More on uniform ultrafilters over a singular cardinal.

Moti Gitik*

February 7, 2019

Abstract

We would like to show some additional results related to character of uniform ultrafilters over a singular cardinal and the ultrafilter number.

1 Some general observation.

Let us start with few simple well known observation:

Proposition 1.1 Suppose that U, W are two ultrafilters and $U \geq_{R-K} W$. Then $\text{ch}(U) \geq \text{ch}(W)$.

Proof. Let π be a projection of U to W.
Let \mathcal{U} be a generating family for U.
Then
$$W = \{ \pi'' A \mid A \in \mathcal{U} \}$$
will be a generating family for W.
\qed

The following follows:

Corollary 1.2 Suppose that U is an ultrafilter over μ, $W \leq_{R-K} U$ and $\text{ch}(W) = 2^\mu$.
Then $\text{ch}(U) = 2^\mu$, as well.

Proposition 1.3 Suppose that $U = F - \lim_{i \in I} U_i$ for an ultrafilter F over I and ultrafilters $U_i, i \in I$.
Suppose that $\langle U_i \mid i \in I \rangle$ are F–discrete, i.e. there are $X \in F$ and disjoint sets $\langle A_i \mid i \in X \rangle$

*The research was partially supported by Israel Science Foundation Grant no. 1216/18.
such that $A_i \in U_i$, for every $i \in X$.

Assume that for almost every (mod F) $i \in I$, $U_i \geq_{R-K} W_i$. Let $W = F - \lim_{i \in I} W_i$.

Then $U \geq_{R-K} W$.

Proof. Let $X \in F$ and disjoint sets $\langle A_i \mid i \in X \rangle$ such that $A_i \in U_i$, for every $i \in X$.

Assume, in addition, that for every $i \in X$, $U_i \geq_{R-K} W_i$.

Set $A = \bigcup_{i \in X} A_i$. Then, clearly, $A \in U$.

For every $i \in X$, fix a projection π_i of U_i to W_i.

Set $\pi = \bigcup_{i \in X} \pi_i$.

Then π projects U to W.

□

In sixties C. Chang and J. Keisler formulated the following notions:

Definition 1.4 Let U be an ultrafilter on a set I.

1. U is called (κ, λ) regular iff there is subset of U of cardinality λ such that any κ–members of it have empty intersection.

2. U is called λ–descendingly incomplete iff there are $\{X_\alpha \mid \alpha < \lambda\} \subseteq U$ such that $\alpha < \beta \rightarrow X_\alpha \supseteq X_\beta$ and $\bigcup_{\alpha < \lambda} X_\alpha = \emptyset$.

3. U is λ–decomposable iff there is a partition of I into disjoint $\langle I_\alpha \mid \alpha < \lambda\rangle$, so that whenever $S \subseteq \lambda$ and $|S| < \lambda$, $\bigcup_{\alpha \in S} I_\alpha \notin U$.

This subject was intensively investigated see for example [2],[9],[10],[11]. Let state some known propositions which are relevant for us here:

Proposition 1.5 U is λ–decomposable, then U is λ–descendingly incomplete.

If λ is regular, then the converse holds as well.

Proposition 1.6 An ultrafilter U over I is λ–decomposable iff it Rudin-Keisler above a uniform ultrafilter over λ.

Proposition 1.7 If U is (κ, λ)–regular ultrafilter and ν is a regular cardinal so that $\kappa \leq \nu \leq \lambda$, then U is ν–descendingly incomplete, and so, ν–decompossible.

Proof. Let $\{X_\alpha \mid \alpha < \lambda\} \subseteq U$ be a family such that the intersection of any κ–members of it is empty.
Set $Y_\gamma = \bigcup\{X_\alpha \mid \gamma \leq \alpha < \nu\}$.
Then each $Y_\gamma \in U$ and $\beta < \gamma < \nu \rightarrow Y_\beta \supseteq Y_\gamma$.

We have

$$\bigcap_{\gamma < \nu} Y_\gamma = \bigcup_{\gamma < \nu} \bigcap_{\alpha < \nu} X_{f(\alpha)} \cap f : \nu \rightarrow \nu \text{ and } \forall \alpha < \nu (f(\alpha) \geq \alpha).$$

The last union is the union of empty sets, by regularity of ν and $\kappa \leq \nu$.

Hence, $\bigcap_{\gamma < \nu} Y_\gamma = \emptyset$.

The following corollaries follows now:

Corollary 1.8 Let U be a (κ, λ)-regular ultrafilter. Then for every regular $\nu, \kappa \leq \nu \leq \lambda$, $\text{ch}(U) \geq u_\nu$.

Corollary 1.9 Let U be an ultrafilter over μ which is a (κ, λ)-regular.

