An other model with tree property and not SCH.

Moti Gitik*

May 28, 2018

Abstract

We will use the method for blowing up the power of a singular cardinal of [3] in order to get models with tree property on successors of singulars and not SCH. The advantage of the present technique is that no cardinal is collapsed or changes its cofinality. A question by O. Ben-Neria, C. Lambie-Hanson, S. Unger from [2] is answered.

1 A model in which SCH fail at a singular cardinal, but the tree property holds at its successor.

Such a model was first constructed by I. Neeman [7] for a singular of countable cofinality and later was generalized to uncountable one by D. Sinapova [10].

The forcing used in [7] is based on the forcing of [5]. We will use here the forcing of [3] instead and deal with countable and uncountable cofinalities simultaneously.

Fix a regular cardinal η. Let $\langle \kappa_\alpha | \alpha < \eta \rangle$ be an increasing sequence of cardinals and let $\langle E_\alpha | \alpha < \eta \rangle$ be a sequence of extenders such that for every $\alpha < \eta$

1. $\eta < \kappa_0$,
2. $E(\alpha)$ is a $(\kappa_\alpha, \bar{\kappa}_\eta^++)$–extender, where $\bar{\kappa}_\eta = \bigcup_{\alpha < \eta} \kappa_\alpha$,
3. $E(\alpha) \lhd E(\alpha + 1)$,
4. there is a supercompact cardinal in the interval (η, κ_0),
5. for every $\alpha < \eta$ there is a supercompact cardinal in the interval $(\kappa_\alpha, \kappa_\alpha + 1)$.

*The work was partially supported by Israel Science Foundation Grant No. 58/14. We are grateful to Spencer Unger for reading a draft of the paper, his corrections and comments.
Let \(<\mathcal{P}(E(\alpha)|\alpha<\eta),\leq,\leq^*>)\) be the forcing of Section 2 of [3].
For every limit \(\alpha \leq \eta\) denote \(\bar{\kappa}_\alpha = \bigcup_{\alpha'<\alpha} \kappa_{\alpha'}\).
By [3], Section 2, it has the following properties:

1. \(<\mathcal{P}(E(\alpha)|\alpha<\eta),\leq,\leq^*>)\) is a Prikry type forcing,
2. the forcing \(<\mathcal{P}(E(\alpha)|\alpha<\eta),\leq>)\):
 (a) blows up the power of \(\bar{\kappa}_\eta\) to \(\bar{\kappa}_\eta^{++}\),
 (b) blows up the power of \(\bar{\kappa}_\alpha\) above \(\bar{\kappa}_\alpha^{+}\), for every limit \(\alpha < \eta\),
 (c) preserves cardinals and cofinalities,
 (d) preserves strong limitness of each of \(\kappa_\alpha\)'s, for every \(\alpha \leq \eta\), and \(\bar{\kappa}_\alpha\)'s, for every limit \(\alpha \leq \eta\)
 (e) does not add new subsets to \(\kappa_0\).
3. The forcing \(<\mathcal{P}(E(\alpha)|\alpha<\eta),\leq^*>)\) is equivalent to the product of
 Cohen forcings \(\text{Cohen}(\kappa_\alpha^+,\bar{\kappa}_\eta^{++})\) with full support for \(\leq^*\) – extension of \(0_{\mathcal{P}(E(\alpha)|\alpha<\eta)}\).

We force first with the Laver type preparation forcings to ensure indestructibility of the relevant supercompact cardinals under directed closed forcings which preserve cardinals, as it is done in A. Apter [1]. Let \(H\) be a corresponding generic set.
It is easy to extend the extender \(E(\alpha)\) and its elementary embedding in \(V[H]\). Let us abuse the notation a bit and still denote the extension of \(E(\alpha)\) in \(V[H]\) by \(E(\alpha)\).

Force with \(<\mathcal{P}(E(\alpha)|\alpha<\eta),\leq>)\). Let \(G\) be a generic. We claim that \(V[H \ast G]\) is as desired, i.e. it satisfies \(TP_{\bar{\kappa}_\eta^{++}}\) and \(2^{\bar{\kappa}_\eta} = \bar{\kappa}_\eta^{++}\).

