An other model with tree property and not SCH.

Moti Gitik*

May 28, 2018

Abstract

We will use the method for blowing up the power of a singular cardinal of [3] in order to get models with tree property on successors of singulars and not SCH. The advantage of the present technique is that no cardinal is collapsed or changes its cofinality. A question by O. Ben-Neria, C. Lambie-Hanson, S. Unger from [2] is answered.

1 A model in which SCH fail at a singular cardinal, but the tree property holds at its successor.

Such a model was first constructed by I. Neeman [7] for a singular of countable cofinality and later was generalized to uncountable one by D. Sinapova [10].

The forcing used in [7] is based on the forcing of [5]. We will use here the forcing of [3] instead and deal with countable and uncountable cofinalities simultaniously.

Fix a regular cardinal η . Let $\langle \kappa_{\alpha} \mid \alpha < \eta \rangle$ be an increasing sequence of cardinals and let $\langle E_{\alpha} \mid \alpha < \eta \rangle$ be a sequence of extenders such that for every $\alpha < \eta$

- 1. $\eta < \kappa_0$,
- 2. $E(\alpha)$ is a $(\kappa_{\alpha}, \bar{\kappa}_{\eta}^{++})$ -extender, where $\bar{\kappa}_{\eta} = \bigcup_{\alpha < \eta} \kappa_{\alpha}$,
- 3. $E(\alpha) \triangleleft E(\alpha+1)$,
- 4. there is a supercompact cardinal in the interval (η, κ_0) ,
- 5. for every $\alpha < \eta$ there is a supercompact cardinal in the interval $(\kappa_{\alpha}, \kappa_{\alpha+1})$.

^{*}The work was partially supported by Israel Science Foundation Grant No. 58/14. We are grateful to Spencer Unger for reading a draft of the paper, his corrections and comments.

Let $\langle \mathcal{P}_{\langle E(\alpha) | \alpha < \eta \rangle}, \leq, \leq^* \rangle$ be the forcing of Section 2 of [3]. For every limit $\alpha \leq \eta$ denote $\bar{\kappa}_{\alpha} = \bigcup_{\alpha' < \alpha} \kappa_{\alpha'}$. By [3], Section 2, it has the following properties:

- 1. $\langle \mathcal{P}_{\langle E(\alpha) | \alpha < \eta \rangle}, \leq, \leq^* \rangle$ is a Prikry type forcing,
- 2. the forcing $\langle \mathcal{P}_{\langle E(\alpha) | \alpha < \eta \rangle}, \leq \rangle$:
 - (a) blows up the power of $\bar{\kappa}_{\eta}$ to $\bar{\kappa}_{\eta}^{++}$,
 - (b) blows up the power of $\bar{\kappa}_{\alpha}$ above $\bar{\kappa}_{\alpha}^{+}$, for every limit $\alpha < \eta$,
 - (c) preserves cardinals and cofinalities,
 - (d) preserves strong limitness of each of κ_{α} 's, for every $\alpha \leq \eta$, and $\bar{\kappa}_{\alpha}$'s, for every limit $\alpha \leq \eta$
 - (e) does not add new subsets to κ_0 .
- 3. The forcing $\langle \mathcal{P}_{\langle E(\alpha) | \alpha < \eta \rangle}, \leq^* \rangle$ is equivalent to the product of Cohen forcings $Cohen(\kappa_{\alpha}^+, \bar{\kappa}_{\eta}^{++})$ with full support for \leq^* -extension of $0_{\langle \mathcal{P}_{\langle E(\alpha) | \alpha < \eta \rangle}}$.

We force first with the Laver type preparation forcings to ensure indestructibility of the relevant supercompact cardinals under directed closed forcings which preserve cardinals, as it is done in A. Apter [1]. Let H be a corresponding generic set.

It is easy to extend the extender $E(\alpha)$ and its elementary embedding in V[H]. Let us abuse the notation a bit and still denote the extension of $E(\alpha)$ in V[H] by $E(\alpha)$.

Force with $\langle \mathcal{P}_{\langle E(\alpha) | \alpha < \eta \rangle}, \leq \rangle$. Let G be a generic. We claim that V[H * G] is as desired, i.e. it satisfies $TP_{\bar{\kappa}_{\eta}^+}$ and $2^{\bar{\kappa}_{\eta}} = \bar{\kappa}_{\eta}^{++}$.

 $2^{\bar{\kappa}_{\eta}} = \bar{\kappa}_{\eta}^{++}$ follows by [3]. Let deal with the tree property.

The argument below follows [6] and [7].

Suppose that T is a $\bar{\kappa}_n^+$ -tree in V[H*G].

We can assume that for every $\alpha < \bar{\kappa}_{\eta}^+$, the level α of T is $\{(\alpha, \xi) \mid \xi < \bar{\kappa}_{\eta}\}$.

