An other method for constructing models of not approachability and not SCH.

Moti Gitik

May 28, 2018

At least to the best of our knowledge, the only method to get a singular strong limit cardinal κ such that $\neg AP_{\kappa^+}$ and $2^{\kappa} > \kappa^+$ was the one introduced in [5]. Here a different approach will be suggested.

We will use the method for blowing up the power of a singular cardinal of [3] in order to get models of not approachability and not SCH. The advantage of the present technique is that no cardinal is collapsed or changes its cofinality.

1 A model in which both AP and SCH fail at a singular cardinal.

We will combine the forcing of [3] with the approach of Section 3 of [4].

Let κ be a supercompact cardinal. Fix a regular cardinal $\eta < \kappa$. Let $\langle \kappa_{\alpha} \mid \alpha < \eta \rangle$ be an increasing sequence of cardinals and let $\langle E_{\alpha} \mid \alpha < \eta \rangle$ be a sequence of extenders such that for every $\alpha < \eta$

- 1. $\kappa < \kappa_0$,
- 2. $E(\alpha)$ is a $(\kappa_{\alpha}, \bar{\kappa}_{\eta}^{++})$ -extender, where $\bar{\kappa}_{\eta} = \bigcup_{\alpha < \eta} \kappa_{\alpha}$,
- 3. $E(\alpha) \triangleleft E(\alpha+1)$.

Let $\langle \mathcal{P}_{\langle E(\alpha) | \alpha < \eta \rangle}, \leq, \leq^* \rangle$ be the forcing of Section 2 of [3].

For every limit $\alpha \leq \eta$ denote $\bar{\kappa}_{\alpha} = \bigcup_{\alpha' < \alpha} \kappa_{\alpha'}$.

By [3], Section 2, it has the following properties:

¹Section 3 of [4] contains an essential flow, which is due solely to the first author, but it turns out that with the forcing of [3], it is possible to make the idea work.

- 1. $\langle \mathcal{P}_{\langle E(\alpha) | \alpha < \eta \rangle}, \leq, \leq^* \rangle$ is a Prikry type forcing,
- 2. the forcing $\langle \mathcal{P}_{\langle E(\alpha) | \alpha < \eta \rangle}, \leq \rangle$:
 - (a) blows up the power of $\bar{\kappa}_{\eta}$ to $\bar{\kappa}_{\eta}^{++}$,
 - (b) blows up the power of $\bar{\kappa}_{\alpha}$ above $\bar{\kappa}_{\alpha}^{+}$, for every limit $\alpha < \eta$,
 - (c) preserves cardinals and cofinalities,
 - (d) preserves strong limitness of each of κ_{α} 's, for every $\alpha \leq \eta$, and $\bar{\kappa}_{\alpha}$'s, for every limit $\alpha \leq \eta$
 - (e) does not add new subsets to κ_0 .
- 3. For every $p \in \mathcal{P}$ and every \mathcal{P} -name ζ of an ordinal, there is $p^* \geq^* p$ such that the number of possible decisions of ζ above p^* is at most λ . I.e. $|\{\xi \mid \exists q \geq p^*(q \Vdash_{\langle \mathcal{P}, \leq \rangle} \zeta = \xi)\}| \leq \lambda$.
- 4. The forcing $\langle \mathcal{P}_{\langle E(\alpha) | \alpha < \eta \rangle}, \leq^* \rangle$ is equivalent to the product of Cohen forcings $Cohen(\kappa_{\alpha}^+, \bar{\kappa}_{\eta}^{++})$.

Namely, we just remove or ignore sets of measure one A^p_{α} in each coordinate $p(\alpha) = \langle f^p_{\alpha}, A^p_{\alpha} \rangle$ of a condition $p = \langle p(\alpha) \mid \alpha < \eta \rangle \in \mathcal{P}_{\langle E(\alpha) \mid \alpha < \eta \rangle}$. More precisely, if $p = \langle p(\alpha) \mid \alpha < \eta \rangle$ and $q = \langle q(\alpha) \mid \alpha < \eta \rangle$ are in $\mathcal{P}_{\langle E(\alpha) \mid \alpha < \eta \rangle}$, then set $p \sim q$ iff for every $\alpha < \eta$

- (a) $p(\alpha)$ is non-pure iff $q(\alpha)$ is non-pure. Require then that $p(\alpha) = q(\alpha)$.
- (b) If $p(\alpha) = \langle f_{\alpha}^p, A_{\alpha}^p \rangle$, i.e. is pure, then $q(\alpha) = \langle g_{\alpha}^p, B_{\alpha}^p \rangle$ is pure as well, and require that $f_{\alpha}^p = g_{\alpha}^p$.

