Some constructions of ultrafilters over a measurable cardinal.

Moti Gitik

May 3, 2017

Abstract

Some non-normal κ–complete ultrafilters over a measurable κ with special properties are constructed. Questions by A. Kanamori [4] about infinite Rudin-Frolik sequences, discreteness and products are answered.

1 Introduction.

We present here several constructions of κ–complete ultrafilters over a measurable cardinal κ and examine their consistency strength. Some questions of Aki Kanamori from [4] are answered.

Section 2 deals with Rudin-Frolik ordering and answers Question 5.11 from [4] about infinite increasing Rudin-Frolik sequences. In Section 3, an example of non-discrete family of ultrafilters is constructed, answering Question 5.12 from [4]. Also the strength of existence of such family is examined. Section 4 deals with products of ultrafilters. A negative answer to Question 5.8 from [4] given.

2 On Rudin-Frolik increasing sequences.

In [4], Aki Kanamori asked if there exists a κ–ultrafilter with an infinite number of Rudin-Frolik predecessors.

We show that starting with $o(\kappa) = 2$ it is possible.

*The work was partially supported by Israel Science Foundation Grant No. 58/14. We are grateful to Eilon Bilinski who drew our attention to the subject, to Tom Benhamou and Eyal Kaplan for stimulating questions and discussions.
Assume GCH. Let

$$
\bar{U} = \langle U(\alpha, \beta) \mid (\alpha, \beta) \in \text{dom}(\bar{U}), \alpha \leq \kappa, \beta < \sigma^\bar{U}(\alpha) \rangle
$$

be a coherent sequence such that $\sigma^\bar{U}(\kappa) = 2$ and for every $\alpha < \kappa$, $\sigma^\bar{U}(\alpha) \leq 1$. Let

$$
A = \{ \alpha \mid \exists \beta(\alpha, \beta) \in \text{dom}(\bar{U}) \}.
$$

Then for every $\alpha \in A$, $\sigma^\bar{U}(\alpha) = 1$ and $U(\alpha, 0)$ is a normal ultrafilter over α.

We force with Easton support iteration of the Prikry forcings with $U(\alpha, 0)$'s (and their extensions), $\alpha \in A$, as in [1] (a better presentation appears in [2]). Let G be a generic. Then for every increasing sequence t of ordinals less than κ, the normal ultrafilter $U(\kappa, 1)$ of V extends to a κ-complete ultrafilter $U(\kappa, 1, t)$ in $V[G]$, see [1], p.291.

Denote by b_α the Prikry sequence from G added to α, for every $\alpha \in A$. Then $U(\kappa, 1, t)$ concentrates on $\alpha \in A$ for which b_α starts from t, i.e. $b_\alpha \upharpoonright |t| = t$.

Let $\bar{U}(\kappa, 0)$ be the canonical extension of $U(\kappa, 0)$ to a normal ultrafilter in $V[G]$ defined as in [2] on page 290.

Denote $U(\kappa, 1, (\cdot))$ by $\bar{U}(\kappa, 1)$.

Lemma 2.1 For every $n, 0 < n < \omega$, $\bar{U}(\kappa, 1) = \bar{U}(\kappa, 0)^n - \lim \langle U(\kappa, 1, t) \mid t \in [\kappa]^n \rangle$.

Proof. Recall the definition of $U(\kappa, 1, t)$, $t \in [\kappa]^m, m < \omega$:

$x \in U(\kappa, 1, t)$ iff for some $r \in G, \gamma < \kappa^+, B \in \bar{U}(\kappa, 0), \in M_{U(\kappa, 1)}$ the following holds:

$$
\Gamma \cup \{ (t, b) \} \cup p_\gamma \vDash \kappa \in i_{U(\kappa, 1)}(X),
$$

where p_γ is the γ-th element of the canonical master sequence.

In particular, $x \in \bar{U}(\kappa, 1)$ iff for some $r \in G, \gamma < \kappa^+, B \in \bar{U}(\kappa, 0), \in M_{U(\kappa, 1)}$ the following holds:

$$
\Gamma \cup \{ (\cdot, B) \} \cup p_\gamma \vDash \kappa \in i_{U(\kappa, 1)}(X).
$$

Then, for every $t \in [B]^n$, we will have

$$
\Gamma \cup \{ (t, B \setminus \text{max}(t) + 1) \} \cup p_\gamma \vDash \kappa \in i_{U(\kappa, 1)}(X).
$$

So, $x \in U(\kappa, 1, t)$. But $[B]^n \in \bar{U}(\kappa, 0)^n$, hence $x \in \bar{U}(\kappa, 0)^n - \lim \langle U(\kappa, 1, t) \mid t \in [\kappa]^n \rangle$.

Hence we showed that $\bar{U}(\kappa, 1) \subseteq \bar{U}(\kappa, 0)^n - \lim \langle U(\kappa, 1, t) \mid t \in [\kappa]^n \rangle$. But this already implies the equality, since both $\bar{U}(\kappa, 1)$ and $\bar{U}(\kappa, 0)^n - \lim \langle U(\kappa, 1, t) \mid t \in [\kappa]^n \rangle$ are ultrafilters.

\square
Lemma 2.2 The family \(\langle U(\kappa, 1, t) \mid t \in [\kappa]^n \rangle \) is a discrete family of ultrafilters.

Proof. For each \(t \in [\kappa]^n \) set
\[
A_t := \{ \alpha \in A \mid b_\alpha \upharpoonright n = t \}.
\]
Let \(t, t' \in [\kappa]^n \) be two different sequences, then, clearly, \(A_t \cap A_{t'} = \emptyset \).
\(\square \)

Recall the following definition:

Definition 2.3 (Frolik and M.E. Rudin) Let \(U, D \) be ultrafilters over \(I \). \(U \geq_{R-F} D \) iff there is a discrete family \(\{ E_i \mid i \in I \} \) of ultrafilters over some \(J \) such that \(U = D - \lim \{ E_i \mid i \in I \} \).

So we obtain the following:

Theorem 2.4 \(\bar{U}(\kappa, 1) \) has infinitely many predecessors in the Rudin-Frolik ordering.

