Forcing with finite pistes-3 sizes.

Moti Gitik

December 12, 2019

Our purpose here is to present a special case of the forcing with pistes of [1] when pistes are finite and only three sizes of models ω, ω_1 and ω_2 are allowed.

1 Wide pistes.

Assume GCH.

The basic idea behind the structures defined below (Definition 2.1, a finite structure with pistes over \aleph_3 is to stay as close as possible to an elementary chain of models. It cannot be literally a chain since models of different sizes are involved and models of bigger cardinality can come before ones of a smaller. The first part (Definition 1.1) describes this “linear” part of conditions in the main forcing. It is called a wide piste and incorporates together elementary chains of models of different cardinalities. The main forcing, defined in Section 2.1, will be based on such wide pistes and involves an additional natural but non-linear component called splitting or reflection.

Definition 1.1 A wide piste\(^1\) is a set $\langle \langle C_\tau, C_{\tau{\text{lim}}} \rangle \mid \tau \in \{\omega, \omega_1, \omega_2\} \rangle$ such that the following hold.

For every $\tau \in \{\omega, \omega_1, \omega_2\}$ and $A \in C_\tau$ the following holds:

1. $A \lessdot \langle H(\omega_3), \in, \le \rangle$, where \le is some fixed well ordering of $H(\omega_3)$,
2. $|A| = \tau$,
3. $A \supseteq \tau + 1$,
4. $A \cap \tau^+$ is an ordinal,

\(^1\)It is $(\aleph_2, \omega, \omega) -$ wide piste of [1] and here we deal with such pistes only.
5. elements of C^τ form a finite \in-chain,

6. if $X \in C^\tau$, then $\tau^\smallsetminus X \subseteq X$,

7. if $X,Y \in C^\tau$, then $X \in Y$ iff $X \not\subseteq Y$.

8. (Potentially limit points)

$C^{\tau \text{lim}} \subseteq C^\tau$.

We refer to its elements as potentially limit points.

The intuition behind this is that it will be possible to add new models unboundedly often below a potentially limit model in interesting cases, and this way it will be turned into a limit one.

The next condition prevents unneeded appearances of small models between big ones.

9. If $B_0, B_1 \in C^\rho$, for some $\rho \in \{\omega, \omega_1, \omega_2\}$, B_1 is not a potentially limit point and B_0 is its immediate predecessor, then there is no potentially limit point $A \in C^\tau$ with $\tau < \rho$ such that $B_0 \in A \in B_1$.

The requirement that B_1 is not a potentially limit point is important here. Once dealing with potentially limit points, we would like to allow reflections which may add small intermediate models.

However, small models which are non-potentially limit points are allowed.

10. Let $B_0, B_1 \in C^\rho$, for some $\rho \in \{\omega, \omega_1, \omega_2\}$, B_1 is not a potentially limit point, B_0 is its immediate predecessor and $A \in C^\tau \cap B_1$, with $\tau < \rho$. If $\sup(A \cap \theta^+) > \sup(B_0 \cap \theta^+)$, then $B_0 \in A$.

The next condition is of a similar flavor, but deals with smallest models.

11. If $B \in C^\rho$, for some $\rho \in \{\omega, \omega_1, \omega_2\}$, is not a potentially limit point and it is the least element of C^ρ, then there is no potentially limit point $A \in C^\tau$ with $\tau > \rho$ such that $A \in B^2$.

Both conditions 9 and 11 are designed to allow one to add new models below potentially limit points, which will be essential for properness of the forcing.

The purpose of the next four conditions is to allow to proceed down the pistes without interruptions at least before reaching a potentially limit point.

\footnote{If we drop the requirement $\tau > \rho$, then it may be impossible further to add models of sizes $> \omega$ once a potentially limit point of size ω is around.}

2
12. Let $\tau, \rho \in \{\omega, \omega_1, \omega_2\}$, $\tau < \rho$, $A \in C^\tau$, $B \in C^\rho$ and $B \in A$. Suppose that B is not a potentially limit point and B' is its immediate predecessor in C^ρ. Then $B' \in A$.

13. Let $A \in C^\omega$, $B \in C^{\omega_2}$, $D \in C^{\omega_1}$ and $B \in A$. Suppose that B is not a potentially limit point and B' is its immediate predecessor in C^{ω_2}. Then $B' \in D \in B$ implies $D \in A$.

14. (Linearity) If $\tau, \rho \in \{\omega, \omega_1, \omega_2\}$, $\tau \leq \rho$, $A \in C^\tau$, $B \in C^\rho$, then $\sup(A \cap \omega_3) < \sup(B \cap \omega_3)$ implies $A \in B$.

Next few conditions deal with what we call covering properties. They are needed in order to show that the forcing is ω-proper. Suppose that $M \in C^\xi$, for some $\xi \in \{\omega, \omega_1, \omega_2\}$, $\xi \neq \omega_2$, $D \in C^\rho$, for some $\rho \in \{\omega, \omega_1, \omega_2\}$, $\rho > \xi$. If $\sup(M \cap \omega_3) < \sup(D \cap \omega_3)$, by the linearity condition, $M \in D$. But suppose that $\sup(M \cap \omega_3) > \sup(D \cap \omega_3)$, i.e., a model of smaller size sits above a model of bigger size on the piste. The simplest situation then will be that just $D \in M$. However it is too much to require this, since as a result the properness will break down and cardinals will collapse, even in the two sizes situation. Weaker requirements should be made. The requirements will insure an existence of so called covering model \tilde{D} of D for M.

This model should have the following basic properties:

(8) $\tilde{D} \in M$,

(2) $\tilde{D} \supseteq D$,

(3) $M \cap \tilde{D} = M \cap D$.

Note such \tilde{D} is unique, if exists. Thus suppose that D', D'', $D' \neq D''$ are two covering models of D for M.

There is $x \in D' \setminus D''$ or $x \in D'' \setminus D'$. Suppose for example that there is $x \in D' \setminus D''$. By elementarity, then there is $x \in D' \setminus D''$ which belongs to M, but this is clearly impossible, since $D' \cap M = D \cap M = D'' \cap M$, Item (2) above.

Also note that $\tilde{D} = D$, if $D \in M$.

Let us state now the requirements on covering models.

Start with the simplest one.
15. (Covering 1)
If $M \in C^{\omega_1}, D \in C^{\omega_2}$ and $\sup(M \cap \omega_3) > \sup(D \cap \omega_3)$, then there is a covering model \tilde{D} of D for M inside C^{ω_2}.

