Another method for constructing models of not approachability and not SCH.

Moti Gitik*

July 20, 2020

Abstract

We present a new method of constructing a model of \neg SCH+ \neg AP.

At least to the best of our knowledge, the only method to get a singular strong limit cardinal κ such that $\neg AP_{\kappa}$ and $2^{\kappa} > \kappa^+$ was the one introduced in [6]. Here a different approach will be suggested.

We will use the method for blowing up the power of a singular cardinal of [4] in order to get models of not approachability and not SCH. The advantage of the present technique is that no cardinal is collapsed or changes its cofinality.

1 A model in which both AP and SCH fail at a singular cardinal.

We will combine the forcing of [4] with the approach of Section 3 of [5].¹

Let κ be a supercompact cardinal. Fix a regular cardinal $\eta < \kappa$. Let $\langle \kappa_{\alpha} | \alpha < \eta \rangle$ be an increasing sequence of cardinals. Denote $\bigcup_{\alpha < \eta} \kappa_{\alpha}$ by $\bar{\kappa}_{\eta}$. Let $\langle E_{\alpha} | \alpha < \eta \rangle$ be a sequence of extenders such that for every $\alpha < \eta$

- 1. $\kappa < \kappa_0$,
- 2. $E(\alpha)$ is a $(\kappa_{\alpha}, \bar{\kappa}_{\eta}^{++})$ -extender,

^{*}The work was partially supported by Israel Science Foundation Grants 58/14, 1216/18. We are grateful to the referee of the paper for her/his remarks and corrections.

¹Section 3 of [5] contains an essential flow, which is due solely to the first author, but it turns out that with the forcing of [4], it is possible to make the idea work.

3. $E(\alpha) \triangleleft E(\alpha+1)$.

Let $\langle \mathcal{P}_{\langle E(\alpha) | \alpha < \eta \rangle}, \leq \leq \leq * \rangle$ be the forcing of Section 2 of [4]. For every limit $\alpha \leq \eta$ denote $\bar{\kappa}_{\alpha} = \bigcup_{\alpha' < \alpha} \kappa_{\alpha'}$. By [4], Section 2, it has the following properties:

- 1. $\langle \mathcal{P}_{\langle E(\alpha) | \alpha < \eta \rangle}, \leq \leq \leq^* \rangle$ is a Prikry type forcing,
- 2. the forcing $\langle \mathcal{P}_{\langle E(\alpha) | \alpha < \eta \rangle}, \leq \rangle$:
 - (a) blows up the power of $\bar{\kappa}_{\eta}$ to $\bar{\kappa}_{\eta}^{++}$,
 - (b) blows up the power of $\bar{\kappa}_{\alpha}$ above $\bar{\kappa}_{\alpha}^{+}$, for every limit $\alpha < \eta$,
 - (c) preserves cardinals and cofinalities,
 - (d) preserves strong limitness of each of κ_{α} 's, for every $\alpha \leq \eta$, and $\bar{\kappa}_{\alpha}$'s, for every limit $\alpha \leq \eta$
 - (e) does not add new subsets to κ_0 .
- 3. For every p ∈ P and every P-name ζ of an ordinal, there is p* ≥* p such that the number of possible decisions of ζ above p* is at most λ.
 I.e. |{ξ | ∃q ≥ p*(q ⊨_{⟨P,≤⟩} ζ = ξ)}| ≤ κ
 _η.²

4. The forcing $\langle \mathcal{P}_{\langle E(\alpha) \mid \alpha < \eta \rangle}, \leq^* \rangle$ is equivalent to the product of Cohen forcings $Cohen(\kappa_{\alpha}^+, \bar{\kappa}_{\eta}^{++})$.³ Namely, we just remove or ignore sets of measure one A^p_{α} in each coordinate $p(\alpha) = \langle f^p_{\alpha}, A^p_{\alpha} \rangle$ of a condition $p = \langle p(\alpha) \mid \alpha < \eta \rangle \in \mathcal{P}_{\langle E(\alpha) \mid \alpha < \eta \rangle}$. More precisely, if $p = \langle p(\alpha) \mid \alpha < \eta \rangle$ and $q = \langle q(\alpha) \mid \alpha < \eta \rangle$ are in $\mathcal{P}_{\langle E(\alpha) \mid \alpha < \eta \rangle}$, then set $p \sim q$ iff for every $\alpha < \eta$