Proof. For every \(n, 0 < n < \omega \), use a bijection between \([\kappa]^n \) and \(\kappa \) and transfer \(\bar{U}(\kappa, 0)^n \) to \(\kappa \). The rest follows by Lemmas 2.1, 2.2.
\(\square \)

Note that for \(\kappa \)-complete ultrafilters \(U \) and \(D \) over \(\kappa \), \(U \geq_{R-F} D \) implies \(U \geq_{R-K} D \). So, by [5], the existence of a \(\kappa \)-complete ultrafilter over \(\kappa \) with infinitely many predecessors in the Rudin-Frolik ordering implies by Kanamori [4], that \(0^\dagger \) exists. Let us improve this in order to give the exact strength.

Theorem 2.5 The existence of a \(\kappa \)-complete ultrafilter over \(\kappa \) with infinitely many predecessors in the Rudin-Frolik ordering implies that \(o(\kappa) \geq 2 \) in the core model.

Proof. Note first that for \(\kappa \)-complete ultrafilters \(U \) and \(D \) over \(\kappa \), \(U \geq_{R-F} D \) implies \(U \geq_{R-K} D \). So, by [5], the existence of a \(\kappa \)-complete ultrafilter over \(\kappa \) with infinitely many predecessors in the Rudin-Frolik ordering implies that \(\exists \lambda o(\lambda) \geq 2 \). Let us argue that actually \(o(\kappa) \geq 2 \) in the core model.

Suppose otherwise. So, \(o(\kappa) = 1 \). Let \(U(\kappa, 0) \) be the unique normal measure over \(\kappa \) in the core model \(K \).

Suppose that, in \(V \), we have a \(\kappa \)-complete ultrafilter \(E \) over \(\kappa \) with infinitely many predecessors in the Rudin-Frolik ordering. Let \(\langle E_n \mid n < \omega \rangle \) be a Rudin-Frolik increasing sequence of predecessors of \(E \). Recall that by M.E. Rudin (see [4], 5.5) the predecessors of \(E \) are linearly ordered.
Consider $i := i_E \upharpoonright \mathcal{K}$. Then, by [5], it is an iterated ultrapower of \mathcal{K} by its measures. The critical point of i_E is κ, hence $U(\kappa, 0)$ is applied first. Note that $U(\kappa, 0)$ (and its images) can be applied only finitely many times, since M_E is closed under countable (and even κ) sequences of its elements. Denote by k^* the number of such applications.

Let $n \leq \omega$. Similar, consider $i_n := i_{E_n} \upharpoonright \mathcal{K}$. Again, the critical point of i_{E_n} is κ, hence $U(\kappa, 0)$ is applied first. The number of applications of $U(\kappa, 0)$ (and its images) is finite. Denote by k_n the number of such applications.

Now let $n < m < \omega$. We have $E_n <_{R-F} E_m$. Hence, there is a discrete sequence $\langle E_{n^{\alpha}_m} \mid \alpha < \kappa \rangle$ of ultrafilters over κ such that

$$E_m = E_n - \lim (E_{n^{\alpha}_m} \mid \alpha < \kappa).$$

Then the ultrapower M_{E_m} of V by E_m is $\text{Ult}(M_{E_n}, E'_{nm} \upharpoonright \text{id}_{E_n})$, where $E'_{nm} \upharpoonright \text{id}_{E_n} = i_{E_n}((E_{n^{\alpha}_m} \mid \alpha < \kappa))(\text{id}_{E_n})$ is an ultrafilter over $i_{E_n}(\kappa)$.

Now, in $i_n(\mathcal{K})$, the only normal ultrafilter over $i_{E_n}(\kappa) = i_n(U(\kappa, 0))$. But this means that i_{E_m} is obtained by more applications of $U(\kappa, 0)$ than i_{E_n}, i.e. $k_n < k_m$.

Similar, $k^* > k_n$, for every $n < \omega$. This means, in particular, that $k^* \geq \omega$, which is impossible. Contradiction.

Remark 2.6 Note that the situation with Rudin-Keisler order is different in this respect. Thus, by [3], starting with a measurable κ with $\{o(\kappa) \mid \alpha < \kappa\}$ unbounded in it, it is possible to construct a model with an increasing Rudin-Keisler sequence of the length κ^+. A similar arguments can be used to produce long increasing Rudin-Frolik sequences.

Let us show how to get a sequence of the length $\kappa + 1$

Assume GCH. Let

$$\vec{U} = \langle U(\alpha, \beta) \mid (\alpha, \beta) \in \text{dom}(\vec{U}), \alpha \leq \kappa, \beta < o^\beta(\alpha) \rangle$$

be a coherent sequence such that $o^\beta(\kappa) = \kappa + 1$ and for every $\alpha < \kappa$, $o^\beta(\alpha) \leq \kappa$. Let

$$A = \{ \alpha \mid \exists \beta(\alpha, \beta) \in \text{dom}(\vec{U}) \}.$$

Then for every $\alpha \in A$, $o^\vec{U}(\alpha) \leq \kappa$.

\footnote{Theorem 5.10 of [4] states that this is impossible, however we think that there is a problem in the argument. Namely, on page 346, line 7 - sets depend on β’s; this effects the further definition of a function f (line 16). Its unclear how to insure $f(\xi) > f(\xi')$ for most ξ’s, and, so f may be constant mod D_0.}
We force with Easton support iteration of the Prikry type forcings with extensions of \(U(\alpha, \beta) \mid \beta < \omega^\alpha(\alpha) \)'s, \(\alpha \in A \), as in [1]. Let \(G \) be a generic. Then, for every \(\alpha \in A \) with \(\omega^\alpha(\alpha) = 1 \) or being a regular uncountable cardinal, Prikry sequence or Magidor sequence of order type \(\omega^\alpha(\alpha) \) is added by \(G \) (more sequences are added, see [1] for detailed descriptions, but do not need them here). Denote such sequences by \(b_\alpha \).