Suppose that for some regular $\nu, \kappa \leq \nu \leq \lambda$, $u_\nu = 2^\mu$.

Then $\text{ch}(U) = 2^\mu$.

2 Strongly uniform ultrafilters.

Let us define some strengthening of uniformity of an ultrafilter over a singular cardinal.

Definition 2.1 Suppose that κ is a singular cardinal of cofinality η and D is a uniform ultrafilter over κ.

(a) Let $\bar{\tau} = \langle \tau_\alpha \mid \alpha < \eta \rangle$ be an increasing sequence of regular cardinals converging to κ.

Let F be an uniform ultrafilter over η.

D is called (ϑ, F)-uniform iff for every $A \in D$,

$$\{\alpha < \eta \mid |A \cap \tau_\alpha| = \tau_\alpha\} \in F.$$

(b) D is called strongly uniform iff D is (ϑ, F)-uniform for some (ϑ, F), as in (a).

Define the corresponding ultrafilter numbers:

Definition 2.2 (a) Let (ϑ, F) be as above.

$u(\kappa, \vartheta, F) = \min(\{\text{ch}(D) \mid D \text{ is } (\vartheta, F) \text{ - uniform}\}).$

(b) $u^{str}(\kappa) = \min(\{\text{ch}(D) \mid D \text{ is strongly uniform ultrafilter over } \kappa\}).$

Clearly, $u(\kappa) \leq u^{str}(\kappa)$.

Proposition 2.3 Suppose that \(\kappa \) is a singular cardinal of cofinality \(\eta \). Let \(\langle \kappa_\alpha \mid \alpha < \eta \rangle \) be an increasing sequence of cardinals converging to \(\kappa \).

Suppose that \(\delta \) is a regular cardinal such that

1. \(\kappa < \delta \leq 2^\kappa \)

2. there is an increasing sequence of regular cardinals \(\tilde{\delta} = \langle \delta_\alpha \mid \alpha < \eta \rangle \) such that

 (a) \(\kappa_\alpha < \delta_\alpha \leq \kappa_{\alpha+1} < \delta_{\alpha+1} \), for every \(\alpha < \eta \),

 (b) \(\text{tcf}(\prod_{\alpha<\eta} \delta_\alpha, <_F) = \delta \), for some ultrafilter \(F \) on \(\eta \) which extends the filter of co-bounded subsets of \(\eta \).

Let \(D \) be a \((\tilde{\delta}, F) \)-uniform ultrafilter over \(\kappa \).

Then \(\text{ch}(D) \geq \delta \).

Proof. Let us argue that \(\text{ch}(D) \geq \delta \).

Suppose otherwise. Let \(W \) be a generating family for \(D \) of cardinality less than \(\delta \).

Let \(\langle f_\xi \mid \xi < \delta \rangle \) be a scale witnessing \(\text{tcf}(\prod_{\alpha<\eta} \delta_\alpha, <_F) = \delta \).

For every \(\xi < \delta \) and \(i < \eta \) set \(A_{\xi,i} = \delta_i \setminus f_\xi(i) \).

Let \(A_\xi = \bigcup_{i<\eta} A_{\xi,i} \).

Then, \(A_\xi \in D \), since otherwise \(B := \kappa \setminus A_\xi \in D \) and, so, by \((\tilde{\delta}, F) \)-uniformity, the set

\[X := \{ i < \eta \mid |B \cap \delta_i| = \delta_i \} \in F. \]

But, each \(\delta_i \) is a regular cardinal, hence, if \(i \in X \), then \(B \cap \delta_i \) is unbounded in \(\delta_i \). In particular, \((B \cap \delta_i) \cap A_{\xi,i} \neq \emptyset \). Which is impossible, since \(B \) is a complement of \(A_\xi \supseteq A_{\xi,i} \).

We assumed that \(|W| < \delta \), so there is a single \(A \in W \) such that for \(\delta \)-many \(\xi \)'s we have \(A \subseteq^* A_\xi \).

Set \(A_i = A \cap \delta_i \), for every \(i < \eta \).

Without loss of generality, using \((\tilde{\delta}, F) \)-uniformity, we can assume that \(|A_i| = \delta_i \), for every \(i < \eta \). Define, for every \(i < \eta \), \(\rho_i \) to be the \(\kappa_i \)-th element of \(A_i \).

Then there is \(\xi^* < \delta \) such that for every \(\xi, \xi^* \leq \xi \leq \delta \), the set

\[\{ i < \eta \mid f_\xi(i) > \rho_i \} \in F. \]

Now we pick any \(\xi, \xi^* \leq \xi < \delta \) with \(A \subseteq^* A_\xi \). Then, for most (mod \(F \)) \(i \)'s, \(|A_i \setminus A_{\xi,i}| \geq \kappa_i \).