- (a) $p(\alpha)$ is non-pure iff $q(\alpha)$ is non-pure. Require then that $p(\alpha) = q(\alpha)$.
- (b) If $p(\alpha) = \langle f_{\alpha}^{p}, A_{\alpha}^{p} \rangle$, i.e. is pure, then $q(\alpha) = \langle g_{\alpha}^{p}, B_{\alpha}^{p} \rangle$ is pure as well, and require that $f_{\alpha}^{p} = g_{\alpha}^{p}$.

In the present setting both parts are put into one of cardinality κ_n .

²This condition basically says that one entree given dense open set by taking a direct extension and then specifying finitely many coordinates. Usually, this property has the same proof, as the Prikry condition and is used to show that λ^+ is preserved in $V^{\langle \mathcal{P}, \leq \rangle}$.

³This is the crucial difference from the long extenders Prikry forcing $\langle \mathcal{P}, \leq, \leq^* \rangle$ of Sec. 2 of [3]. The conditions in \mathcal{P} consist basically of two parts one of cardinality $\langle \kappa_n, (n < \omega) \rangle$ (assignment functions) and another of cardinality κ_ω (Cohen functions). As a result, $\langle \mathcal{P}, \leq^* \rangle$ collapses κ_ω^+ and, as Asaf Sharon pointed out, $\langle \mathcal{P}, \leq, \leq^* \rangle$ adds $\Box_{\kappa_\omega}^*$.

Then $\langle \mathcal{P}_{\langle E(\alpha) | \alpha < \eta \rangle} / \sim, \leq^* \rangle$ is the product of Cohen forcings.

Let us assume that the supercompact cardinal κ was made indestructible under κ -directed closed forcings using the Laver forcing. Denote by G a generic subset of the Laver forcing.

Then force with $\langle \mathcal{P}_{\langle E(\alpha) | \alpha < \eta \rangle}, \leq \rangle$. Denote further $\mathcal{P}_{\langle E(\alpha) | \alpha < \eta \rangle}$ by \mathcal{P} . We claim that the resulting generic extension is as desired, i.e. it satisfies $\neg \operatorname{AP}_{\bar{\kappa}_{\eta}}$ and $2^{\bar{\kappa}_{\eta}} = \bar{\kappa}_{\eta}^{++}$.

 $2^{\bar{\kappa}_{\eta}} = \bar{\kappa}_{\eta}^{++}$ follows by (2(a)) above. Let deal with the approachability. Denote $\bar{\kappa}_{\eta}$ by λ .

Theorem 1.1 $\neg AP_{\lambda}$ holds in $V[G]^{\langle \mathcal{P}, \leq \rangle}$.

Proof.

The argument that follows closely Section 3 of [5].

We will use the following result of S. Shelah [8], (Fact 2.6, 4),(ii):

Fact 1 Suppose that λ is a strong limit cardinal singular cardinal of cofinality η , $\langle \lambda_i \mid i < \eta \rangle$ is an ascending sequence of regular cardinals with limit λ and $d: \lambda^+ \times \lambda^+ \to \eta$ is such that for every $\alpha, \beta, \gamma < \lambda^+$:

- 1. $d(\alpha, \beta) = c(\beta, \alpha),$
- 2. if $\alpha < \beta < \gamma$, then $d(\alpha, \gamma) \leq \max(d(\alpha, \beta), d(\beta, \gamma))$.
- 3. for all $i < \eta$, $|\{\beta < \alpha \mid d(\alpha, \beta) = i\}| \leq \lambda_i$.

Then

 $S(d) =_{def} \{\delta < \lambda^+ \mid \text{ there is an unbounded subset } A \subseteq \delta, \text{ such that for every } \gamma < \delta,$

 $d''A \cap \gamma \times A \cap \gamma$ is bounded in η = { $\delta < \lambda^+ \mid \text{ if } \operatorname{cof}(\delta) > \eta$, then for every unbounded subset $A \subseteq \delta$, there is an unbounded subset A' such that $d''A' \times A'$ is bounded in η }.