Let \(\bar{U}(\kappa, 0) \) be the canonical extension of \(U(\kappa, 0) \) to a normal ultrafilter in \(V[G] \) defined as in [2].

Denote by \(A' \) the subset of \(A \) which consists of \(\alpha \)'s with \(\omega^\alpha(\alpha) = 1 \) or being a regular uncountable cardinal.

For every \(\delta, \alpha \in A' \cup \{ \kappa \}, \delta < \alpha \) we will use an extensions \(U(\kappa, \alpha, \langle \rangle) \) and \(U(\kappa, \alpha, \langle \delta \rangle) \) of \(U(\kappa, \alpha) \). They were defined in [1] as follows:

\[
X \in U(\kappa, \alpha, \langle \rangle) \text{ iff for some } r \in G, \gamma < \kappa^+ \text{ and a tree } T, \text{ in } M_{U(\kappa, 1)} \text{ the following holds:}
\]

\[
r \cup \{ \langle \langle \rangle, T \rangle \} \cup p_\gamma \vDash \kappa \in i_{U(\kappa, 1)}(\bar{X}),
\]

where \(p_\gamma \) is the \(\gamma \)-th element of the canonical master sequence.

\[
X \in U(\kappa, \alpha, \langle \delta \rangle) \text{ iff for some } r \in G, \gamma < \kappa^+ \text{ and a tree } T, \text{ in } M_{U(\kappa, 1)} \text{ the following holds:}
\]

\[
r \cup \{ \langle \langle \delta \rangle, T \rangle \} \cup p_\gamma \vDash \kappa \in i_{U(\kappa, 1)}(\bar{X}),
\]

where \(p_\gamma \) is the \(\gamma \)-th element of the canonical master sequence.

Denote further \(U(\kappa, \alpha, \langle \rangle) \) by \(\bar{U}(\kappa, \alpha) \).

Notice that \(U(\kappa, \alpha, \langle \delta \rangle) \) concentrates on \(\nu \)'s with \(\omega^\delta(\nu) = \alpha, \delta \in b_\nu \) and \(b_\nu \cap \delta = b_\delta \).

We have now the following analog of 2.1:

Lemma 2.7 For every \(\alpha \in A' \), \(\bar{U}(\kappa, \kappa) = \bar{U}(\kappa, \alpha) - \lim \langle U(\kappa, \kappa, \langle \nu \rangle) \mid \omega^\delta(\nu) = \alpha \rangle \).

Proof. \(X \in \bar{U}(\kappa, \kappa) \) iff for some \(r \in G, \gamma < \kappa^+, T, \) in \(M_{U(\kappa, \kappa)} \) the following holds:

\[
r \cup \{ \langle \langle \rangle, T \rangle \} \cup p_\gamma \vDash \kappa \in i_{U(\kappa, \kappa)}(\bar{X}).
\]

Recall that \(T \) is a tree consisting of coherent sequences and \(Suc_T(\langle \rangle) \in \bar{U}(\kappa, \alpha) \). Then, for every \(\nu \in Suc_T(\langle \rangle) \) with \(\omega^\delta(\nu) = \alpha \), we will have

\[
r \cup \{ \langle \langle \nu \rangle, T_{(\nu)} \rangle \} \cup p_\gamma \vDash \kappa \in i_{U(\kappa, \kappa)}(\bar{X}).
\]

So, \(X \in U(\kappa, \kappa, \langle \nu \rangle) \). But this holds for \(\bar{U}(\kappa, \alpha) \)-measure one many \(\nu \)'s, hence \(X \in \bar{U}(\kappa, \alpha) - \lim \langle U(\kappa, \kappa, \langle \nu \rangle) \mid \omega^\delta(\nu) = \alpha \rangle \).
Hence we showed that \(\bar{U}(\kappa, \kappa) \subseteq \bar{U}(\kappa, \alpha) - \lim \langle U(\kappa, \kappa, \langle \nu \rangle) | o^U(\nu) = \alpha \rangle \). But this already implies the equality, since both \(\bar{U}(\kappa, \kappa) \) and \(\bar{U}(\kappa, \alpha) - \lim \langle U(\kappa, \kappa, \langle \nu \rangle) | o^U(\nu) = \alpha \rangle \) are ultrafilters.

□

The same argument shows the following:

Lemma 2.8 For every \(\gamma, \alpha \in A', \alpha < \gamma \), \(\bar{U}(\kappa, \gamma) = \bar{U}(\kappa, \alpha) - \lim \langle U(\kappa, \gamma, \langle \nu \rangle) | o^U(\nu) = \alpha \rangle \).

Lemma 2.9 The family \(\langle U(\kappa, \gamma, \langle \nu \rangle) | o^U(\nu) = \alpha \rangle \) is a discrete family of ultrafilters, for every \(\gamma, \alpha \in A' \cup \{ \kappa \}, \alpha < \gamma \).

Proof. Fix \(\gamma, \alpha \in A' \cup \{ \kappa \}, \alpha < \gamma \). For each \(\nu \) with \(o^U(\nu) = \alpha \) set

\[A_{\nu} := \{ \xi \in A' | o^\bar{U}(\xi) = \gamma, \nu \in b_\gamma \text{ and } b_\gamma \cap \nu = b_\nu \}. \]

Let \(\nu, \nu' \in A' \) be two different elements with \(o^U(\nu) = o^U(\nu') = \alpha \), then, clearly, \(A_{\nu} \cap A_{\nu'} = \emptyset \).

□

So, again as above, we obtain the following:

Theorem 2.10 \(\bar{U}(\kappa, \kappa) \) has \(\kappa \)-many predecessors in the Rudin-Frolik ordering.

Proof. By Lemmas 2.7, 2.8, the sequence \(\langle \bar{U}(\kappa, \gamma) | \gamma \in A' \cup \{ \kappa \} \rangle \) is R-F-increasing.

□

It follows now that:

Corollary 2.11 The consistency strength of existence of a \(\kappa \)-complete ultrafilter over \(\kappa \) with \(\kappa \)-many predecessors in the Rudin-Frolik ordering is is at least \(\{ o(\alpha) | \alpha < \kappa \} \) is unbounded in \(\kappa \) and at most \(o(\kappa) = \kappa + 1 \).