Then $\langle \mathcal{P}_{\langle E(\alpha) | \alpha < \eta \rangle} / \sim, \leq^* \rangle$ is the product of Cohen forcings.

Let us assume (or make) the supercompact cardinal κ was made indestructible under κ -directed closed forcings using the Laver forcing. Denote by G a generic subset of the Laver forcing.

Then force with $\langle \mathcal{P}_{\langle E(\alpha) | \alpha < \eta \rangle}, \leq \rangle$. Denote further $\mathcal{P}_{\langle E(\alpha) | \alpha < \eta \rangle}$ by \mathcal{P} . We claim that the resulting generic extension is as desired, i.e. it satisfies $\neg AP_{\bar{\kappa}_{\eta}^{+}}$ and $2^{\bar{\kappa}_{\eta}} = \bar{\kappa}_{\eta}^{++}$.

 $2^{\bar{\kappa}_{\eta}} = \bar{\kappa}_{\eta}^{++}$ follows by (2(a)) above. Let deal with the approachability. Denote $\bar{\kappa}_{\eta}$ by λ .

²This condition basically says that one entree given dense open set by taking a direct extension and then specifying finitely many coordinates. Usually, this property has the same proof, as the Prikry condition and is used to show that λ^+ is preserved in $V^{\langle \mathcal{P}, \leq \rangle}$.

Theorem 1.1 $\neg AP_{\lambda^+}$ holds in $V[G]^{\langle \mathcal{P}, \leq \rangle}$.

Proof.

The argument that follows closely Section 3 of [4].

Let us recall the following basic definitions of S. Shelah [6]:

Definition 1.2 1. A function $d: [\lambda^+]^2 \to \eta$ is called

- (a) normal, if for every $\nu < \eta, \beta < \lambda^+$ the set $\{\alpha < \beta \mid d(\alpha, \beta) \leq \nu\}$ has cardinality $< \lambda$;
- (b) subadditive, if for every $\alpha < \beta < \gamma < \lambda^+, d(\alpha, \gamma) \le \max(d(\alpha, \beta), d(\beta, \gamma))$.
- 2. $S_0(d) = \{ \xi < \lambda^+ \mid \exists A, B \text{ unbounded in } \xi \text{ such that } \forall \beta \in B \exists \nu_\beta < \eta \forall \alpha \in A \cap \beta \quad d(\alpha, \beta) \leq \nu_\beta \}.$

Fact 1 (S. Shelah [6]) Suppose that $d, d' : [\lambda^+]^2 \to \omega$ are two normal subadditive functions. Then $S_0(d) \equiv S_0(d')$ (mod the closed unbounded filter).

Fact 2 (S. Shelah [6]) The statement AP_{λ} is equivalent to the existence of a normal subadditive function $d: [\lambda^{+}]^{2} \to \eta$ such that $S_{0}(d)$ contains a club.

Suppose that AP_{λ^+} holds in $V[G]^{\langle \mathcal{P}, \leq \rangle}$.

Let $d: [\lambda^+]^2 \to \eta$ be a normal subadditive function in V.

Then, in $V[G]^{\langle \mathcal{P}, \leq \rangle}$ there is a club $C, C \subseteq S_0(d)$.

Suppose for simplicity that

$$0_{\mathcal{P}} \Vdash_{\langle \mathcal{P}, \leq \rangle} (C \subseteq \lambda^+ \text{ is a club and } C \subseteq S_0(d)).$$

Now, in V[G], using the indestructibility of supercompactness of κ under the forcing $\langle \mathcal{P}/\sim, \leq^* \rangle$, let us pick $N \prec \langle H(\lambda^{++}), \in \rangle$ such that

- 1. $N \cap \kappa \in \kappa$,
- $2. |N| < \kappa,$
- 3. $C, d \in N$,
- 4. for every $A \subseteq N \cap \lambda^+$ there is $B \in N$ such that $B \cap N = A$.

By [6], $\sup(N \cap \lambda^+) \notin S_0(d)$.