\(2^{\bar{\kappa}_\eta} = \bar{\kappa}_\eta^{++}\) follows by [3]. Let deal with the tree property.

The argument below follows [6] and [7].
Suppose that \(T\) is a \(\bar{\kappa}_\eta^{++}\) – tree in \(V[H \ast G]\).
We can assume that for every \(\alpha < \bar{\kappa}_\eta^{+}\), the level \(\alpha\) of \(T\) is \(\{(\alpha, \xi) \mid \xi < \bar{\kappa}_\eta\}\).
Let \(T\) be a \(<\mathcal{P},\leq>)\) – name of a \(\bar{\kappa}_\eta^{+}\) – tree \(T\).
Suppose for simplicity that

\[0_\mathcal{P} \models _{\langle \mathcal{P}, \leq \rangle} (\dot{T} \text{ is a } \bar{\kappa}_\eta^{+} \text{ – tree}).\]
Let $\kappa, \eta < \kappa < \kappa_0$ be a supercompact. Now, in $V[H]$, using the indestructibility of supercompactness of κ under the forcing $\langle P, \leq^* \rangle$, let us pick $N < \langle H(\kappa_0^{++}), \in \rangle$ such that

1. $N \cap \kappa \in \kappa$,
2. $|N| < \kappa$,
3. $T \in N$,
4. for every $A \subseteq N \cap \kappa$ there is $B \in N$ such that $B \cap N = A$.

Let \tilde{N} be the transitive collapse of N, and let $\pi : \tilde{N} \to N$. Denote $\kappa \cap N$ by $\kappa(N)$.

Now the assumption that κ was forced to be indestructible applied to the forcing $\langle P, \leq^* \rangle$, provides a \tilde{N}-generic set. Its image under π can be easily turned into a condition in $\langle P, \leq^* \rangle$.

Let $p(N)$ be such a condition. Then for every G^* generic for $\langle P, \leq^* \rangle$ with $p(N) \in G^*$, $N[p(N)]$ will be a generic extension of N and an elementary submodel of $(H(\kappa_0^{++}))[G^*]$, satisfying the same properties as N.

Fix some G^* like this.

Let $\delta = \sup(N[p(N)] \cap \kappa^+_\eta) = \sup(N \cap \kappa^+_\eta)$ and let $t_\delta \in \text{Lev}_\delta(T)$.

For every $\alpha \in N \cap \kappa^+_\eta$ and $\eta' < \eta$ consider the following statement:

$$\sigma_{\alpha, \eta'}^\eta \equiv \exists \xi < \kappa_{\eta'}(t_\delta > \chi (\alpha, \xi)).$$

Then, by the Prikry property and η^+-closure of $\langle P, \leq^* \rangle$, there is $\eta_\alpha < \eta$ and $p^\alpha \geq^* p(N)$, $p^\alpha \in G^*$ such that

$$p^\alpha \parallel \langle P, \leq \rangle \exists \xi < \kappa_{\eta_\alpha}(t_\delta > \chi (\alpha, \xi)).$$

Since $|N| < \kappa$, there will be $I(N) \subseteq \delta$ unbounded in δ, $I(N) \in V[H]$; $\eta^* < \eta$ and $p^*(N) \geq^* p(N)$, $p^*(N) \in G^*$ such that for every $\alpha \in I(N)$,

$$p^*(N) \parallel \langle P, \leq \rangle \exists \xi < \kappa_{\eta^*}(t_\delta > \chi (\alpha, \xi)).$$

Now let $\alpha < \beta$, $\alpha, \beta \in I(N)$.

Consider the following set:

$$D_{\alpha, \beta} = \{ q \geq^* 0 \parallel \langle P, \leq \rangle \exists \alpha, \xi_\beta < \kappa_{\eta^*}((\alpha, \xi_\alpha) < \chi (\beta, \xi_\beta)) \}.$$
It is dense in \(\langle P, \leq^* \rangle \) above 0

So there is \(q \leq^* p(N), q \in D_{a, \beta} \). Then \(q \leq p^*(N) \), and hence, \(q \) must force the existence of such \(\xi_\alpha, \xi_\beta \).

