On countably closed mutually embeddable models

Moti Gitik*

October 19, 2021

Abstract

We show that a measurable cardinal is enough in order to construct two distinct countably closed mutually embeddable models. This answers a question from [1].

1 Introduction

Let M, N be two transitive models of ZFC. They called mutually embeddable iff there are elementary embeddings $j : M \to N$ and $i : N \to M$. Existence of this type of models was studied by Eskew, Friedman, Hayut and Schlutzenberg [1]. They asked the following question ([1], Question 2):

What is the consistency strength of the statement that there are two distinct countably closed mutually embeddable models?

It was shown in [1] that a μ -measurable cardinal is enough for this.

The purpose of this note is to reduce the strength to a single measurable, and so, to obtain the equiconsistency.

Namely, we will show the following:

Theorem 1.1 Assume GCH. Let κ be a measurable cardinal. Then in a generic cardinal preserving extension there are two distinct κ -closed mutually embeddable models.

The ideas of the construction go back to [2].

^{*}The work was partially supported by ISF grant No. 1216/18. We are grateful to Menachem Magidor for his helpful remarks and corrections. Y. Hayut informed us that G. Goldberg obtained the same result using similar methods.

2 Construction

Assume GCH. Let κ be a measurable cardinal. Fix a normal ultrafilter U over κ . Consider $j_U : V \to M_U \simeq \text{Ult}(V, U), j_{U^2} : V \to M_{U^2} \simeq \text{Ult}(V, U^2), j_{U^3} : V \to M_{U^3} \simeq \text{Ult}(V, U^3).$

Let $\kappa_0 = \kappa, \kappa_1 = j_U(\kappa), \kappa_2 = j_{U^2}(\kappa)$ and $\kappa_3 = j_{U^3}(\kappa)$. Also, consider $k : M_{U^2} \to M_{U^3}$ defined by setting $k(j_{U^2}(f)(\kappa, \kappa_1)) = j_{U^3}(f)(\kappa, \kappa_2)$. Then $\operatorname{crit}(k) = \kappa_1$ and $k(\kappa_1) = \kappa_2$. We will further extend U^2 , U^3 , their embeddings and k in a special way.

Define an Easton support iteration $\langle P_{\alpha}, Q_{\beta} \mid \alpha \leq \kappa + 1, \beta \leq \kappa \rangle$. Let Q_{β} be trivial unless β is an inaccessible in $V^{P_{\beta}}$ and if this is the case, then let Q_{β} be the Cohen forcing adding a Cohen function from β to β , i.e.,

 $Q_{\beta} = \{h \mid h \text{ is a partial function from } \beta \text{ to } \beta, |h| < \beta \}.$

Let $G \subseteq P_{\kappa+1}$ generic. Denote by f_{β} the Cohen function added by G at β , for every inaccessible $\beta \leq \kappa$.

We first extend U^2 and j_2 to V[G]. Proceed as follows. Work in V[G]. Pick some $G_2 \subseteq j_2(P_{\kappa+1})$ such that

- G_2 is an M_{U^2} -generic subset of $j_2(P_{\kappa+1})$,
- $G_2 \cap P_{\kappa+1} = G$,
- $f_{\kappa_2} \upharpoonright \kappa = f_{\kappa}$,
- $f_{\kappa_2}(\kappa) = \kappa_1.$

Extend, using such G_2 , j_{U^2} to an elementary embedding $j_2^* : V[G] \to M_{U^2}[G_2]$. Clearly,

$$U_2^* = \{ X \subseteq [\kappa]^2 \mid (\kappa, \kappa_1) \in j_2^*(X) \} \supseteq U^2.$$

However, note that in contrast to U^2 , U_2^* is isomorphic to a normal ultrafilter over κ which extends U. Namely, a typical element x of $M_{U^2}[G_2]$ is of the form $j_2^*(g)(\kappa, \kappa_1)$, but κ_1 itself can be represented by the function f_{κ} . Then $x = j_2^*(g)(\kappa, j_2^*(f_{\kappa})(\kappa))$.

Now, turn to M_{U^3} . We will build an M_{U^3} -generic subset G_3 of $j_{U^3}(P_{\kappa+1})$ in V[G] in a special way. First let $G_3 \cap P_{\kappa_2} = G_2 \cap P_{\kappa_2}$. Then let $f_{3,\kappa_2} : \kappa_2 \to \kappa_2$ be a Cohen generic over $M_{U^3}[G_3 \cap P_{\kappa_2}]$ such that

- 1. $f_{3,\kappa_2} \upharpoonright \kappa_1 = f_{2,\kappa_1}$, where f_{2,κ_1} is the Cohen function from κ_1 to κ_1 of G_2 ,
- 2. for every $h: \kappa_2 \to \kappa_2$ which belongs to $M_{U^2}[G_2], f_{3,\kappa_2} \neq h$.

Note that the total number of functions in $M_{U^2}[G_2]$ from κ_2 to κ_2 is κ^+ . Hence it is easy to satisfy (2).

The embedding $k: M_{U^2} \to M_{U^3}$ extends to $k_*: M_{U^2}[G_2 \cap P_{\kappa_1+1}] \to M_{U^3}[(G_2 \cap P_{\kappa_2} * f_{3,\kappa_2}].$ Let $R = P_{\kappa_3+1}/G_2 \cap P_{\kappa_2} * f_{3,\kappa_2}$ be the rest of the forcing over $M_{U^3}[(G_2 \cap P_{\kappa_2} * f_{3,\kappa_2}].$ Note that it is κ_2^{++} -closed forcing in $M_{U^3}[(G_2 \cap P_{\kappa_2} * f_{3,\kappa_2}].$

Now, by standard means, $k_* G_2 \cap P \upharpoonright (\kappa_1, \kappa_2)$ generates $M_{U^3}[G_2 \cap P_{\kappa_2} * f_{3,\kappa_2}]$ -generic subset H of R.