3 Discrete families of ultrafilters.

Aki Kanamori asked in [4] the following natural question:

If \(\{ U_\tau | \tau < \kappa \} \) is a family of distinct \(\kappa \)-complete ultrafilters over \(\kappa \) and \(E \) is any \(\kappa \)-complete ultrafilter over \(\kappa \), is there an \(X \in E \) so that \(\{ U_\tau | \tau \in X \} \) is a discrete family?

We will give a negative answer to this question below.

Let us use the previous construction. We preserve all the notation made there.

Consider the family

\[\{ U(\kappa, \kappa, \langle \delta \rangle) | \delta, \alpha \in A', \delta < \alpha \}. \]
Lemma 3.1 The family \(\{ U(\kappa, \kappa, \langle \delta \rangle) \mid \delta \in A', \delta < \kappa \} \) consists of different ultrafilters.

Proof. Let \(U(\kappa, \kappa, \langle \delta \rangle), U(\kappa, \kappa, \langle \delta' \rangle) \) be two different members of the family. If \(o^U(\delta) = o^U(\delta') \), then they are different by Lemma 2.9. Suppose that \(o^U(\delta) < o^U(\delta') \). Then the set

\[
\{ \nu < \kappa \mid o^U(\nu) = \nu, \delta \in b_\nu, b_\nu \cap \delta = b_\delta \text{ and } \delta' \not\in b_\nu \} \in U(\kappa, \kappa, \langle \delta \rangle) \setminus U(\kappa, \kappa, \langle \delta' \rangle).
\]

So we are done.

\[\square \]

Pick now a \(\kappa \)-complete (non-principal) ultrafilter \(D \) such that the set

\[Z := \{ \alpha < \kappa \mid \alpha \text{ is a regular uncountable cardinal } \} \in D. \]

Define now a \(\kappa \)-complete ultrafilter \(E \) over \([\kappa]^2 \) as follows:

\[X \in E \text{ iff } \{ \alpha < \kappa \mid \{ \delta < \kappa \mid (\alpha, \delta) \in X \} \in U(\kappa, \alpha, \langle \rangle) \} \in D. \]

I.e. \(E = D - \Sigma \alpha U(\kappa, \alpha, \langle \rangle) \). We can assume that if \((\alpha, \delta) \in X \), for a set \(X \in E \), then \(o^U(\delta) = \alpha \), since \(U(\kappa, \alpha) \) concentrates on such \(\delta \)'s.

Now, for every pair \((\alpha, \delta) \) with \(o^U(\delta) = \alpha \), define \(U(\alpha, \delta) = U(\kappa, \kappa, \langle \rangle) \).

Lemma 3.2 For every \(X \in E \), the family \(\{ U_\tau \mid \tau \in X \} \) is not discrete.

Proof. Let \(X \in E \). Suppose that there is a separating sequence \(\langle Y_{\alpha, \delta} \mid (\alpha, \delta) \in X \rangle \) for \(\langle U_{\alpha, \delta} \mid (\alpha, \delta) \in X \rangle \). Pick some \(\alpha, \alpha' \in \text{dom}(X), \alpha < \alpha' \). Let

\[A_\alpha = \{ \delta < \kappa \mid (\alpha, \delta) \in X \} \]

and

\[A_{\alpha'} = \{ \delta < \kappa \mid (\alpha', \delta) \in X \}. \]

Then \(A_\alpha \in U(\kappa, \alpha, \langle \rangle) \) and \(A_{\alpha'} \in U(\kappa, \alpha', \langle \rangle) \). By shrinking \(X \) if necessary, assume that \(\delta \in A_\alpha \) implies \(o^U(\delta) = \alpha \) and \(\delta' \in A_{\alpha'} \) implies \(o^U(\delta') = \alpha' \).

Consider the following set

\[B = \{ \nu < \kappa \mid o^U(\nu) = \nu \text{ and (there are } \delta \in A_\alpha, \delta' \in A_{\alpha'} \text{ such that } \delta < \delta' \text{ and } \delta, \delta' \in b_\nu \}. \]

Then \(B \in U(\kappa, \kappa, \langle \rangle) \). Just take the witnessing tree \(T_B \) (as in the definition of \(U(\kappa, \kappa, \langle \rangle) \)) with the first level

\[A_\alpha \cup A_{\alpha'} \cup (\kappa \setminus (A_\alpha \cup A_{\alpha'})). \]
Then for every $\delta \in A_\alpha$, $B \in U(\kappa, \kappa, \langle \delta \rangle)$. So, $B' := B \cap Y_{(a, \delta)}$ is a subset of B in $U(\kappa, \kappa, \langle \delta \rangle)$.

But then an extension of T_B will witness this. In particular there will be $\delta' \in A_{\alpha'}$ such that $B' \in U(\kappa, \kappa, \langle \delta' \rangle)$. This implies that both $Y_{(a, \delta)}$ and $Y_{(a', \delta')}$ are in $U(\kappa, \kappa, \langle \delta' \rangle) = U_{(a, \delta')}$. Hence, $Y_{(a, \delta)} \cap Y_{(a', \delta')} \neq \emptyset$. Contradiction.

Now combining Lemmas 3.1, 3.2 we obtain the following:

Theorem 3.3 In $V[G]$ there are a family $\{U_\tau \mid \tau < \kappa\}$ of distinct κ–complete ultrafilters over κ and a κ–complete ultrafilter E over κ, so that $\{U_\tau \mid \tau \in X\}$ is a not discrete family for any $X \in E$.

Corollary 3.4 The consistency strength of existence a family $\{U_\tau \mid \tau < \kappa\}$ of distinct κ–complete ultrafilters over κ and a κ–complete ultrafilter E over κ, so that $\{U_\tau \mid \tau \in X\}$ is a not discrete family for any $X \in E$, is at most $o(\kappa) = \kappa + 1$.