This the only requirement, if only two sizes of models are considered. Already dealing with three sizes, an additional requirement is needed:

16. (Covering 2) If $M \in C^{\omega}, D \in C^{\omega_2}$, $\sup(M \cap \omega_3) > \sup(D \cap \omega_3)$, then either

(a) there is a covering model \tilde{D} of D for M inside C^{ω_2},

or

(b) there is $S \in M \cap C^{\omega_1}$ such that $\sup(S \cap \omega_3) > \sup(D \cap \omega_3)$

and $\tilde{D} = cl(S \cup \omega_2)$ is a covering model of D for M,

or

(c) there are $S \in M \cap C^{\omega_1}, E \in M \cap C^{\omega_2}$ such that

$\sup(S \cap \omega_3) > \sup(E \cap \omega_3), E \supset D$

and $\tilde{D} = cl((S \cap E) \cup \omega_2)$ is a covering model of D for M.

Note that $cl(S \cup \omega_2) = sup(S \cap \omega_3)$ and $cl((S \cap E) \cup \omega_2) = sup((S \cap E) \cap \omega_3)$. It is a well known fact and we will provide a proof below.

17. (Covering 3) If $M \in C^{\omega}, D \in C^{\omega_1}$ and $\sup(M \cap \omega_3) > \sup(D \cap \omega_3)$, then

(a) there is $\tilde{D} \in M \cap C^{\omega_1}$ which is a covering model of D for M, i.e., $\tilde{D} \supseteq D$ and $M \cap \tilde{D} = M \cap D$;

or

(b) there are $S \in M \cap C^{\omega_1}, E \in M \cap C^{\omega_2}$ such that

$\sup(S \cap \omega_3) > \sup(E \cap \omega_3), S \supset D, E \supset D$ and $M \cap D = M \cap S \cap E$, i.e., $S \cap E$

is a covering model of D for M.

18. (Strong Covering) If $M \in C^{\omega}, D \in C^{\omega_2}$, $\sup(M \cap \omega_3) > \sup(D \cap \omega_3)$ and there is $S \in M \cap C^{\omega_1}$ such that $\sup(S \cap \omega_3) > \sup(D \cap \omega_3)$

and $M \cap D = M \cap cl(S \cup \omega_2)$, i.e. $cl(S \cup \omega_2)$ is a covering model of D for M, (or there

Note that

(a) if $D \not\in M$, then such \tilde{D} must be a potentially limit point by Item 12 above. Thus, it cannot be a successor non-potentially limit point, by Item 12, since its immediate predecessor \tilde{D}' will be in M, and then, $\sup(\tilde{D}' \cap \omega_3) < \sup(D \cap \omega_3)$, and so $D \supseteq \tilde{D}'$.

(b) such \tilde{D} is the least model $\tilde{D}' \in M \cap C^{\omega_2}$ such that $\tilde{D}' \supseteq D$.

are $S \in M \cap C^{\omega_1}, E \in M \cap C^{\omega_2}$ such that
\[\sup(S \cap \omega_3) > \sup(E \cap \omega_3), E \supset D \text{ and } M \cap D = M \cap \text{cl}((S \cap E) \cup \omega_2) \text{, i.e. } \text{cl}((S \cap E) \cup \omega_2) \text{ is a covering model of } D \text{ for } M \), then either

(a) $D \in S$,

or

(b) there is a covering model $\hat{D} \in S \cap C^{\omega_2}$ of D for S such that $D \supseteq \hat{D}_{\sup(M \cap \omega_2)}$,

where $\langle \hat{D}_i \mid i < \omega_2 \rangle$ is an increasing continuous sequence of models of cardinality \aleph_1 with limit \hat{D}, defined from \hat{D}

19. Let $A \in C^{\omega}, M \in C^{\omega_1}, D \in C^{\omega_2}, M, D \in A$ and $\sup(M \cap \omega_3) > \sup(D \cap \omega_3)$. Then the covering model \hat{D} of D for M belongs to A.

2 Structures with pistes - definitions.

Now we are ready to give the main definition.

Definition 2.1 A structure with pistes\(^4\) is a set $\langle \langle A^{0\tau}, A^{1\tau}, A^{1\tau_{lim}}, C^{\tau} \rangle \mid \tau \in \{\omega, \omega_1, \omega_2\} \rangle$ such that the following hold:

1. for every $\tau \in \{\omega, \omega_1, \omega_2\}$,

 (a) $A^{0\tau} \leq (H(\omega_3), \in, \leq)$,

 (b) $|A^{0\tau}| = \tau$,

 (c) $A^{0\tau} \in A^{1\tau}$,

 (d) $A^{1\tau}$ is a finite set of elementary submodels of $A^{0\tau}$,

 (e) each element A of $A^{1\tau}$ has cardinality τ, $A \supseteq \tau + 1$ and $A \cap \tau^+$ is an ordinal.

2. (Potentially limit points) Let $\tau \in \{\omega, \omega_1, \omega_2\}$.

 $A^{1\tau_{lim}} \subseteq A^{1\tau}$. We refer to its elements as potentially limit points.

 The intuition behind this is that once extending it will be possible to add new models unboundedly often below a potentially limit model, and this way it will be turned into a limit one.

\(^4\)It is $(\aleph_2, \omega, \omega)$–structure with pistes of [1] and here we deal with such structures only.
3. (Piste function) The idea behind this is to provide a canonical way to move from a model in the structure to one below.

Let $\tau \in \{\omega, \omega_1, \omega_2\}$.

Then, $\text{dom}(C^\tau) = A^{1\tau}$ and for every $B \in \text{dom}(C^\tau)$, $C^\tau(B)$ is a finite chain of models in $A^{1\tau} \cap (B \cup \{B\})$ such that the following holds:

(a) $B \in C^\tau(B)$,

(b) if $X \in C^\tau(B)$, then $C^\tau(X) = \{Y \in C^\tau(B) \mid Y \in X \cup \{X\}\}$,

(c) if B has immediate predecessors in $A^{1\tau}$, then one (and only one) of them is in $C^\tau(B)$,

4. (Wide piste) The set

$$\langle C^\tau(A^{0\tau}), C^\tau(A^{0\tau}) \cap A^{1\tau \text{lim}} \mid \tau \in s = \{\omega, \omega_1, \omega_2\}\rangle$$

is a wide piste.

The next two condition describe the ways of splittings from wide pistes. This describes the structure of $A^{1\tau}$ and the way pistes allow one to move from one of its models to another.