Let
$$G_3 = G_2 \cap P_{\kappa_2} * f_{3,\kappa_2} * H$$
.

Then k_* extends to $k^* : M_{U^2}[G_2] \to M_{U^3}[G_3]$ and j_{U^3} extends to $j_3^* : V[G] \to M_{U^3}[G_3]$, since $f_{3,\kappa_3} \upharpoonright \kappa = f_{2,\kappa_2} \upharpoonright \kappa = f_{\kappa}$.

Clealy,

$$U_3^* = \{ X \subseteq [\kappa]^3 \mid (\kappa, \kappa_1, \kappa_2) \in j_3^*(X) \} \supseteq U^3.$$

Also its ultrapower will be $M_{U^3}[G_3]$.

The only generators of U_3^* are κ and κ_1 , since in $M_{U^2}[G_2]$ we have $f_{2,\kappa_2}(\kappa) = \kappa_1$, k^* moves κ_1 to κ_2 , f_{2,κ_2} to f_{3,κ_3} and κ does not move.

Note that $\mathcal{P}(\kappa_2)^{M_{U^2}[G_2]}$ differs from $\mathcal{P}(\kappa_2)^{M_{U^3}[G_3]}$, since, f_{3,κ_2} is not in $M_{U^2}[G_2]$.¹

Now, we proceed as in Proposition 19 of [1]. Iterate V[G] using $U_3^* \omega$ -many times. The sequence $P = \langle (\kappa, \kappa_1), (\kappa_3, \kappa_4), (\kappa_6, \kappa_7), \ldots \rangle$ of the images of the generators of U_3^* will be a Prikry sequence over the final model M_{ω} of the iteration. The model $M_{\omega}[P]$ will be closed under κ -sequences. Also, $M_{\omega}[P] = M_{\omega}[j_3^*(P)]$, and hence, $j_3^* \upharpoonright M_{\omega}[P] : M_{\omega}[P] \to M_{\omega}[P]$.

Now, we do the same, but over $M_{U^2}[G_2]$, i.e., we start with $M_{U^2}[G_2]$ (the ultrapower of V[G] by U_2^*) and iterate the image $j_2^*(U_3^*) \omega$ -many times.

The sequence $P' = \langle (\kappa_2, \kappa_3), (\kappa_5, \kappa_6), (\kappa_7, \kappa_8), ... \rangle$ of the images of the generators of $j_2^*(U_3^*)$ will be a Prikry sequence over the final model N_{ω} of the iteration, by elementarity. Also, $N_{\omega}[P']$ will be closed under κ sequences in $M_{U^2}[G_2]$, and so in V[G], since $M_{U^2}[G_2]$ is such. Again, by elementarity,

$$j_2^* \upharpoonright M_{\omega}[P] : M_{\omega}[P] \to N_{\omega}[P'].$$

Note that $M_{\omega}[P] \neq N_{\omega}[P']$, since, first - as it was observed above, $\mathcal{P}(\kappa_2)^{M_{U^2}[G_2]}$ differs from $\mathcal{P}(\kappa_2)^{M_{U^3}[G_3]}$,

¹Using a further forcing, it is possible to get a difference already at the level of κ^+ .

and second - $\mathcal{P}(\kappa_2)^{M_{U^2}[G_2]} = \mathcal{P}(\kappa_2)^{N_{\omega}[P']}, \mathcal{P}(\kappa_2)^{M_{U^3}[G_3]} = \mathcal{P}(\kappa_2)^{M_{\omega}[P]}$, as the critical points of the corresponding further iterations are above κ_2 .

Finally, let us use the elementarity of $k^* : M_{U^2}[G_2] \to M_{U^3}[G_3]$ in order to conclude the argument. Thus,

$$k^* \upharpoonright N_{\omega}[P'] : N_{\omega}[P'] \to M_{\omega}[P].$$

3 Strength

Suppose that M, N are two distinct countably closed mutually embeddible inner models. Then there is $j: M \to M$ which is not the identity. Let $\kappa = \operatorname{crit}(j)$. Consider

$$U = \{ X \in \mathcal{P}(\kappa)^M \mid \kappa \in j(X) \}.$$

Then U is an M-ultrafilter which is σ -complete (in V), and hence iterable.

Suppose that the core model K of M does not have a measurable cardinal.

Apply U to $K \omega$ -many times. Then K will be moved to itself. Let κ_{ω} be the image of κ in such iteration. By elementarity, κ_{ω} will be a regular cardinal in K. However, the sequence $\langle \kappa_n \mid n < \omega \rangle$ will be in M, as M is countably closed.

Hence, κ_{ω} will be a regular cardinal of K which changed its cofinality in M. So, by the Dodd-Jensen Covering Lemma, there must be a measurable cardinal.

References

- M. Eskew, Sy-David Friedman, Y. Hayut, F. Schlutzenberg, Mutually embeddable models of ZFC,
- [2] M. Gitik, On Non-Minimal p-Points Over a Measurable Cardinal. Annals of Math. Logic 20 (1981), 269-288.