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1 One difference between gap 3 and higher gaps

Let P’(3) denotes the preparation forcing for the gap 3. Let G be a generic subset of P’(3).

Consider
S ={A| A% AW Y AT Y e G A= A%

It was shown that S is a stationary subset of [H(k*3]<%". Let us point out in addition

the following;:

Proposition 1.1 If A, B € S and otp(ANk™3) = otp(BNk™3), then A and B are isomorphic

by an isomorphism which is an identity over AN B.

Proof. Induction on walks complexity.
O
The purpose of this note will be to show that this proposition fails already in the gap 4

case.

Theorem 1.2 Let A\ < p be cardinals such that
1. w 1s reqular,
2. Nt <,
3. 20 =\,
4. for every 6, \t <8 < p, 8 =4.

Suppose that S is an unbounded subset of [H(u)]*.

Then there are A, B € S with otp(A N u) = otp(B N p), but the isomorphism between A and
B is not the identity on AN B.



Proof. Suppose otherwise. Let S be an unbounded subset of [H(u)]* witnessing this.
Consider a sequence (M, | o < u) such that for every a < u

1. (M,,e,<,M,NS) < (H(un),€,<,5S),
2. |M,| = AT,

3. M, D\,

4. *M, C M,,

5. f # « implies Mg # M,.

Form a A-system and shrink the sequence (M, | @ < p) to a sequence (M, | a € Z) such
that for every «, 8 € Z,a < 3 the following hold:

1. Maﬂoz:Mgﬂﬂ,

2. sup(Ma N )3,

3. (My,€,<,M,NS) ~ (Mg, €,<,MzN S) and the isomorphism is the identity on the

common part.

Fix some o # (3 in Z. Pick an ordinal 7 € M, above sup(M, N Mz N p).
Now we use unboundedness S and find A € S with 7,7, 0, (7) € A.
Consider A N M,. This set belongs to M,, since M, is closed under A-sequences of its
elements. By elementarity it is possible to find A, € M, such that

e A, D M,NA,
e otp(Aa N p) = otp(AN p),
e A, €S.

Set Ag = T, m,(As). Then otp(Ay N p) = otp(Ag M) and Ag € S, by (3) above. Note
also that the isomorphism 74, 4, is just maz, ar,(Aa) [ Ao By (1) above and the choice of 7
we have A, N AgNpu C Ay N 7. Hence 7' :=ma, a,(7) # 7. But 74, 4,(7) = Tas,,0,(7) and
the last component is in A. So, 7 € AN Ag.

Now,

7TA,A T :WAQ,A 7TA,Aa7_ .
5(7) o (7))



But 7€ AN Ay, A, Ay €5, 50 maa, (1) = 7. Then

WA’Aﬁ(T) = 7TAQ7A5<T) =7,

Which is impossible, since 7" € AN Az, A, Ag € S and 7 # 7'.
O
Without GCH type assumptions it looks like the theorem above consistently fails. Thus

one can try to use a "baby ” version of the arbitrary gap preparation forcing:

((A", A7) [ 7 € 5),

with only requirement that models of the same order type are isomorphic over their inter-
section.

We do not know if for the gap 3 always there is S as in Proposition 1.1 (or even only
unbounded set like this). Our conjecture will be -no. On the other hand in L-like models it
may exist due to morass structures inside.

Note also that once we have such S, then it is quite hard to eliminate it. Cardinals should

be collapsed or change their cofinality.

2 The Preparation Forcing

We assume GCH. Fix two cardinals x and 6 such that k < 6 and 6 is regular.

We define a set which is parallel to P” of Gap 3, i.e. the set of central lines.

Definition 2.1 The set P"” consists of sequences of the form (C7 | 7 € s) such that
1. sis a closed set of cardinals from the interval [« 6] satisfying the following:

(a) |sNd |< ¢ for each inaccessible 0 € [k, 0]
(b) kT,0 € s

(c) if pT € sand p > k™, then p € s

(d) if p € s is singular, then s is unbounded in p and p™ € s.

If there is no inaccessible cardinals inside the interval [£, 6], then s can be taken to

be the set of all the cardinals of this interval.



2. For every 7 € s, C™ is a continuous closed chain of a length less than 7% of elementary

submodels of (H(6%), €, <, C, k) each of cardinality 7

such that

(a) for each element X € C™ we have X N7 € On and, hence X D 7,
Further we shall denote otp(X N &%) by simply otp(X).

(b) If X € C7 and there is Y € C*,Y D X, for some p € s\ 7+ 1, then there is
Y € C7,Y D X such that for each p € s\ 7+ 1if Z € C” and Z D X, then
Z 2Y, where 7" = min(s \ 7 + 1).

(c¢) If X is a non-limit element of the chain C” then
L CTI X ={Y|YCX,YeC}eX,
i, cof(M>x C X
iii. if for some p € s,p > 7 we have Y € C” with sup(Y') > sup(X), then X C Y,

iv. if for some p € s,p > 7 we have Y € C”? with sup(Y) < sup(X), then there
are p' € (s\p)NX and Y’ € C” N X such that Y DY and Y NX =Y'NX.

Note that p’ = p, unless there are inaccessible cardinals.

v. fée€(s\7+1)NX and C*N X # (), then
J{vect|vexyex

Denote this union by (X)e.

Note that if for some 7 € 5, € sNT and Z € C™ thereisno p € s\ 7, A € C¢
with (A), defined and so that Z C (A),, then Z O B for each B € C*.
Since, if for some B € C¢ we have sup(Z N 0T) < sup(B N OT), then, by the
condition (iv) above, there are p € s\ 7,Y € C? N B such that Z C Y and
ZNB=YNB. So, (B), exists and Z C (B),.

vi. (CSN(X)e | €€ s\7+1,(X)eis defined ) € X. 21t implies the previous one.

3. If (§; | j < i) is an increasing sequence of elements of s, { = J,_, §; and (X | j < i) is

an increasing (under the inclusion) sequence such that X; € C% for each j < i, then
X =, X; isin C%,

The next set will be needed here in order to define a A-system type triple.



Definition 2.2 The set P” consists of all sequences of triples

(A7 AT CTY | T € 5)

such that for every 7 € s the following hold:

1.

2.

|A17’| S T,

AO’T c AlT

. every X € A'7 is either equal to A°" or belongs to it,

CT . AIT N P(AlT),
(CT(A) | T es)yeP”,

(Coherence)
if X,Y € CT(A") and X € C"(Y), then C"(X) is an initial segment of C7(Y) with X

being the largest element of it.

Let Be C™(A) and ' = {pesnt|3IX € CP(A%) X C B}. For each p € s’ let
B, be the largest element of C?(A%) contained in B. Then

(C*(B,) | p € s)(CT(B)) " (CX(A™) [ £ € s\ T +1) € P

Now we define A-system type triples. The definition is more involved than those in the

gap 3 case. The basic reason is that instead of using a single central line consisting of ordinals

there, we may have here many other central lines. Over each of them A-system type triple

may appear (thus, for example for the gap 4: there will be A-system type triples for kT

relatively to lines of models of cardinality x**, and those of cardinality st relatively to

lines of cardinality k2, i.e. ordinals). We define simultaneously also switching using the

induction on the rank of sets.

Definition 2.3 Suppose that p = ((A°" A7 C7) | 7 € s) € P", F € C7(A"), for some
T € s, 7 <0 and Fy, F} € F. We say that the triple Fy, Fi, F' is of A-system type iff

1.

2.

3.

Fy is the immediate predecessor of Fin CT(A°T)
Fy <F,
if for some p € s,p > 7 we have Y € C?(A%) with sup(Y) > sup(F}), then F} C Y,
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4. if for some p € s,p > 7 we have Y € C?(A%) with sup(Y') < sup(F}), then there are
pe(s\p)NFandY € CF(A%)NFysuch that Y DY and Y N F, =Y' N F.
Here we need to consider two possibilities: 77 € s or 77 ¢ s and then min(s\ 7+ 1) is
an inaccessible cardinal. Let shall treat both possibilities similar. Denote min(s\7+1)

by 7*. So 7* is either 77 or 7* is an inaccessible.

5. There is H; € A'™ N F; which the maximal under inclusion, where i € {0, 1}. Moreover
Hy € C7(A").
Note that we do not require that also H; is in C™ (A%""). The reason is that, already
in the gap 4 case, H; may correspond to some H, € C™ (A°") as a A-system triple,
but F1, g, (Fo) are not of a A-system type.

6. There are Gy, G; € A7 N F such that

(a) cof (GoN (7%)") = cof (G1 N (7%)T) = 7%,
(b) Gy € Fy and Gy € F}

(c
(d

(e

)
)
) FyNFy = F,nGo=F, NG,
) either Gy € G or G € Gy,

)

there is a switch of p\ 7+ 1 := ((A°, A7 C7) | 7 € s\ 7 + 1) which involves
models only with supremums below max(sup(FyN607T), sup(F; NOT)) which leaves
Hy on the central line for 7* and moves H;, Gy, Gy to the central line. Moreover,
all the models involved in the switch are in F'.

Here we use the induction on the ranks of sets.

Further let us call Gy, G; the witnessing models for Fy, F, F.
? May be add also Hy, H; and the models used in the switch.

The next condition will require more similarity:

7. (isomorphism condition)

the structures
(Fy, €,<,C, Rk, 1, C7(Fp), (Alp NEy | pe(s\7)NFy),(CP| A N F, | p€s\7), fr)
and

(F1,€,<,C Rk, 1,CT(FY), (Al” NE | pe(s\7)NF),(C? P AY N Ry |p€s\7), fr)



are isomorphic over Fy N Fy, i.e. the isomorphism 7p m between them is the identity

on Fy N Fy, where fr, : 7 «— Fy, fr, : T <— F} are some fixed in advance bijections.

In particular, we will have that otp(Fp) = otp(Fy) and FoN7* = Fy N 7"
Note that here we use C* | A" N F; (i < 2). In the gap 3 case we had only A" but

it was just an increasing sequence and so served as a replacement of C* as well.
8. 7For each € € s, if X € A¥ (Tor X € C*(A%)) and X D Fy, F, then X D F.

Define the switch ¢ of p by Fy, F, F' to be

<<AO£7A1£7D£> | & €5),

where D¢, for £ € s\ 7+ 1 is determined by switching in p \ 7 + 1 below max(sup(F, N
6F), sup(F; N OF)) which turns C™ (H;) into an initial segment of 7*-central line. D™(F) =
C™(Fy)"F and D"(A") = D™(F)™(X € C7(A") | X D F). The rest is defined in the
obvious fashion by taking images under isomorphisms 7g, r, etc.

Further let denote such ¢ by swt(p, F).

Denote by swt(p, By, ..., B,) the result of an application of the switch operation n-times:

pir1 = swt(p;, B;), for each 1 < i < n, where p; = p and swt(p, By, ..., By) = Pni1-

Note that there is no A-system type triples in the cardinality 6.

Now we define the preparation forcing P’.
Definition 2.4 The set P’ consists of elements of the form
(A AT CTY | T € s)
so that the following hold:

1. <</407714177(77>| Tc S> c 7)H’
We call C7(A%) 7-central line of ((A°7, A C7) |1 € s).

The following conditions describe a special way in which A7 is generated from the

central line, for each 7 € s.

