing of \(\mathcal{d}_i \).

Claim 2 There are a function \(g \) and \(\vec{u} = \langle u_\epsilon \mid \epsilon < \sigma_s \rangle \) such that

1. \(g : \kappa \to \kappa \) is increasing,
2. \(\xi < g(\xi) \), for every \(\xi < \kappa \),
3. \(\kappa = \bigcup_{\epsilon < \sigma_s} u_\epsilon \),
4. for any \(\epsilon < \sigma_s \) and \(\xi < \eta < \kappa \) the following holds:
 \[\lambda_\xi^1 \in b_{\theta_{g(\eta), \epsilon}} \text{ iff } \xi \in u_\epsilon. \]

Proof. Here is the place to use the weak compactness of \(\kappa \).

We will define a \(\kappa \)--tree \(T \) and then will use its \(\kappa \)--branch.

Fix \(\eta < \kappa \). Let \(P \subseteq \sigma_s \times \eta \). Define a set

\[A_P := \{ \alpha \in (\eta, \kappa) \mid \forall \xi < \eta \forall \epsilon < \sigma_s (\langle \epsilon, \xi \rangle \in P \iff \lambda_\xi^1 \in b_{\theta_{g(\eta), \epsilon}}) \}. \]

Note that always there is \(P \subseteq \sigma_s \times \eta \) with \(|A_P| = \kappa \). Just \(|\mathcal{P}(\sigma_s \times \eta)| < \kappa \), so the function

\[\alpha \mapsto \langle \langle \epsilon, \xi \rangle \mid \epsilon < \sigma_s, \xi < \eta \text{ and } \lambda_\xi^1 \in b_{\theta_{g(\eta), \epsilon}} \rangle \]
is constant on a set of cardinality \(\kappa \).

Also for such \(P \) we will have \(\text{rng}(P) = \eta \), i.e. for every \(\xi < \eta \) there is \(\epsilon < \sigma_\epsilon \) (which may be not unique) such that \((\epsilon, \xi) \in P \). Thus pick \(\alpha \in A_P \). Then \(\alpha > \eta > \xi \) and \(\alpha_\epsilon = \bigcup \{ b_\theta \mid \theta \in d_\alpha \} \).

Clearly \(\lambda_\epsilon^1 \) appears in \(a_\alpha^1 = \{ \lambda_\epsilon^1 \mid \nu < \alpha \} \). Hence there is \(\epsilon < \sigma_\epsilon \) such that \(\lambda_\epsilon^1 \in b_{\theta_\alpha,\epsilon} \), and so \((\epsilon, \xi) \in P \).

Let

\[
T := \{ P \mid \exists \eta < \kappa (P \subseteq \sigma_* \times \eta \text{ and } |A_P| = \kappa) \}.
\]

If \(P \subseteq \sigma_* \times \eta, P' \subseteq \sigma_* \times \eta' \) are both in \(T \) then set \(P <_T P' \) iff

- \(\eta < \eta' \),
- \(P' \cap (\sigma_* \times \eta) = P \).

Then \(\langle T, <_T \rangle \) is a \(\kappa \)-tree. Let \(X \subseteq \sigma_* \times \kappa \) be a \(\kappa \)-branch. Define now an increasing function \(g : \kappa \to \kappa \). Set \(g(\eta) = \min(AX\cap(\sigma_* \times \eta)) \setminus \sup(\{ g(\eta') \mid \eta' < \eta \}) \).

Let now \(\epsilon < \sigma_* \). Define \(u_\epsilon \) as follows:

\[
\xi \in u_\epsilon \text{ iff for some } \eta > \xi \text{ and some (every)} \alpha \in A_{X\cap(\sigma_* \times \eta)}, \lambda_\xi^1 \in b_{\theta_\alpha,\epsilon}.
\]

Then for any \(\epsilon < \sigma_* \) and \(\xi < \eta < \kappa \) the following holds:

\[
\lambda_\xi^1 \in b_{\theta(g(\eta),\epsilon)} \text{ iff } \xi \in u_\epsilon.
\]

Finally \(|X| = \kappa \) implies that for every \(\xi < \kappa \) there is \(\epsilon < \sigma_* \) with \(\xi \in u_\epsilon \). Thus let \(\xi < \kappa \).

Pick some \(\eta, \xi < \eta < \kappa \). Consider \(X \cap (\sigma_* \times \eta) \). Then, as was observed above, there are \(\alpha \in A_{X\cap(\sigma_* \times \eta)} \) and \(\epsilon < \sigma_* \) such that \(\lambda_\xi^1 \in b_{\theta_\alpha,\epsilon} \). Hence \(\xi \in u_\epsilon \).

\(\Box \) of the claim.

Claim 3 Suppose that \(u_\epsilon \in I^+_1 \), for some \(\epsilon < \sigma_* \). Then \(|u_\epsilon| = \kappa \) and the quasi order \(\prod_{i \in u_\epsilon} (\theta_{g(i),\epsilon}, <_{j_{u_\epsilon}^{\eta_\epsilon}}) \) has true cofinality \(\lambda \).

Proof. \(\kappa \)-completeness of \(I_1 \) implies that \(|u_\epsilon| = \kappa \), since clearly \(\{ \xi \} \in I_1 \), for every \(\xi < \kappa \).

Suppose now that the quasi order \(\prod_{i \in u_\epsilon} (\theta_{g(i),\epsilon}, <_{j_{u_\epsilon}^{\eta_\epsilon}}) \) does not have a true cofinality or it has true cofinality \(\neq \lambda \). Recall that \(\lambda = \max \pcf(a_1) \). So by \([3](\text{Sh345a}) \) there is an unbounded subset \(v \) of \(u \) such that \(\prod_{i \in v} (\theta_{g(i),\epsilon}, <_{j_{u_\epsilon}^{\eta_\epsilon}}) \) has a true cofinality \(\lambda_\ast < \lambda \). We can take \(\lambda_\ast \) to be just the least \(\delta \) such that an unbounded subset of \(u_\epsilon \) appears in \(J_{\leq \delta}[u_\epsilon] \).