So, \(p(N) \) forces this as well.

Appeal now to the supercompactness in \(V[H \ast G^+] \). So, there will be an unbounded in \(\bar{\kappa}_{\eta}^+ \) set \(I \in V[H \ast G^+] \) such that for every \(\alpha < \beta, \alpha, \beta \in I \) there is \(q \in G^* \),

\[q \vdash_{\langle P, \leq \rangle} \exists \xi_\alpha, \xi_\beta < \kappa^*(\langle \alpha, \xi_\alpha \rangle < \mathcal{L} (\beta, \xi_\beta)) \]

Then there is \(q^* \in G^* \) such that (in \(V[H] \))

\[\quad \qu
of the forcing language $\langle P, \leq \rangle$.

By the Prikry condition, there is $\tilde{q} \geq^* q^*$ which decides σ.

If $\tilde{q} \Vdash \langle P, \leq \rangle \sigma$, then we are done.

Suppose that $\tilde{q} \Vdash \langle P, \leq \rangle \neg \sigma$.

Then $\tilde{q} \Vdash \langle P, \leq \rangle (I_\gamma$ is bounded in $\kappa^+_\eta)$.

Let ζ be a $\langle P, \leq \rangle$-name of sup(I_γ).

Then, by the Prikry condition type argument showing that κ^+_η is preserved after the forcing $\langle P, \leq \rangle$, there will be $q' \geq^* \tilde{q}$ and $\mu < \kappa^+_\eta$ such that

$$q' \Vdash \langle P, \leq \rangle (\zeta < \mu).$$

But

$$q^* \Vdash \langle P, \leq\rangle^{(I_\gamma$ is unbounded in $\kappa^+_\eta)}.$$

Hence, there are $q'' \geq^* q'$ and $\tau, \mu < \tau < \kappa^+_\eta$ such that $q'' \Vdash \langle q'', \tau \rangle \in I_\gamma$, for some $q'' \leq^* q''$. Then, clearly, $q'' \Vdash \langle P, \leq \rangle (\tau \in I_\gamma)$, which is impossible. Contradiction.

\Box of the claim.

Assume for simplicity that already $0_P \Vdash \langle P, \leq \rangle (I_\gamma$ is unbounded in $\kappa^+_\eta)$.

Denote $\bar{\kappa}_\eta$ by λ.

Pick a supercompact cardinal κ, $\kappa^+ < \kappa < \kappa^*_\eta + 1$.

Consider $R = G^* \upharpoonright \langle P(\langle E(\alpha)\rangle_{\eta^* < \alpha < \eta^*}, \leq^* \rangle, \leq^* \rangle$, i.e. the Cohen functions above κ^*_η.

Clearly, R is $V[H]$ generic for $\langle P(\langle E(\alpha)\rangle_{\eta^* < \alpha < \eta^*}, \leq^* \rangle, \leq^* \rangle$.

We will be interested in $I_{\gamma R}$, i.e. the interpretation (partial) of $\langle P(\langle E(\alpha)\rangle_{\eta^* < \alpha < \eta^*}, \leq^* \rangle, \leq^* \rangle$-name by R.

Use the indestructibility of κ and find $j : V[H \ast R] \rightarrow M[H^*, R^*]$ witnessing λ^+—supercompactness of κ.

Let $\delta = \sup(j''\lambda^+) < j(\lambda^+)$.