Moreover, S(d) is a maximal (mod non-stationary) set in the ideal $I[\lambda^+]$.

Also, by S. Shelah [8] (Lemma 4.1), a function $d : \lambda^+ \times \lambda^+ \to \eta$ as above, always exists. Fix such $d \in V$. Suppose that AP_{λ} holds in $V[G]^{\langle \mathcal{P}, \leq \rangle}$. Then, in $V[G]^{\langle \mathcal{P}, \leq \rangle}$ there is a club $C, C \subseteq S(d)$.

Suppose for simplicity that

 $0_{\mathcal{P}} \Vdash_{\langle \mathcal{P}, \leq \rangle} (\mathcal{C} \subseteq \lambda^+ \text{ is a club and } \mathcal{C} \subseteq \mathcal{S}(d)).$

Let G_{κ} be a generic subset of $\langle \mathcal{P}, \leq^* \rangle$. Then, κ remains a supercompact in $V[G, G_{\kappa}]$. Using supercompactness, we pick $N^* \prec \langle (H(\lambda^{++}))^{V[G,G_{\kappa}]}, \in \rangle$ such that

- 1. $N^* = N[G, G_{\kappa}]$, for some $N \prec \langle (H(\lambda^{++}))^V, \in \rangle, N^* \cap V = N$,
- 2. $N \cap \kappa \in \kappa$,
- 3. $|N| < \kappa$,
- 4. $C, d \in N^*$,
- 5. for every $A \subseteq N^* \cap \lambda^+$ there is $B \in N^*$ such that $B \cap N^* = A$.

By [7](Claim 27), $\delta =_{def} \sup(N^* \cap \lambda^+) = \sup(N \cap \lambda^+) \notin (S(d))^{V[G,G_{\kappa}]}$.

The forcing $\langle \mathcal{P}, \leq^* \rangle$ does not add new subsets to κ or even new κ -sequences. Hence, by Fact 1,

$$(S(d))^{V[G]} \cap \{\nu < \lambda^+ \mid cof(\nu) \le \kappa\} = (S(d))^{V[G,G_{\kappa}]} \cap \{\nu < \lambda^+ \mid cof(\nu) \le \kappa\}.$$

Note that $\operatorname{cof}(\delta) < \kappa$, and hence $\delta \notin (S(d))^{V[G]}$.

Now, the forcing $\langle \mathcal{P}, \leq \rangle$ (over V[G]) does not add new subsets to κ . So, by Fact 1,

$$(S(d))^{V[G]} \cap \{\nu < \lambda^+ \mid \operatorname{cof}(\nu) \le \kappa\} = (S(d))^{V[G]^{\langle \mathcal{P}, \le \rangle}} \cap \{\nu < \lambda^+ \mid \operatorname{cof}(\nu) \le \kappa\},$$

and hence, $\delta \notin (S(d))^{V[G]^{\langle \mathcal{P}, \leq \rangle}}$.

Set M = N[G]. Then $M \in V[G]$ and $M \preceq (H(\lambda^{++}))^{V[G]}$. Also, $N^* = M[G_{\kappa}]$. Let \overline{M} be the transitive collapse of M, and let $\pi : \overline{M} \to M$ be the collapsing map. Set \overline{N}^* to be the transitive collapse of N^* , and let $\pi^* : \overline{N}^* \to N^* \preceq (H(\lambda^{++}))^{V[G,G_{\kappa}]}$ be the collapsing map. Then $\overline{N}^* = \overline{M}[\pi^{*-1}(G_{\kappa})]$ and $\pi^* \upharpoonright \overline{M} = \pi$. Denote $\kappa \cap N = \kappa \cap M = \kappa \cap N^*$ by $\kappa(N)$. Then, $\overline{G} =_{def} \pi^{-1}(G)$ will be just the restriction of G to $\kappa(N)$. Note that $\overline{N}^* \in V[G]$, since it is a transitive set of cardinality $< \kappa$ and the forcing $\langle \mathcal{P}, \leq^* \rangle$

Note that $N^* \in V[G]$, since it is a transitive set of cardinality $\langle \kappa \rangle$ and the forcing $\langle \mathcal{P}, \leq^* \rangle$ does not add new subsets to κ .