Let us argue now that that $\{o(\alpha) \mid \alpha < \kappa\}$ is unbounded in κ is necessary for this.

Theorem 3.5 Suppose that there are a family $\{U_\tau \mid \tau < \kappa\}$ of distinct κ–complete ultrafilters over κ and a κ–complete ultrafilter E over κ, so that $\{U_\tau \mid \tau \in X\}$ is not a discrete family for any $X \in E$. Then $\{o(\alpha) \mid \alpha < \kappa\}$ is unbounded in κ in the Mitchell core model.

Proof. Suppose otherwise. Let $\{U_\tau \mid \tau < \kappa\}$ be a family of distinct κ–complete ultrafilters over κ and E be a κ–complete ultrafilter over κ, so that $\{U_\tau \mid \tau \in X\}$ is a discrete family for any $X \in E$.

Let \mathcal{K} be the Mitchell core model and $o(\kappa) = \eta < \kappa$.

For every $\tau < \kappa$, let j_τ be $i_{U_\tau} \upharpoonright \mathcal{K}$. Then, by [5], j_τ is an iterated ultrapower of \mathcal{K}. By [3], the are less than κ possibilities for $j_\tau(\kappa)$. By κ–completeness of E, we can assume that for every $\tau < \kappa$, $j_\tau(\kappa)$ has a fixed value θ. Denote by Gen_τ the set of generators of j_τ, i.e. the set of ordinals $\nu, \kappa \leq \nu < \theta$ such that for every $n < \omega$, $f : [\kappa]^n \rightarrow \kappa, f \in \mathcal{K}$ and $a \in [\nu]^n$, $\nu \neq j_\tau(f)(a)$. Let Gen^*_τ be the subset of Gen_τ consisting of all principle generators of j_τ, i.e. of all $\nu \in Gen_\tau$ such that for every $n < \omega$, $f : [\kappa]^n \rightarrow \kappa, f \in \mathcal{K}$ and $a \in [\nu]^n$, $\nu > j_\tau(f)(a)$.

Again by [3], the are less than κ possibilities for Gen^*_τ’s. So, by κ–completeness of E_τ, we can assume that for every $\tau < \kappa$, $Gen^*_\tau = Gen^*$.

Suppose that $\nu \in Gen_\tau$ and ν is not a principle generator. Then there are finite set of generators $b \subseteq \nu$ and $f : [\kappa]^{|b|} \rightarrow \kappa, f \in \mathcal{K}$ such that $\nu < j_\tau(f)(b)$. Set, following W. Mitchell,

$$\alpha(\nu) = \min\{j_\tau(f)(b) \mid b \subseteq \nu \text{ is a finite set of generators,}$$
\[f : [\kappa]^{|b|} \rightarrow \kappa, \ f \in \mathcal{K} \text{ and } \nu < j_\tau(f)(b). \]

Let \(b_\nu \subseteq \nu \) be the smallest finite set of generators such that for some \(f : [\kappa]^{|b_\nu|} \rightarrow \kappa, \ f \in \mathcal{K}, \ \alpha(\nu) = j_\tau(f)(b_\nu). \)

Let us call a finite set of generators \(a \subseteq \text{Gen}_\tau \) nice iff for each \(\nu \in a \) either \(\nu \) is a principle generator or it is not and then \(b_\nu \subseteq a. \)

Consider now \([id]_{U_\tau}. \) Find the smallest finite nice set of generators \(a_\tau \) in \(\text{Gen}_\tau \) such that for some \(h_\tau : [\kappa]^{|a_\tau|} \rightarrow \kappa, \ h_\tau \in \mathcal{K} \) we have \([id]_{U_\tau} = j_\tau(h_\tau)(a_\tau). \) We may assume, using \(\kappa \)-completeness of \(E, \) that \(a_\tau \cap \text{Gen}_\tau \) has a constant value. Denote it by \(a^*. \)

Let us deal first with simpler particular cases.

Suppose first that \(a^* = a_\tau \) and it consists only of \(\kappa \) itself, for every \(\tau < \kappa \) (or on an \(E \)-measure one set). Then, for some \(\theta < o(\kappa), \) each \(j_\tau \) is just the ultrapower embedding \(i_{U(\kappa, \theta)} \) by a normal measure \(U(\kappa, \theta) \) from the sequence of \(\mathcal{K}. \)

Now the functions \(h_\tau, \ \tau < \kappa \) represent ordinals between \(\kappa \) and \(i_{U(\kappa, \theta)}(\kappa) \) in this ultrapower. Hence, they are one to one mod \(U(\kappa, \theta). \) This means that each \(U_\tau \) is equivalent to its normal measure as witnessed by \(h_\tau. \) But such ultrafilters can be easily separated.

Suppose next that \(a_\tau = a^* = \{ \kappa, \kappa_1 \}, \) for every \(\tau < \kappa \) (or on an \(E \)-measure one set). Assume that each \(j_\tau \) is the second ultrapower embedding by a normal measure \(U(\kappa, \theta) \) over \(\kappa \) in \(\mathcal{K}, \) where \(\kappa_1 \) is the image of \(\kappa \) under \(i_{U(\kappa, \theta)}(\kappa) \).

Denote \(i_{U(\kappa, \theta)} \) by \(i_1 : \mathcal{K} \rightarrow \mathcal{K}_1, \) the ultrapower embedding of \(\mathcal{K}_1 \) by \(i_1(U(\kappa, \theta)) \) by \(i_{1,2} = i_{i_1(U(\kappa, \theta))} : \mathcal{K}_1 \rightarrow \mathcal{K}_2 \) and the second ultrapower embedding (the one equal to \(j_\tau \)'s) by \(i_2 = i_{1,2} \circ i_1 : \mathcal{K} \rightarrow \mathcal{K}_2. \) Let \(\kappa_2 = i_2(\kappa). \) Then we have \([id]_{U_\tau} = i_2(h_\tau)(\kappa_1, \kappa_1) \in [\kappa_1, \kappa_2], \) for every \(\tau < \kappa. \)

Let us deal first with different mod \(U(\kappa, \theta)^2 \) functions among \(h_\tau \)'s. So, let \(Z \subseteq \kappa \) be a set of such functions, i.e. for every \(\tau \neq \tau' \) in \(Z, \ h_\tau \neq h_{\tau'} \) mod \(U(\kappa, \theta)^2. \)

Our prime interest will be in \(\langle \text{rng}(h_\tau) \mid \tau \in Z \rangle. \) We will argue that there is a set \(C \in U(\kappa, \theta)^2 \) such that \(\langle h_\tau''|C \setminus \tau + 1]^2 \mid \tau \in Z \rangle \) is a disjoint family, which in turn will witness that the family \(\langle U_\tau \mid \tau \in Z \rangle \) is discrete.