Pick some $s \in j(\langle P(\langle E(\alpha)\rangle_{\eta^* < \eta^*}, \leq^* \rangle, \leq^* \rangle)$, $s \geq^* j(0_\eta) \upharpoonright j(\langle P(\langle E(\alpha)\rangle_{\eta^* < \eta^*}, \leq^* \rangle, \leq^* \rangle)$ and a $j(\langle \langle E(\alpha)\rangle_{\eta^* < \eta^*}, \leq^* \rangle, \leq^* \rangle)$-name γ of an ordinal such that

$$s \Vdash j(\langle (P(\langle E(\alpha)\rangle_{\eta^* < \eta^*}, \leq^* \rangle, \leq^* \rangle)) (\gamma \geq \delta \land \gamma \in j(I_\gamma)_{R^*}).$$

Note that $s \geq^* j(0_\eta) \upharpoonright j(\langle P(\langle E(\alpha)\rangle_{\eta^* < \eta^*}, \leq^* \rangle, \leq^* \rangle)$ implies in particular that

$$s \Vdash j(\langle P(\langle E(\alpha)\rangle_{\eta^* < \eta^*}, \leq^* \rangle, \leq^* \rangle) (j''(I_\gamma)_{R^*}) = \lambda^+).$$

Claim 2 There is $s^* \in j(\langle P(\langle E(\alpha)\rangle_{\eta^* < \eta^*}, \leq^* \rangle, \leq^* \rangle)$, $s \leq^* s^*$ such that

$$s^* \Vdash j(\langle P(\langle E(\alpha)\rangle_{\eta^* < \eta^*}, \leq^* \rangle, \leq^* \rangle) (\{\alpha < \lambda^+ \mid j(\alpha) \in j(I_\gamma)_{R^*}\} = \lambda^+).$$

Note that we have two orderings \leq^* and \leq. The claim is about the later one.
Proof. Suppose otherwise. Let

\[\sigma \equiv \{ \alpha < \lambda^+ \mid j(\alpha) \in j(\mathcal{L})_{R^*} \} = \lambda^+. \]

Then for every \(s' \in j(\mathcal{P}(E(\alpha)_{\alpha \leq \eta^*})) \), \(s \leq^* s' \) there is \(s^* \in j(\mathcal{P}(E(\alpha)_{\alpha \leq \eta^*})) \), \(s' \leq^* s^* \) which forces \(\neg \sigma \), which means that the set \(\{ \alpha < \lambda^+ \mid j(\alpha) \in j(\mathcal{L})_{R^*} \} \) is bounded in \(\lambda^+ \).

The forcing \((\mathcal{P}(E(\alpha)_{\alpha \leq \eta^*}), \leq) \) satisfies \(\kappa_{\eta^*}^+ - \text{c.c.} \), hence there is \(\tau < \lambda^+ \) such that for every \(s^* \in j(\mathcal{P}(E(\alpha)_{\alpha \leq \eta^*})) \), \(s \leq^* s^* \), if \(s^* \) decides \(\sigma \), then

\[s^* \models j(\mathcal{P}(E(\alpha)_{\alpha \leq \eta^*}), \leq)) \{ \alpha < \lambda^+ \mid j(\alpha) \in j(\mathcal{L})_{R^*} \} \subseteq \tau. \]

But we have

\[s \models j(\mathcal{P}(E(\alpha)_{\alpha \leq \eta^*}), \leq) (|j''(\mathcal{L})_{R^*}| = \lambda^+). \]

So, there are \(s' \in j(\mathcal{P}(E(\alpha)_{\alpha \leq \eta^*})) \), \(s \leq^* s' \) and \(\tau', \tau \leq \tau' < \lambda^+ \) such that

\[s' \models j(\mathcal{P}(E(\alpha)_{\alpha \leq \eta^*}), \leq) (j(\tau') \in j(\mathcal{L})_{R^*}). \]

But this is impossible. Contradiction.

\(\Box \) of the claim.

Fix \(s^* \) as in the claim. Let \(S^* \) be \(j(\mathcal{P}(E(\alpha)_{\alpha \leq \eta^*}), \leq)) - \text{generic over } M[H^*, R^*] \) with \(s^* \in S^* \). Then, by Claim 2, in \(M[H^*, R^*, S^*] \) there is a set \(J' \subseteq \lambda^+ \) unbounded such that the following holds:

for every \(\alpha \in J' \), there are \(\zeta_\alpha, \xi_\alpha < \kappa_{\eta^*} \), \(s_\alpha \in S^*, r_\alpha \in R^* \) such that

\[(s_\alpha, r_\alpha) \models j(\mathcal{P}(E(\beta)_{\beta < \eta^*}), \leq) ((j(\alpha), \xi_\alpha) < j(\mathcal{L}) (\gamma, \zeta_\alpha)). \]

We use here the \(\kappa_{\eta^*}^+ - \text{closure of } \leq^* \) – of \(j(\mathcal{P}(E(\beta)_{\beta < \eta^*}), \leq) \) in order to obtain \(r_\alpha \).

