An application of the Silver theorem on decomposability

February 10, 2021

Our aim is to prove the following:

Theorem 0.1 Suppose that \aleph_ω is a strong limit. Let U be a uniform ultrafilter over a cardinal $\eta > \aleph_\omega$. Suppose that for some $n^* < \omega$, U is \aleph_n–indecomposable, for all $\aleph_n \in [\aleph_n^*, 2^{\aleph_n^*}]$.

Let K^U be a subset of η which consists of regular cardinals ρ such that

1. $\sup(j^U''\rho)$ exists.
 Note that M_U is not well-founded, so it need not be the case always.

2. $\sup(j^U''\rho) < j_U(\rho)$.
 This means that U is ρ–decomposable, i.e. $U_\rho = \{X \subseteq \rho \mid \sup(j^U''\rho) \in j_U(X)\}$ is a uniform ultrafilter over ρ which is Rudin-Keisler below U.

3. $M_U \models \text{cof}(\sup(j^U''\rho)) < j_U(\aleph_\omega)$.
 Equivalently, U_ρ concentrates on ordinals of cofinality less than \aleph_ω.

Then $|K^U| < (2^{\aleph_n^*})^+$. In particular, if $n^* = 1$, then $|K^U| < (2^{\omega})^+$.

Remark 0.2 Note that by Kunen-Prikry theorem [3], U is \aleph_n–indecomposable for every $n, n^* \leq n < \omega$.

Proof. Suppose otherwise. Fix $\langle \rho_i \mid i < (2^{\omega_n^*})^+ \rangle$ an increasing sequence of consisting of elements of K^U.

Then by the theorem of Silver, see [2], there is an ultrafilter D over some $\aleph_m, m < n^*$ such that $j_D(\omega) = j_U(\omega)$. Note that $j_D(\omega)$ is the first infinite cardinal in sense of M_U.

Denote it further by $\tilde{\omega}$. Its real cardinality (i.e. the cardinality of the set $\tilde{\omega}$ in V is $\leq 2^{\aleph_m} < \aleph_\omega$. Denote it by δ.

1
Consider \(j_\mathbb{U} (\aleph_\omega) \). By elementarity, \(M_\mathbb{U} \models j_\mathbb{U} (\aleph_\omega) = \aleph_\omega \).

Then the number in \(V \) of \(M_\mathbb{U} \)-cardinals below \(\aleph_\omega \) is \(\delta \). We have

\[
M_\mathbb{U} \models \text{cof}(\sup(j''_\mathbb{U} \rho_i)) < \aleph_\omega
\]

\(i < (2^\omega)^+ \). Hence, there will be \(i < i' < (2^\omega)^+ \), such that

\[
M_\mathbb{U} \models \text{cof}(\sup(j''_\mathbb{U} \rho_i)) = \text{cof}(\sup(j''_\mathbb{U} \rho_{i'})).
\]

Pick then in \(M_\mathbb{U} \) a function \(f \) such that

\[
M_\mathbb{U} \models f \text{ is an increasing function which maps a cofinal subset of } \sup(j''_\mathbb{U} \rho_i)
\]

onto a cofinal subset of \(\sup(j''_\mathbb{U} \rho_{i'}) \).

Let us now define in \(V \) an order preserving function \(g \) from \(\rho_{i'} \) to a subset of \(\rho_i \). The existence of such function is clearly impossible and, so, will provide the desired contradiction. Proceed by induction. Suppose that \(\nu < \rho' \) and \(g \mid \nu \) is defined. By the inductive assumption, there is \(\alpha_\nu < \rho \) such that \(g'' \nu \subseteq \alpha_\nu \).

There exists some \(x_\nu \) such that

\[
M_\mathbb{U} \models j_\mathbb{U} (\alpha_\nu) < x_\nu < \sup(j''_\mathbb{U} \rho_i), x_\nu \in \text{dom}(f), f(x_\nu) > j_\mathbb{U} (\nu) \text{ and it is the least like this.}
\]

Pick some \(\beta_\nu, \alpha_\nu < \beta_\nu < \rho \) such that

\[
M \models x_\nu < j_\mathbb{U} (\beta_\nu).
\]

Set \(g(\nu) = \beta_\nu \).

This completes the construction of \(g \), and so the proof of the theorem.

\(\Box \)

Theorem 0.3 Indecomposable ultrafilters of Ben David -Magidor [1] satisfy the assumptions of 0.1.

Proof. Let \(U \) over \(P_\kappa (\lambda) \) be an indecomposable ultrafilter constructed as in Ben David -Magidor [1]. Note that the function \(P \mapsto \sup(P) \) is one to one on a set in \(U \), by Solovay, since \(U \) extends a normal ultrafilter in the ground model.

Use the Prikry condition argument similar to [4] in order to show that for every function \(f : P_\kappa (\lambda) \to \aleph_{\omega+k} \) in \(V[(\kappa_n \mid n < \omega), \{F_n \mid n < \omega\}] \), if \(f(P) < \sup(P \cap \aleph_{\omega+k}) \), then for some \(\alpha < \aleph_{\omega+k} \) and \(A \in U \), \(f(P) < \alpha \), for all \(\alpha \in A \).
References

[5] D. Raghavan and S. Shelah, A SMALL ULTRAFILTER NUMBER AT SMALLER CARDINALS,

[6] R. Solovay,