Short extenders forcings – doing without preparations.
Dropping cofinalities.

Moti Gitik
January 15, 2012

The basic issue with dropping cofinalities is that models of small sizes relatively to \(\kappa_n \)'s are supposed to be used (basically much less than \(\kappa_n \)'s). The number of possible types inside such models is limited. Even not every measure of the extender over \(\kappa_n \) is in a model. So we will need to specify in advanced which types are allowed. Let us start with choosing a set of permitted types.

1 Dropping cofinalities–gap 3.

We deal here with the first relevant case– \(2^\kappa = \kappa^{+3} \) with the witnessing scale has points of cofinality \(\kappa^{++} \) dropping down from \(\kappa_n \)'s to smaller \(\lambda_n \)'s.

Fix \(n < \omega \). Let us define models that will be permitted to use over \(\kappa_n \) in order to allow a cofinality drop to \(\lambda_n \), where \(\lambda_0 < \kappa_0 \) and \(\kappa_{n-1} < \lambda_n < \kappa_n \), for every \(n, 0 < n < \omega \), and \(\lambda_n, \kappa_n \) carry extenders \(E^{\lambda_n}_n, E^{\kappa_n}_n \).

We deal with a simplest case of a single drop. Assume that the length of \(E^{\kappa_n}_n \) is \(\kappa_n^{+n+2} \) and \(E^{\lambda_n}_n \) is \(\lambda_n^{+n+2} \).

Fix some \(\chi_n \) large enough. Let \(\eta < \kappa_n^{+n+2} \) be such that every type of an ordinal \(< \kappa_n^{+n+2} \) is realized below \(\eta \) and for every \(\xi \geq \eta \) the type \(tp_m(\xi) \) is realized unboundedly often below \(\kappa_n^{+n+2} \), for each \(m < \omega \).

Define by induction for every \(\nu < \lambda_n \) two \(\in \)-increasing continuous sequences \(\{ \mathfrak{M}_i | i < \nu^{+n+2} \} \), \(\{ \mathfrak{N}_i | i < \nu^{+n+2} \} \) of elementary submodels of \(H(\chi_n^{+\omega+1}) \) such that

1. \(| \mathfrak{M}_i | = \kappa_n^{+n+1} \),
2. \(\mathfrak{M}_i \cap \kappa^{+n+2} \) is an ordinal above \(\eta \) of cofinality \(\nu^{+n+2} \),
3. \(| \mathfrak{N}_i | = \nu^{+n+1} \),
4. $\mathcal{M}_i \in \mathcal{N}_i$, if $i = 0$ or i is a successor ordinal,

5. $(\mathcal{M}_j)_{j \leq i}, (\mathcal{N}_j)_{j \leq i} \in \mathcal{M}_{i+1}$,

6. $(\mathcal{M}_j)_{j \leq i}, (\mathcal{N}_j)_{j \leq i} \in \mathcal{N}_{i+1}$,

7. $\nu^{i+n+1} \mathcal{M}_i \subseteq \mathcal{M}_i$, if $i = 0$ or i is a successor ordinal,

8. $\nu^{i+n} \mathcal{N}_i \subseteq \mathcal{N}_i$, if $i = 0$ or i is a successor ordinal,

9. if $\nu < \nu'$, then $(\mathcal{M}_i \mid i < \nu^{i+n+2}), (\mathcal{N}_i \mid i < \nu^{i+n+2}) \in \mathcal{M}_{\nu'} \cap \mathcal{N}_{\nu'}$.

The set of permitted types will be the set of all types of models $\mathcal{M}_i, \mathcal{N}_i$. Formally set

$$PT^n_\nu = \{tp_m(\mathcal{M}_i) \mid i < \nu^{i+n+2}, 2 < m < \omega\}, \quad PT^\lambda_\nu = \{tp_m(\mathcal{N}_i) \mid i < \nu^{i+n+2}, 2 < m < \omega\},$$

$$PT_\nu = PT^n_\nu \cup PT^\lambda_\nu.$$

The idea behind the above is that once ν is an indiscernible (a member of one element Prikry sequence) for the normal measure of E_ν^λ, then models with types in PT_ν are allowed to be used over κ_n. Note that types of models \mathcal{N}_i’s are inside \mathcal{M}_i by the choice of η and the item (2).