Then there will be \(\zeta^*, \xi^* < \kappa_{\eta^*} \) which work for an unbounded subset \(J \) of \(J' \), i.e., for every \(\alpha \in J \), there are \(s_\alpha \in S^*, r_\alpha \in R^* \) such that

\[(s_\alpha, r_\alpha) \models j(\mathcal{P}(E(\beta)_{\beta < \eta^*}), \leq) ((j(\alpha), \xi^*) < j(\mathcal{L}) (\gamma, \zeta^*)). \]

Let \(S \) be the restriction of \(S^* \) to \(\mathcal{P}(E(\mu)_{\mu \leq \eta^*}) \).

By elementarity, then

for every \(\alpha, \beta \in J, \alpha < \beta \), there are \(s_\alpha \in S, r_\alpha \in R \) such that

\[(s_\alpha, r_\alpha) \models (\mathcal{P}(E(\beta)_{\beta < \eta^*}), \leq) (\alpha, \xi^*) < j(\mathcal{L}) (\beta, \xi^*). \]

\(\footnote{Forces with respect to } \leq^*. \)
Note that J need not be in $V[H, R, S]$, but rather in the further extension $V[H, R, S^+]$ by the forcing $j(\langle P(\alpha)_{\alpha \leq \eta^*}, \leq \rangle)/S$, which is basically the forcing for adding more Cohen subsets to $\kappa_{\eta^*}^+$ and cardinals below. \footnote{Note that the forcing $\langle P(\alpha)_{\alpha < \eta^*}, \leq \rangle$ is defined using one element Prikry sequences. Namely, once a non-direct extension was made over a coordinate β (i.e. using $E(\beta)$), then the rest of the forcing over coordinate β will be just adding Cohen subsets. In particular, if $\eta^* < \omega$, then it will be just a product Cohen forcings, after non-direct extension was made at each coordinate $k \leq \eta^*$. If $\eta^* \geq \omega$, then a non-direct extension over η^* will bound the size of the forcing over smaller coordinates.}

Also, if $\beta \in J, \alpha < \beta$ and for some $s \in S, r \in R$,

$$\langle s, r \rangle \Vdash_{\langle P(\mu)_{\mu < \eta^*}, \leq \rangle} ((\alpha, \xi^*) < \mathcal{L}(\beta, \xi^*)),$$

then $\alpha \in J$.

Now, by Neeman [7], 3.4.3.7, we must have that $J \in V[H, R, S]$.

Back to $V[H]$, we assume for simplicity that already the weakest conditions (in S, R) decide ξ^*.

Let now $\kappa_{\eta^*} < \kappa$ be a supercompact below λ with a corresponding embedding

$$j : V[H] \rightarrow M[H^*].$$

Assume for simplicity that $\eta = \omega$.

Let $n < \omega$ be the maximal such that $\kappa_n < \kappa$.

Split $G^* \upharpoonright \mathcal{P}(E(\mu)_{\mu^* < \eta})$ into $G_{\leq n}$ and $G_{> n}$.

κ remains a supercompact in $V[H, G_{> n}]$.

Moreover, there are $H^* \ast G_{> n}^*$ in $V[H, G_{> n}]$ which are $M -$generic and j extends to

$$j^{H^*, G_{> n}^*} : V[H, G_{> n}] \rightarrow M[H^*, G_{> n}^*].$$

Let $U(H^*, G_{> n}^*)$ be the corresponding normal ultrafilter over $\mathcal{P}_\kappa(\lambda^+)$. Recall that $J \in V[H, S, G^* \upharpoonright \mathcal{P}(E(\mu)_{\eta^* < \mu < \eta})]$. So, in order to have it, we need to add $S, G_{\leq n}^* \subseteq \mathcal{P}(E(\kappa)_{k \leq \eta^*})$.