5. (Splitting points) Let $\tau \in \{\omega, \omega_1, \omega_2\}$. Let $X \in A^{1\tau}$. Then either

(a) X is minimal under \in or equivalently under \subset,

or

(b) X has a unique immediate predecessor in $A^{1\tau}$,

or

(c) $\tau < \omega_2$, X has exactly two immediate predecessors X_0, X_1 in $A^{1\tau}$, and then the following hold:

i. (Splitting points of type 1) None of X, X_0, X_1 is a potentially limit point and X, X_0, X_1 form a Δ-system triple relative to some $F_0, F_1 \in A^{1\tau \text{lim}}$, which means the following:

A. $F_0 \not\subset F_1$ and then $F_0 \in C^{\tau^+}(F_1)$, or $F_1 \not\subset F_0$ and then $F_1 \in C^{\tau^+}(F_0)$,

B. $X_0 \in F_1$, if $F_0 \not\subset F_1$ and $X_1 \in F_0$, if $F_1 \not\subset F_0$,

C. $F_0 \in X_0$ and $F_1 \in X_1$,
D. $X_0 \cap X_1 = X_0 \cap F_0 = X_1 \cap F_1,$

E. the structures

\[\langle X_0, \in, (X_0 \cap A^{1\rho}, X_0 \cap A^{1\text{lim}}), (C^\rho \upharpoonright X_0 \cap A^{1\rho}) \cap X_0 \mid \rho \in s) \rangle \]

and

\[\langle X_1, \in, (X_1 \cap A^{1\rho}, X_1 \cap A^{1\text{lim}}), (C^\rho \upharpoonright X_1 \cap A^{1\rho}) \cap X_1 \mid \rho \in s) \rangle \]

are isomorphic over $X_0 \cap X_1$. Denote by π_{X_0,X_1} the corresponding isomorphism.

F. $X \in A^{0_{\scriptscriptstyle \tau^+}}$.

Or

ii. (Splitting points of type 2) $\tau = \omega$ and there are $G, G_0, G_1 \in X \cap A^{1\omega_1}$, G is a splitting point of types 1 and G_0, G_1 are its immediate predecessors, with witnessing models in X, such that

A. $X_0 \in G_0$,
B. $X_1 \in G_1$,
C. $X_1 = \pi_{G_0G_1}[X_0]$.
D. X is not a limit or potentially limit point,
E. $X \in A^{0_{\omega_1}}$,
F. (Pistes go in the same direction) $G_i \in C^{\omega_1}(G) \iff X_i \in C^{\omega}(X), i < 2$.

Further we will refer to such X, i.e. of types 1 or 2, as splitting points.

6. Let $\tau, \rho \in \{\omega, \omega_1, \omega_2\}$, $X \in A^{1\tau}, Y \in A^{1\rho}$. Suppose that X is a successor point, but not potentially limit point and $X \in Y$. Then all immediate predecessors of X are in Y, as well as the witnesses, i.e. F_0, F_1 if (5(c)i) holds and G_0, G_1, G if (5(c)ii) holds.

7. Let $\tau \in \{\omega, \omega_1, \omega_2\}$. If $X \in A^{1\tau}, Y \in \bigcup_{\rho \in \{\omega, \omega_1, \omega_2\}} A^{1\rho}$ and $Y \in X$, then Y is a piste-reachable from X, i.e. there is a finite sequence $(X(i) \mid i \leq n)$ of elements of $A^{1\tau}$ which we call the piste leading to Y from X such that

(a) $X = X(0)$,
(b) for every $i, 0 < i < n$, either
i. \(X(i-1)\) has two immediate predecessors \(X(i-1)_0, X(i-1)_1\) with \(X(i-1)_0 \in C^r(X(i-1))\), \(X(i) = X(i-1)_1\) and \(Y \in X(i-1)_1 \setminus X(i-1)_0\), or

ii. \(X(i) \in C^r(X(i-1))\), and then either \(i = n\) or

\(i < n\), \(X(i)\) has two immediate predecessors \(X(i)_0, X(i)_1\) with \(X(i)_0 \in C^r(X(i))\), \(X(i+1) = X(i)_1\) and \(Y \in X(i)_1 \setminus X(i)_0\)

(c) \(Y = X(n)\), if \(Y \in A^{1r}\) and if \(Y \in A^{1p}\), for some \(\rho \neq \tau\), then \(Y \in X(n)\), \(X(n)\) is a successor point and \(Y\) is not a member of any element of \(X(n) \cap A^{1r}\).

Let us give two examples.

Example 1. Suppose that \(A^{1r}\) consists of three models, \(Y \in Z \in X\).
Then the piste from \(X\) to \(Y\) will be \(\langle X, Y \rangle\).

Example 2. Suppose that \(A^{1r}\) consists of models \(X, Z, T, T_0, T_1, Y_0, Y_1\) such that \(Y_0 \in T_0 \in T \in Z \in X\) is \(C^r(X)\), \(T\) is a splitting point with \(T_0, T_1\) its immediate predecessors, \(Y_0 \in T_0, Y_1 \in T_1\).

Then the piste from \(X\) to \(Y_1\) goes like this: From \(X\) we go down to \(T\), then at \(T\) we turn to \(T_1\) and from \(T_1\) we continue to the final destination \(Y_1\).

So the piste from \(X\) to \(Y_1\) is \(\langle X, T, T_1, Y_1 \rangle\).

The sequence \(\langle X(i) \mid i \leq n \rangle\) is defined uniquely from \(X\) and \(Y\).
In particular, every \(Y \in A^{1r}\) is piste reachable from \(A^{0r}\).

In order to formulate further requirements, we will need to describe a simple process of changing the wide pistes. This leads to equivalent forcing conditions once the order will be defined.

Let \(X \in A^{1r}\). We will define the \(X\)–wide piste. The definition will be by induction on number of turns (splits) needed in order to reach \(X\) by the piste from \(A^{0r}\).

First, if \(X \in C^r(A^{0r})\), then the \(X\)–wide piste is just \(\langle C^\xi(A^{0\xi}), C^\xi(A^{0\xi}) \cap A^{1\xi\text{lim}} \mid \xi \in s \rangle\), i.e. the wide piste of the structure.

Second, if \(X \notin C^r(A^{0r})\), but it is not an immediate predecessor of a splitting point, then pick the least splitting point \(Y\) above \(X\). Let \(Y_0, Y_1\) be its immediate predecessors with \(Y_0 \in C^r(Y)\). Then \(X \in Y_i\) for some \(i < 2\). Set the \(X\)–wide piste to be the \(Y_i\)–wide piste.

So, in order to complete the definition, it remain to deal with the following principal case:

\(X \in A^{1r}\) a splitting point of one of the types 1 or 2.
Let X_0, X_1 be its immediate predecessors with $X_0 \in C^\tau(X)$. Assume that the X–wide piste $\langle C^\xi_X, C^\xi_{X,\lim} | \xi \in s \rangle$ is defined and assume that $C^\tau(X)$ is an initial segment of C^τ_X. Let the X_0–wide piste be $\langle C^\xi_X, C^\xi_{X,\lim} | \xi \in s \rangle$.

Let us deal with type of splitting separately.