2. Let B € A'". Then B € C"(A%) (i.e. it is on the central line) or there there is a finite

sequence w(B) of models in (J A' that terminates with B. We call this sequence

PES\T
a walk to B and define it recursively as follows.



If B € CT(A"), then w(B) = (B). If B ¢ C™(A"), then pick the least element
A€ CT(A") with B € A. Tt will be the first element of the walk to B.

In general, suppose that the walk w(B) reaches a point A in A'™ and B ¢ C7(A).
The following possible continuations are allowed. The walk to B terminates once B is

reached.
First Continuation.

There are models Ay, A, € AN A such that

(a) the triple Ay, A1, A is of a A-system type with respect to ({A%, A% C%) | £ € s\7),
(b) Ay € C7(A),
(C) B c Al U {Al}

Then we add Ay, A; and the models witnessing the A system to w(B).

The walk continues from A;.
Second Continuation.

There are p € sN A, p > 7 and Fy, Fy, F € AN A so that

(a) Fp, I are on the central line relatively to A, i.e. once we make the switches along
the walk up to A which move A to the central line, then Fj, F' move their as well;
other way to state this: if Z is the largest model of A” N A, then Fy, F € C*(Z).
In particular, if A is the first model of the walk or only the first continuation was
used on the way to A, then Fy, F € CP(A%).

(b) the triple Fy, Fi, F is of a A-system type with respect to ({A%, A% C¢) | € € s\ p)
with witnessing pair of models Gy, G in A,

(c) thereisnon € s\ 7 and Z € AY such that F € Z € A.

This condition insures a kind of minimality of A above F'.

(d) A= € Fy and B C 7, j [A7], where A~ denotes the immediate predecessor of A
in C7(A).

We add then Fy, F, F, models witnessing the A-system, A~ and 7g,, r,,[A7] to w(B).
The walk continues from 7, g, [A7].
In this case we use directly Fy, F; to move a model A~ from C7(A) to one that contains

B. In other words a switch is preformed using models of cardinality above 7.



If one does not care about GCH, then there is no need in additional possibility. The
further arguments work parallel to the gap 3 case. But already for the gap 4 (i.e. if
0 = k*3), we will have 2" = k™ in a generic extension by P’

Let us allow further possibilities in order to preserve GCH.
Third Continuation.

There are p € sN A, p > 7,Fy, F1, F € AN A, Ay, Ay, Ay € AN A so that

(a) Fo,Fl,FeAl,

(b) F is on the central line relatively to Aj, i.e. once we make the switches along
the walk up to A which move A to the central line, then F' moves their as well;
other way to state this: if Z is the largest model of A N Ay, then F € C?(Z).
In particular, if A is the first model of the walk or only the first continuation was
used on the way to A, then F' € C?(A%).

(c) the triple Fy, F, F is of a A-system type with respect to ({A%, A% C¢) | £ € s\ p)

with witnessing pair of models Gy, G in A,
(d) Ag, Ay, A is of a A-system type,
e

f

)
(e) AgN Ay = A; N Fy, i.e. Fy is one of the A-system witnesses.
(f) Ao = 7Ry, m (Ao),
(g) for every Z € C™(A;) either Fy, Fi, F € Z or Z € Fy (and then in Ay N Ay),
(h)

h) if M € C7(A;) is the least with F € M, then there isnon € s\ 7 and Z € A
such that '€ Z € M,

(i) BC A\ (Ao U Ay).

We add then Fy, Fy, F, Ao, A, A1, models witnessing the A-system to w(B).

The walk continues from Aj,.

Further we shall refer to models Ag, A; of the first continuation, A~ of the second
and Ay, Af), A; of the third as the immediate predecessors of A (?probably better: true
immediate predecessors). There may be other €-immediate predecessors of A which
can be generated in the last case below, but the most important will be the described

above.
Fourth Continuation.

There are Ag, Ay € A" NApesnAp>r, Ty, T, T € AN A such that
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(a) Ap, A, A are of a A-system type,

(b) A; is above Ag in the A-system, i.e. if Fy € Ay, F} € A; are the witnessing
models, then Fj € F} and so F} D Aq.

(¢) Ty, Ty, T are of a A-system type,

(d) To, 11, T € Ay,

(e) To, T are on the central line relatively to A, i.e. once we make the switches along
the walk up to A; which move A; to the central line, then Ty, T move their as well;
other way to state this: if Z is the largest model of AN Ay, then Ty, T € C*(Z).

In particular, if A is the first model of the walk or only the first continuation was
used on the way to A, then F € C?(A%).

(f) for every Z € C7(A,) either Ty, T1,T € Z or Z € Ty,

(g) if M € C7(A,) is the least with F' € M, then there isnon € s\ 7 and Z € A
such that '€ Z € M,

(h) AO & TQ,
(i) B C 7 (Ao).

We add all the relevant models above, i.e. Ag, Ay, 1o, T3, T, Fo, Fy, 7,1 (Ao) ete. to

w(B). Continue further from 7, 7, (Ao).

This case formally speaking includes the third one. Thus, for example, let Ty =
Fy, Ty = Fy, for F’s as in the third one and B = g, r, (Ag) = Aj. But note that here
T’s need not be the witnesses of Ay, A1, A, also they may be of a large cardinality than

those of the witnesses.
The next two conditions strengthen a bit the isomorphism condition (7) of Definition

2.3.

. (isomorphism condition 1) Let Fy, Fi, F € A be of a A-system type and X € A'".
Then X € I iff 7TF0F1[X] € F NAY.

. (isomorphism condition 2) Let Fy, Fy, F' € A be of a A-system type, Fy, F € CT(A"7).
If for some £ € sN T, A¥ N (F\ Fy) # 0, then F € A% and for each X € C¢(A%)
either Fy, F, FF € X or X € Fy.

We require the following for such &:

o forevery Y € A Y € F, iff mpp[Y] € Fy N AL,
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The above condition is a new strong requirement which restricts largely the number
possibilities to move small models via A-system triples.

If one do not care about GCH, then we require the above only for Y’s which are in the
least X € C¢(A%) with F' € X. We do not move the rest of Y’s from Fy to Fy. Just
the lack of the third possibility in (2) prevents such moving. Here basically the place
where GCH breaks. Thus F, and F; will have different sets of elements of A inside.

. Let Fy, F1, F € A" be of a A-system type, Fy, F' € CT(A°). Suppose that £ € sN T,
(A%), exists and (A%), D Fy. Let X € C(A%) be the least with (X), D Fy. Then
(X), D F.

The meaning of this condition is that it is impossible to have a small model in between
models of a A-system type of larger cardinality. It will not be very restrictive for our
further purposes, since we will be always able to increase first elements of P’ by adding

models of cardinality 7 at the top, and only then to make a A-system type triple.
The next condition is relevant once inaccessibles are present.

. Let Fy, Fy, F € A" be of a A-system type, Fy, F' € CT(A°). Suppose that £ € sN T,
X € C4(A%), for some p € s\ 7, (X), exists and (X), 2 Fy. Then (X), D F.

. (uniqueness) Let Fy, Fy, F{, F € A'7. If both triples Fy, I}, F and F}, F], F are of a
A-system type, then {Fy, Fi} = {F}, F{}.

Note that conditions 3,4 and 7 can be stated equivalently only in the case when F'is

on the central line.

The following lemma follows directly from the definition.

Lemma 2.5 Let ((A%, A% C%) | £ € s) € P'. Then AY is a chain.

Proof. Just note that we have no A-system triples in the cardinality 6. Hence each model

in A is on the f-central line, i.e. on C%(A%).

Lemma 2.6 Let ((A% A¥ C4) | € € s) € P' and B € A™". Then it is possible to move B

to the k™ -central line using finitely many switches.

Proof. Consider the walk from A%" to B. Use induction on its length and make switches to

make it into the central line.
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Let p = ((A% A C¢) | £ €s) e PPandnp € s. Set p\n = (A% A% C%) | £ € s\ n).
Define P, to be the set of all p \ n for p € P".

The next lemma is similar to Lemma 2.6.

Lemma 2.7 Let ((A%, A%, C¢) | € s) € PL, and B € A"™. Then it is possible to move B

to the n-central line using finitely many switches.

Lemma 2.8 Let ((A% A% C%) | £ € s) € P and B,B' € A", for some 7 € s. If B' ¢ B,
then B' € B.

Proof. If both B and B’ are on the central line, then we are done, by Definition 2.1. Suppose
that it is not the case. Consider the walks from A°" to B and to B’. Let A € A7 be the last
common point of this walks. We need to consider three cases according to the possibilities
in (2) of 2.4.

Case 1. There is B; € A" such that A=, By, A is a A-system type triple and the walk to
B’ goes via A~, the walk to B via Bj.

Note that it is impossible that the walk to B goes via A~ and those to B’ via B, since
B' CB.
Then B C A~ N By. So we can replace B by mp, 4-[B] and move everything below A~.
Note that mp, 4~ [ A~ N By = id, since the triple A~, B, A is of a A-system type. Now the
walks are simpler, so an induction applies. Hence B’ € mp, 4-[B]. Moving back, we obtain
B' e B.

Suppose now that the case (b) of Definition 2.4(2 occurs. Then there are p € sSNA,p > 7
and Fy, F}, F € AN A so that

[ ] Fo,FE Cﬂl(AOP)’

e the triple Fy, Fi, F is of a A-system type with respect to ((A%, A C%) | £ € s\ p1)

with witnessing pair of models Gy, G in A,

o if Z € C"(A), then either Z € Fy or Fy, F1, F € Z, as well as the witnessing models

for them.

Case 2. A~ ¢ FQ, B’ - A~ and B - Ty, Fy [Ai]
Then B’ C FyN Fy. So we can replace B by 7g, g, [B] and move everything below A~. Note
that by Definition 2.4 (4), 7 g [B] € A'7. Also, mp | Fo N Fy = id, since the triple
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Fy, F1, F is of a A-system type. Now the walks are simpler, so an induction applies. Hence
B' € mp, g, |B]. Moving back, we obtain B’ € B.

Case 3. There is triple Yy, Y;,Y € A!™ of a A-system type with Yy, Y € C7(A%), A €
C" (), Y1 € Fy, B CA™ B L 7y, v, [A] and B C 7, g (Tyy. v [4]).

Denote A; = my, v;|A] and Ay = 7g, r [A1]. Note that Ay € A, by 2.4 and 74, 4, =
TRy r | Ar. Hence ma, 4, [ A1 N Ay =id, but m4 4, [ AN Ay need not be the identity.
Consider E = 7, 4,[B], E' = Ta, 4, [B| and S = ma, a[E],S" = ma, a[E']. Then 5,5 €
AN A, S DS, and so the induction applies. Hence S’ € S. This implies £ € E, and then
also B’ € B.

Case 4. There is triple Yy, Y;,Y € A!7 of a A-system type with Yy, Y € C7(A%), A €
C"(Yy), Y1 € Fy, B=A and B' C g, g, (Tyy 1 [4])-

Then, as in the previous case, denote A; = my, v, [4] and Ay = 7, [A1].

The walk to B’ continues via A,. But Ay, € F; € A. Hence the rank of one of the sets is
reduced here and we can argue by induction that B’ € A,.