Let us turn to the assignment functions a of the level n (the isomorphisms function between the suitable structures) for κ^{++} and those of λ_n, and b of the level n for κ^{+3} and those of κ_n.

We require that each model A be in the domain of a is of the form $A' \cap \kappa^{++}$, for some $A' \in \text{dom}(b)$. The rest of the requirements on a are as in [2].

Turn to b. Let A be in the domain of b. If A has cardinality κ^{++}, then $b(A)$ is a name of a model with type in PT^n_ν depending on an indiscernible ν for the normal measure of E_ν^λ.

If A has cardinality κ^+, then $a(A) \cap \lambda_\nu^{i+n+2}$ is an ordinal and $b(A)$ is a name of a model with type as those of \mathcal{N}_i, where ν is an indiscernible for the normal measure and i is the indiscernible for the measure $a(A) \cap \lambda_\nu^{i+n+2}$ of E_ν^λ. Again, the rest of the requirements are as in [2].

Lemma 1.1 The forcing \mathcal{P} is κ^+-proper (and even κ^+-strongly proper).

Proof. Let $p \in \mathcal{P}$ and $M < H(\chi)$ with $|M| = \kappa^+$, $^*M \subseteq M$, $p, \mathcal{P} \in M$. $a_n(M \cap \kappa^+)$ is some $\alpha < \lambda_\nu^{i+n+2}$. Run the corresponding argument of [2]. We will get finally some $\beta < \alpha$ that corresponds to the part of the extension which belongs to M. Now we will have that
on a set of measure one $\beta^* \in \alpha^*$, where β^* denotes an indiscernible for β and α^* denotes an indiscernible for α. Then $\mathfrak{M}_{\beta^*} \in \mathfrak{M}_{\alpha^*}$, where ν is an indiscernible for the normal measure. Hence we have no problem in getting the needed type inside $b(M \cap \kappa^+)$.

The argument of the next lemma is as those of [2], since models of big cardinality (κ_n^{+n+1}) are used here.

Lemma 1.2 The forcing \mathcal{P} is κ^{++}-proper (and even κ^{++}-strongly proper).

2 Dropping cofinalities–gap 4.

We like to blow up the power of κ to κ^{+4} with drops in cofinalities.

Split into two cases according to places of drops.

2.1 κ^{+3} drops down to λ_n’s.

We deal here with the case $2\kappa = \kappa^{+4}$ and the witnessing scale has points of cofinality κ^{+3} dropping down from κ_n’s to smaller λ_n’s.

The main difference (related to the dropping cofinality) here from the previous section is that there are two sizes κ^+ and κ^{++} of models witnessing the drop. Their images to κ_n’s has sizes below κ_n. The issue of having enough types inside such models becomes a bit more delicate.

Fix $n < \omega$. Let $\lambda_n < \kappa_n, \eta < \kappa_n^{+n+2}$ be as above. The length of the extender $E^{\lambda_n}_n$ will be now λ_n^{+n+3} in order to accommodate three cardinals κ^+, κ^{++} and κ^{+3}. The assignment function a will act between κ^{+3} and λ_n^{+n+3}.

Define by induction for every $\nu < \lambda_n$ two \in-increasing continuous sequences $\langle \mathfrak{M}_{\nu^i} \mid i < \nu^{+n+3} \rangle$, $\langle \mathfrak{M}_{\nu^i} \mid i < \nu^{+n+3} \rangle$ and a sequence $\langle \mathfrak{G}_{x\nu} \mid x \in [\nu^{+n+3}]^{\leq \nu^{+n+1}} \rangle$ of elementary submodels of $H(\lambda_n^{\omega+1})$ such that

1. $|\mathfrak{M}_{\nu^i}| = \kappa_n^{+n+1}$,
2. $\mathfrak{M}_{\nu^i} \cap \kappa_n^{+n+2}$ is an ordinal above η of cofinality ν^{+n+3},
3. $|\mathfrak{M}_{\nu^i}| = \nu^{+n+2}$,
4. $\mathfrak{M}_{\nu^i} \cap \nu^{+n+3}$ is an ordinal,
5. $|\mathfrak{G}_{x\nu}| = \nu^{+n+1}$,
between the suitable structures) for

\[S \langle M \langle x \langle y \langle z \rangle \rangle \rangle \]

\[n \]

rest of the requirements are as in \[2\].