As a result, a generic should be picked on the $M -$side. Now it should be forced.

Denote by $Q_{\leq n}$ the quotient forcing $j(\langle \langle \mathcal{P}(E(\kappa)_{k \leq \eta^*}), \leq \rangle \rangle)/S \times j(\langle \langle \mathcal{P}(E(\kappa)_{\eta^* < k \leq n}), \leq \rangle \rangle)/G_{\leq n}^*$, which is just a further Cohen forcing.

We work below with $Q_{\leq n} -$names which are assumed to have the desired properties as forced by the weakest condition in $Q_{\leq n}$.
Pick $\gamma \in j^{H*,G_{\leq n}^*}(J)$, $\gamma \geq \sup(j''\lambda^+)$. Then for every $\alpha \in J$ there will be $\langle s^\alpha, r^\alpha \rangle \in H^*, G_{\leq n}^*$, and $s^\alpha_{\leq n} \in Q_{\leq n}$ such that

$$\langle s^\alpha_{\leq n}, s^\alpha, r^\alpha \rangle \Vdash j^*(\langle P, \leq \rangle) \left(((j(\bar{\alpha}), \bar{\xi}^*) <_{j^*H^*,G_{\leq n}^*}(\mathcal{U}) \langle \gamma, \xi^* \rangle) \right).$$

Pick a function $h^\alpha : \mathcal{P}_n(\lambda^+) \rightarrow \mathcal{P}$ which represents $\langle s^\alpha_{\leq n}, s^\alpha, r^\alpha \rangle$ in the ultrapower.

Now, if $\alpha < \beta, \alpha, \beta \in J$, then

$$\{P \in \mathcal{P}_n(\lambda^+) \mid h^\alpha(P) \land h^\beta(P) \Vdash \langle \langle (\alpha, \xi^*) <_{\mathcal{U}} (\beta, \xi^*) \rangle \rangle \} \in U(H^*, G_{\leq n}^*).$$

Turn now to $V[H]$. Let $q^\alpha \geq_0 0_\mathcal{P}, \alpha < \lambda^+$ and $q^\alpha \Vdash \langle \langle \rangle \rangle \alpha \in J$.

Claim 3 Let $n < \omega$. There is a direct extension $q^{\alpha*}$ of q^α such that for every \bar{v} from sets of measure one of $q^{\alpha*}_{\leq n}$ (i.e. from the first n-coordinates of $q^{\alpha*}$)

$j(q^{\alpha*} \sim \bar{v})$ is compatible with $s^\alpha_{\leq n}$.

Proof. Suppose otherwise. Then there is a direct extension $q^{\alpha*}$ of q^α such that for every \bar{v} from sets of measure one of $q^{\alpha*}_{\leq n}$, $j(q^{\alpha*} \sim \bar{v})$ is incompatible with $s^\alpha_{\leq n}$.

Note that the critical point κ of j is above κ_n and each coordinate $q^{\alpha*}(k), k \leq n$ has cardinality $\leq \kappa_k$. So, $j(q^{\alpha*}(k))$ is the pointwise image of $q^{\alpha*}(k)$, for every $k \leq n$. Moreover, j does not move the set of measure one of $q^{\alpha*}(k)$, since it is a inside V_κ.

So, we can intersect this sets with those of $s^\alpha_{\leq n}$ (over the corresponding places). The result still in V_κ, and hence does move under j. This leads to contradiction. Namely, pick \bar{v} from such intersections. Then, $j(q^{\alpha*} \sim \bar{v})$ will be compatible with $s^\alpha_{\leq n}$.

\square of the claim.