Without loss of generality we can assume that \(\lambda_\ast = \max \pcf(\{ \theta_{g(i),\epsilon} \mid i \in v \}) \). We have
\(\lambda_* \in \pcf(\{\theta_{g(i)}, \epsilon \mid i \in v\}) \subseteq \pcf(a_1) = a_2. \) Set \(v_1 := \{ i \in v \mid \theta_{g(i)}, \epsilon \in b_{\lambda_*} \}. \) Then \(v_1 \) is unbounded in \(v. \) By smoothness of the generators, \(i \in v_1 \) implies \(b_{\theta_{g(i)}, \epsilon} \subseteq b_{\lambda_*}. \) Then

\[
i \in v_1 \text{ and } \xi \in u_* \cap i \text{ imply } \lambda^i_\xi \in b_{\lambda_*}.
\]

But \(v_1 \) is unbounded in \(\kappa, \) hence for every \(\xi \in u_* \) there is \(i \in v_1, i > \xi. \) So, \(\{ \lambda^i_\xi \mid \xi \in u_* \} \subseteq b_{\lambda_*}. \) By the closure of the generators, \(\pcf(b_{\lambda_*}) = b_{\lambda_*}. \) Hence \(\pcf(\{ \lambda^i_\xi \mid \xi \in u_* \}) \subseteq b_{\lambda_*}. \) This impossible since \(u_* \in I_1^+ \) and so \(\lambda \in \pcf(\{ \lambda^i_\xi \mid \xi \in u_* \}), \) but \(\lambda_* < \lambda. \) Contradiction.

\(\square \) of the claim.

Claim 4 There is \(\epsilon < \sigma_* \) such that \(u_* \in I_1^+ \) and \(\mu = \lim_{\theta_{g(i)}, \epsilon} (\theta_{g(\xi)}, i < \kappa). \)

Proof. Suppose otherwise. Set \(s := \{ \epsilon < \sigma_* \mid u_* \in I_1^+ \}. \) Then for every \(\epsilon \in s \) there is \(v_* \) an unbounded subset of \(\kappa \) such that \(\theta^*_\epsilon := \sup \{ \theta_{g(i)}, \epsilon \mid i \in v_* \} \) is below \(\mu. \) Set

\[
\theta_* := \sup \{ \theta^*_\epsilon \mid \epsilon \in s \}. \text{ Then } \theta_* < \mu, \text{ since } \cof(\mu) = \kappa > \sigma_*.
\]

Set \(w_1 := \bigcup \{ u_* \mid \epsilon \in \sigma_* \setminus s \}. \) Then \(w_1 \in I_1 \) as a union of less than \(\kappa \) of its members. Also the set \(w_2 := \{ i < \kappa \mid \lambda^i_i \leq \theta_* \} \) belongs to \(I_1 \) because \(\mu = \lim_{\theta_{g(i)}, \epsilon} \{ \lambda^i_\xi \mid i < \kappa \}. \) Hence \(w := w_1 \cup w_2 \in I_1. \)

Let \(\xi \in \kappa \setminus w. \) Then

\[
\lambda^1_\xi \in \{ \lambda^1_\rho \mid \rho < \xi + 1 \} \subseteq \bigcup \{ b_{\theta_{g(\xi + 1), \xi}} \mid \epsilon < \sigma_* \}.
\]

Hence for some \(\epsilon < \sigma_* \), \(\lambda^1_\xi \in b_{\theta_{g(\xi + 1), \xi}}. \) Then \(\xi \in u_* \). Now, \(\xi \notin w \) and so \(\xi \notin w_1. \) Hence \(\epsilon \in s. \) Pick some \(\tau \in v_* \), \(\tau > \xi. \) Then \(\lambda^1_\xi \in b_{\theta_{g(\tau), \xi}}, \) since \(\xi \in u_* \). Then

\[
\lambda^1_\xi \leq \max \{ b_{\theta_{g(\tau), \xi}} \mid \theta_{g(\tau), \epsilon} \leq \theta^*_\epsilon \leq \theta_*. \}
\]

But then \(\xi \in w_2. \) Contradiction.

\(\square \) of the claim.

\[
\square
\]

Proposition 2.3 Let \(a \) be a set of regular cardinals with \(\min(a) > 2^{|a|}. \) Let \(\sigma < \theta \leq |a|. \) Suppose that \(\lambda \in \pcf_{\sigma, \text{complete}}(a), \mu < \lambda \) and \(\pcf_{\theta, \text{complete}}(a) \subseteq \mu. \) Then there is \(c \subseteq \pcf_{\theta, \text{complete}}(a) \) such that \(|c| < \theta, \ c \subseteq \mu \) and \(\lambda \in \pcf_{\sigma, \text{complete}}(c). \)

Remark 2.4 It is possible to replace the assumption \(\min(a) > 2^{|a|} \) by \(\min(a) > |a| \) using [4](Sh430) § 6, 6.7A in order to find the pcf-generators used in the proof.
Proof. Let \(\langle b_\xi \mid \xi \in \text{pcf}(a) \rangle \) be a set of generators as in Theorem 2.1. We have \(\lambda \in \text{pcf}_{\sigma\text{-complete}}(a) \subseteq \text{pcf}(a) \), hence \(b_\lambda \) is defined and \(\text{max} \text{pcf}(b_\lambda) = \lambda \in \text{pcf}_{\sigma\text{-complete}}(a) \subseteq \text{pcf}(a) \).

By [4], 6.7F(1), there is \(c \subseteq \text{pcf}_{\theta\text{-complete}}(a \cap b_\lambda) \subseteq \mu \) of cardinality \(< \theta \) such that \(b_\lambda \cap a \subseteq \bigcup \{b_\xi \mid \xi \in c\} \). Then, by smoothness, \(\xi \in c \Rightarrow b_\xi \subseteq b_\lambda \). Hence \(\text{pcf}(c) \subseteq \text{pcf}(b_\lambda) = b_\lambda \).

Hence \(\text{max} \text{pcf}(c) \leq \lambda \).

Now, if \(\lambda \in \text{pcf}_{\sigma\text{-complete}}(c) \), then we are done. Suppose otherwise. Then there are \(j(*) < \sigma \) and \(\theta_j \in \lambda \cap \text{pcf}_{\sigma\text{-complete}}(c) \), for every \(j < j(*) \), such that \(c \subseteq \bigcup \{b_{\theta_j} \mid j < j(*)\} \).

So if \(\eta \in b_\lambda \cap a \), then for some \(\chi \in c \) we have \(\eta \in b_\chi \), as \(b_\lambda \cap a \subseteq \bigcup \{b_\xi \mid \xi \in c\} \). Hence for some \(j < j(*) \), \(\chi \in b_{\theta_j} \), and so \(b_\chi \subseteq b_{\theta_j} \) and \(\eta \in b_{\theta_j} \).

Then \(b_\lambda \cap a \subseteq \bigcup_{j < j(*)} b_{\theta_j} \). Recall that \(j(*) < \sigma \) and \(\theta_j < \lambda \), for every \(j < j(*) \).