Consider A N A,. Clearly, B® € AN Ay. Let us argue that B € A. There are X, X; €
C™ (A7) such that X € A, X; € A; witnessing a A-system type, where 7* = min(s\ 7+ 1).
Clearly, 7" < p. Then X € Fj. Just otherwise, by Definitions 2.1, 2.4 we must have Fj € X,
but then Fy € AN Fy = AN A;. Which is impossible, since A; € Fy. Clearly also X; € Fy,
since X; € Ay € Fy. Hence mg, r [X], 7R, m [X1] are defined. Note that mg g [X] € A, since
Fo, Fy € A. Also mg, [ X1] € As, since mg, p [X1] = 74, 4,[X1]. Let us show the following:

Claim 1 AﬂAg = Aﬂﬂ_Fg,Fl[X] = AQ m’]TFmpl[Xl].

Proof. Let a € AN Ay. Then b =g gla] € ANA;. So,be ANX and b€ A; N X;. Then
a=rmpmb) € ANTR [X] and a € mg, g [X1]. We use here that g 5 € A.
Let us show the opposite inclusions. Assume first that we have a € A N 7p p[X]. Let
b=1mp r(a). Then b€ ANX, since mp, p € A. But ANX = A;NX;. Hence, b € AN Xy,
and so a € Ay N7, m[X1] N A.
Let now a € Ay N7, p [X1]. Then b = 7p g (a) € Ay N X, since g, p | A1 = 7a, 4, But
AN Xy =ANX. Hence b € A. This implies a € A since 7, p, € A.
(] of the claim.

Now we have B" € Ay and B' C ANAy = AsN7p, 1 [X4]. But |B'| = 7,50 B' € g, g [X4].
Then B’ € Ay N7, [ X1] € A and we are done.
[
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Lemma 2.9 Let ((A% A% C%) | ¢ € s) € P’ and B € A", for some 7 € s. Then
((B,A'(B),C™ | A'(B))~((A%, A, D% | ¢ € s\ 7+ 1) € P.., where A"(B) = {B' €
AY N P(B) | there is a walk from B to B'} are D%’s are the result of moving B to the

T-central line.

Remark 2.10 Note that in view of the last case of Lemma 2.8, we cannot in general replace
A'(B) by A" N P(B).

Let us give a concrete example. Let |A| = kT, A~ exists Fy, F1, F' € A of cardinality T of a
A-system type with witnessing models Gy, G;. Assume that A~ € Fy and Gy € A™. Reflect
A to Fy, i.e. find some A; € Fy which is isomorphic to A over AN Fy. Let A* be a model
of cardinality x* with A, A; € A* and set C*" (A*) = {A, A*}. Then the triple A, A;, A* is
of a A-system type. Set Ay = 7, (A1) and B = g, (A7), Then B = A;. Also, B € A,
since g, € A. But B # A~ since Gy € A~ and 7, 1 (Go) = G1 € BN Fy\ F.

Lemma 2.11 Let ((A% A% C%) | ¢ € s) € P! and X € A", for some T € s and Y € AY.
Then

1. sup(Y NOT) > sup(X NO) implies Y 2O X,
2. sup(Y NO) < sup(X NOF) implies that there is Z € A¥ N X such that XNY = XNZ.

Remark 2.12 Note that the lemma will not be true in general if we replace the requirement
Y € A by Y € CP(A%), for some p € s\7+1, p < 6. Thus, there may be a model Y’ € A
Y’ D X which was switched to Y in a A-system type such that sup(Y' Né") < sup(Y No")
and X 2 Y Y.

Proof. (1) We have a well order < of H(07) in the language and X is an elementary submodel.
So it is possible to reconstruct X from its ordinals i.e. from X NOT. Recall that Y Nt € 6F.
Hence, Y NOT D X NOT and we are done.
(2)Induction on the walk from A% to X. Thus, if X € CT(A"), then the statement follows
by Definition 2.1. The inductive step follows from Definition 2.4 treating each of the three
possibilities there separately.
O

Further we will need to use more complicate inductions than on walks distances. Similar
to Gap 3, we will define a notion of walks complexity. In order to do so we need first to
define walks from A°" to elements of A" N A, for p € s\ 7+ 1. It corresponds to walks to
ordinals in the gap 3 case. The definition repeats basically (2) of Definition 2.4.
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Definition 2.13 (Complexity of walks)
Let ((A% A% C%) |£e€s)eP.

e Suppose that 7 € s, A, B € A'7. We say that the walk from A% to A is simpler than
the walk from A’ to B iff

1. AC B, or

2. AZ BB¢ A,A+# B and if L € A' is the last common point of both walks,
then A C L, where L~ is the immediate predecessor of L in C7(L). Note that
necessarily, there is a triple of a A-system type Fy, F}, F and B C Fj. In the gap
3 case we had Fy = L~, F = L but here F’s can be models of bigger cardinality.

e Suppose that p € s\ 7+ 1,4 € A" and B € A» N A”. We say that the walk from
A" to A is simpler than the walk from A" to B iff

1. A is one of the models of the walk to B,

or

2. if L is the last common model of the walks, then A € C7(L), or A ¢ C7(L) and
A C L, where L~ is the immediate predecessor of L in C7(L). Note, if the

second possibility occurs, then, necessarily, there is a triple of a A-system type
Fo,Fl,F and B € Fl-

e Suppose that u,p € s\7+1,A € A»N A" and B € A N A’". We say that the walk
from A" to A is simpler than the walk from A" to B iff A # B, there is L € A"

which is the last common point of both walks and

1. there are D, E € C"(L) such that A€ D€ E and B€ E\ D,

or

2. L is not the minimal model of C"(L) and A € L~.

The above defines a well-founded relation. We will use further the walks complexity in
inductive arguments.
We need to allow a possibility to change the component C” in elements of P’ and replace

one central line by another. It is essential for the definition of an order on P’ given below.
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Definition 2.14 Let r,q € P’. Then r > ¢ (r is stronger than ¢) iff there is p =
swt(r, By, ..., By,) for some By,..., B, appearing in r so that the following hold, where
p=((A% A%, C%) | ¢ €s)
1= (BY B, D) | ¢ € <)

1. ¢ Cs

— Y

2. B% € C5(A%), for each ¢ € &/,

3.q=pl(B%|¢es),
where p [ (B® | £ € §') = ((B%, A N (B® U{B%}),C¢ | (B®U{B%})) | ¢ € ),

4. for each £ € s and X € C¢(A%)\ C¢(B%) q¢€ X,
5. for each £ € s\ s’ and X € C¢(A%) q¢e X.

The meaning of the last two conditions is that new models over central lines supposed to be

above all old ones.

Let p = ((A% A C%) | £ €s) e PPandnp € s. Set p\n = (A% A% C%) | £ € s\ n).
Define P, to be the set of all p\ 1 for p € P".

Lemma 2.15 The function p — p \ n projects the forcing P’ onto the forcing P, .

Remark. Note that we split at n only p’s in P’ with n inside s of p. The reason is that in
the case of € s an extension of p\ 7 may include models of cardinality  which for example

belong to models of p of cardinalities below 7. Such extensions will be incompatible with p.

Proof. Let p € P' and ¢ € P>,,q > p\ n. We need to find r € P',r > p such that r \ n > g¢.
Let us take an equivalent to ¢ condition ¢’ in P%, (a switching of ¢) with the central lines of
¢ extending those of p \ . Then p™¢' the combination of p with ¢’ will be in P, p™¢ > p
and (p~¢')\n=¢.

O

Lemma 2.16 PIZn is n*-strategically closed.

Proof. We define a winning strategy for the player playing at even stages. Thus suppose
(p; |7 <), p; = ((AY, AJ7,CT) | T € s5) is a play according to this strategy up to an even
stage i < n7.
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Split into two cases.

Case 1. 1 =3+ 1.

Let p = ((A°, A'7,C7) | 7 € s = s;) be a switch of p; which restores A} to 7-th central
line, i.e. AY" ) € C7(A"), for every T € 5;_;.

Then pick an increasing continuous sequence (A% | 7 € s) such that for every 7 € s
(a) ©f)240m C 0T,
(b) (on | k< i),p, (AP | 7 < 7) € AP
Set p; = ((AY, A", CT) | T € s), where

AT = AT U{AT}CT = CT(AT) U {(AF, CT(A") U{AT )}

Case 2. i is a limit ordinal.
Set first
s = the closure of U 5;.
j<i

For every 7 € |J._, s;, define

J<i

A =JAm A =JAuary,

j<i Jj<i
T= U Guitar (AT u(C5(A7) | jis even})}.
j<i,j is even
If 7€ s\ U, sj, then set
A?T _ U A(i)T’7
T'e(Uj<isi)NT

AT = {A} and CT(AT) = {{A]7 {47 })}.

As an inductive assumption we assume that at each even stage j < i, p; was defined in
the same fashion. Then p; = (A)", Al7 CT) | T € s) will be a condition in P’ stronger than
each p; for j <.

O
If we take n = 6, then it is easy to show the following:

Lemma 2.17 (PL,, <) is 07 -closed.
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Let p= ((A% A% C¢) | £ €s)e P and n €s. Set p | n=((A%, A%, C%) | £ €snn).
Let G(P%,) be a generic subset of PL,. Define P, to be the set of all p [ 1 for p € P’
with p\ n € G(P%,).

Lemma 2.18 P' ~ P, «P',.
Lemma 2.19 Ifn is a regular cardinal, then the forcing PL, satisfies nt-c.c. in VP

Proof. Suppose otherwise. Let us assume that
@H;;,zn(({)a = <(§gg, ,:1};, Co)| 7€ sa) | < n*) is an antichain in PLy)

Without loss of generality we can assume that each A% is forced to be a successor model,
otherwise just extend conditions by adding one additional models on the top. Define by
induction, using Lemma 2.16, an increasing sequence (g, | @ < ™) of elements of P., and

a sequence (p, | a < 0™, po = ((AY, A" CT) | 7 € s,) so that for every a < ™
ol (AT AV, C2) | 7 € 5) =

For a limit & < n™ let g, be an upper bound of {gs | < a}, as defined in Lemma 2.16
and ¢, be its extension deciding p,. Also assume that p, € A%(q,), where A% (q,) is the
maximal model of ¢, of cardinalit; 7.

Note that the number of possibilities for s,’s is at most 7, since if 7 is an inaccessible, then
by Definition 2.1(1), |so| < 7 and if 7 is an accessible cardinal, then n = (n7)" (remember
that 7 is a regular cardinal). So s, Cn~ U{n~}. But 27 =n.

Hence, by shrinking if necessary, we may assume that each s, = s*, for some s* C 7. Let
n* = max(s*).
Form a A-system. By shrinking if necessary assume that for some stationary S C n* we

have the following for every a <  in S:
LAY N A™(g,) = AZ" N A™(gs) € A™(qo)

2. (AY €, 5,6k, O fyms AL, qaNAYT) and (AJ7, €, <, €, CF f o, AT 050
A%"*> are isomorphic over A% N Ag"*, i.e. by isomorphism fixing every ordinal below
A% N A%"*, where

L% On*
ng"* “n %}Aa
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and

are the fixed enumerations.

Note that |[A%" N A%n*| < n*. So we can define a function h, : n* — 71 by mapping
each i < 7 to the order type A% N O+ between the i-th element of A% N A%"* NOF and its
immediate successor in A% N A%"* NOT. The total number of such h,’s is at most 1, hence
by shrinking if necessary we will get the same function. This will insure the isomorphism
which is the identity on A% N A%"* N6 and, hence, on A% N A%”*.