Applying the claim for every $n < \omega$ and shrinking corresponding measure one sets, we will find a direct extension

$q^{\alpha**}$ of q^α such that for every $n < \omega$ and for every \bar{v} from sets of measure one of $q^{\alpha**}_{\leq n}$,

$j_n(q^{\alpha**} \sim \bar{v})$ is compatible with $s^\alpha_{\leq n}$.

Force with $\langle \mathcal{P}, \leq \rangle$. Let G be a generic. Suppose that $\alpha < \beta < \lambda^+$ and $q^{\alpha**}, q^{\beta**} \in G$.

Now back to $V[H]$, let $p \geq q^{\alpha**} \land q^{\beta**}$.

Claim 4 There is $p' \geq p$ such that

$$p' \Vdash \langle \mathcal{P}, \leq \rangle \left(((\alpha, \xi^*) <_{\mathcal{U}} (\beta, \xi^*)) \right).$$

Proof. There is $q \geq_0 q^{\alpha**} \land q^{\beta**}$ and \bar{v} from sets of measures one of $q^{\alpha**} \land q^{\beta**}$ such that $p = q^\sim \bar{v}$.

8
Let \(n < \omega \) be the number of coordinates involved in \(\bar{\nu} \). Pick a supercompact \(\kappa \) to be the least above \(\kappa_n \) and let \(j \) denotes the corresponding embedding.

Let us use the freedom that we have in choosing \(G^*, H^*, G^{**} \). Thus, assume that \(q \in G^* \). Then, \(j^{H^* G^{**}}(q) \in G^{**} \). So, it is compatible with \(\langle s^\alpha, r^\alpha \rangle \) and \(\langle s^\beta, r^\beta \rangle \).

Using the previous claim (Claim 3), we obtain a compatibility of \(j(q^{**} \wedge q^{**\sim} \bar{\nu}) \) with \(s^\alpha \sim \alpha \leq n \wedge s^\beta \sim \beta \leq n \), which implies those of \(j(q^{\sim} \bar{\nu}) \).

Pick a condition \(x \) to be stronger than \(j(q^{\sim} \bar{\nu}), s^\sim \alpha \leq n \wedge s^\sim \beta \leq n, \langle s^\alpha, r^\alpha \rangle \) and \(\langle s^\beta, r^\beta \rangle \).

Pick a function \(h : \mathcal{P}_\kappa(\lambda^+) \to \mathcal{P} \) which represents \(x \).

Then, \(\{ P \in \mathcal{P}_\kappa(\lambda^+) \mid h(P) \geq q^{\sim} \bar{\nu} \text{ and } h(P) \forces_{\langle P, \leq \rangle} ((\alpha, \xi^*) < \mathcal{X}(\beta, \xi^*)) \} \in U(H^*, G^{**}) \).

Now any \(h(P) \) with \(P \) from this set will be as desired.

\(\Box \) of the claim.

Now, by density, there is \(p' \in G \) such that

\[p' \forces_{\langle P, \leq \rangle} (\langle \alpha, \xi^* \rangle < \mathcal{X}(\beta, \xi^*)). \]

Note that the only requirements on \(q^\alpha \) were that \(q^\alpha \geq^* 0_P, \alpha < \lambda^+ \) and \(q^\alpha \forces_{\langle P, \leq \rangle} \alpha \in \mathcal{J} \).

Consider all possibilities, i.e. let \(Y^\alpha \) be the set consisting of \(q^{**} \) given by Claim 3 with \(q^\alpha \) arbitrary such that \(q^\alpha \geq^* 0_P, \alpha < \lambda^+ \) and \(q^\alpha \forces_{\langle P, \leq \rangle} \alpha \in \mathcal{J} \).

The next claim completes the argument.

Claim 5 There is \(\tilde{q} \geq^* 0_P \) such that

\[\tilde{q} \forces_{\langle P, \leq \rangle} (\{ \alpha < \lambda^+ \mid Y^\alpha \cap G \neq \emptyset \} \text{ is unbounded in } \lambda^+) \]

Proof. Consider the statement:

\[\sigma \equiv (\{ \alpha < \lambda^+ \mid Y^\alpha \cap G \neq \emptyset \} \text{ is unbounded in } \lambda^+) \]

of the forcing language \(\langle P, \leq \rangle \).