Let T be a $\langle \mathcal{P}, \leq \rangle$ -name of a $\bar{\kappa}_{\eta}^+$ -tree T.

Suppose for simplicity that

$$0_{\mathcal{P}} \Vdash_{\langle \mathcal{P}, \leq \rangle} (\widetilde{\mathcal{T}} \text{ is a } \bar{\kappa}_{\eta}^+ - \text{tree}).$$

Let $\kappa, \eta < \kappa < \kappa_0$ be a supercompact.

Now, in V[H], using the indestructibility of supercompactness of κ under the forcing $\langle \mathcal{P}, \leq^* \rangle$, let us pick $N \prec \langle H(\bar{\kappa}_{\eta}^{+++}), \in \rangle^1$ such that

- 1. $N \cap \kappa \in \kappa$,
- $2. |N| < \kappa,$
- $3. T \in N$
- 4. for every $A \subseteq N \cap \bar{\kappa}_{\eta}^+$ there is $B \in N$ such that $B \cap N = A$.

Let \bar{N} be the transitive collapse of N, and let $\pi: \bar{N} \to N$. Denote $\kappa \cap N$ by $\kappa(N)$. Now the assumption that κ was forced to be indestructible applied to the forcing $\langle \mathcal{P}, \leq^* \rangle$, provides a \bar{N} -generic set. Its image under π can be easily turned into a condition in $\langle \mathcal{P}, \leq^* \rangle$. Let p(N) be such a condition. Then for every G^* generic for $\langle \mathcal{P}, \leq^* \rangle$ with $p(N) \in G^*$, N[p(N)] will be a generic extension of N and an elementary submodel of $(H(\bar{\kappa}_{\eta}^{+++}))[G^*]$, satisfying the same properties as N.

Fix some G^* like this.

Let $\delta = \sup(N[p(N)] \cap \bar{\kappa}_{\eta}^{+}) = \sup(N \cap \bar{\kappa}_{\eta}^{+})$ and let $t_{\delta} \in Lev_{\delta}(T)$. For every $\alpha \in N \cap \bar{\kappa}_{\eta}^{+}$ and $\eta' < \eta$ consider the following statement:

$$\sigma_{\alpha}^{\eta'} \equiv \exists \xi < \kappa_{\eta'}(t_{\delta} >_{\mathcal{T}_{\epsilon}}(\alpha, \xi)).$$

Then, by the Prikry property and η^+ -closure of $\langle \mathcal{P}, \leq^* \rangle$, there is $\eta_{\alpha} < \eta$ and $p^{\alpha} \geq^* p(N)$, $p^{\alpha} \in G^*$ such that

$$p^{\alpha} \Vdash_{\langle \mathcal{P}, \leq \rangle} \exists \xi < \kappa_{\eta_{\alpha}}(t_{\delta} >_{\mathcal{T}} (\alpha, \xi)).$$

Since $|N| < \kappa$, there will be $I(N) \subseteq \delta$ unbounded in δ , $I(N) \in V[H]$, $\eta^* < \eta$ and $p^*(N) \ge^* p(N)$,

 $p^*(N) \in G^*$ such that for every $\alpha \in I(N)$,

$$p^*(N) \Vdash_{\langle \mathcal{P}, \leq \rangle} \exists \xi < \kappa_{\eta^*}(t_\delta >_{\mathcal{L}} (\alpha, \xi)).$$

Now let $\alpha < \beta, \alpha, \beta \in I(N)$.

Consider the following set:

$$D_{\alpha\beta} = \{ q \geq^* 0_{\mathcal{P}} \mid q \parallel_{\langle \mathcal{P}, \leq \rangle} \exists \xi_{\alpha}, \xi_{\beta} < \kappa_{\eta^*}((\alpha, \xi_{\alpha}) <_{\mathcal{T}} (\beta, \xi_{\beta})) \}.$$

¹Alternatively, we can use a supercompact embedding and to work in the ultrapower.

It is dense in $\langle \mathcal{P}, \leq^* \rangle$ above $0_{\mathcal{P}}$.

So there is $q \leq^* p(N)$, $q \in D_{\alpha\beta}$. Then $q \leq p^*(N)$, and hence, q must force the existence of such $\xi_{\alpha}, \xi_{\beta}$.

So, p(N) forces this as well.