We claim that for o < (in S it is possible to extend gg to a condition forcing compatibility
of p, and pg. Proceed as follows. Pick A to be an elementary submodel of cardinality n*
with p,, pg, gz inside.

Then the triple AO”*,Ag”*,A is of a A-system type relatively to ¢g, by (2) above.

Use this to construct a condition stronger than both p,, ps.
Let (A(7) | 7 € s* U s(gg)) (where s(gg) denotes the support of ¢z) be an increasing and

continuous sequence of elementary submodels such that for each 7 € s* the following hold:
® Do, Ps,453, A € A(T)a
o |[A(T)|=T.

Extend g3 to ¢ by adding to it (A(7) | 7 € s(gs)), as maximal models, i.e. A°7(q) = A(7).
Set p = ((A°, A C™) | T € s*), where

A = A(n*), AT = AT U AT U{A, A,
C" =CIlUCT U(A,CT (AYT)2A) U (A" C (A )2 ARA,
and for each 7 € s* N n*,
AT = A(1), A = AT U AT U{A”],
C™ = CLUCHU (A, CH(AT)2A™).

The triple A%"*, A% A is of a A-system type relatively to ¢, by (2) above. It follows
that (p,q) € P’. Thus the condition (2) of Definition 2.4 holds since each of (p,,q), (pg, q)
satisfies it.

O]
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Lemma 2.20 Suppose that p = ((A A" . C™) | €s) e P',n,7€s1<n Ty,T,T €
A" B € A7 are so that

1. BeT,

2. Ty, T1,T are of a A system type,
3. Ty € C(T),

4. there is M € A7 such that

(a) To,Tl,TGM,
(b) there is no &€ € s\ 7 and Z € A such that T € Z € M.

Then mr, 1, (B) € A'".

Proof. Without loss of generality we can assume that 7' is on the 7-th central line (just
otherwise preform the necessary switches).

Consider the walk to B.

Claim. Models of cardinalities > n are never used in this walk before entering 7.

Proof. Suppose otherwise. Let D € A' be the first model used in the walk with p € s\ n

and it is not in 7. Note that the central lines for all the cardinalities > n remain such up
to the point when D is used. In particular both D and T remain on the central lines. But
then necessarily D D T

We deal with the case of Second Continuation of Definition 2.4.
Let Dy, D; € A' be such that Dy € C?(D) and the triple Dy, Dy, D is of a A-system type.
By the definition of the walk there are A € A" with Dy, D;,D € A and its immediate
predecessor A~ in C7(A) such that B € A,B ¢ A~ and B € 7p, p,(A7). But ' C Dy and
B C T, hence B C DyN Dy. Then mp, p,(B) = B. So, B € A~. Contradiction.
The rest of the cases (Third and Forth Continuations) are similar. Thus we still will have
Tpy.0,(B) = B and then B € A; implies B € Ay since Ay = 7p,.p,[A:1] and B does not
move.
(] of the claim.

Consider M and its immediate predecessor M~ in C7(M). If there are A, A’ € A'™ on
the walk to B such that A, M € C7(A) and A" € M~ U {M~}, then both 7p, 1, (A") and
71,1 (B) will be in A7, since 7p, 7, (M ™) € A7, by Definition 2.4 (Second Continuation)

and so images by 77, 1, of the models of cardinality 7 of walks from M~ will be in A'".
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Suppose now that the walks to B and to M split. Let A € A'™ be the last common point
of the walks. Then A is a splitting point. There are Aj, A; its immediate predecessors with
Be AgU{Ap}, M € Ay U{A;}.

Assume that we are here in the case of First Continuation of Definition 2.4. Under our
assumptions it will be the only possibility once dealing with Gap 4. We claim that then
Ay € Ty. Thus let Fy, F; € A7 be the witnesses for Ay, A, A, i.e. Fy € Ay, Fi € A; and
AoN A = AgN Fy = Ay N A;. Note that M ¢ Ay implies T € Ag. Also M € A; implies
T € Ay. Hence T ¢ Fy. Then Fy € TU{T}. Now, either F, € F; and then Aq C F} or
F) € Fy and then A; C Fp. In the former case we are done (just it is Forth Continuation
of Definition 2.4). If the later case occurs then T € Fy. Pick S € C"(A%) to be the least
element with B inside. Then S € A, (just we can make such a choice inside A). Remember
that B € Ty. Hence S € Ty (we cannot have S = Tj since then Tj and then also 7" will be
in Ag). The above imply S € Ay N Ay, by the definition of a A-system triple (just all of the
elements of central lines of Ay are above those of A; except the common part which is an
initial segment). If n = 7* (which is true in Gap 4 case) then AgN S = A; NS (just by A
-system triples definition). In particular B € Ay which is impossible. Contradiction.

O Gap 4.

Example Gap 5.

The following example shows that if one wants to keep GCH in the extension, then
already in the gap 5 case Continuation One-Four of Definition 2.4 do not suffice.

Let T=rT,p=rtT,n=r"3
Suppose we have a long continuous chain of models T = (T, | @« < n™) of cardinality 7.
Suppose that each T,; splits into Ty,419 = T, and T,,41;. Let S be an element of this
chain.

Let F = (F, | v < 7) be a continuous chain of models of cardinality p which are spread
among T’s, S belongs to some [, and above first such a each Fj; 4 splits into Fgy19 = Fjp
and Fj41,; which is in S.

Pick some Ay of cardinality 7 such that S € Ay and for some member Hy € Aj of F with
S € Hy we have reflection A; of Ay into Hy.

Set Hy = ma, a,(Hp). Pick some T from T in A, such that H, € Ty, where Ty, T; are the
immediate predecessors of 1" in T. We assume also that Ty, Th € Ag. Pick a model M € Ay
of cardinality 7 with T' € M and no elements of T, F in between.

Pick some  with Hy € Fgy € Ay and a model B* € Ay with Hy, € B* € Fj,. Set
B = mp,0.65,(B*). Then B C S C Ty and B € Ay, since 7p, 5, ,(Ho) ¢ A1. Neither of
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Continuations One-Four of Definition 2.4 can put 77, 7, (B) into A'.

Lemma 2.21 Letn, k <n <0, be a reqular cardinal. Then in V' we have 2" = n*.

Proof. Fix N < H((2M)"), for X large enough, such that P’ € N, [N| = n™ and "N C N.
We find pjzanr € 77’2,]+ which is N-generic for 77’277+, using n*T-strategic closure of 73’277+. Let
G(PL,+) be a generic subset of P, with p>,+ € G(PL, ;). Then, Nlp>,+] < V\[G(PL, )]
By Lemma 2.19, P_, . satisfies n*-c.c in V[G(PL,.)]. In particular, P, satisfies n**-c.c.
Let G(PL,) be a generic subset of P, over V[G(PL,.)]. Denote N[ps,+] by Ni. Then
M[N: N G(PL))] = VIG(PL,)I[G(PL,)], since each antichain for P_, has cardinality at
most 7. Hence, if it belongs to N; then it is also contained in N;. Denote N;[N;N G(PL,)]
by Ns.

Consider PL, N Np. Clearly this is a forcing of cardinality n*. By Lemma 2.19, P, sat-
isfies n*-c.c., so PL, N Ny is a nice suborder of PL,. Thus, let G C P, be generic over
VIG(PL, )IG(PL,) and H = GNN,. Then H is PL, NN, generic over V[G(PL, ,)][G(PL,)],
since, if A C PL, N Ny is a maximal antichain, then A is a maximal antichain also in P~,.
This follows due to the fact that Ny is an elementary submodel closed under n-sequences of
its elements. Namely, |A] <7, so A € Ny. Then

N, = A is a maximal antichain in PL, .

Now, by elementarity, A is a maximal antichain in P_,. So there is p € G N A. Finally,
A C N, implies that p € Ny and hence p € H.

We claim that each subset of n in V[G(PL, . )][G(PL,)][G] is already in No[G]. It is
enough since |No[G]| = |N| = n™.

Work in V. The construction below can be preformed above any condition of P’ stronger
than pZZV o € 'P’Zn+ (which is needed in order to preserve the elementarity of N in generic
extensions). So, by density arguments, we will obtain the desired conclusion.

Let a be a name of a function from 7 to 2. Define by induction (using the strategic

closure of the forcings and n*-c.c. of PL,) sequences of ordinals

(0 | B<m),(v(a,B) | B<n,a<dis)

and sequences of conditions

(pa(a) | o < d) (B <m),(p(B) | B <n)

such that
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(1) for each § < n, é5 <n™,

(2) for each 3 < n, (ps(a)sy | @ < dp) is increasing sequence of elements of P, and p(f3)

is its upper bound obtained as in the Strategic Closure Lemma 2.16,

(3) po(0)=n+ = P24,

(4) the sequence (p(() | B < n) is increasing,

(5) for each 6 < and a < 4, ps(@)|Fa(8) = v(a, B),

(6) if for some p € P’ we have p \ n >pL, p(B)sy, then there is @ < § such that the
conditions p, pg(c) are compatible. (Le. {pg(a)<, | a < dg} is a pre-dense set as

forced by p(8)sy).

Set p(n) to be the upper bound of (p(3) | 5 < n) as in the Strategic Closure Lemma 2.16.
Let L denotes the top model of cardinality 7 of p(n), i.e. A% (p(n)). By the construction in
2.16, we have dg,p(8) € L and v(«, ), ps(«) € L, for each < n and a < dg. Alternatively,
we can just extent the model L to one which includes this sequences. Extend L further if
necessary to include p(n) as an element.

Turn for a moment to a generic extension. Let G (P'ZnJr) be a generic subset of P/ZW with
p(n) \n" € G(PL,.). Pick K € N realizing the same type as those of L in H(2")[G(P., )]

over N N L. Note that N N L is a subset of N of cardinality n and, hence, it is in N.
Let

(@(8) | B <m)(gs(a) | a < dp)(B <n)

be the sequences corresponding to

(pala) | a < dg)(B <n), (p(B) | B <n)

and let g(n) corresponds to p(n). Note that q(3) \ n*,qs(c) \ n* are in G(PL,.), since
p(B)\n*,ps(a) \ n* are in G(PL, ). Then,

aB)\1 as(@) \ " <pr P,

by the choice of pgn+ and since p§n+ <P, p(m) \n* € G(PL,.).

Combine now K, L into one condition making them a splitting point. Let M be a model
of cardinality n such that K, L € M. Then the triple L, K, M will be of a A-system type
relatively to p(n)2L2M (which is defined in the obvious fashion with L € C"(M)). Now,
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we add ¢(n)2K to p(n)2L#M and turn this into condition in P’, exactly the same way as it
was done at the end of the proof of Lemma 2.19. Denote such condition by r.

Define a name b of a subset of 7 to be

{{gs(a), v(a, B)) | o < 05, 8 < m}.

Clearly, b isin N.
Claim 2.21.1 r|fa = b.

Proof. Let G be a generic subset of P’ with r € G. Then also p(n)>y, ¢(n)>, € G. Now, for
each 8 < n there is @ < d3 with pg(a) € G (just otherwise there will be a condition ¢ in
G forcing that for some § there is no a < dg with ps(a) € G. Extend it to ¢’ deciding the
value a(f3). By (6) there is a such that ¢', pg(a) are compatible). Let ' € G be a common
extens?on of r and pg(a). Recall that L, K, M is a triple of a A-system type in r and the
isomorphism 77 moves ps(a) to gz(a). Hence gz(a) < 7’. But then ¢z(a) € G.