Hence, \(|A \setminus A_\xi| = \kappa \), which is impossible.
Contradiction.

Let present an other condition that prevents the character of being too small.

Proposition 2.4 Suppose that κ is a singular cardinal of cofinality η. Let $\langle \kappa_\alpha \mid \alpha < \eta \rangle$ be an increasing sequence of cardinals converging to κ.

Suppose that δ is a regular cardinal such that

1. $\kappa < \delta \leq 2^\kappa$

2. there is an increasing sequences of regular cardinals $\vec{\tau} = \langle \tau_\alpha \mid \alpha < \eta \rangle$ such that

 (a) $\kappa_\alpha \leq \tau_\alpha < 2^{\tau_\alpha} < \kappa_{\alpha+1}$, for every $\alpha < \eta$,

 (b) $\text{tcf}(\prod_{\alpha < \eta} \delta_\alpha, <_F) = \delta$, where $\delta_\alpha = 2^{\tau_\alpha}$ and F is an ultrafilter on η which extends the filter of co-bounded subsets of η,

 (c) $r(\tau_\alpha) = \delta_\alpha$ (non-splitting number), i.e. whenever $S \subseteq [\tau_\alpha]^{\tau_\alpha}$ of cardinality $< \delta_\alpha$, then there is $a \in [\tau_\alpha]^{\tau_\alpha}$ such that for every $s \in S$, $|s \cap a| = |s \setminus a| = \tau_\alpha$. The meaning is that a splits s. In particular, if $2^{\tau_\alpha} = \tau_\alpha^+$, then $r(\tau_\alpha) = \tau_\alpha^+ = \delta_\alpha$.

Let D be a $(\vec{\tau}, F)$–uniform ultrafilter over κ.

Then $\text{ch}(D) \geq \delta$.

Proof. Let us argue that $\text{ch}(D) \geq \delta$.

Suppose otherwise. Let \mathcal{W} be a generating family for D of cardinality less than δ.

Let $i < \eta$. Using $s(\tau_i) = \delta_i = 2^{\tau_i}$, we define a sequence $\langle A_{i\beta} \mid \beta < \delta_i \rangle$ of subsets of τ_i such that

1. for every $a \in [\tau_i]^{\tau_i}$ there is $\beta < \delta_i$ with $a = A_{i\beta}$,

2. each set $A_{i\beta}$ appears δ_i–many times in the sequence,

3. for every $\beta < \delta_i$ there is $\gamma, \beta \leq \gamma < \delta_i$ such that $A_{i\gamma}$ splits $\langle A_{i\beta'} \mid \beta' < \beta \rangle$.

Let $\langle f_\xi \mid \xi < \delta \rangle$ be a scale witnessing $\text{tcf}(\prod_{\alpha < \eta} \delta_\alpha, <_F) = \delta$.

Let $\langle B_\zeta \mid \zeta < \rho < \delta \rangle$ be an enumeration of \mathcal{W}.

For every $\zeta < \rho$ and $i < \eta$ set $B_{\zeta i} = B_\zeta \cap \tau_i$.

Then there is $X_\zeta \in F$ such that for every $i \in X_\zeta, |B_{\zeta i}| = \tau_i$.

Pick $\alpha_{\zeta} < \delta_i$ to be such that $B_{\zeta_i} = A_{i \alpha_{\zeta_i}}$.

Define a function $g_{\zeta} \in \prod_{i < \eta} \delta_i$ by setting $g_{\zeta}(i) = \alpha_{\zeta_i}$, if $i \in X_{\zeta}$ and $g_{\zeta}(i) = 0$, otherwise.

Consider $\langle g_{\zeta} \mid \zeta < \rho \rangle$. We have $\rho < \delta$ and $\langle f_{\zeta} \mid \xi < \delta \rangle$ a scale in $(\prod_{\alpha < \eta} \delta_\alpha, <_F)$.

Consider $\langle g_{\zeta} \mid \zeta < \rho \rangle$. We have $\rho < \delta$ and $\langle f_{\zeta} \mid \xi < \delta \rangle$ a scale in $(\prod_{\alpha < \eta} \delta_\alpha, <_F)$.

So, there is $\xi^* < \delta$, such that for every $\zeta < \rho$, the set

$$Z = \{ i < \eta \mid g_{\zeta}(i) < f_{\zeta^*}(i) \} \in F.$$

Suppose for simplicity that $Z = \eta$. Let $i < \eta$. Consider the sequence $\langle A_{i \beta} \mid \beta < f_{\zeta^*}(i) \rangle$. We have $s(\tau_i) = \delta_i > f_{\zeta^*}(i)$, so there is $\gamma_i < \delta_i$ such that A_{γ_i} splits $\langle A_{i \beta} \mid \beta < f_{\zeta^*}(i) \rangle$.