We require that each model \(A \) be in the domain of \(a \) is of the form \(A' \cap \kappa'^+ \), for some \(A' \in \text{dom}(b) \). The rest of the requirements on \(a \) are as in [2].

Turn to \(b \). Let \(A \) be in the domain of \(b \). If \(A \) has cardinality \(\kappa'^+ \), then \(b(A) \) is a name of a model with type in \(PT^{\kappa'}_{\nu} \) depending on an indiscernible \(\nu \) for the normal measure of \(E_n^{\kappa'} \). If \(A \) has cardinality \(\kappa'^+ \), then \(a(A) \cap \lambda^{n+3} \) is an ordinal and \(b(A) \) is a name of a model with type as those of \(M_{i\nu} \), where \(\nu \) is an indiscernible for the normal measure and \(i \) is the indiscernible for the measure \(a(A) \cap \lambda^{n+3} \) of \(E_n^{\lambda_n} \). The rest of the requirements are as in [2]. If \(A \) has cardinality \(\kappa'^+ \), then \(a(A) \cap \lambda^{n+3} \) is a set of cardinality \(\lambda^{n+1} \) and \(b(A) \) is a name of a model with type as those of \(\mathfrak{S}_{x\nu} \), where \(\nu \) is an indiscernible for the normal measure and \(x \in [\nu^{n+3}]^{\leq x^{n+1}} \) is the indiscernible for the measure \(a(A) \cap \lambda^{n+3} \) of \(E_n^{\lambda_n} \). Again, the rest of the requirements are as in [2].
2.2 \(\kappa^{+3} \) does not drop down to \(\lambda_n \)'s.

We deal here with the case \(- 2^\kappa = \kappa^{+4} \) and the witnessing scale has points of cofinality \(\kappa^{++} \) dropping down from \(\kappa_n \)'s to smaller \(\lambda_n \)'s, but those of cofinality \(\kappa^{+3} \) do not drop down. Here only models of the size \(\kappa^+ \) will witness the drop. Their images to \(\kappa_n \)'s will have sizes below \(\lambda_n \).

Fix \(n < \omega \). Let \(\lambda_n < \kappa_n \), \(\eta < \kappa_n^{+n+2} \) be as above. The length of the extender \(E_n^{\lambda_n} \) will be now \(\lambda_n^{+n+2} \) and of \(E_n^{\kappa_n} \) will be \(\kappa_n^{+n+3} \). The assignment function \(a \) will act between \(\kappa^{++} \) and \(\lambda_n^{+n+2} \).

Define by induction for every \(\nu < \lambda_n \) two \(\in \)-increasing continuous sequences \(\langle M_{i\nu} \mid i < \nu^{+n+2} \rangle \), \(\langle B_{i\nu} \mid i < \nu^{+n+2} \rangle \) and a sequence \(\langle N_{i\nu} \mid i < \nu^{+n+2} \rangle \) of elementary submodels of \(H(\lambda_n^{+\omega+1}) \) such that