Let \bar{N} be the transitive collapse of N, and let $\pi: \bar{N} \to N \prec H(\lambda^{++})$. Denote $\kappa \cap N$ by $\kappa(N)$.

Now the assumption that κ was forced to be indestructible applied to the forcing $\langle \mathcal{P}, \leq^* \rangle$, provides a \bar{N} -generic set. Its image under π can be easily turned into a condition in $\langle \mathcal{P}/\sim, \leq^* \rangle$. Let p(N) be such a condition. Then for every G_{κ} generic for $\langle \mathcal{P}, \leq^* \rangle$ with $p(N) \in G_{\kappa}$, N[p(N)] will be a generic extension of N and an elementary submodel of $(H(\lambda^+))[G_{\kappa}]$, satisfying the same properties as N.

So, $\delta = \sup(N[p(N)] \cap \lambda^+) = \sup(N \cap \lambda^+) \notin S_0(d)$. It is crucial here that λ, λ^+ remain cardinals in $V[G]^{\langle \mathcal{P}, \leq^* \rangle}$, and so, $S_0(d)$ makes sense in $V[G]^{\langle \mathcal{P}/\sim, \leq^* \rangle}$.

Turn now p(N) into a condition $p^*(N) \in \mathcal{P}$ as follows:

for every coordinate $\alpha < \eta$, we replace $p(N)(\alpha)$ (a non-pure condition in $\mathcal{P}_{E(\alpha)}$) by a pure one $\langle p(N)(\alpha), \bigcap \{A \mid A \in E(\alpha)(\text{dom}(p(N)(\alpha))) \cap N \} \rangle$.

Note that $|N| < \kappa < \kappa_{\alpha}$, so $\bigcap \{A \mid A \in E(\alpha)(\text{dom}(p(N)(\alpha))) \cap N\} \in E(\alpha)(\text{dom}(p(N)(\alpha)))$.

We shall show, in order to derive a contradiction, that

$$p^*(N) \Vdash_{\langle \mathcal{P}, \leq \rangle} \delta \in C$$
.

Claim 1 For every $\alpha < \lambda^+$ the set

$$D_{\alpha} = \{ p \in \mathcal{P} \mid p \geq^* 0_{\mathcal{P}} \text{ and } |\{ \xi \mid \exists q \geq p(q \Vdash_{\langle \mathcal{P}, \leq \rangle} \zeta_{\alpha} = \xi) \}| \leq \lambda \}$$

is dense in $\langle \mathcal{P}, \leq^* \rangle$, where ζ_{α} is a canonical name of the first element of C above α .

The claim follows from the condition (3) on $\langle \mathcal{P}, \leq, \leq^* \rangle$ above.

Claim 2 For every $\alpha \in N$, $p^*(N) \Vdash_{\langle \mathcal{P}, \leq \rangle}$ the first element of \mathcal{C} above α is below δ .

Proof. We have $D_{\alpha} \in N$. Then the set

$$D_{\alpha}^{\sim} = \{ [p]_{\sim} \in \mathcal{P} / \sim \mid p \in D_{\alpha} \}$$

is in N and is dense in $\langle \mathcal{P}/\sim, \leq^* \rangle$.

Now, p(N) is $\langle \mathcal{P}/\sim, \leq^* \rangle$ —generic over N, so there is $p_{\sim}^* \leq^* p(N), p_{\sim}^* \in D_{\alpha}^{\sim} \cap N$. By elementarity, then there is $p^* \in N \cap D_{\alpha}$ in the equivalence class of p_{\sim}^* . The definition of $p^*(N)$ implies then that $p^* \leq^* p^*(N)$.

Also, $N \prec H(\lambda^+)$. By the previous claim, the number of possible decisions made by conditions stronger than p^* of the first element of C above α is bounded below λ^+ . By elementarity,

there is such bound inside $N \cap \lambda^+$.

 \square of the claim.

By the previous claim,

$$p^*(N) \Vdash_{\langle \mathcal{P}, \leq \rangle} \mathcal{C}$$
 is unbounded in δ .

So,

$$p^*(N) \Vdash_{\langle \mathcal{P}, \leq \rangle} \delta \in C$$
.

This provides the desired contradiction.