Let \tilde{A}_{γ_i} denotes $\kappa_i \setminus (A_{\gamma_i} \cup \delta_{i-1})$.

Set $A = \bigcup_{i < \eta} A_{\gamma_i}$ and $\tilde{A} = \bigcup_{i < \eta} \tilde{A}_{\gamma_i}$.

D is an ultrafilter, hence $A \in D$ or $\tilde{A} \in D$.

Suppose, for example, that $A \in D$. Then there is $\zeta < \rho$ such that $B_{\zeta} \subseteq^* A$.

We have $A \cap B_{\zeta} \in D$, and so, by (τ, F)—uniformity, the set

$$X = \{ i < \omega \mid A \cap B_{\zeta} \cap \tau_i \text{ is unbounded in } \tau_i \}$$

is infinite. Clearly, $X \subseteq X_\zeta$.

Now, $|B_{\zeta} \setminus A| < \kappa$ will imply that for all but boundedly many $i \in X$, $B_{\zeta_i} = B_{\zeta} \cap \tau_i \subseteq^* A \cap \tau_i$.

This is impossible, since B_{ζ_i} appears in $\langle A_{i \beta} \mid \beta < f_{\zeta^*}(i) \rangle$ and A_{γ_i} splits this family, for every $i < \eta$.

Contradiction.

\[\square\]

3 On character of uniform ultrafilters of the form $F - \lim_{\alpha < \eta} U_{\alpha}$.

Let us combine now regularity properties with the results of the previous section in order to produce lower bounds on the characters of ultrafilters of the form $F - \lim_{\alpha < \eta} U_{\alpha}$ over singular cardinals.

Proposition 3.1 Suppose that κ is a singular cardinal of cofinality η. Let $\langle \kappa_\alpha \mid \alpha < \eta \rangle$ be an increasing sequence of cardinals converging to κ.

Suppose that δ is a regular cardinal such that

1. $\kappa < \delta \leq 2^\kappa$
2. there is an increasing sequence of regular cardinals \(\langle \delta_\alpha \mid \alpha < \eta \rangle \) such that

(a) \(\kappa_\alpha < \delta_\alpha \leq \kappa_{\alpha+1} \), for every \(\alpha < \eta \),

(b) \(\text{tcf}(\prod_{\alpha<\eta} \delta_\alpha, <_F) = \delta \), for some ultrafilter \(F \) on \(\eta \) which extends the filter of co-bounded subsets of \(\eta \).

Suppose that \(U = F - \lim \langle U_\alpha \mid \alpha < \eta \rangle \) is such that for every \(\alpha < \eta \)

1. \(U_\alpha \) is a uniform ultrafilter over a cardinal \(\mu_\alpha \),

2. \(\delta_\alpha \leq \mu_\alpha < \kappa_{\alpha+1} \),

3. \(U_\alpha \) is \((\delta_\alpha, \mu_\alpha) \)-regular or just \(\delta_\alpha \)-decomposable.

Then \(U \) is a uniform ultrafilter over \(\kappa \) and \(\text{ch}(U) \geq \delta \).

Proof. Let \(\alpha < \eta \). By Proposition 1.7, \(U_\alpha \) is \(\delta_\alpha \)-decomposable. Then, by Proposition 1.6, \(U_\alpha \geq_{R-K} D_\alpha \), for some uniform ultrafilter \(D_\alpha \) over \(\delta_\alpha \).

Set \(D = F - \lim \langle D_\alpha \mid \alpha < \eta \rangle \). Then, by Proposition 1.3, \(U \geq_{R-K} D \) and by Proposition 2.3, \(\text{ch}(D) \geq \delta \). Now, by Proposition 1.1, \(\text{ch}(U) \geq \delta \).

\(\square \)

The next proposition is similar:

Proposition 3.2 Suppose that \(\kappa \) is a singular cardinal of cofinality \(\eta \). Let \(\langle \kappa_\alpha \mid \alpha < \eta \rangle \) be an increasing sequence of cardinals converging to \(\kappa \).

Suppose that \(\delta \) is a regular cardinal such that

1. \(\kappa < \delta \leq 2^\kappa \),

2. there is an increasing sequences of regular cardinals \(\langle \tau_\alpha \mid \alpha < \eta \rangle \) such that

(a) \(\kappa_\alpha < \tau_\alpha < 2^{\tau_\alpha} < \kappa_{\alpha+1} \), for every \(\alpha < \eta \),

(b) \(\text{tcf}(\prod_{\alpha<\eta} \delta_\alpha, <_F) = \delta \), where \(\delta_\alpha = 2^{\tau_\alpha} \) and \(F \) is an ultrafilter on \(\eta \) which extends the filter of co-bounded subsets of \(\eta \),

(c) \(\text{r}(\tau_\alpha) = \delta_\alpha \).