O of the claim.

0

Remark 2.22 It is not hard to modify the proof of 2.21 and show that in V[G(Ps,)] the
forcing P, is equivalent to the forcing N, NP, of cardinality n*. Thus, instead of a name
a of a subset of 7 take a P%, -name of a maximal antichain of P_, . By n*-c.c. of PL,  the
antichain has cardinality < 7. Using the strategic closure of P, we produce a condition
deciding all the elements of the antichain. Let L be its top model of cardinality n. Find
K as in the proof of 2.21 and copy the antichain to N,. Finally, any N, N P.,-generic will

intersect this image, which in turn will imply that on the L-side the same happens.

Let us show that 27 = 5™ for singular n’s as well. Note that it is possible to deduce this
appealing to Core Models arguments (provided that there is no inner model with too large

cardinals).

Lemma 2.23 (a) Let 1 be a singular cardinal in [x*,0]. Then in VP we have 2" = n*.
(b) VP satisfies GCH.

Proof. 1t is enough to proof (a) since then (b) will follow by the previous lemma 2.21.
Fix a singular cardinal n € [x",0]. Let N, p>,+, N1, N, a be as in the proof of 2.21.
Pick an increasing sequence (n; | ¢ < cof(n)) of regular cardinals cofinal in 7. Let (L; | i <

cof(n)) be an increasing sequence of elementary submodels of H((2*)*) such that
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L |Li| = m;,

2. L; Omn,

3. "L, C L,

4. (L; | j <1) € Ly,
5. N,psy+, a € L.

Now we construct a sequence (p(7) | ¢ < cof(n)) of elements of P’ such that

1. p(O) Z p2n+,

2. p(i)sy, is (L;, P')-generic over p(i)<y,, i.e. for any maximal antichain A C P’ with
A € L;, if some ¢ is in A and is compatible with p(i), then there is 7 > ¢, p(i) such

that for some " < r we have v’ € AN L,.

3. p(4) I = p(i)<y,, for every j > 1,
4. p(i) € Lit1.

The construction is by recursion and uses that at each i < cof(n) strategic closure of P,
together with 7;"-c.c. of PL, .

Now let p be the result of putting (p; | i < cof(n)) together as in the strategic closure
lemma 2.16 with L the top model of cardinality 7. Note that if G C P’ with p € G, then
LIGNL] < H((2")")[G]. Thus, if A € L is a maximal antichain, then A € L; for some
i < cof(n) and by (2) above some 1’ € G is in AN L;.

In particular, @ can be computed correctly inside L. We continue further as in 2.19 define
K etc.,with p replacing p(n) of 2.19.

O

3 The Intersection Property- Gap 4

We turn now to the intersection properties. They are somewhat more complicated here than
those in the gap 3 case.

Let us give a general definition, but further we shall concentrate at Gap 4. The property
as defined fails already at Gap 5. In further sections we present an argument that avoids it.

Nerveless intersection properties seem to us to be interesting on their own.
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Definition 3.1 Let ((A% A% C%) |¢€s)e P, 7 <pand A€ A", B € A'”. We say that
A satisfies the intersection property with respect to B or shortly ip(A, B) iff either

1. AC B, or
2. Be A or

3. AZ B,B ¢ A, and then there are pairwise different ordinals 7y, ...,7, € s\ p and sets
Are AmNA .. A, € Almn A A e (AU{A}) N A such that

ANB=ANAN..NA,.

If p = 7, then let ipb(A, B) denotes that both ip(A, B) and ip(B, A) hold.

Lemma 3.2 Let ((A’ A", C™) | 7 € s) € P/, 7 € s and A € A" be a successor model.
Then for every £ € s\ 7+ 1, if AN A% £, then there is (A)e € AN A¥ such that

1. for every B€ AN A¥%, B e (A): U{(A)},
2. if B € A'Y and (A)¢ € C%(B), then B 2 A.

Remark 3.3 We cannot in general allow £’s below 7. Thus, say there are Ay, A; such that
the triple Ag, Ay, A is of a A-system type. Suppose that Ay, A are on the T-central line, there
a maximal model B € C*(A%) N Ay and Ay, A;, A belong to the immediate successor B* of
B in C¢(A%). Then 74,.4,(B) € A, but there is no X € AN A' which includes both B and
Tag.4,(B), since BT ¢ A.

Proof. Induction on complexity of the walk from A" to A.

Suppose first that A is on the 7-central line. By Definition 2.1,
| H{y e c8(4™) |y € A} € A.

Set (A)e to be this union. Let B € AN A!%. We prove by induction on the walk to B
from A% that B € (A)¢ U{(A)¢}. If B is on the ¢-central line or the walk goes via (A)e,
then it follows from the choice of (A), or it is obvious. Suppose otherwise. Let then X be
the least model from the &-central line with X O B. Then B € A implies necessarily that
X = ((A)¢)* the immediate successor of (A)¢ in C¢(A%). Also X must be a splitting point.
But then there is no models of small cardinalities between (A)¢ and X. (in gap 4 case, in

general the may be bigger than & model with splitting and the statement of the lemma is a

26



bit weaker)

Suppose now that the walk to A goes to some Y which is an immediate predecessor of A and
A ¢ C™(Y). Then either there is Y~ € C7(Y) such that Y, A, Y is a triple of a A-system
type or there are there are Y~ € C"(Y),Y; € Y N A which are immediate predecessor of
Y and satisfy the last possibility of Definition 2.4.

Assume first that Y7, A} Y is a triple of a A-system type. Then the induction applies to Y .
By Definition 2.3 (7), then (A)¢ will be as desired.

Suppose now that there are Y~ € C"(Y),Y; € Y N A which are immediate predecessor of
Y and satisfy the last possibility of Definition 2.4. Then the only case to consider is when
the triple Y7, Y1, Y is of a A-system type and A is obtained from Y~ or from Y; by moving
it by isomorphism of models of bigger cardinality. Then the induction applies to both Y~
and Y]. So the isomorphic image A will satisfy the statement as well.

OJ

Lemma 3.4 Let ((A’ A7 C™) |t €s) e P, 7€sand A€ A7. Suppose that B € A"
and sup(B) < sup(A). Then

1. (A)g exists,
2. B C (A)y,

3. if X is the least model in C°(A%) N A which includes B, then AN X = AN B.

Proof. Move A to 7-central line. Note that no switch can change -central line, since A
itself is such a line. Once A is on the 7-central line, then Definition 2.1 applies.
O

Remark 3.5 It is possible to have a situation when B € A¥ and sup(B) < sup(A), for
some { € 5,7 < & < 6, but (A)e does not exist. Thus suppose that we are in gap 4 case,
T=rT,&=kK1TT,0 = k3. Let A%, A% A% be the only models of a condition. Assume that
A% ¢ A% ¢ A% Now inside A% find X which realizes the same type as A% over A% N A%,
Let Y be a model of cardinality ¢ such that A%, X, A% A € Y and Z be a model of
cardinality 7 such that A%, Y, A% A% Y € Z. Let S = mp0e x(A%) and T = 7 40¢ x (A"7).
Consider now the following condition p = ((A%(p), A*(p),C*(p)) | n € {7,&,0}), where
A (p) = AW A1 = (AW, S}, A%(p) = Y, AK€ = (Y, A%, X}, CE(p)(Y') = (A, '), A (p) =
Z, AT ={A".T,Z},C7(Z) = (Z, A°"). Then sup(A°") > sup(X), but (A7), does not exists
due to minimality of (A°7)¢ in p.
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Lemma 3.6 Let ((A, A7, C™) |1 €s) € P, 7€sand Aec A7. Suppose that A* €
CT(A) is the model of the same order type as those of A. Then (A)¢ exists iff (A*)¢ exists.

Proof. (if no inaccessibles are present) Just isomorphisms needed to move from A* to A
will preserve such existence due to Definitions 2.3 and 2.4.
O

Let us prove the intersection property for the gap 4. Thus, for models in A" U A¥"
it is exactly as in the gap 3 case. Now, if 4 € A" and B € A" then then this follows
by Lemma 3.4.

Lemma 3.7 Suppose that A € A" and B € A" N A% Then either A C B or there
are B € ANAY" and ¢ € AN A*" such that ANB=ANB orANB=ANB NC".

Proof. Suppose that A ¢ B. We prove the lemma by induction on walks complexity. Suppose
that X € C*"(A%") is the last common point of the walks from A%" to A and to B. We
split the argument into few cases. Let us start with the most complicated one.

Case 1. X has three immediate predecessors.

Let X, Xo, X7 be this predecessors of X. Let Fy, Fi, F € X1 N A% he a witnessing triple
of a A-system type.

Case 1.1. AC X and B € X;.

Compare B with Fy. There are B' € A" " N (F,U{F},G € A¥ Ny such that

BNnF=Bnd.

Then
ANB=ANFKNB=ANnB NG

Now the induction applies.

Case 1.2. AC X; and B € X|.

Case 1.2.1. F, € A (or F; € A).

Then also F' € A since there is no models of small cardinality between F' and its immediate

predecessors. F' € A implies Fy, F} € A and so g, p, € A. Set By = g, g, [B]. Now
ac ANBiff mp g () € AN By.
Consider A, By. The triple X, X7, X is of a A-system type and Xo N X; = X; N Fy. So,
ANBy=ByNXoNANX, = ByNmx, x,(4) N7x, x,(Fp)-
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Denote 7x, x,(A) by Ay and 7x, x,(Fo) by . Then Ay € (XoU {Xo}) N A" and E) €
Xo N A% We can apply the induction to Ay, By, since the common part of the walks to
them is longer than those to A, B. So there are Bjy € Ay N A" " and C) € AN A*" such
that Ao N By = Ay N B} or Ay N By = Ay N By N C{. Suppose that AgN By = Ay N B, N .
Set B' = mx, x,(B)) and C' = 7, x,(C{). Then

AﬂBozAﬂFoﬂBoonﬂBoﬂFo:

AoNByNCyNFy=ANB' NC' N Fy.

Now B',C' Fy € A. It remains only to replace B’ N C" N Fy by intersection of the form
B"NC" for some B” € ANAY"" and ¢ € A", and it is easy. So

ANBy=AnB"nC”.

Then
ANB= 7TF0,F1[A N B” N C”].

If C" O Fy, then
7TF(),F1 [A N B” N C”] = 7TF0,F1 [A N BHL

and we can drop it. If C” 5 Fyp, then pick some C" € AN Fy N A" such that Fy N C" =
Fo N C”. Let D = 7TF07F_1(O/”). Then

e n[ANB"NC" =g m [ANB"' NNE,NC" = g, n [ANB"NC"| = g, 1 [ANB"] N D.

Hence it remains to deal with 7g g [A N B"]. Compare Fy with B”. There are B” €
(FyU{F)NANAY™ and H € Fyn AN A" such that

B"NFy=B"NH.

Note that we use here (the only place) that B” € A" " and so it is possible to find such
B” and H. This breaks down once B” € A" and makes intersections of this type more

complicated.
Let E = g, p (B") and S = 7g, p—1(E). Then

WFO,Fl[AmB//] == WFO,FI[AQBHOQF()] == WFO’Fl[AﬂBmﬂH] == WFO’FI[A]QEQS == AﬂEﬂS.