Note that \(\lambda \in \text{pcf}_{\sigma\text{-complete}}(a) \) implies that \(\lambda \in \text{pcf}_{\sigma\text{-complete}}(b_\lambda \cap a) \), see for example 4.14 of [1]. So there is a \(\sigma\text{-complete ideal} \ J \) on \(b_\lambda \cap a \) such that \(\lambda = \text{tcf}(\prod (b_\lambda \cap a), <j) \). Then for some \(j < j(*) \), \(b_{\theta_j} \in J^+ \) which is impossible since \(\text{max} \text{pcf}(b_{\theta_j}) = \theta_j < \lambda \). Contradiction.

The next result follows from 2.1 of [5] Sh460.

Theorem 2.5 Let \(\mu \) be a strong limit cardinal and \(\theta \) a cardinal above \(\mu \). Suppose that at least one of them has an uncountable cofinality. Then there is \(\sigma_\ast < \mu \) such that for every \(\chi < \theta \) the following holds:

\[
\theta > \sup \{ \sup \text{pcf}_{\sigma_\ast\text{-complete}}(a) \mid a \subseteq \text{Reg} \cap (\mu^+, \chi) \text{ and } |a| < \mu \}.
\]

Proof. Assume first that \(\text{cof}(\mu) \neq \text{cof}(\theta) \). Suppose on contrary that

\[
\forall \mu^* < \mu \exists \chi < \theta (\theta \leq \sup \{ \sup \text{pcf}_{\mu^*_\text{-complete}}(a) \mid a \subseteq \text{Reg} \cap (\mu^+, \chi) \text{ and } |a| < \mu \}).
\]

If \(\text{cof}(\theta) < \text{cof}(\mu) \), then there will be \(\chi < \theta \) such that for every \(\mu^* < \mu \)

\[
\theta \leq \sup \{ \sup \text{pcf}_{\mu^*_\text{-complete}}(a) \mid a \subseteq \text{Reg} \cap (\mu^+, \chi) \text{ and } |a| < \mu \}.
\]

But this is impossible by 2.1 of [5] applied to \(\mu \) and \(\chi \).

If \(\text{cof}(\theta) > \text{cof}(\mu) \), then still there will be \(\chi < \theta \) such that for every \(\mu^* < \mu \)

\[
\theta \leq \sup \{ \sup \text{pcf}_{\mu^*_\text{-complete}}(a) \mid a \subseteq \text{Reg} \cap (\mu^+, \chi) \text{ and } |a| < \mu \}.
\]

Just for every \(\mu^* < \mu \) pick some \(\chi_{\mu^*} \) such that

\[
\theta \leq \sup \{ \sup \text{pcf}_{\mu^*_\text{-complete}}(a) \mid a \subseteq \text{Reg} \cap (\mu^+, \chi_{\mu^*}) \text{ and } |a| < \mu \}.
\]
and set $\chi = \bigcup_{\mu^* < \mu} \chi_{\mu^*}$.

So let us assume that $\text{cof}(\theta) = \text{cof}(\mu)$. Denote this common cofinality by κ. By the assumption of the theorem $\kappa > \aleph_0$.

Let $\langle \mu_i \mid i < \kappa \rangle$ be an increasing continuous sequence with limit μ such that each μ_i is a strong limit cardinal. Let $\theta > \mu$ be singular cardinal of cofinality κ. Fix an increasing continuous sequence $\langle \theta_i \mid i < \kappa \rangle$ with limit θ such that $\theta_0 > \mu$.

Suppose that there are no $\sigma_i^* < \mu$ which satisfies the conclusion of the theorem. In particular, for every $i < \kappa$, μ_i cannot serve as σ_i^*. Hence there is $\chi_i < \theta$ such that

$$\theta = \sup \{ \sup \text{pcf}_{\mu_i} (a) \mid a \subseteq \text{Reg} \cap (\mu^+, \chi_i) \text{ and } |a| < \mu \}.$$

So, for each $j < \kappa$, there is $a_{i,j} \subseteq \text{Reg} \cap (\mu^+, \chi_i)$ of cardinality less than μ such that $\text{pcf}_{\mu_i} (a_{i,j}) \not\subseteq \theta_j$.

Set $\theta_\kappa := \theta$. For every $i \leq \kappa$, we apply Theorem 2.1 of [5] to μ_i and θ_i. There is $\sigma_i^* < \mu$ such that

$$\text{if } a \subseteq \text{Reg} \cap (\mu^+, \theta_i) \text{ and } |a| < \mu \text{ then } \text{pcf}_{\sigma_i^*} (a) \subseteq \theta_i.$$

Define now by induction a sequence $\langle i(n) \mid n < \omega \rangle$ such that

1. $i(n) < i(n+1) < \kappa$,
2. $\sigma_\kappa^* < \mu_{i(0)}$,
3. $\sigma_{i(n)}^* < \mu_{i(n+1)}$,
4. $\chi_{i(n)} < \theta_{i(n+1)}$.

Let $i(\omega) = \bigcup_{n<\omega} i(n)$. Then $i(\omega) < \kappa$, since κ is a regular above \aleph_0. So $\theta_{i(\omega)} < \theta$. Now, for every $j < \kappa$ and $n < \omega$ the following holds:

$$a_{i(n), j} \subseteq \text{Reg} \cap (\mu^+, \chi_i(n)) \subseteq \text{Reg} \cap (\mu^+, \theta_{i(n+1)}) \subseteq \text{Reg} \cap (\mu^+, \theta_{i(\omega)}) \text{ and } \text{pcf}_{\sigma_{i(n+1)}} (a_{i(n), j}) \subseteq \theta_{i(n+1)} < \theta_{i(\omega)}.$$

Let $n < \omega$ and $j \in (i(\omega), \kappa)$. Then by the choice of $a_{i(n), j}$ the following holds:

$$a_{i(n), j} \subseteq \text{Reg} \cap (\mu^+, \chi_i(n)) \subseteq \text{Reg} \cap (\mu^+, \theta_{i(n+1)}) \text{ and } \text{pcf}_{\mu_{i(n)}} (a_{i(n), j}) \not\subseteq \theta_j.$$

By the choice of $\sigma_{i(n+1)}^*$, we have

$$\text{pcf}_{\sigma_{i(n+1)}} (a_{i(n), j}) \subseteq \theta_{i(n+1)}.$$
Proof sequence of regular cardinals $\langle \eta, \mu < \eta < j \rangle$.