In particular, if \(2^{\tau_\alpha} = \tau_\alpha^+ \), then \(\text{r}(\tau_\alpha) = \tau_\alpha^+ = \delta_\alpha \).

Suppose that \(U = F - \lim \langle U_\alpha \mid \alpha < \eta \rangle \) is such that for every \(\alpha < \eta \)

1. \(U_\alpha \) is a uniform ultrafilter over a cardinal \(\mu_\alpha \),
2. \(\delta_\alpha \leq \mu_\alpha < \kappa_{\alpha+1} \).

3. \(U_\alpha \) is \((\tau_\alpha, \mu_\alpha)\)-regular or just \(\tau_\alpha\)-decompossible.

Then \(U \) is a uniform ultrafilter over \(\kappa \) and \(\text{ch}(U) \geq \delta \).

Proof. Let \(\alpha < \eta \). By Proposition 1.7, \(U_\alpha \) is \(\delta_\alpha \)-decompossible. Then, by Proposition 1.6, \(U_\alpha \geq R - K D_\alpha \), for some uniform ultrafilter \(D_\alpha \) over \(\tau_\alpha \).

Set \(D = F \lim (D_\alpha \mid \alpha < \eta) \). Then, by Proposition 1.3, \(U \geq R - K D \) and by Proposition 2.4, \(\text{ch}(D) \geq \delta \). Now, by Proposition 1.1, \(\text{ch}(U) \geq \delta \).

\(\square \)

Corollary 3.3 Let \(\kappa, U, \delta \) be as in Propositions 3.1 or 3.2. Suppose that \(\delta = 2^\kappa \).

Then \(\text{ch}(U) = 2^\kappa \).

Assume as above that \(\kappa \) is a singular cardinal of cofinality \(\eta \). Define now a cardinal invariant of \(\kappa \) which corresponds to ultrafilters of the form \(F \lim (U_\alpha \mid \alpha < \eta) \).

Definition 3.4 Let \(u'(\kappa) \) be the smallest possible cardinality of \(\text{ch}(U) \), such that \(U \) is a uniform ultrafilter over \(\kappa \) of a form \(F \lim (U_\alpha \mid \alpha < \eta) \), where \(F \) is a uniform ultrafilter over \(\eta \) and \(U_\alpha \) is a uniform ultrafilter over a regular cardinal \(< \kappa \), for every \(\alpha < \eta \).

Clearly, \(u(\kappa) \leq u^{\text{str}}(\kappa) \leq u'(\kappa) \). Note that in models of [3], [4], \(u(\kappa) = u^{\text{str}}(\kappa) = u'(\kappa) = \kappa^+ \). However, \(\kappa \) in this models is limit of measurables. In [5], a model with \(u(\aleph_\omega) = \aleph_{\omega+1} < 2^{\aleph_\omega} \) was constructed. It turns out that \(u(\kappa) = u^{\text{str}}(\kappa) < u'(\kappa) \) in this model. Namely, the following always holds:

Proposition 3.5 Assume that \(\aleph_\omega \) is a strong limit cardinal and \(2^{\aleph_\omega} < \aleph_{\omega+1} \).

Then \(u'(\aleph_\omega) = 2^{\aleph_\omega} \).

Proof. If \(2^{\aleph_\omega} = \aleph_{\omega+1} \), then the statement is obvious.

So, suppose that \(2^{\aleph_\omega} > \aleph_{\omega+1} \).

Then \(2^{\aleph_\omega} \) is a regular cardinal, since \(2^{\aleph_\omega} < \aleph_{\omega+1} \), by S. Shelah [13] and by König, \(\text{cof}(2^{\aleph_\omega}) > \aleph_\omega \).

Again, by S. Shelah [13], Ch.IX, 1.8,1.9 there is an increasing sequence \(\langle n_i \mid i < \omega \rangle \) such that

\[
\text{tcf}(\prod_{i<\omega} \aleph_{n_i}) = 2^{\aleph_\omega}.
\]
Let now $U = F - \lim \langle U_i \mid i < \omega \rangle$ be as in Definition 3.4. Suppose that U_i is a uniform ultrafilter over \aleph_{m_i} for every $i < \omega$. Let $i < \omega$. By K. Kunen and K. Prikry [10], U_i is \aleph_k-descendingly incomplete for every $k \leq m_i$. Hence, it is \aleph_k-decomposable, for every $k \leq m_i$. Now we can apply Proposition 3.1 and to conclude that $u'(\aleph_\omega) = 2^{\aleph_\omega}$.

Remark 3.6 It is possible to strengthen 3.5 a bit and to relax the requirement on \aleph_ω being a strong limit, since here $U = F - \lim \langle U_i \mid i < \omega \rangle$ implies that $U \geq_{R-K} F$, and so, by 1.1, $\text{ch}(U) \geq \text{ch}(F)$.