Case 1. X is a splitting point of type 1. Define the X_1–wide piste $\langle C^\xi_{X_1}, C^\xi_{X_1,\lim} | \xi \in s \rangle$ as follows:

- $C^\xi_{X_1} = C^\xi_X$, for every $\xi > \tau$.
 I.e. no changes for models of cardinality $> \tau$.
- $C^\xi_{X,\lim} = C^\xi_{X_1} \cap A^\xi_{\lim}$, for every $\xi \in s$.
 Models that were potentially limit remain such and no new are added.
- $C^\tau_{X_1} = (C^\tau_X \setminus X) \cup C^\tau(X_1)$.
 Here we switched the piste from X_0 to X_1.
- $C^\xi_{X_1} = \{Z \in C^\xi_X | \sup(Z \cap \theta^+) > \max(\sup(X_0 \cap \theta^+), \sup(X_1 \cap \theta^+))\} \cup \{\pi_{X_0,X_1}(Z) | Z \in C^\xi_X \cap X_0\}$, for every $\xi \in s \cap \tau$.\(^5\)

Note that such defined switch from X_0 to X_1 does not affect at all models of sizes above τ. Models of sizes $\leq \tau$ are effected only if they are contained in X_0 or in X_1.

If X is a splitting point of type 2, then we may need to turn some piste for models of cardinalities $> \tau$ into other directions, in order to satisfy the item 5(c)iiF above.

Proceed as follows.

Case 3. X is a splitting point of type 2. Let $G,G_0,G_1 \in X \cap A^{1,\mu}$ be models which witness that X is a splitting point of type 2 and X_0, X_1 are its immediate predecessors. Now using the induction\(^6\) we can assume that the G_1–wide piste is already defined.

Define the X_1–wide piste to be the G_1–wide piste.

Now we require the following:

8. Let $\tau \in s$ and $X \in A^{1,\tau}$. Then the X–wide piste is a wide piste, i.e., it satisfies Definition 1.1.

\(^5\)In particular, due to this, the next condition implies that for $\xi \in s \cap \tau$, if $Z \in C^\xi_X, \sup(Z \cap \theta^+) > \max(\sup(X_0 \cap \theta^+), \sup(X_1 \cap \theta^+))$, then $\{\pi_{X_0,X_1}(Z') | Z' \in C^\xi_X \cap X_0\} \subseteq Z$.

\(^6\)The induction is on pairs (n, ζ) ordered lexicographically, where n is the number of turns from the wide piste and ζ is the rank (the usual one as sets) of the model.

We have $G,G_0,G_1 \in X$, so the rank of G,G_0,G_1 is smaller than the rank of X. The number of turns needed to get to G and to X from the top is the same.
9. Suppose that \(M \in C^\omega, D \in C^\omega_1 \) and \(sup(M \cap \omega_3) > sup(D \cap \omega_3) \) and there are \(S \in M \cap C^\omega_1, E \in M \cap C^\omega_2 \) such that \(sup(S \cap \omega_3) > sup(E \cap \omega_3), S \supset D, E \supset D \) and \(M \cap D = M \cap S \cap E \), i.e., \(S \cap E \) is a covering model of \(D \) for \(M \).

Then, there are \(A \in A^1_\omega \) which is equal \(M \) or above \(M \), a \(\Delta \)-system triple \(M^*, M^*_0, M^*_1 \) each of cardinality \(\aleph_1 \), \(M^*_1 \) above \(M^*_0 \), with witnessing models \(F_0, F_1 \) all of them in \(A \) and in \(A^1_\omega \).

In addition, there is reflection of \(A \) (and its members) into \(M^*_1 \).

Denote by \(M^* \), \(M^*_0, M^*_1 \) the images of \(M^*, M^*_0, M^*_1, F_0 \) under the reflection.

Note that \(F_1 \in M^*_1 \cap A \), and so it does move, as well as \(M^*_1 \) itself.

We require that \(D \subseteq M^*_0, S \supseteq M^*_1 \) and \(E \supseteq F_1 \).

Final conditions deal with largest models.

10. (Maximal models are above all the rest) For every \(\tau \in \{\omega, \omega_1, \omega_2\} \) and \(Z \in \bigcup_{\rho \in \{\omega, \omega_1, \omega_2\}} A^1_{\rho} \), if \(Z \not\in A^0_{\tau} \), then there is \(\mu \in \{\omega, \omega_1, \omega_2\} \) such that \(Z = A^0_\mu \).

This completes the definition of a finite structure with pistes.

Denote the set of such defined structures by \(\mathcal{P} \) (which corresponds to \(\mathcal{P}_{\omega_2 \omega} \) of [1]). Define an order on \(\mathcal{P} \).

Definition 2.2 Let

\[p_0 = \langle \langle A^0_0, A^1_0, A^{1lim}_0, C^*_0 \rangle \mid \tau \in \{\omega, \omega_1, \omega_2\} \rangle, p_1 = \langle \langle A^1_0, A^1_1, A^{1lim}_1, C^*_1 \rangle \mid \tau \in \{\omega, \omega_1, \omega_2\} \rangle \]

be two elements of \(\mathcal{P} \).

Set \(p_0 \leq p_1 \) (\(p_1 \) extends \(p_0 \)) iff

1. \(A^1_\tau \subseteq A^1_\tau \), for every \(\tau \in \{\omega, \omega_1, \omega_2\} \),

2. let \(A \in A^{1\tau} \), for some \(\tau \in \{\omega, \omega_1, \omega_2\} \), then \(A \in A^{1lim} \) iff \(A \in A^{1lim}_\tau \).

The next item deals with a switching described in Definition 2.1. It allows to change piste directions.

\(^7 \)Note that then

\[M \cap S = M \cap M^*_1 = M \cap A \cap M^*_1 = M \cap A \cap M^{1*} = M \cap A \cap D^*_1 = M \cap D^*_1, \]

where \(D^*_1 \) is the image of \(D \) under the isomorphism \(\pi_{M^*_1 \cdot M^{1*}} \) between the models \(M^*_0 \) and \(M^{1*} \).

10
3. Let $\tau \in \{\omega, \omega_1, \omega_2\}$.
 For every $A \in A^{1_0}_0$, $C^\tau_0(A) \subseteq C^\tau_1(A)$,
or
 there are finitely many places below A where pistes change their directions, i.e. there
 are splitting points $B(0), ..., B(k) \in A^{1_0}_0 \cap (A \cup \{A\})$ with $B(j)'$, $B(j)''$ the immediate
 predecessors of $B(j)$ ($j \leq k$) such that

 (a) $B(j)' \in C^\tau_0(B(j))$,
 (b) $B(j)'' \in C^\tau_1(B(j))$.

 If $B \in A^{1_0}_0 \cap (A \cup \{A\})$ is a splitting point different from $B(0), ..., B(k)$ and B', B'' are
 its immediate predecessors, then
 $B' \in C^\tau_0(B)$ iff $B' \in C^\tau_1(B)$.

4. Let $\tau \in \{\omega, \omega_1, \omega_2\}$.

 If $A \in A^{1_0}_0$ is a splitting point in p_0, then it remains such in p_1 with the same immediate
 predecessors.