Set $\bar{G}_{\kappa} = \pi^{*-1}(G_{\kappa})$. Then $\pi^{*''}\bar{G}_{\kappa}$ can be easily turned into a condition in $\langle \mathcal{P}, \leq^* \rangle$. Denote it by p(M). Note that $\pi^{*''}\bar{G}_{\kappa} = \pi''\bar{G}_{\kappa}$, and $\pi''\bar{G}_{\kappa} \in V[G]$. Hence, $p(M) \in V[G]$.

Turn now p(M) into a condition $p^*(M) \in \mathcal{P}$ as follows: for every coordinate $\alpha < \eta$, we replace $p(M)(\alpha)$ (a non-pure condition in $\mathcal{P}_{E(\alpha)}$) by a pure one $\langle p(M)(\alpha), \bigcap \{A \mid A \in E(\alpha)(\operatorname{dom}(p(M)(\alpha))) \cap M\} \rangle$. Note that $|M| < \kappa < \kappa_{\alpha}$, so $\bigcap \{A \mid A \in E(\alpha)(\operatorname{dom}(p(M)(\alpha))) \cap M\} \in E(\alpha)(\operatorname{dom}(p(M)(\alpha)))$.

We shall show, in order to derive a contradiction, that

$$p^*(M) \Vdash_{\langle \mathcal{P}, \leq \rangle} \delta \in \mathbb{C}.$$

Claim 1 For every $\alpha < \lambda^+$ the set

$$D_{\alpha} = \{ p \in \mathcal{P} \mid p \geq^* 0_{\mathcal{P}} \text{ and } |\{ \xi \mid \exists q \geq p(q \Vdash_{\langle \mathcal{P}, \leq \rangle} \zeta_{\alpha} = \xi) \} | \leq \lambda \}$$

is dense in $\langle \mathcal{P}, \leq^* \rangle$, where ζ_{α} is a canonical name of the first element of C above α .

The claim follows from the condition (3) on $\langle \mathcal{P}, \leq, \leq^* \rangle$ above.

Claim 2 For every $\alpha \in N$, $p^*(M) \Vdash_{\langle \mathcal{P}, \leq \rangle}$ the first element of C above α is below δ .

Proof. We have $D_{\alpha} \in M$. Then the set

$$D_{\alpha}^{\sim} = \{ [p]_{\sim} \in \mathcal{P} / \sim \mid p \in D_{\alpha} \}$$

is in M and is dense in $\langle \mathcal{P}/\sim, \leq^* \rangle$.

Now, p(M) is $\langle \mathcal{P}/\sim,\leq^*\rangle$ -generic over M, so there is $p^*_{\sim}\leq^* p(M), p^*_{\sim}\in D^{\sim}_{\alpha}\cap M$. By elementarity, then there is $p^*\in N\cap D_{\alpha}$ in the equivalence class of p^*_{\sim} . The definition of $p^*(M)$ implies then that $p^*\leq^* p^*(M)$.

Also, $M \preceq (H(\lambda^+))^{V[G]}$. By the previous claim, the number of possible decisions made by conditions stronger (in the order \leq) than p^* of the first element of C above α is bounded below λ^+ . By elementarity, there is such bound inside $M \cap \lambda^+$. \Box of the claim.

By the previous claim,

$$p^*(M) \Vdash_{\langle \mathcal{P}, \leq \rangle} C$$
 is unbounded in δ .

So,

$$p^*(M) \Vdash_{\langle \mathcal{P}, \leq \rangle} \delta \in C.$$

This provides the desired contradiction.

As corollary, we obtain the following:

Theorem 1.2 Let κ be a supercompact cardinal, $\eta < \kappa$ be a regular cardinal and $\langle \kappa_{\alpha} \mid \alpha < \eta \rangle$ be an increasing sequence of strong cardinals above κ . Let $\bar{\kappa}_{\alpha} = \bigcup_{\alpha' < \alpha} \kappa_{\alpha'}$, for every limit $\alpha \leq \eta$.