4 On character of uniform ultrafilters of the form $F - \lim_{\alpha < \eta} U_\alpha$, square principles and inner models.

The following crucial observation was made by D. Donder [1]:

Theorem 4.1 (Donder)

Let $\kappa > \omega$ be regular and assume that $\Box(\kappa)$ holds. Then every uniform ultrafilter U on κ is (ω, τ)-regular for every $\tau < \kappa$.

Let us combine this with the results of the previous section.

Proposition 4.2 Suppose that κ is a singular cardinal of cofinality η. Let $\langle \kappa_\alpha \mid \alpha < \eta \rangle$ be an increasing sequence of cardinals converging to κ. Suppose that δ is a regular cardinal such that

1. $\kappa < \delta \leq 2^\kappa$

2. there is an increasing sequence of regular cardinals $\langle \delta_\alpha \mid \alpha < \eta \rangle$ such that

 (a) $\kappa_\alpha < \delta_\alpha \leq \kappa_{\alpha+1}$, for every $\alpha < \eta$,

 (b) $\text{tcf}(\prod_{\alpha < \eta} \delta_\alpha, <_F) = \delta$, for some ultrafilter F on η which extends the filter of co-bounded subsets of η,

Suppose that $U = F - \lim \langle U_\alpha \mid \alpha < \eta \rangle$ is such that for every $\alpha < \eta$

1. U_α is a uniform ultrafilter over a cardinal μ_α,

2. $\delta_\alpha \leq \mu_\alpha < \kappa_{\alpha+1}$.
3. $\Box(\mu_\alpha)$ holds.

Then U is a uniform ultrafilter over κ and $\text{ch}(U) \geq \delta$.

Proof. We have μ_α is not weakly compact cardinal in \mathcal{K}, so $\Box(\mu_\alpha)$ holds in \mathcal{K}, by E. Schimmerling and M. Zeman [15].

In addition $(\mu_\alpha^+)^\mathcal{K} = \mu_\alpha^+$, hence the sequence which witnesses $\Box(\mu_\alpha)$ in \mathcal{K} will witness it in V, as well.

By 4.1, U_α will be (ω, μ_α)-regular. Now, 3.1 applies.

\Box

Similarly, using 3.2:

Proposition 4.3 Suppose that κ is a singular cardinal of cofinality η. Let $\langle \kappa_\alpha \mid \alpha < \eta \rangle$ be an increasing sequence of cardinals converging to κ.

Suppose that δ is a regular cardinal such that

1. $\kappa < \delta \leq 2^\kappa$

2. there is an increasing sequences of regular cardinals $\langle \tau_\alpha \mid \alpha < \eta \rangle$ such that

 (a) $\kappa_\alpha \leq \tau_\alpha < 2^{\tau_\alpha} < \kappa_{\alpha+1}$, for every $\alpha < \eta$,

 (b) $\text{tcf}(\prod_{\alpha < \eta} \delta_\alpha, <_F) = \delta$, where $\delta_\alpha = 2^{\tau_\alpha}$ and F is an ultrafilter on η which extends the filter of co-bounded subsets of η,

 (c) $r(\tau_\alpha) = \delta_\alpha$.

 In particular, if $2^{\tau_\alpha} = \tau_\alpha^+$, then $r(\tau_\alpha) = \tau_\alpha^+ = \delta_\alpha$.

Suppose that $U = F - \lim \langle U_\alpha \mid \alpha < \eta \rangle$ is such that for every $\alpha < \eta$

1. U_α is a uniform ultrafilter over a cardinal μ_α,

2. $\delta_\alpha \leq \mu_\alpha < \kappa_{\alpha+1}$,

3. $\Box(\mu_\alpha)$ holds.

Then U is a uniform ultrafilter over κ and $\text{ch}(U) \geq \delta$.

Corollary 4.4 Let κ be a singular cardinal of cofinality η.

Suppose that there is an increasing sequence of regular cardinals $\langle \delta_\alpha \mid \alpha < \eta \rangle$ such that

1. $\kappa = \bigcup_{\alpha < \eta} \delta_\alpha$,
2. $\text{tcf}(\prod_{\alpha<\eta} \delta_{\alpha}, <_{\mu\alpha}) = 2^\kappa$, where J^{bd} is the ideal of all bounded subsets of η.

Suppose that $U = F - \lim (U_\alpha | \alpha < \eta)$, for some ultrafilter F over η which includes all co-bounded subsets of η, is such that for every $\alpha < \eta$

1. U_α is a uniform ultrafilter over a cardinal μ_α,
2. $\delta_\alpha \leq \mu_\alpha < \kappa_{\alpha+1}$,
3. $\square(\mu_\alpha)$ holds.