5. Let $\tau \in \{\omega, \omega_1, \omega_2\}$.

 Let $B \in A^{1_0}_0$ not in $A^{1_0}_{0\text{lim}}$, i.e., it is not a potentially limit, and B a unique immediate
 predecessor in p_0. Then, in p_1, B has the same unique immediate predecessor.

 This requirement guarantees intervals without models, even after extending a condition.

 By 2.2(5), potentially limit points are the only places where non-end-extensions can be
 made.

3 Properness.

We would like to show that for every $\tau \in \{\omega, \omega_1, \omega_2\}$ the forcing P is τ–proper.

Let us start with ω_2–properness.

Lemma 3.1 The forcing P is ω_2–proper.

Proof.

Let $p \in P$. Pick \mathfrak{M} to be an elementary submodel of $H(\chi)$ for some χ large enough such
that
Set $M = \mathcal{M} \cap H(\omega_3)$.

We claim that $p \frown M$ is $(\mathcal{P}, \mathcal{M})$-generic. So, let $r \geq p \frown M$ and $\bar{D} \in \mathcal{M}$ be a dense open subset of \mathcal{P}.

By extending r, if necessary, we can assume that $r \in \bar{D}$.

Let $A_0 \leq A_1 \leq H(\omega_3)$ be such that

1. $A_0 \in A_1$,
2. $|A_i| = \aleph_i$, for every $i < 2$,
3. $r \in A_0$.

In particular, $M \in A_i$, and so $A_i \cap M \in M$, for every $i < 2$. Set $q = r \frown A_0 \frown A_1$.

Denote A_1 by A.

Let $\delta_M = M \cap \omega_3$ and $\eta_A = \sup(A \cap \delta_M)$. Then η_A has cofinality $< \omega_2$, and so, $\eta_A < \delta_M$.

Hence $\eta_A \in M$. Reflect now A, q down to \mathcal{M} over $A \cap M$ in the language which includes \bar{D}.

Denote the result by A', q' and let M' be the image of M under this reflection.

Then, $A \cap \eta_A = A' \cap \eta_A$, also,

$$A \cap M = A' \cap M' \text{ and } A \cap M \cap \delta_M = A' \cap M' \cap \delta_M.$$

Pick some model \hat{A} of cardinality \aleph_1 with A, q, A', q' inside. Pick also an $\in -$increasing sequence of models $\langle \hat{A}_0, \hat{A}_1 \rangle$ with $A, q, A', q', \hat{A} \in \hat{A}_0$ and $|\hat{A}_i| = \aleph_i, i < 2$.

It is enough to show the following:

Claim 1 $q \frown q' \frown \hat{A} \frown \langle \hat{A}_0, \hat{A}_1 \rangle \in \mathcal{P}$.

Proof. We need to check that Definition 1.1 is satisfied by the two pistes that form s, i.e., those which are generated by q and by its reflection q'.

Note that each of q, q' is fine. The only problem that may to appear - is that new models
of cardinality \aleph_2 are added to wide pistes of q, q'. For example, M' is added to q and M to q'. Note that only models of size \aleph_2 are added, since we reflected into a model M of cardinality \aleph_2, so models of smaller sizes reflect and did not remain on wide pistes of the reflected condition.

For example, if there were a model B of cardinality \aleph_1 in q on its wide piste with $M \in B$, then B would be reflected to $B' \in M$ and B' will appear on the wide piste of q', and not B.

Basically, we need to check only the covering condition 15 of Definition 1.1 in the following situation:

$B \in q$ above M on the wide piste of q and D' is a model of cardinality \aleph_2 in q' which does not belong to A, i.e., the reflection of some D in A.

But this is easy. Namely, if $B = A$, then M will be such a cover, since due to the reflection, $A \cap D' = A \cap M$.

Suppose that $B \neq A$, then $B \in A$.

If B is countable, then $B \subseteq A$, and again, M will be such a cover, if $M \in B$ or a model $\hat{M} \in B$ which is the cover of M for B.

If $|B| = \aleph_1$, then note that $\text{sup}(B \cap M \cap \omega_3) \in A \cap M$, and so it is below η_A. Hence, if $M \in B$, then $B \cap D' = B \cap M \cap D' = B \cap M$. If $M \notin B$, then the cover of M in B will be as desired.

\qed of the claim.

\qed

Lemma 3.2 The forcing \mathcal{P} is ω_1–proper.

Proof.

Let $p \in \mathcal{P}$. Pick \mathfrak{M} to be an elementary submodel of $H(\chi)$ for some χ large enough such that

1. $|\mathfrak{M}| = \aleph_1$,
2. $\mathfrak{M} \supseteq \aleph_1$,
3. $\mathcal{P}, p \in \mathfrak{M}$,
4. $\text{``:\mathfrak{M} \subseteq \mathfrak{M}''}$.

Set $M = \mathfrak{M} \cap H(\omega_3)$.

13
We claim that \(p \downarrow M \) is \(\langle \mathcal{P}, \mathfrak{M} \rangle \)-generic. So, let \(r \geq p \downarrow M \) and \(\bar{D} \in \mathfrak{M} \) be a dense open subset of \(\mathcal{P} \).

By extending \(r \), if necessary, we can assume that \(r \in \bar{D} \).

Let \(A \preceq H(\omega_2) \) be a countable model with \(r \in A \).

In particular, \(M \in A \), and so \(A \cap M \in M \). Set \(q = r \uparrow A \).

Let \(\delta_M = M \cap \omega_2 \) and \(\eta_A = \sup(A \cap \delta_M) \). Then \(\eta_A \) has cofinality \(\omega \), and so, \(\eta_A < \delta_M \).

Hence \(\eta_A \in M \).

Reflect now \(A, q \) down to \(M \) over \(A \cap M \) and above \(\eta_A \) in the language which includes \(\bar{D} \).

Denote the result by \(A', q' \) and let \(M' \) be the image of \(M \) under this reflection.

Then, \(A \cap M = A' \cap M' \).

Note that we cannot reflect as in 3.1, above \(\sup(A \cap B \cap \omega_3) \), since, for example \(\delta_M \in A \cap \omega_2 \) should be moved to a smaller ordinal in order to be in \(M \).

Also there can be models \(D, E \) of cardinality \(\aleph_2 \) with \(E \in A \cap M \), \(D \in A \setminus M \), \(D \in E \). Then \(E \) does not move under the reflection, however \(D \) must move to some \(D', D' \in D \setminus A \).

Pick some countable model \(\hat{A} \) with \(A, q, A', q' \) inside.

It is enough to show the following:

Claim \(s = q \uparrow q' \uparrow \hat{A} \in \mathcal{P} \).

Proof. We need to check that Definition 1.1 is satisfied by the two pistes that form \(s \), i.e.,

those which are generated by \(q \) and by its reflection \(q' \).