As corollary, we obtain the following:

Theorem 1.3 Let κ be a supercompact cardinal, $\eta < \kappa$ be a regular cardinal and $\langle \kappa_{\alpha} \mid \alpha < \eta \rangle$ be an increasing sequence of strong cardinals above κ . Let $\bar{\kappa}_{\alpha} = \bigcup_{\alpha' < \alpha} \kappa_{\alpha'}$, for every limit $\alpha \leq \eta$.

Then there is cofinalities preserving extension which satisfies the following, for every $\alpha \leq \eta$ limit:

- 1. each $\bar{\kappa}_{\alpha}$ remains strong limit cardinal,
- $2. \ 2^{\bar{\kappa}_{\alpha}} > \bar{\kappa}_{\alpha}^+,$
- β . $\neg AP_{\bar{\kappa}_n^+}$.

The initial assumptions of the theorem are stronger than those made in [5], for countable cofinality, and in D.Sinapova [7] for uncountable one. However, cardinals were collapsed in the previous approach and are preserved here.

2 A model in which both AP and SCH fail on a proper class club of singular cardinals.

In [2], O. Ben-Neria, C. Lambie-Hanson, S. Unger use the supercompact Radin forcing to constract a model in which both AP and SCH fail on a proper class club of singular cardinals. Here we would like to use [3] instead, in order to obtain the same result. Again, the initial assumption will be stronger, however no cardinals will change their cofinality.

Theorem 2.1 Suppose that θ is the least inaccessible cardinal which is a limit of supercompact cardinals.

Then there is a cofinalities preserving extension such that

- θ remaining inaccessible,
- there is a club in θ consisting of singular cardinals for which both AP and SCH fail.

Proof.

Let $\langle \delta_{\alpha} \mid \alpha < \theta \rangle$ be an increasing sequence of supercompact cardinals. Set $\kappa_{\alpha} = \delta_{\alpha+1}$, for every $\alpha < \theta$. Clearly, each κ_{α} is strong.

We follow the lines of the previous section with obvious adjustments.

Let $\langle E_{\alpha} \mid \alpha < \theta \rangle$ such that for every $\alpha < \theta$

- 1. κ_{α} is a limit of supercompact cardinals,
- 2. $E(\alpha)$ is a $(\kappa_{\alpha}, \theta)$ -extender,
- 3. $E(\alpha) \triangleleft E(\alpha+1)$.

Let $\langle \mathcal{P}_{\langle E(\alpha) | \alpha < \theta \rangle}, \leq, \leq^* \rangle$ be the forcing like those of Section 2 of [3], but of inaccessible length θ .³

For every limit $\alpha < \theta$ denote $\bar{\kappa}_{\alpha} = \bigcup_{\alpha' < \alpha} \kappa_{\alpha'}$. The arguments of Section 2 of [3] show the following:

- 1. $\langle \mathcal{P}_{\langle E(\alpha) | \alpha < \theta \rangle}, \leq, \leq^* \rangle$ is a Prikry type forcing,
- 2. the forcing $\langle \mathcal{P}_{\langle E(\alpha) | \alpha < \theta \rangle}, \leq \rangle$:
 - (a) blows up the power of $\bar{\kappa}_{\alpha}$ above $\bar{\kappa}_{\alpha}^{+}$, for every limit $\alpha < \theta$,
 - (b) preserves cardinals and cofinalities,
 - (c) preserves strong limitness of each of κ_{α} 's, for every $\alpha \leq \theta$, and $\bar{\kappa}_{\alpha}$'s, for every limit $\alpha \leq \eta$.
 - (d) If for some $\alpha < \theta$, a non-direct extension was made over κ_{α} , then the forcing $\mathcal{P}_{\langle E(\alpha) | \alpha < \theta \rangle}$ can be split into $\mathcal{P}_{\langle E(\alpha') | \rho_{\alpha} | \alpha' < \alpha \rangle}$ and $\mathcal{P}_{\langle E(\alpha') | \alpha \leq \alpha' < \theta \rangle}$, where $\rho_{\alpha} < \kappa_{\alpha}$ is the reflection of θ below κ_{α} . Such splitting behave nicely, namely:
 - i. $\mathcal{P}_{\langle E(\alpha') | \rho_{\alpha} | \alpha' < \alpha \rangle}$ has size $\rho_{\alpha} < \kappa_{\alpha}$,
 - ii. $\mathcal{P}_{\langle E(\alpha')|\alpha < \alpha' < \theta \rangle}$ does not add new subsets to κ_{α} .
- 3. The forcing $\langle \mathcal{P}_{\langle E(\alpha) | \alpha < \theta \rangle}, \leq^* \rangle$ is equivalent to the product of Cohen forcings $Cohen(\kappa_{\alpha}^+, \theta)$.