So
ANB=ANENS.
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Case 1.2.2. [y ¢ A (or F1 € A).
Then, also F' ¢ A and so F} ¢ A. Consider H = (X),++ and Hy = (Xy),++. Then Hy DO F
and F € C*""(H,). Let T € C*""(H,) be the least model which includes A.
Case 1.2.2.1. T is a splitting point.
So, let Ty, Ty be the immediate predecessors of T' with Ty € C*" " (T)) such that the triple
Ty, Ty, T is of a A-system type.
Subcase 1.2.2.1.1. F C T
Then F C Ty. Let Gy € Ty N A* ™ be so that Ty N Ty = Ty N Go. Clearly

ANB=ANnFNB=ANTyNB.

Set Ag = mp, 1,(A). Then Ay € A", since the walk to A from A%" proceeds via X, X,
continues through C*" (X;) and cannot move out of C*" " (H;) before getting to T.
Now ANTy, = AN Gy. Hence

ANB=ANFNB=ANTyNnB=BnNA;NG,.
The induction applies to Ay, B. Hence there are Bj € ApN AT C, e AN A" such that
AN B = AyN B,NC.
Set B' = mp, 1, (B)) and C" = g, 1, (Cf). Then
ANB=BNANGy=AyNB,NC,NGy

=ANB' NC' NGy,

where Gy = mr, 1, (Go). Replace finally C’ N Gy by their maximum.

Subcase 1.2.2.1.3. FF D T.

Then T'C Fy or T' C Fy. The arguments of the previous case apply.

Case 1.2.2.1. T is not a splitting point.

Let T~ be the unique immediate predecessor of T. Then any further splitting on the way
to A, if there is such at all, involves only models of A-system type of cardinality x*. Hence
relevant models of cardinality ™ form here a chain. This implies 7~ € A, and hence,
T~ = (A)u++. Then C* " (T7) € A as well. We assume that F € T, just otherwise the
arguments of the previous cases work.

Let R € ANC" " (T7) be the least model which includes F. Consider

R.=|J{SeC" " (R)|S#R,S €A}
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Then
ANF=ANF,=ANR,.

Hence
ANB=ANFNB=ANBNR,.

But R, C Fj, hence
BHR*:BomFoﬂplmR*,

where By = mp g [B]. So

ANB=ANBNR.=ANByNFyNFiNR,.

The induction applies to A, By and the rest is easy here.
O

Lemma 3.8 Let (A A . C7) | 7 € s = {kT,st" k")) € PLA B € A" . Then
ipb(A, B).

Proof. Consider the walks from A% to A and to B. Let X € A*" be the least common
point of this walks. X must be a splitting point. We preform switching in order to move X
to the xt-central line. So, let us assume that X € C* (A%") and it is the least common
model of the walks.

Let us concentrate on the new case. Thus there are Xy, X1, X € X N A" which are the
immediate predecessors of X, Fy, Fy, F € C*"" such that

1. FeCr (A%,

2. Fy e C*(F),

3. Iy, F1, F is a triple of a A-system type,
4. Xy € C*(X),

5. Xy € Fo,

6. Xo, X1, X is a triple of a A-system type,
7. X{ = 7r.m (Xo),

8. Fy,F),FeX,
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9. AC X},
10. B C Xj;.

Let Y7, Y, Y? € X, be the images of Fy, F1, F' under 7y, x, and Yy, Y;,Y € X| be the
images of Fy, Fy, F' under mp, .

Using more switching if necessary we may assume that the central line was chosen so
that the models in C*" (X)) either have F' (and hence also Fy, F}) inside or are the members
of Fy. 'Also assume the least model of C*" (X;) with F inside has at most one immediate
predecessor. It is possible by Definition 2.4.

We split the argument into few cases.

Case 1. A€ C" (X)).
Set A = 7, g, (A) and A' = 7x, x, (Ag). Then A° € C*"(X,), and so A' € C*"(X,). Now
either A' € F,y or Fyy, F}, F' € Al by the assumption above.
Subcase 1.1. A! € F,.
Then
Al e XiNFy = X1 N X,.

This implies that A = A', and then A° € X;. We have g, , € X;. Hence A = 7g, p, (A°)
is in X;. Note that A € C*" (X;). So we obtain a walk from X, to A by taking the image
under 7p, i, of the walk from X; to Al after it enters Fy.

Subcase 1.2. A! ¢ F,.

Then Fy, Fy,F € A, Let X, N A = X; N AN (X; N Xy) = A' N H, for some H €

XN C’“++(F0). As in the previous case we have
a € AN X, iff 7 g () € AN X, iff 7y gy (o) € AV N H.
Now we cannot apply 7g, r to A', since it is not in the domain. Instead, TRy € A'. So
e () € AN H iff a € A' N7, g [H.
Putting together we obtain that
a€ ANX, iff a € A'N7p, g [H.

Hence
Ale = Al m’/TFO,Fl[H]-
Then
ANB=ANnX,NB=A"Nrg n[H NB.
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Now the induction applies to the right side and we obtain ip(B, A).
Let us show ip(A, B). Apply the induction to A', B and find A’ € (A'U{A})N A" H' e
AN AT G e Ay N AY' such that

AlNnB=ANHNG.

Then
ANB=AnXiNnB=AnANH NG N7rg m[H.

Hence we basically need to check ip(A, A’). But note that A" € (A' U {A'}) N A" and if
B ¢ A!, then we are here in a simpler situation and the induction can be applied to deduce
ip(A, A"). Suppose that B € A'. If F € B or B € Fj, then we proceed as above. In general
we consider the walk from A® to B and proceed by induction on the walk complexity. Thus,
if B € C""(A'), then either F € B or B € F,. Assume that B ¢ C*'(A"). Consider the
least model K of this walk with F' € K. Note that I’ € K implies that F' € (K),++, since
Fis on k™ T-central line and one cannot change this moving between models.

Again we need to consider few cases.

Subcase 1.2.1. There is K; € A*" such that the triple K, K, K is of a A-system type
and B C K;.

Let H = (K)u++,Hy = (K7 )++ and Hy; = 7mg- g, (H) = (Ki)g++. Then H Hy, Hy €
C* (A7), In addition, due to a A-system type of the triple, H O K—, K;. So, we may
assume that H D F. Just, if H = F, then K~ € F, (no small models between Fy and F).
But then also K, € Fj, since K; € K N F. This implies that every element of K; is in Fj
and we are done.

If Hy € F, then K; € F too, and then K; € F; and we are done.

So, let us assume that FF € H; and F' € K;. Let T be the least element of K; N C’”++(H1)

which contains F'. Consider
T.=(J{SeCc" (I)|S#T,S € Ki}.

Then
KlﬂF:KlﬂT:KlﬂT*,

but T, C Fy and ANFy=ANA° = AN F,N Fy. Then
ANB=ANBNF=ANBNT.=ANF,NnBNT.=A"NnF,NnF,NBNT..

Now the induction applies to A°, B.
Subcase 1.2.2. BC K.
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Then we consider Hy = (K~ )++. If Hy € F, then Hy € Fy. This implies K~ € Fy and we
are done.

Subcase 1.2.3. There are Ey, By, E € KNA""" of a A-system type with E, € C*' " (E), E €
C*""(H) such that B ¢ K, but B C 7p, g, (K~).

We may assume that F' C Fj. Just otherwise Fy € F' and then F' O F. Which means that
either ¥ = F and then Ey = Fy, E; = F; or E € I' and then Ey, £y € Fy. The second
possibility is impossible since B ¢ Fy. If the first one occurs, then 7g g (B) € Fy N K. But
ANFy=AyNA. So mp g(B) € Ay, and then B € A™.

Set B’ = mg, g,(B). Then

BNF=BNFNEy,=BNFNE,NE, =B NFNE;NE;.

So we are able to replace B with a simpler model B’.

Subcase 1.2.4. There are Ey, Ey, E € KNAY" of a A-system type with E, € C”H(E), E €
C*""(H) such that B ¢ K~ and B Z 7g, 5, (K7).

Denote 7g, g, (K~) by K;. There must be Ky € KN A" gquch that the triple K, K, K is
of a A-system type after switching Fy by E; and B C K,. Also Ey, E1, EF € K. Consider
Hy = (K3)e++. Then E € Hy. As in the previous case, we have F' C Ey. So F' € Hy. But
F ¢ Ks. Proceed as in the first case. Let T be the least element of Ky N ol (Hs) which

contains F'. Consider
T. = J{Sec™™ (1) | S#T,S € Ky}
Then
KoNnF=KoNT=KyNT,.

So
BNF=BnNT,.

Now T, C Fy and AN Fy = AN A°. Hence
ANB=ANBNF=ANBNT.=ANF,NBNT.=A"NEF,NnF,NBNT..

Now the induction applies to A°, B.
Case 2. A ¢ C" (X}).
Let K € C*"(X}) be the least model with A € K.
Subcase 2.1. There are Ko, K, € K N A% K, € C’”Jr(K) such that the triple Ky, K1, K
is of a A-system type.
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Then A = K; or A € K;.
Remember that
leX(/):leFl:Xém%,

since

anéle < WFl,FO(a)EXoﬂXI < WFl,FO(a) eXiNk <—

TEy,F (a) € XO N 7TX17X0<F0) — ac X(IJ M TFy,Fy (T‘-XLXO(FO)) and Yb = TEy,Fy (ﬂ-Xl:XO (FO))

Subcase 2.1.1. A €Y.
Then A € Fy. If in addition K € Y, then also K € Fy. Let K° = 7p 5 (K) and K' =
Txo.x, (K°). Tt follows that K° € Y and K' € F,. So, K* = K'. Also K € C*"(X,), as
K € C*"(X}). Then we obtain the walk from X; to A by taking the image under Ty, Fy, Of
the walk from X; to A' after it enters Fp.
Suppose now that K ¢ Y. Then Y, € K, since by Definition 2.4 each element of C*" (X))
either in Yy or Yy (and Y') belongs to it. Now K is a splitting point, so K cannot be inside Yj.
Then Yy € K and hence also Y € K, since there is no models of small cardinalities between
Y and Yy. Consider (Kg).++. We have Y C (Kj).++ and so Yy € (Kp).++. Remember
that A € K1 U{K;} and A € Y. Let T} € K; N AY™ be the A-system witness, i.e.
KoNnK, =K NnT,. It Yy C Ty, then A€ T;. Hence A € K;NT; and so A € Ky. Which
is impossible by the choice of K. So we must have 77 € Y. Then, by the definition of a
A-system type triple, (K7).++ € Yy and then K; € Yj.
Set K = 7, g (K), K' = 7xy x,(K%), K§ = 7p, 1, (Ko), K§ = 7x,.x,(KQ), KY = 7p, 1, (K1),
K] = 7mx, x,(KY). Then Fy, F1, F € Kj, as Yy, Y1,Y € K. Also KY C Fy, as K1 C Y,. Hence
K? = K{. Then we obtain the walk from X; to A by going down to K* then to K? and
taking the image under mg, r of the walk from K7 to A’
Subcase 2.1.2. A ¢ Y.
Consider (X§).++. We have Y € % ((X})r+). Also (K)er+ € CF7 (Xf) e+ ).
Subcase 2.1.2.1. Y; € A (or equivalently Y; € A).
Then also Y1,Y € A. Hence Fy, Fy, F' € A' = 7, (mxs,x,(A)). Now, as was shown in Case
1.2,

ANB=A'"NBNF,.