Appeal now to the supercompactness in $V[H*G^*]$. So, there will be an unbounded in $\bar{\kappa}_n^+$ set $I \in V[H*G^*]$ such that for every $\alpha < \beta, \alpha, \beta \in I$ there is $q \in G^*$,

$$q \Vdash_{\langle \mathcal{P}, \leq \rangle} \exists \xi_{\alpha}, \xi_{\beta} < \kappa_{\eta^*}((\alpha, \xi_{\alpha}) <_{\mathcal{L}} (\beta, \xi_{\beta})).$$

Then there is $q^* \in G^*$ such that (in V[H])

(*)
$$q^* \Vdash_{\langle \mathcal{P}, \leq^* \rangle} \forall \alpha, \beta \in \underline{\mathcal{I}}(\alpha < \beta \to (\exists q \in \underline{\mathcal{G}}(\langle \mathcal{P}, \leq^* \rangle)))$$
$$(q \Vdash_{\langle \mathcal{P}, \leq \rangle} \exists \xi_{\alpha}, \xi_{\beta} < \kappa_{\eta^*}((\alpha, \xi_{\alpha}) <_{\mathcal{I}_{\epsilon}}(\beta, \xi_{\beta}))))).$$

But then,

(**) for every $\alpha < \beta$ and $\bar{q}_{\sim} \geq^* q^*$, 2 if $\bar{q}_{\sim} \Vdash_{\langle \mathcal{P}, \leq^* \rangle} \alpha, \beta \in \underline{\mathcal{I}}$, then already for some choice sets of measures one for coordinates of \bar{q}_{\sim} we will have

$$\bar{q} \Vdash_{\langle \mathcal{P}, \leq \rangle} \exists \xi_{\alpha}, \xi_{\beta} < \kappa_{\eta^*}((\alpha, \xi_{\alpha}) <_{\mathcal{T}_{\alpha}} (\beta, \xi_{\beta})).$$

Since otherwise there will be $q' \geq^* \bar{q}$ such that

$$q' \Vdash_{\langle \mathcal{P}, \leq \rangle} \neg (\exists \xi_{\alpha}, \xi_{\beta} < \kappa_{n^*}((\alpha, \xi_{\alpha}) <_{T_*}(\beta, \xi_{\beta}))).$$

Pick G' to be a generic for $\langle \mathcal{P}, \leq^* \rangle$ with q', and so, \bar{q}, q^* inside. Then there is no $q \in G'$ such that

$$q \Vdash_{\langle \mathcal{P}, \leq \rangle} \exists \xi_{\alpha}, \xi_{\beta} < \kappa_{\eta^*}((\alpha, \xi_{\alpha}) <_{\mathcal{L}} (\beta, \xi_{\beta})),$$

since every $q \in G'$ is \leq^* -compatible with q', and hence also, \leq -compatible with it. But this contradicts (*) above.

Note that $\underline{\mathcal{L}}$ is a $\langle \mathcal{P}, \leq^* \rangle$ -canonical name of a subset of $\bar{\kappa}_{\eta}^+$, so it can be viewed as a $\langle \mathcal{P}, \leq \rangle$ as well. Let us argue its interpretation cannot be too small.

Claim 1 There is $\tilde{q} \geq^* q^*$ such that $\tilde{q} \Vdash_{\langle \mathcal{P}, \leq \rangle} (\tilde{L})$ is unbounded in $\bar{\kappa}_{\eta}^+$.

Proof. Consider the statement

$$\sigma \equiv \underline{I}$$
 is unbounded in $\bar{\kappa}_{\eta}^{+}$

²For $r \geq^* 0_{\mathcal{P}}$, we denote by r_{\sim} the equivalence class or simply r with measure one sets removed.

of the forcing language $\langle \mathcal{P}, \leq \rangle$.

By the Prikry condition, there is $\tilde{q} \geq^* q^*$ which decides σ .

If $\tilde{q} \Vdash_{\langle \mathcal{P}, \leq \rangle} \sigma$, then we are done.

Suppose that $\tilde{q} \Vdash_{\langle \mathcal{P}, \leq \rangle} \neg \sigma$.

Then $\tilde{q} \Vdash_{\langle \mathcal{P}, \leq \rangle} (\underbrace{I}_{\sim} \text{ is bounded in } \bar{\kappa}_{\eta}^{+}).$

Let ζ be a $\langle \mathcal{P}, \leq \rangle$ -name of $\sup(\underline{\mathcal{L}})$.

Then, by the Prikry condition type argument showing that $\bar{\kappa}_{\eta}^{+}$ is preserved after the forcing $\langle \mathcal{P}, \leq \rangle$, there will be $q' \geq^{*} \tilde{q}$ and $\mu < \bar{\kappa}_{\eta}^{+}$ such that

$$q' \Vdash_{\langle \mathcal{P}, \leq \rangle} (\zeta < \mu).$$

But

$$q^* \Vdash_{\langle \mathcal{P}, \leq^* \rangle} (\underline{I} \text{ is unbounded in } \bar{\kappa}_{\eta}^+).$$

Hence, there are $q'' \geq^* q'$ and $\tau, \mu < \tau < \bar{\kappa}_{\eta}^+$ such that $\langle q''', \tau \rangle \in \underline{\mathcal{L}}$, for some $q''' \leq^* q''$. Then, clearly, $q'' \Vdash_{\langle \mathcal{P}, \leq \rangle} (\tau \in \underline{\mathcal{L}})$, which is impossible. Contradiction.