Then there is cofinalities preserving extension which satisfies the following, for every $\alpha \leq \eta$ limit:

- 1. each $\bar{\kappa}_{\alpha}$ remains strong limit cardinal,
- 2. $2^{\bar{\kappa}_{\alpha}} > \bar{\kappa}^+_{\alpha}$,
- 3. $\neg \operatorname{AP}_{\bar{\kappa}_n}$.

The initial assumptions of the theorem are stronger than those made in [6], for countable cofinality, and in D.Sinapova [9] for uncountable one. However, cardinals were collapsed in the previous approach and are preserved here.

2 A model in which both AP and SCH fail on a proper class club of singular cardinals.

In [2], O. Ben-Neria, C. Lambie-Hanson, S. Unger use the supercompact Radin forcing to constract a model in which both AP and SCH fail on a proper class club of singular cardinals. Here we would like to use [4] instead, in order to obtain the same result. Again, the initial assumption will be stronger, however no cardinals will change their cofinality.

Theorem 2.1 Suppose that θ is the least inaccessible cardinal which is a limit of supercompact cardinals.

Then there is a cofinalities preserving extension such that

- θ remains inaccessible,
- there is a club in θ consisting of singular cardinals for which both AP and SCH fail.

Proof.

Let $\langle \delta_{\alpha} \mid \alpha < \theta \rangle$ be an increasing sequence of supercompact cardinals. Set $\kappa_{\alpha} = \delta_{\alpha+1}$, for every $\alpha < \theta$. Clearly, each κ_{α} is strong.

We follow the lines of the previous section with obvious adjustments.

Let $\langle E_{\alpha} \mid \alpha < \theta \rangle$ such that for every $\alpha < \theta$

- 1. κ_{α} is a limit of supercompact cardinals,
- 2. $E(\alpha)$ is a $(\kappa_{\alpha}, \theta)$ -extender,
- 3. $E(\alpha) \triangleleft E(\alpha+1)$.

Let $\langle \mathcal{P}_{\langle E(\alpha) | \alpha < \theta \rangle}, \leq \leq \leq^* \rangle$ be the forcing like those of Section 2 of [4], but of inaccessible length θ .⁴

For every limit $\alpha < \theta$ denote $\bar{\kappa}_{\alpha} = \bigcup_{\alpha' < \alpha} \kappa_{\alpha'}$. The arguments of Section 2 of [4] show the following:

- 1. $\langle \mathcal{P}_{\langle E(\alpha) | \alpha < \theta \rangle}, \leq \leq \leq^* \rangle$ is a Prikry type forcing,
- 2. the forcing $\langle \mathcal{P}_{\langle E(\alpha) | \alpha < \theta \rangle}, \leq \rangle$:
 - (a) blows up the power of $\bar{\kappa}_{\alpha}$ above $\bar{\kappa}_{\alpha}^{+}$, for every limit $\alpha < \theta$,
 - (b) preserves cardinals and cofinalities,
 - (c) preserves strong limitness of each of κ_{α} 's, for every $\alpha \leq \theta$, and $\bar{\kappa}_{\alpha}$'s, for every limit $\alpha \leq \eta$.
 - (d) If for some $\alpha < \theta$, a non-direct extension was made over κ_{α} , then the forcing $\mathcal{P}_{\langle E(\alpha) | \alpha < \theta \rangle}$ can be split into $\mathcal{P}_{\langle E(\alpha') | \rho_{\alpha} | \alpha' < \alpha \rangle}$ and $\mathcal{P}_{\langle E(\alpha') | \alpha \leq \alpha' < \theta \rangle}$, where $\rho_{\alpha} < \kappa_{\alpha}$ is the reflection of θ below κ_{α} . Such splitting behave nicely, namely:
 - i. $\mathcal{P}_{\langle E(\alpha') | \rho_{\alpha} | \alpha' < \alpha \rangle}$ has size $\rho_{\alpha} < \kappa_{\alpha}$,
 - ii. $\mathcal{P}_{\langle E(\alpha') | \alpha \leq \alpha' < \theta \rangle}$ does not add new subsets to κ_{α} .
- 3. The forcing $\langle \mathcal{P}_{\langle E(\alpha) | \alpha < \theta \rangle}, \leq^* \rangle$ is equivalent to the product of Cohen forcings $Cohen(\kappa_{\alpha}^+, \theta)$.