Let \(\tau \in Z \) and \(\beta < \kappa. \) Define \(h_\beta^\tau : \beta \rightarrow \kappa \setminus \beta \) by setting \(h_\beta^\tau(\alpha) = h_\tau(\alpha, \beta). \)

Consider \(i_1((h_\beta^\tau \mid \beta < \kappa))(\kappa) : \kappa \rightarrow \kappa_1 \setminus \kappa. \) Denote it by \(h'_\beta. \)

Suppose for a moment that for some \(\tau, \tau' \in Z, \ \tau \neq \tau', \ h_\tau = h_{\tau'} \) mod \(U(\kappa, \theta). \) Then there is a set \(H \in U(\kappa, \theta) \) such that

\[\{ \beta < \kappa \mid h_\beta^\tau \upharpoonright H \cap \beta = h_{\tau'}^\beta \upharpoonright H \cap \beta \} \subseteq U(\kappa, \theta). \]

But then

\[H \subseteq \{ \alpha < \kappa \mid \{ \beta < \kappa \mid h_\tau(\alpha, \beta) = h_{\tau'}(\alpha, \beta) \} \subseteq U(\kappa, \theta) \} \]
we have
\[\{ \alpha < \kappa \mid \{ \beta < \kappa \mid h_\tau(\alpha, \beta) = h_{\tau'}(\alpha, \beta) \} \in U(\kappa, \theta) \}. \]

Which is impossible.

Hence, \(\tau, \tau' \in Z, \tau \neq \tau' \) implies \(h_\tau' \neq h_{\tau'} \) mod \(U(\kappa, \theta) \).

Now, using normality of \(U(\kappa, \theta) \) and covering by a set in \(K \) of cardinality \(\kappa \), it is easy to find \(A \in U(\kappa, \theta) \) such that \(\tau, \tau' \in Z, \tau < \tau' \) implies
\[
\text{rng}(h_\tau' \upharpoonright A \setminus \tau') \cap \text{rng}(h_{\tau'} \upharpoonright A \setminus \tau') = \emptyset.
\]

This statement is true in \(K_1 \), hence by elementarity,
\[
\{ \beta < \kappa \mid \text{rng}(h_\tau \upharpoonright (A \cap \beta) \setminus \tau') \cap \text{rng}(h_{\tau'} \upharpoonright (A \cap \beta) \setminus \tau') = \emptyset \} \in U(\kappa, \theta).
\]

Fix \(\tau \in Z \). Let \(\tau' \in Z \) be different from \(\tau \). Set
\[
B_\tau'' = \{ \beta < \kappa \mid \text{rng}(h_\tau \upharpoonright (A \cap \beta) \setminus \tau') \cap \text{rng}(h_{\tau'} \upharpoonright (A \cap \beta) \setminus \tau') = \emptyset \},
\]
if \(\tau < \tau' \) and
\[
B_\tau'' = \{ \beta < \kappa \mid \text{rng}(h_\tau \upharpoonright (A \cap \beta) \setminus \tau) \cap \text{rng}(h_{\tau'} \upharpoonright (A \cap \beta) \setminus \tau) = \emptyset \},
\]
if \(\tau' < \tau \). Then \(B_\tau'' \in U(\kappa, \theta) \). The set
\[
E_\tau = \{ \beta < \kappa \mid \forall \alpha < \beta' < \beta \langle h_\tau(\alpha, \beta') < \beta \rangle \} \in U(\kappa, \theta).
\]

Set \(C_\tau = (A \setminus \tau) \cap E_\tau \cap \Delta_{\tau' \in Z, \tau' \neq \tau} B_\tau'' \). Then for every \(\alpha, \alpha', \beta \in C_\tau \) with \(\alpha, \alpha' < \beta \), \(\alpha \neq \alpha' \) we have
\[
\langle \ast \rangle h_\tau(\alpha, \beta) \neq h_{\tau'}(\alpha', \beta),
\]
once \(\tau' \in Z, \tau' \neq \tau \) and \(\tau' < \beta \).

Suppose now \(\tau, \tau' \in Z, \tau \neq \tau' \), \((\alpha, \beta), (\alpha', \beta') \in [C_\tau] \cap [C_\tau] \). Assume for a moment that
\[
h_\tau(\alpha, \beta) = h_{\tau'}(\alpha', \beta').
\]
Note first that \(\beta = \beta' \), since \(h_\tau(\alpha, \beta) \geq \beta \), \(h_{\tau'}(\alpha', \beta') \geq \beta' \) and \(\beta, \beta' \in E_\tau \cap E_{\tau'} \). But then
\[
h_\tau(\alpha, \beta) \neq h_{\tau'}(\alpha', \beta),
\]
by the previous paragraph.

Finally let \(C = \Delta_{\tau \in Z} C_\tau \). The sequence \(\langle h_\tau''[C \setminus \tau + 1] \mid \tau \in Z \rangle \) will be as desired.

Thus let \(\tau < \tau', \tau, \tau' \in Z \) and \((\alpha, \beta) \in [C \setminus \tau + 1], (\alpha', \beta') \in [C \setminus \tau' + 1] \). If \(\beta \leq \tau' \), then
\[h_\tau(\alpha, \beta) < \beta' \leq h_\tau(\alpha', \beta') , \text{ since } \beta' \in C' \setminus \tau' + 1 , \text{ and so, } \beta' \in C_\tau \subseteq E_\tau . \] If \(\beta > \tau' \), then \(\beta \in C_{\tau'} \). So, \(\beta \neq \beta' \), say \(\beta > \beta' \) will imply
\[\beta' \leq h_\tau(\alpha', \beta') < \beta \leq h_\tau(\alpha, \beta) . \]

Suppose that \(\beta = \beta' \). But \(\beta > \tau' \), hence by (*) above \(h_\tau(\alpha, \beta) \neq h_\tau(\alpha', \beta) \).