 \square of the claim.

Assume for simplicity that already $0_{\mathcal{P}} \Vdash_{\langle \mathcal{P}, \leq \rangle} (\underbrace{I}_{\sim} \text{ is unbounded in } \bar{\kappa}_{\eta}^{+}).$

Denote $\bar{\kappa}_{\eta}$ by λ .

Pick a supercompact cardinal κ , $\kappa_{\eta^*} < \kappa < \kappa_{\eta^{*+1}}$.

Consider $R = G^* \upharpoonright \langle \mathcal{P}_{\langle E(\alpha) | \eta^* < \alpha < \eta \rangle}, \leq^* \rangle$, i.e. the Cohen functions above $\kappa_{\eta^*}^+$.

Clearly, R is V[H] generic for $\langle \mathcal{P}_{\langle E(\alpha)|\eta^* < \alpha < \eta \rangle}, \leq^* \rangle$.

We will be interested in \mathcal{L}_R , i.e. the interpretation (partial) of $\langle \mathcal{P}_{\langle E(\alpha) | \alpha < \eta \rangle}, \leq^* \rangle$ —name by R.

Use the indestructibility of κ and find $j:V[H*R]\to M[H^*,R^*]$ witnessing λ^+ -supercompactness of κ .

Let $\delta = \sup(j''\lambda^+) < j(\lambda^+)$.

Pick some $s \in j(\mathcal{P}_{\langle E(\alpha) | \alpha \leq \eta^* \rangle}), s \geq^* j(0_{\mathcal{P}}) \upharpoonright j(\mathcal{P}_{\langle E(\alpha) | \alpha \leq \eta^* \rangle})$ and a $j(\langle \mathcal{P}_{\langle E(\alpha) | \alpha \leq \eta^* \rangle}, \leq \rangle)$ —name γ of an ordinal such that

$$s \Vdash_{j(\langle \mathcal{P}_{\langle E(\alpha) \mid \alpha \leq \eta^* \rangle}, \leq \rangle)} (\gamma \geq \delta \land \gamma \in j(\underline{I})_{R^*}).$$

Note that $s \geq^* j(0_{\mathcal{P}}) \upharpoonright j(\mathcal{P}_{E(\alpha)|\alpha \leq \eta^*\rangle})$ implies in particular that

$$s \Vdash_{j(\langle \mathcal{P}_{\langle E(\alpha) | \alpha \leq \eta^* \rangle}, \leq^*)} (|j''(\underline{\mathcal{L}})_{R^*})| = \lambda^+).$$

Claim 2 There is $s^* \in j(\mathcal{P}_{\langle E(\alpha) | \alpha \leq \eta^* \rangle}), s \leq^* s^*$ such that

$$s^* \Vdash_{j(\langle \mathcal{P}_{\langle E(\alpha) \mid \alpha \leq \eta^* \rangle}, \leq \rangle)} (|\{\alpha < \lambda^+ \mid j(\alpha) \in j(\underline{L})_{R^*}\}| = \lambda^+).^3$$

³Note that we have two orderings \leq^* and \leq . The claim is about the later one.

Proof. Suppose otherwise. Let

$$\sigma \equiv |\{\alpha < \lambda^+ \mid j(\alpha) \in j(I)_{R^*}\}| = \lambda^+.$$

Then for every $s' \in j(\mathcal{P}_{\langle E(\alpha) | \alpha \leq \eta^* \rangle})$, $s \leq^* s'$ there is $s^* \in j(\mathcal{P}_{\langle E(\alpha) | \alpha \leq \eta^* \rangle})$, $s' \leq^* s^*$ which forces $\neg \sigma$, which means that the set $\{\alpha < \lambda^+ \mid j(\alpha) \in j(I)_{R^*}\}$ is bounded in λ^+ .

The forcing $\langle \mathcal{P}_{\langle E(\alpha) | \alpha \leq \eta^* \rangle}, \leq \rangle$ satisfies $\kappa_{\eta^*}^{++} - \text{c.c.}$, hence there is $\tau < \lambda^+$ such that for every $s^* \in j(\mathcal{P}_{\langle E(\alpha) | \alpha \leq \eta^* \rangle}), s \leq^* s^*$, if s^* decides σ , then

$$s^* \Vdash_{j(\langle \mathcal{P}_{\langle E(\alpha) \mid \alpha \leq n^* \rangle}, \leq \rangle)} (\{\alpha < \lambda^+ \mid j(\alpha) \in j(I)_{R^*}\} \subseteq \tau).$$

But we have

$$s \Vdash_{j(\langle \mathcal{P}_{\langle E(\alpha) \mid \alpha \leq n^* \rangle}, \leq^*)} (|j''(\underline{I})_{R^*})| = \lambda^+).^4$$

So, there are $s' \in j(\mathcal{P}_{\langle E(\alpha) | \alpha \leq \eta^* \rangle}), s \leq^* s'$ and $\tau', \tau \leq \tau' < \lambda^+$ such that

$$s' \Vdash_{j(\langle \mathcal{P}_{\langle E(\alpha) | \alpha < \eta^* \rangle}, \leq^*)} (j(\tau') \in j(\underline{L})_{R^*}).$$

But this is impossible. Contradiction.