Let $n_\star < \omega$ with $\mu_{(n_\star)} > \sigma_\star$. Then $b_{i(n_\star), j} \subseteq \text{Reg} \cap (\mu_{(i)}^+, \theta_{(i)})$ and $|b_{i(n_\star), j}| < \mu_{(i)}$, but $\text{pcf}_{\mu_{(n_\star)}}(b_{i(n_\star), j}) \subsetneq \theta_j > \theta_{(i)}$. Which is impossible. Contradiction.

\[\square \]

3 Applications.

Let κ be a measurable cardinal, U be a κ–complete non-principle ultrafilter over κ and let $j_U : V \to M \simeq ^*V/U$ be the corresponding elementary embedding. Denote j_U further simply by j.

Lemma 3.1 Let $\mu > 2^\kappa$ be a singular cardinal of cofinality κ. Then $j(\mu) \geq \text{pp}_{\Gamma(\kappa)}(\mu)$.

Proof. Let $\lambda < \text{pp}_\Gamma(\mu)$ be a regular cardinal. Then, by Theorem 2.1, there is an increasing sequence of regular cardinals $\langle \lambda_i \mid i < \kappa \rangle$ converging to μ such that $\lambda = \text{tcf}(\prod_{i < \kappa} \lambda_i, <_{j_U})$. The ultrafilter U clearly extends the dual to j_U^{bd}. Hence $[\langle \lambda_i \mid i < \kappa \rangle]_U$ represents an ordinal below $j(\mu)$ of cofinality λ. Hence $j(\mu) > \lambda$ and we are done.

\[\square \]

Let us denote for a singular cardinal μ of cofinality κ by μ^* the least singular $\xi \leq \mu$ of cofinality κ above 2^κ such that $\text{pp}_{\Gamma(\kappa)}(\xi) \geq \mu$.

Then, by [3](Sh 355, 2.3(3), p.57), $\text{pp}_{\Gamma(\kappa)}(\mu) \leq^+ \text{pp}_{\Gamma(\kappa)}(\mu^*)$.

Lemma 3.2 Let $\mu > 2^\kappa$ be a singular cardinal of cofinality κ. Then $j(\mu) \geq \text{pp}_{\Gamma(\kappa)}(\mu^*)$.

Proof. By 3.1, $j(\mu^*) \geq \text{pp}_{\Gamma(\kappa)}(\mu^*)$. But $\mu^* \leq \mu$, hence $j(\mu^*) \leq j(\mu)$.

\[\square \]

Lemma 3.3 Let $\mu > 2^\kappa$ be a singular cardinal of cofinality κ. Let $\eta, \mu < \eta < j(\mu)$ be a regular cardinal. Then $\eta \leq \text{pp}_{\Gamma(\kappa)}(\mu^*)$.
Proof.
Let $\eta, \mu < \eta < j(\mu)$ be a regular cardinal. Let $f_\eta : \kappa \to \mu$ be a function which represents η in M, i.e. $[f_\eta]_U = \eta$. We can assume that $\text{rng}(f_\eta) \subseteq \text{Reg} \cap ((2^\kappa)^+, \mu)$, since $|j(2^\kappa)| = 2^\kappa$ and so $j(2^\kappa) < \mu < \eta$. Set $\tau := \text{U–limit of } \text{rng}(f_\eta)$. Then $\tau > 2^\kappa$.

Note that $\text{cof}(\tau) = \kappa$. Otherwise, f_η is just a constant function mod U. Let δ be the constant value. Then $\delta < j(\delta) = \eta$. By elementarity δ must be a regular cardinal. But then $j''\delta$ is unbounded in η, which means that η is a singular cardinal. Contradiction.

Denote $f(\alpha)$ by τ_α, for every $\alpha < \kappa$. Then each τ_α is a regular cardinal in the interval $((2^\kappa)^+, \tau)$ and $\tau = \lim_U \langle \tau_\alpha \mid \alpha < \kappa \rangle$. We have $\eta = \text{tcf}(\prod_{\alpha < \kappa} \tau_\alpha, <_U)$.

We will show in the next lemma (3.4) that this does not affect $\text{pp}(\kappa)(\tau)$.

Namely, $\eta = \text{tcf}(\prod_{\alpha < \kappa} \tau_\alpha, <_\kappa)$ implies $\text{pp}(\kappa)(\tau) \geq \eta > \mu$. Then, by the choice of μ^*, we have $\mu^* \leq \tau$ By [3](Sh 355, 2.3(3), p.57), $\text{pp}(\kappa)(\mu^*) \geq \text{pp}(\kappa)(\tau)$.

□

Lemma 3.4
Let κ be a regular cardinal and τ be a singular cardinal of cofinality κ. Then

$$\text{pp}(\kappa)(\tau) = \sup \{ \text{tcf}(\prod_{\alpha < \kappa} \tau_\alpha, <_I) \mid \langle \tau_\alpha \mid \alpha < \kappa \rangle \text{ is a sequence of regular cardinals with }$$

$$\lim_I \langle \tau_\alpha \mid \alpha < \kappa \rangle = \tau, I \text{ is a } \kappa \text{ complete ideal over } \kappa \text{ which extends } J^\text{bd}_\kappa \}.$$

Proof. Clearly,

$$\text{pp}(\kappa)(\tau) \leq \text{sup} \{ \text{tcf}(\prod_{\alpha < \kappa} \tau_\alpha, <_I) \mid \langle \tau_\alpha \mid \alpha < \kappa \rangle \text{ is a sequence of regular cardinals with }$$

$$\lim_I \langle \tau_\alpha \mid \alpha < \kappa \rangle = \tau, I \text{ is a } \kappa \text{ complete ideal over } \kappa \text{ which extends } J^\text{bd}_\kappa \}.$$

Just if $\eta = \text{tcf}(\prod a, <_J)$, where a is a set of κ regular cardinals unbounded in τ, J is a κ–complete ideal on a which includes J^bd_a. Then we can view a as a κ–sequence.

3It is possible to force a situation where such $\tau < \mu$. Start with a η^{++}–strong $\tau, \kappa < \tau < \mu$. Use the extender based Magidor to blow up the power of τ to η^{+} simultaneously changing the cofinality of τ to κ. The forcing satisfies κ^{++}–c.c., so it will not effect pp structure of cardinals different from τ.

4Actually, the original definition of pp ([3]II,Definition 1.1, p.41) involves sequences rather than sets.