Let us deal now with ultrafilters from the sequence \(\langle U_\tau \mid \tau < \kappa \rangle \) such that the ordinals \([id]_{U_\tau}'s\) are the same and of the form \(i_2(h)(\kappa, \kappa_1) \), for some \(h : [\kappa]^2 \to \kappa, h \in \mathcal{K} \). Assume for simplicity that every \(\tau < \kappa \) is like this.

Denote \(h_\alpha U(\kappa, \theta)^2 \) by \(\mathcal{V} \). We have then that for every \(X \subseteq \kappa, X \in \mathcal{K} \),
\[X \in \mathcal{V} \iff i_2(h)(\kappa, \kappa_1) \in i_2(X) \iff [id]_{U_\tau} \in i_2(X) \iff [id]_{U_\tau} \in i_{U_\tau}(X) \iff X \in U_\tau. \]

So, \(U_\tau \supseteq \mathcal{V} \), for every \(\tau < \kappa \).

Let \(\pi : \kappa \to \kappa, \pi \in \mathcal{K} \) be a projection of \(\mathcal{V} \) to the normal ultrafilter Rudin–Keisler below \(\mathcal{V} \), i.e. to \(U(\kappa, \theta) \). Assume that \(\mathcal{V} \) is Rudin-Keisler equivalent to \(U(\kappa, \theta)^2 \). The case \(\mathcal{V} =_{R–K} U(\kappa, \theta) \) is similar and no other possibility can occur here. So,
\[\kappa = [\pi]_\mathcal{V} = i_2(\pi)([id]_\mathcal{V}) = i_2(\pi)(h(\kappa, \kappa_1)) = i_2(\pi)([id]_{U_\tau}), \]
for every \(\tau < \kappa \). Which means that for every \(\tau < \kappa \), \(\pi \) is a projection of \(U_\tau \) to its normal measure.

Now the conclusion follows by the following likely known lemma.

\textbf{Lemma 3.6} Let \(\langle E_\alpha \mid \alpha < \kappa \rangle \) be a family of pairwise different \(\kappa \)-complete ultrafilters over \(\kappa \) which have the same projection to their least normal measures. Then the family is discrete.

\textit{Proof.} Denote by \(\pi \) this common projection.

Let \(\alpha < \kappa \). For every \(\beta < \kappa, \beta \neq \alpha \), pick \(A^\beta_\alpha \in E_\alpha \setminus E_\beta \). Let
\[B_\alpha = \{ \nu < \kappa \mid \pi(\nu) > \alpha \} . \]

Then \(B_\alpha \in E_\alpha \), since \(\pi_* E_\alpha \) is not principal ultrafilter. Set
\[A_\alpha = \Delta^*_\beta < \kappa, \beta \neq \alpha A^\beta_\alpha = \{ \nu < \kappa \mid \forall \beta < \pi(\nu)(\beta \neq \alpha \to \nu \in A^\beta_\alpha) \} . \]

Then \(A_\alpha \in E_\alpha \). Let
\[A^*_\alpha = A_\alpha \cap B_\alpha \cap \bigcap_{\beta < \alpha} (\kappa \setminus A^0_\beta) . \]
Clearly, $A_\alpha^* \in E_\alpha$.

Let us argue that the sets $\langle A_\alpha^* | \alpha < \kappa \rangle$ are pairwise disjoint. So, let $\alpha < \alpha' < \kappa$. Suppose that $\nu \in A_\alpha^* \cap A_{\alpha'}^*$. Then $\nu \in B_{\alpha'}$, and hence, $\pi(\nu) > \alpha' > \alpha$. But then, $\nu \in A_\alpha$ implies that $\nu \in A_{\alpha'}^*$, which is impossible since $\nu \in A_{\alpha'}^* \subseteq \kappa \setminus A_\alpha^*$.

\[\Box \]

Let us turn now to the general case. So, we have for each $\tau < \kappa$, the smallest finite nice set of generators a_τ in Gen_τ and $h_\tau : [\kappa]^{\aleph_\tau} \rightarrow \kappa$, $h_\tau \in K$ such that $[id]_{U_\tau} = j_\tau(h_\tau)(a_\tau)$. Also, $i_U \upharpoonright K = j_\tau$ is an iterated ultrapower of K by its measures.

If $a_\tau = a^*$ or just a_τ's are the same, for most (mod E) τ's, then the previous arguments apply without much changes. Suppose that this does not happen, i.e. for an E—measure one set of τ, $a_\tau \neq a^*$. Assume that this is true for every $\tau < \kappa$ and also that $|a_\tau| = |a_{\tau'}|$, for every $\tau, \tau' < \kappa$.

Then for every $\tau < \kappa$, let $\langle \mu_{\tau,k} | k < m \rangle$ be an increasing enumeration of $Gen_\tau \cap (a_\tau \setminus a^*)$. Then $\alpha(\mu_{\tau,0}) > \mu_{\tau,0}$. By the definition of $\alpha(\mu_{\tau,0})$, we have $b_{\mu_{\tau,0}} \subseteq a^* \cap a_{\tau,0}$ and $f_{\mu_{\tau,0}} \in K$ such that

$$j_\tau(f_{\mu_{\tau,0}})(b_{\mu_{\tau,0}}) = \alpha(\mu_{\tau,0}).$$

Similar, for each $k, 0 < k < m$, $\alpha(\mu_{\tau,k}) > \mu_{\tau,k}$ and there are $b_{\mu_{\tau,k}} \subseteq a_\tau \cap \mu_{\tau,k}$ and $f_{\mu_{\tau,k}} \in K$ such that

$$j_\tau(f_{\mu_{\tau,k}})(b_{\mu_{\tau,k}}) = \alpha(\mu_{\tau,k}).$$

Note if $\mu_{\tau,k} < \mu_{\tau,k'}$ and no generator of j_τ seats in between, then $\alpha(\mu_{\tau,k}) \geq \alpha(\mu_{\tau,k'})$.