 \square of the claim.

Fix s^* as in the claim. Let S^* be $j(\langle \mathcal{P}_{\langle E(\alpha) | \alpha \leq \eta^* \rangle}, \leq \rangle)$ —generic over $M[H^*, R^*]$ with $s^* \in S^*$. Then, by Claim 2, in $M[H^*, R^*, S^*]$ there is a set $J' \subseteq \lambda^+$ unbounded such that the following holds:

for every $\alpha \in J'$, there are $\zeta_{\alpha}, \xi_{\alpha} < \kappa_{\eta^*}, s_{\alpha} \in S^*, r_{\alpha} \in R^*$ such that

$$(s_{\alpha}, r_{\alpha}) \Vdash_{j(\langle \mathcal{P}_{\langle E(\beta)|\beta<\eta\rangle}, \leq \rangle)} ((j(\alpha), \xi_{\alpha}) <_{j(\mathcal{X})} (\gamma, \zeta_{\alpha})).$$

We use here the $\kappa_{\eta^*}^+$ -closure of \leq^* – of $j(\mathcal{P}_{E(\beta)|\eta^*<\beta<\eta\rangle})$ in order to obtain r_{α} .

Then there will be $\zeta^*, \xi^* < \kappa_{\eta^*}$ which work for an unbounded subset J of J', i.e. for every $\alpha \in J$, there are $s_{\alpha} \in S^*, r_{\alpha} \in R^*$ such that

$$(s_{\alpha}, r_{\alpha}) \Vdash_{j(\langle \mathcal{P}_{(E(\beta)|\beta < \gamma)}, \leq \rangle)} ((j(\alpha), \xi^*) <_{j(\mathcal{I})} (\gamma, \zeta^*)).$$

Let S be the restriction of S^* to $\mathcal{P}_{\langle E(\mu)|\mu < \eta^* \rangle}$.

By elementarity, then

for every $\alpha, \beta \in J, \alpha < \beta$, there are $s_{\alpha} \in S, r_{\alpha} \in R$ such that

$$(s_{\alpha}, r_{\alpha}) \Vdash_{\langle \mathcal{P}_{\langle E(\beta)|\beta < \eta \rangle}, \leq \rangle} ((\alpha, \xi^*) <_{\mathcal{L}} (\beta, \xi^*)).$$

⁴Forces with respect to \leq^* .

Note that J need not be in V[H, R, S], but rather in the further extension $V[H, R, S^*]$ by the forcing $j(\langle \mathcal{P}_{\langle E(\alpha) | \alpha \leq \eta^* \rangle}, \leq \rangle)/S$, which is basically the forcing for adding more Cohen subsets to $\kappa_{\eta^*}^+$ and cardinals below. ⁵

Also, if $\beta \in J$, $\alpha < \beta$ and for some $s \in S$, $r \in R$,

$$\langle s, r \rangle \Vdash_{\langle \mathcal{P}_{\langle E(\mu) | \mu < \eta \rangle}, \leq \rangle} ((\alpha, \xi^*) <_{\mathcal{L}} (\beta, \xi^*)),$$

then $\alpha \in J$.

Now, by Neeman [7], 3.4,3.7, we must have that $J \in V[H, R, S]$.

Back to V[H], we assume for simplicity that already the weakest conditions (in S, R) decide ξ^* .

Let now $\kappa_{\eta^*} < \kappa$ be a supercompact below λ with a corresponding embedding

$$j:V[H]\to M[H^*].$$

Assume for simplicity that $\eta = \omega$.

Let $n < \omega$ be the maximal such that $\kappa_n < \kappa$.

Split $G^* \upharpoonright \mathcal{P}_{\langle E(\mu)|\eta^* < \mu < \eta \rangle}$ into $G^*_{< n}$ and $G^*_{> n}$.

 κ remains a supercompact in $V[H, G^*_{>n}]$.

Moreover, there are $H^* * G^{**}_{>n}$ in $V[H, G^*_{>n}]$ which are M-generic and j extends to

$$j^{H^*,G^{**}_{>n}}:V[H,G^*_{>n}]\to M[H^*,G^{**}_{>n}].$$

Let $U(H^*, G_{>n}^{**})$ be the corresponding normal ultrafilter over $\mathcal{P}_{\kappa}(\lambda^+)$.

Recall that $J \in V[H, S, G^* \upharpoonright \mathcal{P}_{\langle E(\mu) | \eta^* < \mu < \eta \rangle}]$. So, in order to have it, we need to add $S, G^*_{\leq n} \subseteq \mathcal{P}_{\langle E(k) | k \leq n \rangle}$.