Then U is a uniform ultrafilter over κ and $\text{ch}(U) = 2^\kappa$.

Assume now that there is no inner model with a Woodin cardinal and then use the core model K of R. Jensen and J. Steel [8].

Even under a weaker assumption that there is no inner model with class many strong cardinals, which handled by R. Schindler [12], there are plenty overlapping extenders relevant for consistency results of [3], [4].

By results of E. Schimmerling, M. Zeman [15] and M. Zeman [17], \square_κ holds in K for every κ and $\square(\kappa)$ holds in K for every regular $\kappa > \omega$ which is not weakly compact.

In particular, if $\kappa^+ = (\kappa^+)^K$, then \square_κ holds.

E. Schimmerling proved in [14] that if both $\square(\kappa)$ and \square_κ fail and $\kappa \geq 2^{\aleph_0}$, then there is an inner model with Woodin cardinal (and more). He showed also that if κ is a limit cardinal and $\kappa^+ > (\kappa^+)^K$, then $\square(\kappa)$ (see 5.1.1, 4.7 of [14]).

5 A remark on $\mathfrak{r}(\kappa)$.

Note that if U is a uniform ultrafilter over κ and \mathcal{W} is its bases, then \mathcal{W} is a non-splitting family. Namely, if $B \in [\kappa]^\kappa$, then B does not split \mathcal{W}, since $B \in U$ or $\kappa \setminus B \in U$, and so contains a member of \mathcal{W}.

This implies that $\mathfrak{r}(\kappa) \leq \mu(\kappa)$.

We have seen in the previous section that $\mu'(\kappa)$ is related to $\square(\tau)$’s below κ. Failure of such square principle implies weak compactness in the core model of the corresponding cardinal.

On the other hand T. Suzuki [16] observed that:

a regular uncountable cardinal τ is a weakly compact iff $\mathfrak{s}(\tau) \geq \tau^+$;

where $\mathfrak{s}(\tau)$ a splitting number of τ is

$$\min\{|S| \mid S \subseteq [\tau]^\tau, \text{for every } x \in [\tau]^\tau \text{ there is } s \in S, |x \setminus s| = |x \setminus s| = \tau\}.$$
The next proposition indicates the connection of $r(\kappa)$ to weak compactness below.

Proposition 5.1 Suppose that κ is a singular cardinal of cofinality η. Let $\langle \kappa_\alpha \mid \alpha < \eta \rangle$ be an increasing sequence of cardinals converging to κ. Suppose that δ is a regular cardinal such that

1. $\kappa < \delta \leq 2^\kappa$

2. there is an increasing sequences of regular cardinals $\langle \tau_\alpha \mid \alpha < \eta \rangle$ such that

 (a) $\kappa_\alpha \leq \tau_\alpha < 2^{\tau_\alpha} < \kappa_{\alpha+1}$, for every $\alpha < \eta$,

 (b) $\text{tcf}(\prod_{\alpha<\eta} \tau_\alpha, <_{J^{\mathfrak{u}}}) = \delta$,

 (c) $\text{tcf}(\prod_{\alpha<\eta} \delta_\alpha, <_{J^{\mathfrak{u}}}) = \delta$, where $\delta_\alpha = 2^{\tau_\alpha}$,

 (d) $s(\tau_\alpha) = \delta_\alpha$.

In particular, τ_α must be at least weakly compact here.

If $2^{\tau_\alpha} = \tau_\alpha^{+}$, then we can assume just that τ_α is a weakly compact.1

Then $r(\kappa) \leq \delta$.

Proof.

Let $\langle f_\xi \mid \xi < \delta \rangle$ be a scale which witnesses $\text{tcf}(\prod_{\alpha<\eta} \delta_\alpha, <_{\mathfrak{F}}) = \delta$ and $\langle h_\zeta \mid \zeta < \delta \rangle$ be a scale which witnesses $\text{tcf}(\prod_{\alpha<\eta} \tau_\alpha, <_{\mathfrak{F}}) = \delta$.

Let $i < \eta$. Fix an enumeration $\langle A^i_{\beta} \mid \beta < \delta_\alpha \rangle$ of all subsets of τ_α of cardinality τ_α.

Define a sequence $\langle A_\alpha \mid \alpha < \delta \rangle$ of subsets of κ of cardinality κ by induction as follows:

Suppose that $\alpha < \delta$ and $A_{\alpha'}$ is defined for every $\alpha' < \alpha$.

Let $i < \eta$. Consider $f_\alpha(i)$. It is an ordinal less than δ_i. So, $\langle A^i_\beta \mid \beta < f_\alpha(i) \rangle$ is not a splitting family, since $s(\tau_i)) = \delta_i$. Hence, there is $\beta(\alpha, i), f_\alpha(i) < \beta(\alpha, i) < \delta_i$ such that $A^i_{\beta(\alpha, i)}$ cannot be split by any A^i_{β} with $\beta < f_\alpha(i)$.