5A version of this lemma was suggested by Menachem Magidor.
Let us deal with the opposite direction. Suppose that \(\eta = \text{tcf}(\prod_{\alpha < \kappa} \tau_{\alpha} < I) \), where \(\langle \tau_{\alpha} \mid \alpha < \kappa \rangle \) is a sequence of regular cardinals with \(\lim_{I} \langle \tau_{\alpha} \mid \alpha < \kappa \rangle = \tau \), \(I \) is a \(\kappa \) complete ideal over \(\kappa \) which extends \(J_{\kappa}^{\text{bd}} \). Without loss of generality we can assume that \(\kappa < \tau_{\alpha} < \tau \), for every \(\alpha < \kappa \). Set \(a = \{ \tau_{\alpha} \mid \alpha < \kappa \} \). Define a projection \(\pi : \kappa \to a \) by setting \(\pi(\alpha) = \tau_{\alpha} \). Let

\[J := \{ X \subseteq a \mid \pi^{-1} X \in I \}. \]

Then \(J \) will be a \(\kappa \)–complete ideal on \(a \) which extends \(J_{a}^{\text{bd}} \).

Let us argue that \(\eta = \text{tcf}(\prod a, < J) \). Fix a scale \(\langle f_{i} \mid i < \eta \rangle \) which witnesses \(\eta = \text{tcf}(\prod_{\alpha < \kappa} \tau_{\alpha} < I) \). Define for a function \(f \in \prod_{\alpha < \kappa} \tau_{\alpha} \) a function \(\bar{f} \in \prod_{\alpha < \kappa} \tau_{\alpha} \) as follows:

\[\bar{f}(\alpha) = \sup\{ f(\beta) \mid \tau_{\beta} = \tau_{\alpha} \}. \]

Note that for every \(\alpha < \kappa \), \(\bar{f}(\alpha) < \tau_{\alpha} \), since \(\tau_{\alpha} \) is a regular cardinal above \(\kappa \).

Consider the sequence \(\langle \bar{f}_{i} \mid i < \kappa \rangle \). It need not be a scale, since the sequence need not be \(I \)–increasing. But this is easy to fix. Just note that for every \(i < \eta \) there will be \(i', i \leq i' < \eta \), such that

\[f_{i} \leq \bar{f}_{i} \leq \bar{f}_{i'}. \]

Just given \(i < \eta \), find some \(i', i \leq i' < \eta \), such that \(\bar{f}_{i} \leq \bar{f}_{i'} \). Then \(\bar{f}_{i} \leq \bar{f}_{i'} \leq \bar{f}_{i''} \). Now by induction it is easy to shrink the sequence \(\langle \bar{f}_{i} \mid i < \kappa \rangle \) and to obtain an \(I \)–increasing subsequence \(\langle g_{\xi} \mid \xi < \eta \rangle \) which is a scale in \((\prod_{\alpha < \kappa} \tau_{\alpha}, < I) \).

For every \(\xi < \eta \) define \(h_{\xi} \in \prod a \) as follows:

\[h_{\xi}(\rho) = g_{\xi}(\alpha), \text{ if } \rho = \tau_{\alpha}, \text{ for some (every) } \alpha < \kappa. \]

It is well defined since \(g_{\xi}(\alpha) = g_{\xi}(\beta) \) once \(\tau_{\alpha} = \tau_{\beta} \).

Let us argue that \(\langle h_{\xi} \mid \xi < \eta \rangle \) is a scale in \((\prod a, < J) \).

Clearly, \(\xi < \xi' \) implies \(h_{\xi} <_{J} h_{\xi'} \), since \(g_{\xi} <_{I} g_{\xi'} \).

Let \(h \in \prod a \). Consider \(g \in \prod_{\alpha < \kappa} \tau_{\alpha} \) defined by setting \(g(\alpha) = h(\tau_{\alpha}) \). There is \(\xi < \eta \) such that \(g <_{I} g_{\xi} \). Then \(h <_{J} h_{\xi} \), since

\[\pi^{-1} \{ \rho \in a \mid h(\rho) < h_{\xi}(\rho) \} \supseteq \{ \alpha < \kappa \mid g(\alpha) < g_{\xi}(\alpha) \}. \]

\(\square \)

Theorem 3.5 Let \(\mu > 2^{\kappa} \) be a singular cardinal of cofinality \(\kappa \). Then \(\text{pp}_{\Gamma(\kappa)}(\mu^{+}) \leq j(\mu) < \text{pp}_{\Gamma(\kappa)}(\mu^{+})^{+} \).
Proof. Note that \(j(\mu) \) is always singular. Just \(\mu \) is a singular cardinal, hence \(j(\mu) \) is a singular in \(M \) and so in \(V \). Now the conclusion follows by 3.2,3.3.

\[\square \]

We can deduce now an affirmative answer to a question of D. Fremlin for cardinals of cofinality \(\kappa \).

Corollary 3.6 Let \(W \) be a non-principal \(\kappa \)-complete ultrafilter on \(\kappa \) and \(j_W : V \to M_W \) the corresponding elementary embedding. Then for every \(\mu \) of cofinality \(\kappa \), \(|j(\mu)| = |j_W(\mu)| \).

Proof. Let \(\mu \) be a cardinal of cofinality \(\kappa \). If \(\mu < 2^\kappa \), then \(2^\kappa < j_W(\mu) < j_W(2^\kappa) < (2^\kappa)^+ \), for any non-principal \(\kappa \)-complete ultrafilter \(W \) on \(\kappa \).

If \(\mu > 2^\kappa \), then, by 3.5, \(pp_{\Gamma(\kappa)}(\mu^+) \leq j(\mu) < pp_{\Gamma(\kappa)}(\mu^+) \). But recall that \(j \) was the elementary embedding of an arbitrary non-principal \(\kappa \)-complete ultrafilter \(U \) on \(\kappa \) and the bounds do not depend on it. Hence if \(W \) is an other non-principal \(\kappa \)-complete ultrafilter on \(\kappa \), then \(pp_{\Gamma(\kappa)}(\mu^+) \leq j_W(\mu) < pp_{\Gamma(\kappa)}(\mu^+) \).

\[\square \]

Corollary 3.7 For every \(\mu \) of cofinality \(\kappa \), \(|j(\mu)| = |j(j(\mu))| \).

Proof. It follows from 3.6. Just take \(W = U^2 \) and note that \(j(j(\mu)) = j_{U^2}(\mu) \).

\[\square \]

Our next tusk will be to show that the fist inequality is really a strict inequality.

Lemma 3.8 Let \(\mu > 2^\kappa \) be a singular cardinal of cofinality \(\kappa \). Then \(pp_{\Gamma(\kappa)}(\mu) \leq (pp_{\Gamma(\kappa)}(\mu))^M \).\(^7\)

Proof. Let \(\eta, \mu < \eta < pp_{\Gamma(\kappa)}^+(\mu) \) be a regular cardinal.