As a result, a generic should be picked on the M-side. Now it should be forced.

Denote by $Q_{\leq n}$ the quotient forcing $j(\langle \mathcal{P}_{\langle E(k)|k\leq \eta^*\rangle}, \leq^* \rangle)/S \times j(\langle \mathcal{P}_{\langle E(k)|\eta^* < k\leq n\rangle}, \leq^* \rangle)/G_{\leq n}^*$, which is just a further Cohen forcing.

We work below with $Q_{\leq n}$ -names which are assumed to have the desired properties as forced by the weakest condition in $Q_{\leq n}$.

⁵Note that the forcing $\langle \mathcal{P}_{\langle E(\beta)|\beta<\eta^*\rangle}, \leq, \leq^* \rangle$ is defined using one element Prikry sequences. Namely, once a non-direct extension was made over a coordinate β (i.e. using $E(\beta)$), then the rest of the forcing over coordinate β will be just adding Cohen subsets. In particular, if $\eta^* < \omega$, then it will be just a product Cohen forcings, after non-direct extension was made at each coordinate $k \leq \eta^*$. If $\eta^* \geq \omega$, then a non-direct extension over η^* will bound the size of the forcing over smaller coordinates.

 $\mathrm{Pick}\ \underset{\sim}{\gamma}\in j^{H^*,G^{**}_{>n}}(\underset{\sim}{\mathcal{L}}), \gamma\geq \sup(j''\lambda^+).$

Then for every $\alpha \in J$ there will be $\langle s^{\alpha}, r^{\alpha} \rangle \in H^*, G^{**}_{>n}$ and $\mathcal{S}^{\alpha}_{\leq n} \in Q_{\leq n}$ such that

$$\langle \underset{\sim}{\mathcal{S}}_{\leq n}^{\alpha}, s^{\alpha}, r^{\alpha} \rangle \Vdash_{j^*(\langle \mathcal{P}, \leq \rangle)} ((j(\check{\alpha}), \xi^*) <_{j^{H^*, G^{**}}_{>n}(\mathcal{T}_{\cdot})} (\gamma, \xi^*)).$$

Pick a function $h^{\alpha}: \mathcal{P}_{\kappa}(\lambda^{+}) \to \mathcal{P}$ which represents $\langle \underline{s}_{\leq n}^{\alpha}, s^{\alpha}, r^{\alpha} \rangle$ in the ultrapower. Now, if $\alpha < \beta, \alpha, \beta \in J$, then

$$\{P \in \mathcal{P}_{\kappa}(\lambda^{+}) \mid h^{\alpha}(P) \wedge h^{\beta}(P) \Vdash_{\langle \mathcal{P}, \leq \rangle} ((\alpha, \xi^{*}) <_{\mathcal{T}} (\beta, \xi^{*}))\} \in U(H^{*}, G^{**}_{>n}).$$

Turn now to V[H]. Let $q^{\alpha} \geq^* 0_{\mathcal{P}}, \alpha < \lambda^+$ and $q^{\alpha} \Vdash_{\langle \mathcal{P}, \leq^* \rangle} \alpha \in \mathcal{J}$.

Claim 3 Let $n < \omega$. There is a direct extension $q^{\alpha*}$ of q^{α} such that for every $\vec{\nu}$ from sets of measure one of $q_{\leq n}^{\alpha*}$ (i.e. from the first n-coordinates of $q^{\alpha*}$) $j(q^{\alpha*} \cap \vec{\nu})$ is compatible with $\sum_{n=0}^{\infty} a_n$.

Proof. Suppose otherwise. Then there is a direct extension $q^{\alpha*}$ of q^{α} such that for every $\vec{\nu}$ from sets of measure one of $q_{n}^{\alpha*}$, $j(q^{\alpha*} \vec{\nu})$ is incompatible with s_{n}^{α} .

Note that the critical point κ of j is above κ_n and each coordinate $q^{\alpha*}(k), k \leq n$ has cardinality $\leq \kappa_k$. So, $j(q^{\alpha*}(k))$ is the pointwise image of $q^{\alpha*}(k)$, for every $k \leq n$. Moreover, j does not move the set of measure one of $q^{\alpha*}(k)$, since it is a inside V_{κ} .

So, we can intersect this sets with those of $\underset{\sim}{\mathcal{S}}_{\leq n}^{\alpha}$ (over the corresponding places). The result still in V_{κ} , and hence does move under j. This leads to contradiction. Namely, pick $\vec{\nu}$ from such intersections. Then, $j(q^{\alpha*} \vec{\nu})$ will be compatible with $\underset{\sim}{\mathcal{S}}_{\leq n}^{\alpha}$.

 \square of the claim.