Set $A_\alpha = \bigcup_{i<\eta}(A^i_{\beta(\alpha, i)} \cap (h_\alpha(i), \tau_i))$.

This completes the induction.

For every $X \subseteq \eta, \alpha, \zeta < \delta$ set

$$A(\alpha, X, \zeta) = \bigcup_{i \in X}(A^i_{\beta(\alpha, i)} \cap (h_\zeta(i), \tau_i)).$$

In particular, $A_\alpha = A(\alpha, \eta, \alpha)$.

1Note that in [3], [4], measurability was used instead in order to get an upper bound for $u'(\kappa)$.
Consider now
\[Z = \{ A(\alpha, X, \zeta) \mid \alpha, \zeta < \delta, X \subseteq \eta \}. \]
We claim that \(Z \) is an unsplittable family.
Suppose otherwise. Then there is \(B \subseteq \kappa, |B| = \kappa \) such that for every \(A \in Z \), both \(A \cap B \) and \(A \setminus B \) have cardinality \(\kappa \).
Note first that for unboundedly many \(i < \eta \), \(|B \cap \tau_i| = \tau_i \). Just otherwise, for all but boundedly many \(i \)'s, there is \(\rho_i < \tau_i \) such that \(B \cap \tau_i \subseteq \rho_i \).
Then there is \(\alpha < \delta \) such that for all but boundedly many \(i \)'s, \(\rho_i < h_\alpha(i) \). Hence, there is \(i^* < \eta \) such that for every \(i, i^* \leq i < \eta, B \cap A_i \cap \tau_i \subseteq \tau_i \).
This is impossible, since \(|B \cap A_\alpha| = \kappa \).
Assume now for simplicity that for every \(i < \eta, |B \cap \tau_i| = \tau_i \).
Then for every \(i < \eta \), there is \(\beta_i < \delta_i \) such that \(B \cap \tau_i = A^i_{\beta_i} \).
Find \(\alpha < \delta \) such that for all but boundedly many \(i \)'s, \(f_\alpha(i) > \beta_i \).
Again, assume for simplicity that this holds for every \(i < \eta \). Recall that by the choice of \(A^i_{\beta(\alpha,i)} \), it cannot be split by any \(A^j_\beta \) with \(\beta < f_\alpha(i) \). In particular, by \(B \cap \tau_i = A^i_{\beta_i} \).
So, either \(A^i_{\beta(\alpha,i)} \cap B \cap \tau_i \) is bounded in \(\tau_i \) or \(A^i_{\beta(\alpha,i)} \setminus (B \cap \tau_i) \) is bounded in \(\tau_i \).
Suppose for example that the set
\[X = \{ i < \eta \mid A^i_{\beta(\alpha,i)} \cap B \cap \tau_i \text{ is bounded in } \tau_i \} \]
is cardinality \(\eta \).
Let for every \(i \in X, \gamma_i \leq \tau_i \) be a bound of \(A^i_{\beta(\alpha,i)} \cap B \cap \tau_i \). If \(i \in \eta \setminus X \), then set \(\gamma_i = 0 \).
There is \(\zeta < \delta \) and \(i^* < \eta \) such that for every \(i, i^* \leq i < \eta, h_\zeta(i) > \gamma_i \).
Then, for every \(i \in X \setminus i^* \), \(A^i_{\beta(\alpha,i)} \cap B \cap \tau_i \subseteq h_\zeta(i) \).
But then \(A(\alpha, X, \zeta) \cap B \subseteq \tau_i \) is bounded. Contradiction.

Define \(\tau^{str}(\kappa) \) to be
\[\min(\{|X| \mid X \text{ is an unsplittable family,} \} \] such that for some increasing sequence of regular cardinals below \(\kappa \),
\[\bar{\tau} = \langle \tau_\alpha \mid \alpha < \text{cof}(\kappa), \text{ for every } A \in X, \text{ for unboundedly many } \alpha < \text{cof}(\kappa), |A \cap \tau_\alpha| = \tau_\alpha \rangle \} \).
Clearly, \(\kappa^+ \leq \tau(\kappa) \leq \tau^{str}(\kappa) \).
The proposition above actually shows that \(\tau^{str}(\kappa) \leq \delta \).
References

[6] M. Gitik, The negation of SCH from $o(\kappa) = \kappa^{++}$, APAL,

[12] R. Schindler, Core model

[15] E. Schimmerling and M. Zeman, Square in Core Models,

[16] T. Suzuki, About splitting numbers,
[17] M. Zeman, Global Square,