By Theorem 2.1, there is an increasing converging to \(\mu \) sequence \(\langle \eta_i \mid i < \kappa \rangle \) of regular cardinals such that
\[
\eta = tcf(\prod_{i<\kappa} \eta_i, <_{j^{bd}}).
\]

Note that both \(\langle \eta_i \mid i < \kappa \rangle \) and \(J^{bd}_\kappa \) are in \(M \). Also \(^eM \subseteq M \), hence each function of the witnessing scale is in \(M \), however the scale itself may be not in \(M \). Still we can work inside \(M \) and define a scale recursively using functions from the \(V \)-scale.

\(^6\)Readers interested only in a full answer to Fremlin’s question can jump after the corollary directly to 3.12. The non-strict inequality in its conclusion suffices.

\(^7\)\((pp_{\Gamma(\kappa)}(\mu))^M \) stands for \(pp_{\Gamma(\kappa)}(\mu) \) as computed in \(M \). Note that it is possible to have \((pp_{\Gamma(\kappa)}(\mu))^M > pp_{\Gamma(\kappa)}(\mu) \), just as \((2^\kappa)^M > 2^\kappa \).
Thus let \(\langle f_\tau \mid \tau < \eta \rangle \) be a scale mod \(J^\text{bd}_\kappa \) which witnesses \(\eta = \text{tcf}(\prod_{i < \kappa} \eta_i, <_{j^\text{bd}_i}) \). Work in \(M \) and define recursively an increasing mod \(J^\text{bd}_\kappa \) sequence of functions \(\langle g_\xi \mid \xi < \eta' \rangle \) in \(\prod_{i < \kappa} \eta_i \) as far as possible.

We claim first that \(\text{cof}(\eta') = \eta \), as computed in \(V \). Thus if \(\eta < \text{cof}(\eta') \), then there will be \(\tau^* < \eta \) such that \(f_{\tau^*} \geq_{J^\text{bd}_\kappa} g_\xi \), for every \(\xi < \eta' \), since for every \(\xi < \eta' \) there is \(\tau < \eta \) such that \(f_\tau \geq_{J^\text{bd}_\kappa} g_\xi \). But having \(f_{\tau^*} \geq_{J^\text{bd}_\kappa} g_\xi \), for all \(\xi < \eta' \), we can continue and define \(g_{\eta'} \) to be \(f_{\tau^*} \).

If \(\eta > \text{cof}(\eta') \), then again there will be \(\tau^* < \eta \) such that \(f_{\tau^*} \geq_{J^\text{bd}_\kappa} g_\xi \), for every \(\xi < \eta' \), and again we can continue and define \(g_{\eta'} \) to be \(f_{\tau^*} \).

So \(\text{cof}(\eta') = \eta \). Let \(\langle \eta'_\tau \mid \tau < \eta \rangle \) be a cofinal in \(\eta' \) sequence (in \(V \)). Now, for every \(\tau < \eta \) there is \(\tau', \tau \leq \tau' < \eta \) such that \(f_{\tau'} \geq_{J^\text{bd}_\kappa} g_{\tau'} \), since the sequence \(\langle g_\xi \mid \xi < \eta' \rangle \) is maximal.

Hence there is \(A_\tau \subseteq \kappa, |A_\tau| = \kappa \) such that \(f_\tau \upharpoonright A_\tau <_{J^\text{bd}_\kappa} g_{\eta'_\tau}, \upharpoonright A_\tau \). But \(\eta > \mu > 2^\kappa \), hence there is \(A^* \subseteq \kappa \) such that for \(\eta \) many \(\tau \)'s we have \(A^* = A_\tau \). Then for every \(\tau < \eta \) there is \(\tau'' \), \(\tau \leq \tau'' < \eta \) such that \(f_\tau \upharpoonright A^* <_{J^\text{bd}_\kappa} g_{\eta''_\tau}, \upharpoonright A^* \).

It follows that the sequence \(\langle g_\xi \mid A^* \upharpoonright \xi < \eta' \rangle \) is a scale in \(\text{tcf}(\prod_{i < A^*} \eta_i, <_{j^\text{bd}_i}) \). Hence, in \(M \), \(\eta' < \text{pp}_{\Gamma(\kappa)}(\mu) \). But \(\text{cof}(\eta') = \eta \), hence, in \(M \), \(\eta \leq \eta' < \text{pp}_{\Gamma(\kappa)}(\mu) \).

\(\square \)

Lemma 3.9 Let \(\mu > 2^\kappa \) be a singular cardinal of cofinality \(\kappa \) such that \(\mu^* = \mu \).

Then \(j(\xi) < \mu \) for every \(\xi < \mu \).

Proof. Suppose otherwise. Then there is \(\xi < \mu \) such that \(j(\xi) \geq \mu \). Necessarily \(\xi > 2^\kappa \).

Let \(\eta \) be a regular cardinal \(\xi \leq \eta < \mu \). Pick a function \(f_\eta : \kappa \rightarrow \xi \) which represents \(\eta \) in \(M \). Without loss of generality we can assume that \(\text{min}(\text{rng}(f_\eta)) > 2^\kappa \). Let \(\delta_\eta \leq \xi \) be the \(U \)-limit of \(\text{rng}(f_\eta) \). Then \(\text{cof}(\delta_\eta) = \kappa \) and \(j(\delta_\eta) > \eta \). Also \(\eta \leq \text{pp}_{\Gamma(\kappa)}(\delta_\eta) \), by the definition of \(\text{pp}_{\Gamma(\kappa)}(\delta_\eta) \). By Lemma 3.2, we have \(j(\delta_\eta) \geq \text{pp}_{\Gamma(\kappa)}((\delta_\eta)^*) \), and by [3] (Sh 355, 2.3(3), p.57), \(\text{pp}_{\Gamma(\kappa)}(\delta_\eta) \leq \text{pp}_{\Gamma(\kappa)}((\delta_\eta)^*) \). Set

\[
\delta := \text{min}\{\delta_\eta \mid \xi \leq \eta < \mu \text{ and } \eta \text{ is a regular cardinal}\}.
\]

Then \(\text{pp}_{\Gamma(\kappa)}(\delta) \geq \text{pp}_{\Gamma(\kappa)}(\delta_\eta) \), for every regular \(\eta, \xi \leq \eta < \mu \). But \(\text{pp}_{\Gamma(\kappa)}(\delta_\eta) \geq \eta \). Hence \(\text{pp}_{\Gamma(\kappa)}(\delta) \geq \mu \) which is impossible since \(\mu^* = \mu \). Contradiction.