We force with the Laver preparation forcings to ensure indestructibility of supercompactness of each $\delta_{\alpha}, \alpha < \theta$, even under δ_{α} -directed closed forcings which preserve cardinals, as it is done in Apter [1].

Let G be a corresponding generic set.

Note that it is easy to extend the extender $E(\alpha)$ and its elementary embedding in V[G]. Let us abuse the notation a bit and still denote the extension of $E(\alpha)$ in V[G] by $E(\alpha)$.

Force with $\langle \mathcal{P}_{\langle E(\alpha) | \alpha < \theta \rangle}, \leq \rangle$ over V[G]. Let us argue that this generic extension is as desired.

⁴Either the Magidor or Easton support can be used for this.

The only thing to check is that for every limit $\alpha < \theta$, $AP_{\bar{\kappa}_{\alpha}}$ breaks down.

Fix a limit ordinal $\alpha^* < \theta$.

By the assumption on minimality of θ , $\operatorname{cof}(\bar{\kappa}_{\alpha^*}) < \bar{\kappa}_{\alpha^*}$. Pick some $\beta^* < \alpha^*$ such that $\bar{\kappa}_{\beta^*} > \operatorname{cof}(\bar{\kappa}_{\alpha^*})$.

Now we split the forcing $\mathcal{P}_{\langle E(\alpha) | \alpha < \theta \rangle}$ into $\mathcal{P}_{\langle E(\alpha') | \rho_{\beta^*} | \alpha' < \beta^* \rangle}$ and $\mathcal{P}_{\langle E(\alpha') | \beta^* \le \alpha' < \theta \rangle}$, where $\rho_{\beta^*} < \kappa_{\beta^*}$ is the reflection of θ below κ_{β^*} .

Pick now a supercompact cardinal κ such that $\max(\rho_{\beta^*}, \operatorname{cof}(\bar{\kappa}_{\alpha^*})) < \kappa < \kappa_{\beta^*}$.

Now we deal with the upper part $\mathcal{P}_{\langle E(\alpha')|\beta^* \leq \alpha' < \theta \rangle}$.

The conditions (1)-(3) above insure that the argument of the previous suction applies and so, $\neg AP_{\bar{\kappa}_{\alpha^*}}$ holds in a generic extension by $\langle \mathcal{P}_{\langle E(\alpha')|\beta^* \leq \alpha' < \theta \rangle}, \leq \rangle$.

The remaining forcing $\mathcal{P}_{\langle E(\alpha') | \rho_{\beta^*} | \alpha' < \beta^* \rangle}$ has small cardinality relatively to κ , by (2(d)i) above, and so, by Shelah [7], $\neg AP_{\bar{\kappa}_{\alpha^*}}$ will still hold in such further extension. Hence, $\neg AP_{\bar{\kappa}_{\alpha^*}}$ holds in a generic extension by $\langle \mathcal{P}_{\langle E(\alpha) | \alpha < \theta \rangle}, \leq \rangle$.

References

- A. Apter, Laver Indestructibility and the Class of Compact Cardinals, Journal of Symbolic Logic 63, 1998, 149-157.
- [2] O. Ben-Neria, C. Lambie-Hanson, S. Unger, Diagonal supercompact Radin forcing,
- [3] M. Gitik, Prikry type forcings, in Handbook of Set Theory, Foreman, Kanamori, eds. v.2, pages 1351-1448, Springer, 2010.
- [4] M. Gitik, Blowing up the power of a singular cardinal of uncountable cofinality,
- [5] M. Gitik and M. Magidor, Extender based forcings. J.of Symbolic Logic 59:2 (1994), 445-460.
- [6] M. Gitik and A. Sharon, On SCH and approachability property, Proc. AMS, 136(1), 2008, 311-320.
- [7] S. Shelah, On successors of singular cardinals, Logic Colloquim, 78, (M. Boffa, D. van Dallen, K. McAlloon, editors) North-Holland, Amsterdam, 357-380.
- [8] S. Shelah, Reflecting stationary sets and successors of singular cardinals, Arch. Math. Logic (1991) 31, 25-53.
- [9] D. Sinapova, A model for a very good scale and a bad scale, J. of Symbolic Logic, 73:4,2008, 1361-1372.