1. \(|M_{i\nu}| = \kappa_n^{+n+3}\),
2. \(M_{i\nu} \cap \kappa_n^{+n+3} \) is an ordinal above \(\eta \),
3. \(|B_{i\nu}| = \kappa_n^{+n+2}\),
4. \(B_{i\nu} \cap \kappa_n^{+n+2} \) is an ordinal above \(\eta \) of cofinality \(\nu^{+n+2} \),
5. \(|N_{i\nu}| = \nu^{+n+1}\),
6. \(N_{i\nu} \cap \nu^{+n+2} \) is an ordinal,
7. \(M_{i\nu} \in B_{i\nu} \in N_{i\nu} \), if \(i = 0 \) or \(i \) is a successor ordinal,
8. \(\langle M_{j\nu} \mid i \leq j \rangle, \langle B_{j\nu} \mid i \leq j \rangle, \langle N_{j\nu} \mid i \leq j \rangle \in M_{i+1\nu},\)
9. \(\langle M_{j\nu} \mid i \leq j \rangle, \langle B_{j\nu} \mid i \leq j \rangle, \langle N_{j\nu} \mid i \leq j \rangle \in B_{i+1\nu},\)
10. \(\langle M_{j\nu} \mid i \leq j \rangle, \langle B_{j\nu} \mid i \leq j \rangle, \langle N_{j\nu} \mid i \leq j \rangle \in N_{i+1\nu},\)
11. for each \(x \in [N_{i+1\nu} \cap \nu^{+n+3}] \leq \nu^{+n+1}, \mathcal{E}_{x\nu} \in N_{i+1\nu},\)
12. \(\nu^{+n+2}B_{i\nu} \subseteq B_{i\nu} \), if \(i = 0 \) or \(i \) is a successor ordinal,
13. \(\nu^{+n+1}N_{i\nu} \subseteq N_{i\nu} \), if \(i = 0 \) or \(i \) is a successor ordinal,
14. \(\kappa^{+n+1}M_{i\nu} \subseteq M_{i\nu} \), if \(i = 0 \) or \(i \) is a successor ordinal,
15. if \(\nu < \nu' \), then \(\langle M_{i\nu} \mid i < \nu^{+n+3} \rangle, \langle N_{i\nu} \mid i < \nu^{+n+3} \rangle \in M_{0\nu'} \cap B_{0\nu'} \cap N_{0\nu'} \).
The set of permitted types will be the set of all types of models \mathcal{M}_ν, \mathcal{B}_ν, with parameters ordinals bigger than κ^{++} types of models \mathcal{N}_ν with parameters ordinals in ν^{++}. Formally set

$$PT^\lambda_n = \{ tp_m(\mathcal{N}_\nu) \mid i < \nu^{++}, \ 2 < m < \omega \},$$

$$PT^{\kappa+1}_n = \{ tp_m(\mathcal{B}_\nu) \mid x \in [\nu^{++}, \nu^{++}], 2 < m < \omega \},$$

$$PT^{\kappa+2}_n = PT^\lambda_n \cup PT^{\kappa+1}_n \cup PT^{\kappa+2}_n.$$

Let us turn to the assignment functions a of the level n (the isomorphisms function between the suitable structures) for κ^{++} and those of λ_n, and b of the level n for κ^{+3}, κ^{+4} and those of κ_n.

We require that each model A be in the domain of a is of the form $A' \cap \kappa^{++}$, for some $A' \in \text{dom}(b)$. The rest of the requirements on a are as in [2].

Turn to b. Let A be in the domain of b. If A has cardinality κ^{+3}, then $b(A)$ is a name of a model with type in $PT^{\kappa+1}_n$.

If A has cardinality κ^{++}, then $b(A)$ is a name of a model with type in $PT^{\kappa+2}_n$ depending on an indiscernible ν for the normal measure of E^λ_n.

If A has cardinality κ^+, then $a(A) \cap \lambda^{++}$ is an ordinal and $b(A)$ is a name of a model with type as those of \mathcal{N}_ν, where ν is an indiscernible for the normal measure and i is the indiscernible for the measure $a(A) \cap \lambda^{++}$ of E^λ_n.

The rest of the requirements are as in [2].

3 General case.

The treatment is similar to those used in Gap 4 case. We are free to choose a point of splitting between cardinals that go to λ_n’s and to κ_n’s as it was done in 2.1, 2.2.

References

[1] M. Gitik, Short extenders forcings I,

http://www.math.tau.ac.il/~gitik/short%20extenders%20forcings%201.pdf