\(\square \)

Lemma 3.10 Let \(\mu > 2^\kappa \) be a singular cardinal of cofinality \(\kappa \).

Then \(\text{pp}_{\Gamma(\kappa)}(\mu^*) < j(\mu) \).
Proof. By 3.2 we have $j(\mu) \geq \text{pp}_{\Gamma(\kappa)}(\mu^*)$. Suppose that $j(\mu) = \text{pp}_{\Gamma(\kappa)}(\mu^*)$. Then $\mu = \mu^*$, since by 3.2 we have $j(\mu^*) \geq \text{pp}_{\Gamma(\kappa)}(\mu^*)$. By Theorem 2.5, there is $\sigma_* < \kappa$ such that

$$\forall \chi < \mu > \sup\{\text{pcf}_{\sigma_* - \text{complete}}(a) \;|\; a \subseteq \text{Reg} \cap (\kappa^+, \chi) \land |a| < \kappa\}.$$

Then, by elementarity,

$$M \models \forall \chi < j(\mu) > \sup\{\text{pcf}_{j(\sigma_*) - \text{complete}}(a) \;|\; a \subseteq \text{Reg} \cap (j(\kappa^+), \chi) \land |a| < j(\kappa)\}.$$

Clearly, $j(\sigma_*) = \sigma_*$. Take $\chi = \mu$. Let η be a regular cardinal (i.e. of V) such that

$$(*) \quad M \models j(\mu) > \eta > \sup\{\text{pcf}_{\sigma_* - \text{complete}}(a) \;|\; a \subseteq \text{Reg} \cap (j(\kappa^+), \mu) \land |a| < j(\kappa)\}.$$

Note that there are such η’s since $j(\mu)$ is a singular cardinal of cofinality $\text{cof}(j(\kappa))$. By Lemma 3.3, then $\eta \leq \text{pp}_{\Gamma(\kappa)}(\mu)$. Now, by Lemma 3.8, $\text{pp}_{\Gamma(\kappa)}(\mu) \leq (\text{pp}_{\Gamma(\kappa)}(\mu))^M$. Hence $M \models \eta \leq \text{pp}_{\Gamma(\kappa)}(\mu)$. But then there is $a \in M$ such that

$$M \models a \subseteq \text{Reg} \cap (j(\kappa^+), \mu) \land |a| = \kappa \land \eta \leq \max \text{pcf}_{\kappa - \text{complete}}(a).$$

Which clearly contradicts $(*)$.

\square

So we proved the following:

Theorem 3.11 Let $\mu > 2^\kappa$ be a singular cardinal of cofinality κ. Then $\text{pp}_{\Gamma(\kappa)}(\mu^*) < j(\mu) < \text{pp}_{\Gamma(\kappa)}(\mu^*)^+$.

Deal now with cardinals of arbitrary cofinality.

Theorem 3.12 Let τ be a cardinal. Then either

1. $\tau < \kappa$ and then $j(\tau) = \tau$,

 or

2. $\kappa \leq \tau \leq 2^\kappa$ and then $j(\tau) > \tau$, $2^\kappa < j(\tau) < (2^\kappa)^+$;

 or

3. $\tau \geq (2^\kappa)^+$ and then $j(\tau) > \tau$ iff there is a singular cardinal $\mu \leq \tau$ of cofinality κ above 2^κ such that $\text{pp}_{\Gamma(\kappa)}(\mu) \geq \tau$, and if τ^* denotes the least such μ, then $\tau \leq \text{pp}_{\Gamma(\kappa)}(\tau^*) < j(\tau) < \text{pp}_{\Gamma(\kappa)}(\tau^*)^+$.

15
Proof. Suppose otherwise. Let τ be the least cardinal witnessing this. Clearly then $\tau > (2^\kappa)^+$. If $\text{cof}(\tau) = \kappa$, then we apply 3.11 to derive the contradiction. Suppose that $\text{cof}(\tau) \neq \kappa$.

Claim 5 There is a singular cardinal ξ of cofinality κ such that $j(\xi) > \tau$.

Proof. Thus let $f_\tau : \kappa \to \tau$ be a function which represents τ in M. Without loss of generality we can assume that

$$\nu \in \text{rng}(f_\tau) \Rightarrow (\nu > 2^\kappa \text{ and } \nu \text{ is a cardinal}).$$

Then either f_τ is a constant function mod U or $\xi := \text{limit } \text{rng}(f_\tau)$ has cofinality κ.

Suppose first that f_τ is a constant function mod U with value ξ. If $\xi = \tau$, then $j(\xi) = \tau$. Suppose that $\xi < \tau$. Then $j(\xi) = \tau > \xi$ and also ξ is a cardinal above 2^κ. By minimality of τ then ξ^* exists and

$$\text{pp}_{\Gamma(\kappa)}(\xi^*) < \tau = j(\xi) < \text{pp}_{\Gamma(\kappa)}(\xi^*)^+.$$

But this is impossible since τ is a cardinal. Contradiction. So $\text{cof}(\xi) = \kappa$ and $j(\xi) > \tau$.

Now affirmative answers to a question of D. Fremlin and to questions 4, 5 of [2] follow easily.

Corollary 3.13 Let W be a non-principal κ–complete ultrafilter on κ and $j_W : V \to M_W$ the corresponding elementary embedding. Then for every τ, $|j(\tau)| = |j_W(\tau)|$.

Proof. Let W be a non-principal κ–complete ultrafilter on κ and $j_W : V \to M_W$ the corresponding elementary embedding. Let τ be an ordinal. Without loss of generality we

\footnote{Non strict inequality $\text{pp}_{\Gamma(\kappa)}(\tau^*) \leq j(\tau) < \text{pp}_{\Gamma(\kappa)}(\tau^*)^+$ suffices for a question of D. Fremlin and 4 of [2].}
can assume that τ is a cardinal, otherwise just replace it by $|\tau|$. Now by 3.12, $j(\tau) > \tau$ iff $j_W(\tau) > \tau$ and if $j(\tau) > \tau$ then either $j(\tau), j_W(\tau) \in (2^\kappa, (2^\kappa)^+)$, or $j(\tau), j_W(\tau) \in (\text{pp}_{\Gamma(\kappa)}(\tau^*), \text{pp}_{\Gamma(\kappa)}(\tau^*)^+)$.

\[\square \]

Corollary 3.14 For every τ, $|j(\tau)| = |j(j(\tau))|$.