Note that each of \(q, q' \) is fine. The only problem that may to appear - is that new models of cardinalities \(\aleph_1 \) and \(\aleph_2 \) are added to wide pistes of \(q, q' \). For example, \(M' \) is added to \(q \) and \(M \) to \(q' \). Note that only models of sizes \(\aleph_1 \) and \(\aleph_2 \) are added, since we reflected into a model \(M \) of cardinality \(\aleph_1 \), so models of countable cardinality reflect and did not remain on wide pistes of the reflected condition.

For example, \(A \) reflects to \(A' \), but \(A' \) is not on the wide piste of \(A \). However, \(M \) is on the wide piste of \(A' \).

Basically, we need to check only the covering condition 15 of Definition 1.1.

Let us deal first with few typical cases.

Case 1. There is a new model of cardinality \(\aleph_1 \) above \(\sup(A \cap M) \) which is a reflection of a model with \(M \) inside.

Let \(B' \) be such a model. Then it is a reflection into \(M \) of a model \(B \in A \) with \(M \in B \).

Also, \(M' \subseteq B' \subseteq M \). We will have \(A \cap B' = A \cap M \), since if \(z \in A \cap M \), then \(z \in A' \cap M' = A \cap M \) and \(M' \subseteq B' \).

Case 2. There is a new model of cardinality \(\aleph_2 \) above \(\sup(A \cap M \cap \omega_3) \).
Let D' be such a model. Then $A \cap D' = A \cap cl(M \cup \aleph_2)$.

Namely, $D' \in M$, hence $D' \subseteq cl(M \cup \aleph_2)$.

Let D be the model that reflects to D'. Then $D \supseteq M$, since $D' \cap \omega_3 > sup(A \cap M \cap \omega_3) = sup(A' \cap M' \cap \omega_3)$, and so, $D \cap \omega_3 > sup(A \cap M \cap \omega_3)$. Note that $M, D \in A$, and so, if $D \cap \omega_3 < sup(M \cap \omega_3)$, then $min((M \cap \omega_3 \setminus (D \cap \omega_3)) \in A \cap M \cap \omega_3$.

Hence, $D \cap \omega_3 > sup(M \cap \omega_3)$, and so, $D \supseteq M$.

Suppose that $z \in A \cap cl(M \cup \aleph_2)$. Then there are a term t, $a \in M \cap A$ and $\alpha \in A \cap \omega_2$ such that $z = t(a, \alpha)$. But $D \supseteq M \supseteq M \cap A$ and the reflection does not change $M \cap A$, so $a \in M \cap A$ implies $a \in D'$. Then $z = t(a, \alpha) \in D'$, and we are done.

**Case 3. There is a new model of cardinality \aleph_2 below $sup(A \cap M \cap \omega_3)$.

Let D' be such a model and D its pre-image under the reflection. Then $D \cap \omega_3 < sup(A \cap M \cap \omega_3)$, since elements of $A \cap M$ do not move under the reflection. Also, $D \notin M$, so the is $E \in M$ which is the cover of D. Then $E \in A \cap M$. In particular, E does not move under the reflection.

Note that $D' \subset D$. Thus, $D', D \subseteq E$, $M \cap E = M \cap D$ and $D' \in M \cap E$.

Let us argue that $A \cap D' = A \cap cl((M \cap E) \cup \aleph_2)$. Clearly, $A \cap D' \subseteq A \cap cl((M \cap E) \cup \aleph_2)$. We need to show that $A \cap D' \supseteq A \cap cl((M \cap E) \cup \aleph_2)$.

Suppose that $z \in A \cap cl((M \cap E) \cup \aleph_2)$. Then there are a term t, $a \in M \cap E \cap A$ and $\alpha \in A \cap \omega_2$ such that $z = t(a, \alpha)$. But $D \supseteq M \cap E \supseteq M \cap E \cap A$ and the reflection does not change $M \cap E \cap A$, so $a \in M \cap E \cap A$ implies $a \in D'$. Then $z = t(a, \alpha) \in D'$, and we are done.

**Case 4. There is a new model of cardinality \aleph_1 below $sup(A \cap M \cap \omega_3)$.

Let D' be such a model and D its pre-image under the reflection. Then $sup(D \cap \omega_3) < sup(A \cap M \cap \omega_3)$, since elements of $A \cap M$ do not move under the reflection. Also, $D \notin M$, so the is $E \in M$ of cardinality \aleph_2 which is a part of a $\Delta-$system that produces such D. Then $E \in A \cap M$. In particular, E does not move under the reflection.

Let us argue that $A \cap D' = A \cap M \cap E$.

Assume for simplicity that M, D are from a $\Delta-$ as witnessed by models E and E_0, i.e. $E_0 \in D$ and $M \cap E = D \cap E_0$.

We have $E_0 \subseteq E$, since D is below M. So, $D \subseteq E$. Then $D' \subseteq E$ and $D' \subseteq E$, as well, since E does not move under the reflection to M.

Hence, $A \cap D' \subseteq A \cap M \cap E$.

Let us show the opposite direction. So let $z \in A \cap M \cap E$. Then $z \in A \cap D \cap E_0 \subseteq A \cap D \cap E$.

So, $z \in A \cap M \cap D$. But elements of $A \cap M$ do not move under the reflection to M. So, z
does not move. However D is moved to D'. Hence, $z \in D'$, and we are done.

Turn now to a general situation. Instead of A let us deal with an arbitrary countable model H (in q) which is above M.

We proceed by considering the cases above with A replaced by H.

Case 1'. There is a new model of cardinality \aleph_1 above $\sup(A \cap M)$ which is a reflection of a model with M inside.

Let B' be such a model. Then it is a reflection into M of a model $B \in A$ with $M \in B$. Also, $M' \subseteq B' \subseteq M$. We will have $H \cap B' = H \cap M$, since if $z \in H \cap M$, then $z \in H' \cap M' = H \cap M$ and $M' \subseteq B'$.

If $M \in H$, then we are finished.

Suppose that $M \not\in H$. Then there are $M^*, D^* \in H$ which are in q, $|M^*| = \aleph_1$ and $|D^*| = \aleph_2$ such that $H \cap M = H \cap M^*$ or $H \cap M = H \cap M^* \cap D^*$.

So, $H \cap B' = H \cap M = H \cap M^*$ or $H \cap B' = H \cap M = H \cap M^* \cap D^*$.

The following is a well known fact:

Fact Let $N \preceq \langle H(\omega_3), < \rangle$.

Then $cl(N \cup \omega_2) \cap \omega_3 = \sup(N \cap \omega_3)$.

Proof. Without loss of generality we can assume that $|N| < \aleph_2$.

Let $\eta < \omega_3$ be in $cl(N \cup \omega_2)$. Then there is a Skolem term t, $a \in N$ and $\alpha < \omega_2$ such that $\eta = t(a, \alpha)$.