Subcase 2.1.2.2. Yy € A (or equivalently Y; ¢ A).
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Then also Y7,Y ¢ A.
IfY € Kq, then Y € K as well, since K as a model with two immediate predecessors cannot
be the least model in CF" (X{) with Y inside. So Yy, Y),Y € Kon K;. Then

KoNY = K, NY,

by the definition of a A-system type triple (just compare (Kp).++ and (K7).++). Consider
A = 7k, k,[A]. Then
ANYy=ANYs.

But
Am}/b:Ale,
since
ANXi=AnNFNX;=ANYyNnX)=ANY,.
Hence

ANB=ANX,NB=ANY,NB=ANBNY,.

The induction applies now to A, B.

Suppose now that Y &€ K;. We have Y € Kj, since K as a model with two immediate
predecessors cannot be the least model in C*" (X)) with Y inside. Also (K}).++ € Y, since
otherwise K; will be a subset of Yy, as Ky, K1, K are of a A-system type and Yy, Y are on
the x**-central line. Hence Y € C*" " ((K;),++) and so (Kg)e++ € C* ' ((K1)wr+). Then

KinY =K NYy=K NKyNY,.
So

where Gy € Ko N C" " ((Ky),++) is so that Ko N K, = Ky N Gy. Hence
ANB=ANY,NnB=ANBNY, NG,

Now the induction applies.

Subcase 2.2. There are Ky, K|, K; which are the immediate predecessors of K.

Let Go,G1,G € A" NK,, G e C" ((K)et), Gy € C*(G) be the corresponding wit-
nessing triple of a A-system type.

Split into two subcases.

Subcase 2.2.1. A C K, and K}, € C*" (K).
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Then Y, Y1,Y € K|, since K splits and so it cannot be the least model on C”“+(X6) with
Y’s inside. Then Y C (G;. Hence

KinYy=K NG NYy=K,NGyNYy,
where G{) = TGy,G1 (WKLKO(GI))' SO7
ANYy=ANK NYy,=ANK,NG,NY,.

Apply the induction to A and K|. So, there are A" € K| U{K{}},T € K| N AT g e
KN A™"™ such that
ANYy=ANTnS.

Then
ANB=ANnYoNnB=ANBNTNS

and the induction applies to A" and B.
Subcase 2.2.2. A C K} and K, € C*" (K).
Then Yy, Y:,Y € Ky, since K splits and so it cannot be the least model on C’“‘+(X(’)) with
Y’s inside.
Subcase 2.2.2.1 Y, C G;.
Then
ANYy=ANK;NG NYy=ANK;NY,.

Apply the induction to A, K. So, there are A" € K; U{K,},T € K; NAY™ § e KinAR"
such that
ANYy=A'NTnSAs.

Then
ANB=ANnYy,NnB=ANBNTNS

and the induction applies to A" and B.

Subcase 2.2.2.2 Y € G.

Then G; C Y. So K € Y and then A € Y. Move everything to X; and copy the walks as
it was done in the previous cases.

0.
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4  Suitable structures and assignment functions

We address first the new splitting possibility, which is crucial for GCH and does not appear
in the gap 2, 3 cases.

Definition 4.1 Let v < § < pbe cardinals, A, X, Yy, Y1, Y bemodels, C, C P,+(H(0)),Ce C
Pe+(H(07)). We call triples Fy, Fy, F and A{), Ao, Ay splitting triples over A, X,Y;,Y;,Y in-
side C,,, C¢ iff

1. |A0| =V,
2. Yol =¢,
3. | X| = pu,

4. Ay, Ay, Ay € C,,

5. Yo, Y1,Y, Fy, F1, F € Cg,

6. Fy, Fy € F,

7. Fy, F} are isomorphic over Fy N FY,
8. Iy, Fi, F € Ay,

9. X € F,

10. FoNF=FNX,

11. Ag € Fp,

12. AiNAy= A NF,,

13. Ay, Ay are isomorphic over A; N Ay,
4. Ay = mg,.r (Ao),

15. A C Aj,

16. Yo = gy, (741,40 (F0)), Y1 = 7Ry 1y (4,4, (F1)), Y = TRy 1y (g4, (F)).-
Note that AgN Ay = Ag N7, a,(Fo), since o € AgN Ay iff « € Ay N Fy iff 74, 4,(a) €
Ao N4y 4,(Fp), but for a € Ag N Ay, ma, 4,(a) = a.
Then Ay N A = AiNFy = A, NY, since g p, € A1, Hence Y is a model which

corresponds to Fp in Aj,.
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Normally, we will have |Ay| < |F| and |X| = |F|*.

Lemma 4.2 Suppose that all the models of Definition 4.1 are members of a condition in P’.
Then Yy € A implies Y1,Y, X € A.

Proof. Set A} = may 4, (7 1 (A)). If Yo € A, then 7 5 (Yo) € 7r 1 (A), and hence
Tag.A, (TR 1, (Yo)) = Fo € A}, Then F' € A3, since there are no models of small cardinality
between Fy and F. Hence, F; € A}. So, their pre-images Y and Y; are in A.

Now, there is Gy € Fy N A} such that Fo N Fy = Fo N Gy. Then Gy € A N Fy = Ag N A;.
Moreover, Gy € A} N Fy = Ay N A}, where A} = 7w, g, (A).

Set Gy = 7, 1, (Go). Then Gy € ANAj and FoNFy = F1 NGy, ie. Gy =X and X € A.
0

Lemma 4.3 (Eristence of splitting triples). Let p > & > v be reqular cardinals in [k, 6)].
Then for every closed unbounded sets C,, C P,+(H(01)),Ce C Per (H(0)) there is a closed
unbounded C,, C P,+(H(0)) such that for every model X € C,, with *X C X, there are
Y0.Y1,Y € C,"Yy C Y0,"Y: CY1,YY CY so that for every model A with |A| < v there are
splitting triples over A, X, Yy, Y1,Y inside C,, Cs.

Proof. Suppose otherwise. Then there are clubs C, C P,+(H(01)),Ce C Per(H(OT))
such that for every club C, C P,+(H(6")) there is a model X € C, so that for ev-
ery models Y, Y1,Y € C¢ there is a model A(X,Y),Y:,Y) without splitting triples over
A(X, Yy, Y1,Y), X, Yo, Y1, Y inside C,, C.

Let C, C P+ (H(07)),Ce C Pe+(H(67)) be such clubs. Define a function

[P (H(OF)) x Ce x Ce x Ce — P (H(0V))

by setting I(X,Yp,Y1,Y) to be the least model A € P,+(H(6")) without splitting triples
over A(X, Y, Y1,Y), X, Y inside C,, C¢, if there is one and 0 otherwise.
Fix functions h, : [H(07)]<Y — P+« (H(0)), he : [H(6)]< — Pe+(H(67)) such that

C, 2{teP,+(H(OF))|h,(e) Ct whenever e € [t]“},

Ce D {t € Pe+(H(67)) | he(e) C t whenever e € [t]<“}.

Turn to submodels of (H(A*?), €, <,0%, h,, he, I) for A much bigger than 6. Consider
C={ZePu(HA?®)|Z=<(H(\),E <07, hy, he, I)}.
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Then

CIHON)={ZnNnHO")|ZeC}
contains a club in P,+(H(0")). Let C, be such a club. Pick X € C,,* C X, to be a
counterexample.
Find X* € C with X* N H(#") = X. Note that X* may be not closed under ¢-sequences of
its elements (even sup(X* N@+T) can have cofinality w).
Let Ff < (H(A\*?),€,<,0%, h,, he, I) be a model of cardinality £, closed under v-sequences
of its elements and with X* inside. Then F} = F;' N H(6") is closed under he and hence
Fy € Ce¢. Let F be obtained from F} via a reflection to X*. Here F}" N X* need not be an
element of X* due the possible lack of closure, but F} = Ff N H(0")isin X = X*NH(0T),
since ¢ X C X. We pick F < (H(A™),€,<,0%, h,, he, I) to be a model realizing the same
type as F} over Fy N X. So FY, F§ are isomorphic by the isomorphism which is the identity
over Fy N X, but probably not the identity over Fy N F{.

Let F* < (H(A\*?),€,<,0%, h,, he,I) be a model with Fy, F} inside and closed under
v-sequences of its elements. Pick now A} < (H(A*?),€,<,0%, h,, he, I) to be a model of
cardinality v with Fy, Ff, F*, X* € A}. Reflect A} to Fj. Let A% C Ff N H(A™) be a
result. Then A% < (H(A™?),€,<,07, h,, he, I), the isomorphism TA:nH(A+3), 4z 18 the identity
on AN H(OT)N Ay and AN H(OT)NEy = AT N AN H(OT).

Set Ay = mgr promn (Ap). Then, AF < (H(AY?),€,<,0%, hy, he, I), since Ay < Fy N
H(A'3) and Fj ~ Fy N H(A™). This implies in particular that A = Ay N H(#T) is in C,
and Af is closed under 1.

Set F§* = marnm(as),as (Fg O H(AT?)), F* = Taznaatsy,az (Fr N H(AT?))

and F% = ma=npas) s (F* 0 H(AT?)).

Move this models to Ay. Thus let Yy = ng’pme(,\ﬂ)(Fg*),Yl* = WFS,FI*QH()\M)(FP*) and
Y* = mp peanoeay(FO). Then Yy, Vi, Y* € A,

Define Fy = Fyf N H(OV),F, = Fr 0 H(OF),F = F* 0 H(0),Y, = Yy N HOV),Y; =
Yy N H@OV),Y = Y 0 H(0), Ay = A; 0 H(6F) ete. Then X,Y,,Y;,Y € Al, since X €
AN Fy = Ay N Aj (the last equality holds because Ay N Fy = A1 NAp and 7, € Ay). The
models A, Ag, A are in C,, since they are closed under h,. Similar Fy, Fy, F, Y, Y1,Y € Ce.
Finally, Ay is closed under I and X Y, Y1,Y € Aj, hence I(X,Y,Y1,Y) € Af. By
the choice of X, Yy, Y1,Y, I(X,Yy,Y1,Y) must be a model without splitting triples over
I(X,Y,,Y1,Y), X, Y, Yy, X inside C,, Ce. But Fy, Fy, F € C¢ and Aj), Ay, Ay € C, are split-
ting triples over (X, Y, Y1,Y), X, Y5, Y1, Y. Contradiction.

[
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Lemma 4.4 Suppose that X,Yy, Y1,Y satisfy the conclusion of Lemma 4.3 and they are
in M for a model M € C,. Then there are splitting triples Ay, Ao, A1, Fo, F1, F over
M, X, Yy, Y1,Y with Ay = M.