Proof. Apply 3.13 with $W = U^2$.

\[\square \]

It is straightforward to extend this to arbitrary iterated ultrapowers of U:

Corollary 3.15 Let τ be a cardinal with $j(\tau) > \tau$. Let $\alpha \leq 2^\kappa$, if $\tau \leq 2^\kappa$, and $\alpha \leq \text{pp}_{\Gamma(\kappa)}(\tau^*)$, if $\tau > 2^\kappa$. Then $|j(\tau)| = |j_\alpha(\tau)|$, where $j_\alpha : V \rightarrow M_\alpha$ denotes the α-th iterated ultrapower of U.

Corollary 3.16 For every τ, if $j(\tau) \neq \tau$, then $j(\tau)$ is not a cardinal.

Proof. Follows immediately from 3.12.

\[\square \]

The following question looks natural:

Let α be any ordinal. Suppose $j(\alpha) > \alpha$. Let W be a non-principal κ-complete ultrafilter on κ and $j_W : V \rightarrow M_W$ the corresponding elementary embedding. Does then $j_W(\alpha) > \alpha$?

Next statement answers it negatively assuming that $o(\kappa)$—the Mitchell order of κ is at least 2.

Proposition 3.17 Let W be a non-principal κ-complete ultrafilter on κ and $j_W : V \rightarrow M_W$ the corresponding elementary embedding. Suppose that $U \triangleleft W$, i.e. $U \in M_W$. Then $j_W(\alpha) > \alpha = j(\alpha)$, for some $\alpha < (2^\kappa)^+$.

Proof. Let $\alpha = j_\omega(\kappa)$, i.e. the ω-th iterate of κ by U. Then $j(\alpha) = \alpha$, since $j_\omega(\kappa) = \cup_{n<\omega} j_n(\kappa)$. Let us argue that $j_W(\alpha) > \alpha$. Thus we have U in M_W. So $j_\omega(\kappa)$ as computed in M_W is the real $j_\omega(\kappa)$. In addition

\[M_W \models |j_\omega(\kappa)| = 2^\kappa < (2^\kappa)^+ < j_W(\kappa), \]

and so $\kappa < \alpha = j_\omega(\kappa) < j_W(\kappa)$. Hence

\[j_W(\alpha) = j_W(j_\omega(\kappa)) > j_W(\kappa) > \alpha. \]
Let us note that the previous proposition is sharp.

Proposition 3.18 Suppose that there is no inner model with a measurable of the Mitchell order ≥ 2. Let W be a non-principal κ-complete ultrafilter on κ and $j_W : V \to M_W$ the corresponding elementary embedding. Then $j(\alpha) > \alpha$ iff $j_W(\alpha) > \alpha$, for every ordinal α.

Proof. Assume that U is normal or just replace it by such. Let W be a non-principal κ–complete ultrafilter on κ and $j_W : V \to M_W$ the corresponding elementary embedding. The assumption that there is no inner model with a measurable of the Mitchell order ≥ 2 guarantees that there exists the core model. Denote denote it by K. Let $U^* = U \cap K$. Then it is a normal ultrafilter over κ in K. Denote by j^* its elementary embedding. Then $j^*_W | K = j^*_n$, for some $n < \omega$, since $\omega M_W \subset M_W$ there are no measurable cardinals in K of the Mitchell order 2.

Hence we need to argue that

$$j^*(\alpha) > \alpha \iff j^*_n(\alpha) > \alpha,$$

for every ordinal α and every $n < \omega$. But this is trivial, since $j^*(\alpha) > \alpha$ implies $j^*_n(\alpha) = j^*(j^*(\alpha)) > j^*(\alpha) > \alpha$ and in general $j^*_{k+1}(\alpha) = j^*(j^*_k(\alpha)) > j^*_k(\alpha) > \alpha$, for every $k, 0 < k < \omega$. On the other hand, if $j^*(\alpha) = \alpha$, then $j^*_\xi(\alpha) = \alpha$, for every ξ.

\[\square \]

4 Concluding remarks and open problems.

Question 1. Is weak compactness really needed for Theorem 2.1? Or explicitly:

Let κ a regular cardinal. Let $\mu > 2^\kappa$ be a singular cardinal of cofinality κ. Suppose that $\lambda < \text{pp}_{\Gamma(\kappa)}(\mu)$. Is there an increasing sequence $\langle \lambda_i | i < \kappa \rangle$ of regular cardinals converging to μ such that $\lambda = \text{tcf}(\prod_{i<\kappa} \lambda_i, <_{\text{jbd}})$?

See [3] pp.443-444, 5.7 about the related results.

Question 2. Does Theorem 2.5 remain true assuming $\text{cof}(\mu) = \text{cof}(\theta) = \omega$?

Suppose now that we have an ω_1-saturated κ-complete ideal on κ instead of a κ-complete ultrafilter. The following generic analogs of questions 4,5 of [2] and of a question of Fremlin are natural:

Question 3. Let W be an ω_1-saturated filter on κ. Does each the following hold:

1. $\| W^+ \forall \tau (\widetilde{j}_W(\tau) > \tau \implies \tau \text{ is not a cardinal}).$
2. \(\vartriangleleft_{w+} \forall \tau (|j_{\vartriangleleft w}(\tau)| = |j_{\vartriangleleft w}(j_{\vartriangleleft w}(\tau))|) \).

3. Let \(W_1 \) be an other \(\omega_1 \)-saturated filter on \(\kappa \). Suppose that for some \(\tau \) we have \(\delta, \delta_1 \) such that

- \(\vartriangleleft_{w+} j_{\vartriangleleft w}(\tau) = \bar{\delta} \),
- \(\vartriangleleft_{w_1^+} j_{\vartriangleleft w_1}(\tau) = \bar{\delta}_1 \).

Then \(|\delta| = |\delta_1| \).

Note that in such situation \(2^{\aleph_0} \geq \kappa \) and so 2.1 does not apply. Assuming variations of SWH and basing on \([3]\), Sh371, it is possible to answer positively this questions for \(\tau > 2^\kappa \).

Recall a question of similar flavor from \([2]\) (Problem 6):

Question 4. Let \(W \) be an \(\omega_1 \)-saturated filter on \(\kappa \). Can the following happen:

\(\vartriangleleft_{w+} j_{\vartriangleleft w}(\kappa) \) is a cardinal? Or even \(\vartriangleleft_{w+} j_{\vartriangleleft w}(\kappa) = \kappa^{++} \)?

References