Consider $\gamma = \bigcup_{\beta < \omega_2} t(a, \beta)$. Then $\gamma \in N$, by elementarity, and, clearly, $\gamma \geq \eta$.

□ of the fact.

Now the following claim follows:

Claim Let B_0, B_1 be models of q of cardinality \aleph_1 and F_0, F_1 models of q of cardinality \aleph_2. Then either

1. $cl((B_0 \cap F_0) \cup \aleph_2) = cl((B_1 \cap F_1) \cup \aleph_2)$,

or

2. $cl((B_0 \cap F_0) \cup \aleph_2) \in cl((B_1 \cap F_1) \cup \aleph_2)$,

or

3. $cl((B_1 \cap F_1) \cup \aleph_2) \in cl((B_0 \cap F_0) \cup \aleph_2)$.

Proof. Just compare $\sup(B_0 \cap F_0 \cap \omega_3)$ with $\sup(B_1 \cap F_1 \cap \omega_3)$ and apply the fact above.

□ of the claim.

Case 2'. There is a new model of cardinality \aleph_2 above $\sup(A \cap M \cap \omega_3)$. 16
Let \(D' \) be such a model. Then \(A \cap D' = A \cap \text{cl}(M \cup \aleph_2) \), as was shown in Case 2 above. We have

\[
H \cap D' = H \cap A \cap D' = H \cap A \cap \text{cl}(M \cup \aleph_2) = H \cap \text{cl}(M \cup \aleph_2).
\]

If \(M \in H \), then we are done.

Suppose that \(M \notin H \).

Assume first that there is \(M^* \in N \) which is the cover of \(M \); i.e., \(N \cap M^* = N \cap M \). Let us argue that then

\[
H \cap D' = H \cap \text{cl}(M^* \cup \aleph_2).
\]

Clearly,

\[
H \cap D' \subseteq H \cap \text{cl}(M^* \cup \aleph_2),
\]

since \(H \cap D' = H \cap \text{cl}(M \cup \aleph_2) \) and \(M \subseteq M^* \).

Let show the opposite inclusion. So, let \(z \in H \cap \text{cl}(M^* \cup \aleph_2) \). Then there are a term \(t, \alpha < \omega_2 \) and \(a \in M^* \) such that \(z = t(\alpha, a) \). We have \(z, M^* \in H \), hence there are \(\alpha \in H, a \in H \cap M^* \) such that \(z = t(\alpha, a) \).

Recall that \(H \cap M^* = H \cap M \). Hence, \(a \in H \cap M \). So, \(z = t(\alpha, a) \in H \cap \text{cl}(M \cup \aleph_2) \), and we are done.

The remaining possibility is that there are \(M^* \in H \) of cardinality \(\aleph_1 \) and \(F^* \in H \) of cardinality \(\aleph_2 \) such that \(M^* \cap F^* \) is the cover of \(M \).

We claim that then

\[
H \cap D' = H \cap \text{cl}((M^* \cap F^*) \cup \aleph_2).
\]

The argument is as above, only replace \(M^* \) with \(M^* \cap F^* \).

Case 3'. There is a new model of cardinality \(\aleph_2 \) below \(\sup(A \cap M \cap \omega_3) \).

Let \(D' \) be such a model and \(D \) its pre-image under the reflection. Then \(D \cap \omega_3 < \sup(A \cap M \cap \omega_3) \), since elements of \(A \cap M \) do not move under the reflection. Also, \(D \notin M \), so the is \(E \in M \) which is the cover of \(D \). Then \(E \in A \cap M \). In particular, \(E \) does not move under the reflection.

Note that \(D' \subset D \). Thus, \(D', D \subseteq E, M \cap E = M \cap D \) and \(D' \in M \cap E \).

It was proved in Case 3 above that

\[
A \cap D' = A \cap \text{cl}((M \cap E) \cup \aleph_2).
\]

This implies that

\[
H \cap D' = H \cap A \cap D' = H \cap A \cap \text{cl}((M \cap E) \cup \aleph_2) = H \cap \text{cl}((M \cap E) \cup \aleph_2).
\]
Let now $M^* \in H$ be the cover of M and $E^* \in H$ be the cover of E.

We claim that

$$H \cap D' = H \cap cl((M^* \cap E^*) \cup \aleph_2).$$

Clearly,

$$H \cap D' = H \cap cl((M \cap E) \cup \aleph_2) \subseteq H \cap cl((M^* \cap E^*) \cup \aleph_2).$$

Let us show the opposite direction. So, let $z \in H \cap cl((M \cap E) \cup \aleph_2)$. Then there are a term t, $\alpha < \omega_2$ and $a \in M^* \cap E^*$ such that $z = t(\alpha, a)$. We have $z, M^*, E^* \in H$, hence there are $\alpha \in H, a \in H \cap M^* \cap E^*$ such that $z = t(\alpha, a)$.

Recall that $H \cap M^* = H \cap M$ and $H \cap E = H \cap E^*$. Hence, $a \in H \cap M \cap E$. So, $z = t(\alpha, a) \in H \cap cl((M \cap E) \cup \aleph_2)$, and we are done.

Case 4'. There is a new model of cardinality \aleph_1 below $\sup(A \cap M \cap \omega_3)$.

Let D' be such a model and D its pre-image under the reflection. Then $\sup(D \cap \omega_3) < \sup(A \cap M \cap \omega_3)$, since elements of $A \cap M$ do not move under the reflection. Also, $D \notin M$, so the is $E \in M$ of cardinality \aleph_2 which is a part of a $\Delta-$system that produces such D. Then $E \in A \cap M$. In particular, E does not move under the reflection.

We already proved that $A \cap D' = A \cap M \cap E$.

Then

$$H \cap D' = A \cap H \cap D' = H \cap A \cap D' = H \cap A \cap M \cap E = (H \cap M) \cap (H \cap E).$$

All the models H, M, E in q. Hence, by Definition 1.1 and the intersection properties, $H \cap M = H \cap N$ and $H \cap E = H \cap L$, for some $N, L \in H$. Here we allow N to be of the form $K \cap cl((S \cap G) \cup \omega_2)$ and L of the form $cl((X \cap Y) \cup \omega_2)$ with all components K, S, G, X, Y in H and in q.

We can conclude, applying the claim, that $H \cap M = K \cap cl((S \cap G) \cup \omega_2)$ or $H \cap M = K \cap cl((X \cap Y) \cup \omega_2)$.

□

Lemma 3.3 The forcing \mathcal{P} is $\omega-$proper, i.e., proper.

Proof.