Proof. Let A}, Ao, A1, Fy, F1, F' be any splitting triples over M, X, Yy, Y:,Y. Consider My =
Tr . m (M) and My = ma, a,(Mo). Then, Fy, Fy, F € M, since Fy = ma, 4, (7r 17 (Y0)), F1 =
Ta0, A (TR 7 (Y1), B = Tag A, (TR 1, (V).
So, we can replace Ay by M, Ay by My and A; by M;. Hence M, My, My, Fy, Fi, F' will be
splitting triples over M, X, Yy, Y1, Y.
O

For every cardinal ;1 € [k", 0] we define a closed unbounded subset C), of P,+(H(6%)) by
induction as follows: Cy+ = P+ (H(0)),
Crt+ = Prrs(H(OT)),
if p is a limit cardinal, then
O = P (H(07)),
if 11 is a successor cardinal, then let C), be the intersection of the clubs given by Lemma 4.3

for each v < € < p.
Definition 4.5 A model M of a regular cardinality v is called a reliable model iff
1. MNH@%) el

2. for every regular cardinals &, u € M, v < £ < u, for every clubs E C P,+(H(61)),D C
Pe+(H(07)) in M and there is a club C C P,+(H(01)),C C C,,C € M such that for
every X € C'N M there are Yy, Y7, Y € DN M which satisfy the conclusion of Lemma
4.3 with £ and D.

Definition 4.6 A structure X = (X, E,C €,C ), where £ C [X]? and C C [X]? is called
suitable structure iff there is p(X) = ((A"(X), A'7(X),C7(X)) | 7 € s(X)) € P’ such that

1 X = A% (%),

2. s(X) e X,

3. s(X) C X,

4. {a,b) € E iff a € s(X) and b € A(X),

5. (a,b,d) € C'iff a € s(X),b € A(X) and d € C*(X)(b).

41



Let G(P’) be a generic subset of P’.

Definition 4.7 A suitable structure X = (X, E,C €,C ) is called suitable generic structure
iff there is ((A"", A7 C7) | 7 € s) € G(P’) such that

1.

((AO AV Oy | r e s\ {kT}) € A%
In particular s € A%". Note that s may have cardinality above x* (which is not a

. . . . . +
case in a suitable structure ) and so s not necessary is contained in A% .

X is a substructure (not necessarily elementary) of the suitable structure generated by
(A7, A17,C7) | 7 € s), ie. (A% {(,B) |7 €s,Be A} {(r,B,D)|7€s B¢
AlT’D c CT(B)}’

X e CF (A%,

p(X) and ((A°, A7 CT) | T € s) agree about the walks to members of X N J{A!" | 7 €
s}. In other words we require that all the elements of walks in ((A%7, A C7) | T € s)

to elements of X NY{A'" | 7 € s} are in X.

If Ae A7(X), for some 7 € s(X), then either A it is of one of the first three types of
Definition 2.4(2) inside ((A°", A7, C7) | 7 € s) or the models witnessing that it is of
the forth type appear in X as well.

Note that, as a condition in P’, p(X) need not be weaker than ((A°", A" C7) | T € s),
and hence it need not be in G(P’).
Note also, that any stronger condition ((B°", BI", D7) | 7 € r) € G(P’) such that

(B, B, D7) | r €r\{x*}) € B*,

and

e C7(A") is an initial segment of D7(B°"), for each 7 € s

will witness that X is a suitable generic structure.

Fix n < w. We define an analog P/, of P’ on the level n just replacing x by ™ and 6 by

some )\, big enough ( A, a Mahlo will be more than enough; we can use for the gap 4 case

A, = K" etc). An assignment function a, will be an isomorphism between a suitable

generic structure of cardinality less than x, over x and a suitable structure over x,".

Define Q..
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Definition 4.8 Let )0 be the set of the triples (a, A, f) so that:
1. f is partial function from 67 to k, of cardinality at most s

2. a is an isomorphism between a suitable generic structure X of cardinality less than s,

and a suitable structure X’ in P), so that

(a) every model in X’ is a reliable model,

(b) X’ is above every model which appears in A'7(X') for some 7 € s(X’) \ {x"} and
also those in A" (%) \ {X’} in the order <p of the extender E,, (or actually,
after codding X’ by an ordinal),

(c) if t e J{A(X') | 7 € s(X')}, then for some k,2 < k < w,
?t < H(x*"), with x big enough fixed in advance. (Alternatively, may be to work
with subsets of \,, only and further require it is a restriction of such model to A,,.)
We deal with elementary submodels of H(x**), instead of those of H(\,).
Further passing from Q),o to P we will require that for every k < w for all but
finitely many n’s the n-th image of a model ¢ € X UY will be an elementary
submodel of H(x™*).
The way to compare such models ¢, < H(x™*),t, < H(x*), when k; # ks, say
k1 < ko, will be as follows:
move to H(x**1), i.e. compare t; with ty N H (™).

3. Ae En,X’a

4. for every ordinals «, 3, which code models in [J{A7(X') | 7 € s(X')} we have

a>p, B =5, implies

Ty (p) = 57 (135 (p))

for every p € m“xs o(A).
Define a partial order on @), as follows.
Definition 4.9 Let (a, A, f) and (b, B, g) be in Q.. Set (a, A, f) >0 (b, B, g) iff
1. a Db,

2. f2uy,
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3. Tmax(rng(a)),max(rng(b)) “A - Ba

4. dom(f)NY? = dom(g)NY?, where Y is the second component (i.e. the set of ordinals)
of the suitable structure on which b is defined.
Note that here we do not require disjointness of the domain of ¢ and of Y?, but as it
will follow from the further definition of non-direct extension, the value given by ¢ will

be those that eventually counts.

Definition 4.10 Q,; consists of all partial functions f : k™ — k, with |f| < k. If f,g €
th then set f an g iff f 2 g.

Definition 4.11 Define Q,, = Q0 U Qp1 and <;=<,0 U <.
Let p=(a, A, f) € Qno and v € A. Set

P~ v = fU{{, Tmax(mg(a))a(@) (V) | @ € A'Y(dom(a)) \ dom(f)}.

Note that here a contributes only the values for a’s in dom(a) \ dom(f) and the values on
common «’s come from f. Also only the ordinals in A'¥(dom(a)) are used to produce non
direct extensions, the rest of models disappear.

Now, if p,q € @, then we set p >,, ¢ iff either p >* qorp € Qn1,q¢ = (b, B,g) € Qno and

for some v € B, p >,1 ¢ V.

Definition 4.12 The set P consists of all sequences p = (p, | n < w) so that
(1) for every n < w, p, € Qn,

(2) there is ¢(p) < w such that

(i) for every n < {(p), pn € Qnui,
(i) for every n > £(p), we have p, = (an, An, fn) € Qno,
(iii) there is ((A%7, A" CT) | 7 € s) € G(P') which witnesses that dom(a,(p)) is a
suitable generic structure (i.e. dom(a,(p)) and ((A°", A7 CT) | 7 € s) satisfy

4.7), simultaneously for every n,l(p) <n < w.
(3) For every n > m > {(p), dom(a,,) C dom(a,),

(4) 7 for every n, {(p) < n < w, and X € dom(a,) we have that for each k < w the set
{m < w | —(an(X) N H(x™) < H(x™))} is finite.] (Alternatively require only that
am(X) C A but there is X < H(x™)) such that a,(X) = X N A,. It is possible to
define being k-good this way as well).

44



(5) 7 For every n > {(p) and a € dom(f,) there is m,n < m < w such that a €
dom(a,,) \ dom(f,).

Next lemma which allows to extend elements of P is crucial.

Lemma 4.13 Let p € P and ((B"", B, D7) | T € r) € G(P'). Then

1. for every t € \J{B'" | T € r} there is ¢ >* p such that t € dom(a,(q)) for all but

finitely many n’s;

2. for every A € BY" there is ¢ >* p such that A € dom(an(q)) for all but finitely many
n’s. Moreover, if ((A°’" A, C7) | 7 € s) > ((B",B',D") | T € r) witnesses a
generic suitability of p and A € C* (A%"), then the addition of A does not require
adding of ordinals and the only models that probably will be added together with A are

its images under A-system type isomorphisms for triples in p.

Proof. The proof follows the proof of this lemma in a gap 3 case. Let us concentrate on
the new possibility of splitting. Namely given triples Aj, Ag, A1 € A and Fj, F, F as in
the last case of Definition 2.4 with Aj, A and Fj, F' on the central lines (other possibilities
are as in a gap 3 case), we would like to add Ay, Ay, Fy. Denote by A the largest model
of CMI(A)) \ {A}} which is in p, if such a model exists. Suppose that it exists. If it does
not exist then the argument is similar and simpler. Consider X € Fy N ANI" such that
FoNF = FyNX and Yy, Yy, Y € AU as in Definition 4.1. Then X, Yy, Yy, Y € Al
Using the induction we can assume that X already appears in p. Now apply Lemma 4.3
to X* = a,(X) and appropriate C' (C' will depend on a,(A) and its place relatively to
Yy, Y1, Y) and find models Y, V", Y* satisfying the conclusion of this lemma and which can
be added to rng(a,) as images of Yy, Y1,Y. Assume that already a,(Yy) = Y5, a, (Y1) = Y7
and a,(Y) = Y*. Pick now inside A* = a,(A) splitting triples Fy, F}, F* and Ay, Aj, A}
over a,(Ap), X*, Yy, Y, Y*. By Lemma 4.4, we can assume that A™ = a,(Aj). Add this
models to rng(a,) as images of the corresponding models over x. Finally extend a,, further
by adding the images under isomorphisms corresponding to A-system types.

We need the following property:

if A€ A% Nndom(a,), for some n > ¢(p) big enough, and B € max(dom(a,)) is a model
which is reachable by a walk from A, then

(1) it is possible to extend a, to b, by adding B, probably in addition also models which

belong to A and then taking isomorphic images.
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(2) Let A € dom(a,), B a model added to dom(a,) and B is an isomorphic image of B
which belongs to A, then b,(B) € a,(A) as well all the models of the walk from A to
B, where b, denotes the extension of a, obtained by adding B and taking isomorphic

images.

This means basically that for adding such B we should take care only of models which
are in A. The images of the rest of models with B inside will have the image of B inside
automatically.

(1) was explained above. Let us deal with (2).

Assume that B is a model of cardinality x* and B is on the central line. Note that any
model involved is a member of one of cardinality <.
Our first tusk will be to replace A by a model on the central line. Consider the walk to A.
Let M be the last model on the central line which includes A, M; € M the next model of
the walk of the same cardinality with A € M; U {M;} and M, € C™MI(M) isomorphic to
it model. By the definition of the walk ( Definition 2.4, One to Four Continuations), the
models My, M; are the immediate predecessors of M. Replace A by A; = mas, a,[A]. Note
that By = My, Mo [B] is an isomorphic image of B. If A; and B, satisfy (2), then also A and
B do.
Replace A by A; and consider the walk to A;. After finitely many steps we will reach the
desired situation.

Assume now that both A and B are on the central line. Then B € A, since both are on
the central line and otp(B) = otp(B) < otp(A).
Consider now the walk to B. Let M be the last model on the central line which includes
B, M,, M its immediate predecessors with B € M; U {M;} and M, € CMI(M).
If A€ MyU{M,y}, then we move everything to M; putting M; on the central line and apply
an appropriate inductive assumption (the number of steps required to move from B to B is
now reduced, since B is replaced by g ar, (B) which is needed to move to the same B).
If My € A, then M C A. So M; € A. We make a switch below A (actually below M) to
move M to the central line. Then myy, 4, (B) will be on the new central line as well as A
(and M). As above the induction applies here to A and 7w, ar, (B).
O
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