Applying the claim for every $n < \omega$ and shrinking corresponding measure one sets, we will find a direct extension

 $q^{\alpha **}$ of q^{α} such that for every $n < \omega$ and for every $\vec{\nu}$ from sets of measure one of $q_{\leq n}^{\alpha **}$, $j_n(q^{\alpha **} \vec{\nu})$ is compatible with $s_{\leq n}^{\alpha}$.

Force with $\langle \mathcal{P}, \leq \rangle$. Let G be a generic. Suppose that $\alpha < \beta < \lambda^+$ and $q^{\alpha **}, q^{\beta **} \in G$. Now back to V[H], let $p \geq q^{\alpha **} \wedge q^{\beta **}$.

Claim 4 There is $p' \geq p$ such that

$$p' \Vdash_{\langle \mathcal{P}, \leq \rangle} ((\alpha, \xi^*) <_{\mathcal{L}} (\beta, \xi^*)).$$

Proof. There is $q \geq^* q^{\alpha **} \wedge q^{\beta **}$ and $\vec{\nu}$ from sets of measures one of $q^{\alpha **} \wedge q^{\beta **}$ such that $p = q^{\frown} \vec{\nu}$.

Let $n < \omega$ be the number of coordinates involved in $\vec{\nu}$. Pick a supercompact κ to be the least above κ_n and let j denotes the corresponding embedding.

Let us use the freedom that we have in choosing G^*, H^*, G^{**} . Thus, assume that $q \in G^*$. Then, $j^{H^*,G^{**}}(q) \in G^{**}$. So, it is compatible with $\langle s^{\alpha}, r^{\alpha} \rangle$ and $\langle s^{\beta}, r^{\beta} \rangle$.

Using the previous claim (Claim 3), we obtain a compatibility of $j(q^{\alpha**} \wedge q^{\beta**} \vec{\nu})$ with $s_{\nu \leq n}^{\alpha} \wedge s_{\nu \leq n}^{\beta}$, which implies those of $j(q^{\frown}\vec{\nu})$.

Pick a condition x to be stronger than $j(q \cap \vec{\nu})$, $\underset{\leq n}{\mathcal{S}} \wedge \underset{\leq n}{\mathcal{S}} \wedge s^{\alpha}$, $\langle s^{\alpha}, r^{\alpha} \rangle$ and $\langle s^{\beta}, r^{\beta} \rangle$.

Pick a function $h: \mathcal{P}_{\kappa}(\lambda^{+}) \to \mathcal{P}$ which represents x.

Then,

$$\{P \in \mathcal{P}_{\kappa}(\lambda^+) \mid h(P) \geq q \cap \vec{\nu} \text{ and } h(P) \Vdash_{\langle \mathcal{P}, \leq \rangle} ((\alpha, \xi^*) <_{\mathcal{T}_{\kappa}} (\beta, \xi^*))\} \in U(H^*, G^{**}_{>n}).$$

Now any h(P) with P from this set will be as desired.

 \square of the claim.

Now, by density, there is $p' \in G$ such that

$$p' \Vdash_{\langle \mathcal{P}, < \rangle} ((\alpha, \xi^*) <_{T_*} (\beta, \xi^*)).$$

Note that the only requirements on q^{α} were that $q^{\alpha} \geq^* 0_{\mathcal{P}}$, $\alpha < \lambda^+$ and $q^{\alpha} \Vdash_{\langle \mathcal{P}, \leq^* \rangle} \alpha \in \mathcal{J}$. Consider all possibilities, i.e. let Y^{α} be the set consisting of $q^{\alpha **}$ given by Claim 3 with q^{α} arbitrary such that $q^{\alpha} \geq^* 0_{\mathcal{P}}$, $\alpha < \lambda^+$ and $q^{\alpha} \Vdash_{\langle \mathcal{P}, <^* \rangle} \alpha \in \mathcal{J}$.

The next claim completes the argument.

Claim 5 There is $\tilde{q} \geq^* 0_{\mathcal{P}}$ such that

$$\tilde{q} \Vdash_{\langle \mathcal{P}, \leq \rangle} (\{\alpha < \lambda^+ \mid Y^\alpha \cap \mathcal{G} \neq \emptyset\} \text{ is unbounded in } \lambda^+).$$

Proof. Consider the statement:

$$\sigma \equiv (\{\alpha < \lambda^+ \mid Y^\alpha \cap \mbox{$\widetilde{\mathcal{G}}$} \neq \emptyset \}$$
 is unbounded in $\lambda^+)$

of the forcing language $\langle \mathcal{P}, \leq \rangle$.

By the Prikry condition, there is $\tilde{q} \geq^* 0_{\mathcal{P}}$ which decides σ .

If $\tilde{q} \Vdash_{\langle \mathcal{P}, \leq \rangle} \sigma$, then we are done.

Suppose that $\tilde{q} \Vdash_{\langle \mathcal{P}, \leq \rangle} \neg \sigma$.