Let $p \in \mathcal{P}$. Pick \mathfrak{M} to be an elementary submodel of $H(\chi)$ for some χ large enough such that

1. $|\mathfrak{M}| = \aleph_0$,
2. $\mathcal{P}, p \in \mathfrak{M}$,

18
Set $M = M \cap H(\omega_3)$.

We claim that $p \cap M$ is (\mathcal{P}, M)-generic. So, let $r \geq p \cap M$ and $\bar{D} \in M$ be a dense open subset of \mathcal{P}.

By extending r, if necessary, we can assume that $r \in \bar{D}$.

Let $r \upharpoonright M$ be the set of all models of r which belong to M.

We claim that r and s are compatible. Moreover $r \cup s$ is almost a condition. In order to turn it into a condition, new (i.e., those not in r) models should be mapped through Δ-systems, when this applies.

The issue is with new models of sizes \aleph_1 and \aleph_2.

Deal first with those of size \aleph_2.

So, let D be a model in r which is not in M of cardinality \aleph_2 and there is a new model E in M of cardinality \aleph_2.

Then either the ordinal $E \cap \omega_3$ is above or below $D \cap \omega_3$, which implies $D \in E$ or $E \in D$, and we are done.

Let us turn to models of cardinality \aleph_1.

Consider first the following situation:

Let $M = \mathfrak{M} \cap H(\omega_3)$.

We claim that $p \cap M$ is (\mathcal{P}, M)-generic. So, let $r \geq p \cap M$ and $\bar{D} \in M$ be a dense open subset of \mathcal{P}.

By extending r, if necessary, we can assume that $r \in \bar{D}$.

Let $r \upharpoonright M$ be the set of all models of r which belong to M.

We claim that r and s are compatible. Moreover $r \cup s$ is almost a condition. In order to turn it into a condition, new (i.e., those not in r) models should be mapped through Δ-systems, when this applies.

The issue is with new models of sizes \aleph_1 and \aleph_2.

Deal first with those of size \aleph_2.

So, let D be a model in r which is not in M of cardinality \aleph_2 and there is a new model E in M of cardinality \aleph_2.

Then either the ordinal $E \cap \omega_3$ is above or below $D \cap \omega_3$, which implies $D \in E$ or $E \in D$, and we are done.

Let us turn to models of cardinality \aleph_1.

Consider first the following situation:

D be a model in r which is not in M of cardinality \aleph_2 and B is a new model of cardinality \aleph_1 in M.

Assume that we have $E \in M$ and in s of cardinality \aleph_2 such that $M \cap E = M \cap D$. Also let $E \in B$.

Then $E = \bigcup_{i < \omega_2} E_i$ where $\langle E_i \mid i < \omega_2 \rangle$ is increasing continuous sequence of models of cardinality \aleph_1 with limit E, defined from E.

Set $\sup(M \cap \omega_2) = \eta$. Then $M \cap E = M \cap cl(E_\eta \cup \omega_2)$. Then D cannot be below $cl(E_\eta \cup \omega_2)$, since $M \cap E = M \cap D$. So, $D \cap \omega_3 \geq \eta$.

We have, $i_B = \sup(B \cap \omega_3 \in M$, and hence, $i_B < \eta$. Clearly, $B \cap E = E_{i_B}$. Hence,

$$B \cap D \subseteq B \cap E = E_{i_B} \subseteq B \cap cl(E_{i_B} \cup \omega_2) \subseteq B \cap D.$$

So, $B \cap D = B \cap E$.

Suppose now that $E = cl((X \cap Y) \cup \omega_2)$, for some models $X, Y \in M$ which are in s, $|X| = \aleph_1$ and $|Y| = \aleph_2$. Then by the strong covering property of 1.1, there is \hat{D} in X and in p which is a cover of D. Note that \hat{D} not in M. Let $\langle \hat{D}_i \mid i < \omega_2 \rangle$ be an increasing continuous sequence of models of cardinality \aleph_1 with limit \hat{D}, defined from \hat{D}. We have, by the strong covering property of 1.1, $\hat{D} \supseteq cl(\hat{D}_{\sup(M \cap \omega_2)} \cap \omega_2)$.

19
Now, $B \in M$, hence $B \cap \omega < \sup(M \cap \omega)$. Then,

$$B \cap \tilde{D} = \tilde{D}_{B \cap \omega} \subseteq \tilde{D}_{\sup(M \cap \omega)}.$$

Hence,

$$B \cap D \subseteq B \cap \tilde{D} = \tilde{D}_{B \cap \omega} \subseteq \tilde{D}_{\sup(M \cap \omega)} \subseteq D.$$

So, $B \cap D = B \cap \tilde{D}$.

Suppose now that D is a model in r which is not in M of cardinality \aleph_1 and B is a new model of cardinality \aleph_1 in M.

Assume first that D is above B. There are \tilde{D} of cardinality \aleph_1 and probably also F of cardinality \aleph_2 both in M such that \tilde{D} or $\tilde{D} \cap F$ is a cover of D for M. So, $M \cap D = M \cap \tilde{D}$ or $M \cap D = M \cap \tilde{D} \cap N$. We assumed that B is below D, hence B must be below $\tilde{D} \cap F$.

Then $B \subseteq \tilde{D} \cap F$ and $B \in \tilde{D} \cap F$. So, $B \in M \cap \tilde{D} \cap F = M \cap D$. Hence $B \subseteq D$.

Assume now that D is below B.

Consider the cover of D for M. If there is \tilde{D} of cardinality \aleph_1 which is such a cover, then $\tilde{D} \in B$, since both are on the same wide piste of M. Then $B \supseteq \tilde{D} \supseteq D$, and we are done.

Suppose now that the cover of D is $\tilde{D} \cap F$. If B is above \tilde{D} or it is below F, then we are done as above.

Consider the remaining case: B is below \tilde{D} and above F. Apply now Definition 2.1(9). It follows that there are a countable A which is equal M or above M, a $\Delta-$system triple M^*, M_0^*, M_1^* each of cardinality \aleph_1, M_1 above M_0, with witnessing models F_0, F_1 all of them in A and in p.

In addition, there is reflection of A (and it members) into M_1^*.

Here we have $B \in A \cap M^*$, and so it does not move under this reflection.

Denote by M^*, M_1^*, M_0^*, F_0^* the images of M^*, M_1^*, M_0^*, F_0 under the reflection.

Note that $F_1 \in M_1^* \cap A$, and so it does move.

Turn to B and D. In our case, D is M_0^* or $D \in M_0^*$ and B is M_1^* or $B \in M_1^*$.

Apply the isomorphism $\pi_{M_0^*, M_1^*}$ and move D to a corresponding model $D_1 \in M_1^* \cup \{M_1^*\}$. It is in p.

Then either $B = D_1$ or $B \in D_1$ or $D_1 \in B$, since we are here in the situation considered above, i.e., the covering set consists of a model of cardinality \aleph_1 and not of an intersection of such model with those of cardinality \aleph_2.

Now, $\pi_{M_1^*, M_0^*}(B)$ satisfies the same.
References