³Either the Magidor or Easton support can be used for this.

We force with the Laver preparation forcings to ensure indestructibility of supercompactness of each $\delta_{\alpha} \mid \alpha < \theta$ even under δ_{α} -directed closed forcings which preserve cardinals, as it is done in Apter [1].

Let G be a corresponding generic set.

Note that it is easy to extend the extender $E(\alpha)$ and its elementary embedding in V[G]. Let us abuse the notation a bit and still denote the extension of $E(\alpha)$ in V[G] by $E(\alpha)$.

Force with $\langle \mathcal{P}_{\langle E(\alpha) | \alpha < \theta \rangle}, \leq \rangle$ over V[G]. Let us argue that this generic extension is as desired.

The only thing to check is that for every limit $\alpha < \theta$, $AP_{\bar{\kappa}_{\alpha}^{+}}$ breaks down.

Fix a limit ordinal $\alpha^* < \theta$.

By the assumption on minimality of θ , $\operatorname{cof}(\bar{\kappa}_{\alpha^*}) < \bar{\kappa}_{\alpha^*}$. Pick some $\beta^* < \alpha^*$ such that $\bar{\kappa}_{\beta^*} > \operatorname{cof}(\bar{\kappa}_{\alpha^*})$.

Now we split the forcing $\mathcal{P}_{\langle E(\alpha)|\alpha<\theta\rangle}$ into $\mathcal{P}_{\langle E(\alpha')|\rho_{\beta^*}|\alpha'<\beta^*\rangle}$ and $\mathcal{P}_{\langle E(\alpha')|\beta^*\leq\alpha'<\theta\rangle}$, where $\rho_{\beta^*}<\kappa_{\beta^*}$ is the reflection of θ below κ_{β^*} .

Pick now a supercompact cardinal κ such that $\max(\rho_{\beta^*}, \operatorname{cof}(\bar{\kappa}_{\alpha^*})) < \kappa < \kappa_{\beta^*}$.

Now we deal with the upper part $\mathcal{P}_{\langle E(\alpha')|\beta^* \leq \alpha' < \theta \rangle}$.

The conditions (1)-(3) above insure that the argument of the previous suction applies and so, $\neg AP_{\bar{\kappa}_{-*}^+}$ holds in a generic extension by $\langle \mathcal{P}_{\langle E(\alpha')|\beta^* \leq \alpha' < \theta \rangle}, \leq \rangle$.

The remaining forcing $\mathcal{P}_{\langle E(\alpha') | \rho_{\beta^*} | \alpha' < \beta^* \rangle}$ has small cardinality relatively to κ , by (2(d)i) above, and so, by Shelah [6], $\neg AP_{\bar{\kappa}_{\alpha^*}^+}$ will still hold in such further extension. Hence, $\neg AP_{\bar{\kappa}_{\alpha^*}^+}$ holds in a generic extension by $\langle \mathcal{P}_{\langle E(\alpha) | \alpha < \theta \rangle}, \leq \rangle$.

7

References

- [1] A. Apter, Laver Indestructibility and the Class of Compact Cardinals, Journal of Symbolic Logic 63, 1998, 149-157.
- [2] O. Ben-Neria, C. Lambie-Hanson, S. Unger, Diagonal supercompact Radin forcing,
- [3] M. Gitik, Blowing up the power of a singular cardinal of uncountable cofinality,
- [4] M. Gitik and M. Magidor, Extender based forcings. J. of Symbolic Logic 59:2 (1994), 445-460.
- [5] M. Gitik and A. Sharon, On SCH and approachability property, Proc. AMS, 136(1), 2008, 311-320.
- [6] S. Shelah, On successors of singular cardinals, Logic Colloquim, 78, (M. Boffa, D. van Dallen, K. McAlloon, editors) North-Holland, Amsterdam, 357-380.
- [7] D. Sinapova, A model for a very good scale and a bad scale, J. of Symbolic Logic, 73:4,2008, 1361-1372.