Then $\tilde{q} \Vdash_{\langle \mathcal{P}, \leq \rangle} (\{\alpha < \lambda^+ \mid Y^\alpha \cap G \neq \emptyset\})$ is bounded in λ^+ .

Let ζ be a $\langle \mathcal{P}, \leq \rangle$ -name of a bound.

Then, by the Prikry condition type argument showing that $\bar{\kappa}_{\eta}^{+} = \lambda^{+}$ is preserved after the forcing $\langle \mathcal{P}, \leq \rangle$, there will be $q' \geq^{*} \tilde{q}$ and $\mu < \bar{\kappa}_{\eta}^{+}$ such that

$$q' \Vdash_{\langle \mathcal{P}, \leq \rangle} (\zeta < \mu).$$

We have

$$q' \geq^* 0_{\mathcal{P}} \Vdash_{\langle \mathcal{P}, \leq^* \rangle} (\underset{\sim}{\mathcal{L}} \text{ is unbounded in } \bar{\kappa}_{\eta}^+).$$

Pick $\alpha, \mu < \alpha < \bar{\kappa}_{\eta}^+$ and $q'' \geq^* q'$ such that $q'' \Vdash_{\langle \mathcal{P}, \leq^* \rangle} \alpha \in \mathcal{J}$. Then $q''^{**} \geq^* q''$ is in Y^{α} , by the definition of Y^{α} . Clearly, then

$$q''^{**} \Vdash_{\langle \mathcal{P}, \leq \rangle} (q''^{**} \in Y^{\alpha} \cap \mathcal{G}).$$

 ${\bf Contradiction.}$

 \square of the claim.

2 ¬SCH and the tree property for a club.

In [2], O. Ben-Neria, C. Lambie-Hanson, S. Unger use the supercompact Radin forcing to construct a model in which both AP and SCH fail on a proper class club of singular cardinals. They asked whether it is possible to replace ¬AP by the tree property.

Here we would like to give an affirmative answer. Again, the initial assumption will be stronger than those used in [2], however no cardinals will change their cofinality.

Theorem 2.1 Suppose that θ is the least inaccessible cardinal which is a limit of supercompact cardinals.

Then there is cofinality preserving extension so that

- θ remaining inaccessible,
- there is a club in θ consisting of singular strong limit cardinals ν such that
 - 1. $2^{\nu} > \nu^+$
 - 2. ν^+ has the tree property.

Proof. The construction of the previous section can be applied here, only replace η by an inaccessible cardinal θ .

Let $\langle \delta_{\alpha} \mid \alpha < \theta \rangle$ be an increasing sequence of supercompact cardinals. Set $\kappa_{\alpha} = \delta_{\alpha+1}$, for every $\alpha < \theta$. Clearly, each κ_{α} is strong. Repeat the previous construction using the sequence $\langle \kappa_{\alpha} \mid \alpha < \theta \rangle$.

Note that given a limit $\alpha < \theta$, we do not know in advance (i.e. without forcing with $E(\alpha)$) what will be $2^{\bar{\kappa}_{\alpha}}$, where, as before, $\bar{\kappa}_{\alpha} = \bigcup_{\beta < \alpha} \kappa_{\beta}$. So, if we have only boundedly many supercompacts below κ_{α} , then it is possible that there will be no supercompact in the interval $(2^{\bar{\kappa}_{\alpha}}, \kappa_{\alpha})$. However, having a supercompact inside $(\kappa_{\alpha}, \kappa_{\alpha+1})$, we can repeat the argument of the previous section just using $\kappa_{\alpha+1}$ as the first strong in this argument.

References

- [1] A. Apter, Laver Indestructibility and the Class of Compact Cardinals, Journal of Symbolic Logic 63, 1998, 149-157.
- [2] O. Ben-Neria, C. Lambie-Hanson, S. Unger, Diagonal supercompact Radin forcing,
- [3] M. Gitik, Blowing up the power of a singular cardinal of uncountable cofinality,
- [4] M. Gitik and M. Magidor, Extender based forcings. J. of Symbolic Logic 59:2 (1994), 445-460.
- [5] M. Gitik and A. Sharon, On SCH and approachability property, Proc. AMS, 136(1), 2008, 311-320.
- [6] M. Magidor and S. Shelah, The tree property at successors of singular cardinals, Arch. Math. Logic, 35(5-6), 1996,385-404.
- [7] I. Neeman, Aronszajn trees and failure of SCH,
- [8] S. Shelah, On successors of singular cardinals, Logic Colloquim, 78, (M. Boffa, D. van Dallen, K. McAlloon, editors) North-Holland, Amsterdam, 357-380.
- [9] D. Sinapova, A model for a very good scale and a bad scale, J. of Symbolic Logic, 73:4,2008, 1361-1372.
- [10] D. Sinapova, The tree property and the failure of SCH at uncountable cofinality, Archive for Mathematical Logic, 51(5-6):553-562, 2012.