By the Prikry condition, there is \(\tilde{q} \geq^* 0_P \) which decides \(\sigma \).

If \(\tilde{q} \forces_{\langle P, \leq \rangle} \sigma \), then we are done.

Suppose that \(\tilde{q} \forces_{\langle P, \leq \rangle} \neg \sigma \).

Then \(\tilde{q} \forces_{\langle P, \leq \rangle} (\{ \alpha < \lambda^+ \mid Y^\alpha \cap G \neq \emptyset \} \text{ is bounded in } \lambda^+) \).

Let \(\zeta \) be a \(\langle P, \leq \rangle \)-name of a bound.
Then, by the Prikry condition type argument showing that $\bar{\kappa}^\eta = \lambda^+$ is preserved after the forcing $\langle P, \leq \rangle$, there will be $q' \geq^* \tilde{q}$ and $\mu < \bar{\kappa}^\eta$ such that

$$q' \models_{\langle P, \leq \rangle} (\zeta < \mu).$$

We have

$$q' \geq^* 0_P \models_{\langle P, \leq \rangle^*} (J \text{ is unbounded in } \bar{\kappa}^\eta).$$

Pick $\alpha, \mu < \alpha < \bar{\kappa}^\eta$ and $q'' \geq^* q'$ such that $q'' \models_{\langle P, \leq \rangle^*} \alpha \in J$. Then $q''^** \geq^* q''$ is in Y^α, by the definition of Y^α. Clearly, then

$$q''^** \models_{\langle P, \leq \rangle} (q''^** \in Y^\alpha \cap G).$$

Contradiction.

\square of the claim.
2 \ -\text{SCH and the tree property for a club.}

In [2], O. Ben-Neria, C. Lambie-Hanson, S. Unger use the supercompact Radin forcing to construct a model in which both AP and SCH fail on a proper class club of singular cardinals. They asked whether it is possible to replace \(\neg\text{AP}\) by the tree property.

Here we would like to give an affirmative answer. Again, the initial assumption will be stronger than those used in [2], however no cardinals will change their cofinality.

\textbf{Theorem 2.1} Suppose that \(\theta\) is the least inaccessible cardinal which is a limit of supercompact cardinals.

Then there is cofinality preserving extension so that

- \(\theta\) remaining inaccessible,
- there is a club in \(\theta\) consisting of singular strong limit cardinals \(\nu\) such that
 1. \(2^\nu > \nu^+\),
 2. \(\nu^+\) has the tree property.

\textbf{Proof.} The construction of the previous section can be applied here, only replace \(\eta\) by an inaccessible cardinal \(\theta\).

Let \(\langle \delta_\alpha \mid \alpha < \theta \rangle\) be an increasing sequence of supercompact cardinals. Set \(\kappa_\alpha = \delta_{\alpha+1}\), for every \(\alpha < \theta\). Clearly, each \(\kappa_\alpha\) is strong. Repeat the previous construction using the sequence \(\langle \kappa_\alpha \mid \alpha < \theta \rangle\).

Note that given a limit \(\alpha < \theta\), we do not know in advance (i.e. without forcing with \(E(\alpha)\)) what will be \(2^{\kappa_\alpha}\), where, as before, \(\kappa_\alpha = \bigcup_{\beta < \alpha} \kappa_\beta\). So, if we have only boundedly many supercompacts below \(\kappa_\alpha\), then it is possible that there will be no supercompact in the interval \((2^{\kappa_\alpha}, \kappa_\alpha)\). However, having a supercompact inside \((\kappa_\alpha, \kappa_{\alpha+1})\), we can repeat the argument of the previous section just using \(\kappa_{\alpha+1}\) as the first strong in this argument.

\(\square\)
References

[2] O. Ben-Neria, C. Lambie-Hanson, S. Unger, Diagonal supercompact Radin forcing,

[3] M. Gitik, Blowing up the power of a singular cardinal of uncountable cofinality,

[7] I. Neeman, Aronszajn trees and failure of SCH,