Also note that if δ is of a form $\alpha(\mu_{\tau,k})$, for some $\tau < \kappa$, then the number of generators with this δ bounded in κ, since the set $\{\delta_\eta | \eta < \kappa\}$ is bounded in κ.

Using the κ—completeness of E, we can assume that all a_τ's are generated in the same fashion over a^* with respect to the order and number and order of applications of the $\alpha(\cdot), b_-$. Stating this more precisely the structures

$$A_\tau = \langle a_\tau, <, a^*, \alpha(-), b_-, ... \rangle$$

are isomorphic over a^*.

Let us deal with the following partial case, in the general one mainly the notation are more complicated.

Assume that there is a set $Z \subseteq \kappa$ of cardinality κ such that for some $a^{**} \subseteq a^*$, for every $\tau \in Z$ there is $\mu_{\tau} \in a_\tau \setminus \max(a^{**})$ such that

1. $\alpha(\mu_{\tau}) = j_\tau(f_{\mu_{\tau}})(a^{**})$,
2. \(\mu_r \leq [id]_{U_r} < \alpha(\mu_r) \),

3. if \(\tau \neq \tau' \) are in \(Z \), then \(\alpha(\mu_r) \neq \alpha(\mu_{r'}) \).

Note that once \(\alpha(\mu_r) \) is fixed, the number of possible \(\mu_r \)'s with \(\alpha(\mu_r) = \alpha(\mu_{r'}) \) is below \(\kappa \), since \(\{ o(\xi) \mid \xi < \kappa \} \) is bounded in \(\kappa \). So the condition 3 above is not really very restrictive.

Note also that if \(\tau \neq \tau' \) are in \(Z \), then \(\mu_r < \mu_{r'} \) implies \(\alpha(\mu_r) < \alpha(\mu_{r'}) \) and \(\mu_r > \mu_{r'} \) implies \(\alpha(\mu_r) < \alpha(\mu_{r'}) \). Since \(\mu_r, \mu_{r'} \) are generators (indiscernibles) corresponding to different measurables \(\alpha(\mu_r), \alpha(\mu_{r'}) \) and this measurables depend (were generated by) on \(a^{**} \) only.

Now we would like to use the arguments similar to the previous considered case and split not only \(\alpha(\mu_r) \)'s but rather the intervals they generate.

First note that the set
\[
\{ \alpha(\mu_r) \mid \tau' \in Z \text{ and } \mu_r < \mu_{r'} \}
\]
is bounded below \(\mu_r \), due to the cofinality considerations. So we can pick some \(\alpha^- (\mu_r) \) of a form \(j_r(f_{\mu_r}^-(\alpha)) \) in the interval (sup\((\{ \alpha(\mu_r) \mid \tau' \in Z \text{ and } \mu_r < \mu_{r'} \}, \alpha) \)).

Let
\[
U = \{ X \subseteq [\kappa]^{\text{a**}} \mid X \in \mathcal{K}, a^{**} \in j_r(X) \}.
\]
Then it is a \(\kappa^- \)-complete ultrafilter over \([\kappa]^{a^{**}}\) in \(\mathcal{K} \) which is a product of finitely many normal measures over \(\kappa \).

Our aim will be to find a set \(C \subseteq [\kappa]^{a^{**}} \) in \(\mathcal{K} \) such that

1. \(a^{**} \in j_r(C) \), for all \(\tau \in Z \),

2. the intervals \([f_{\mu_r}^-(\bar{\nu}), f_{\mu_r}(\bar{\nu})], [f_{\mu_{r'}}^-(\bar{\nu'}), f_{\mu_{r'}}(\bar{\nu'})] \) are disjoint whenever \(\tau \neq \tau' \) are in \(Z \) and \(\bar{\nu} \in C, \min(\bar{\nu}) > \tau, \bar{\nu'} \in C, \min(\bar{\nu'}) > \tau' \).

Denote max\((a^{**}) \) by \(\beta \) and \(a^{**} \setminus \{ \beta \} \) by \(\bar{\alpha} \).

Let \(U(\kappa, \theta) \) be the last measure of \(U \), i.e. \(U = (U \mid [\kappa]^{a^{**}} - 1) \times U(\kappa, \theta) \).

Let \(\tau \in Z \) and \(\beta < \kappa \). Define \(\gamma_{\beta} : \beta \to \kappa \setminus \beta \) by setting \(\gamma_{\beta} (\bar{\alpha}) = f_{\mu_r}(\bar{\alpha}, \beta) \) and \(\gamma_{\beta}^- : \beta \to \kappa \setminus \beta \) by setting \(\gamma_{\beta}^- (\bar{\alpha}) = f_{\mu_r}^-(\bar{\alpha}, \beta) \).

Consider
\[
i_{U(\kappa, \theta)}(\gamma_{\beta}^\beta(\beta < \kappa))(\kappa) : [\kappa]^{a^{**}} - 1 \to i_{U(\kappa, \theta)}(\kappa) \setminus \kappa.
\]
Denote it by \(g_{\tau}^\beta \). Similar let
\[
i_{U(\kappa, \theta)}(\gamma_{\beta}^-\beta(\beta < \kappa))(\kappa) : [\kappa]^{a^{**}} - 1 \to i_{U(\kappa, \theta)}(\kappa) \setminus \kappa.
\]
Denote it by g_{τ}'.

Suppose for a moment that for some $\tau, \tau' \in Z, \tau \neq \tau'$, $g_{\tau}' < g_{\tau'}' \leq g_\tau'$ mod $U \upharpoonright [\kappa]^{\alpha*+1}$.

Then there is a set $H \in U \upharpoonright [\kappa]^{\alpha*+1}$ such that for every $\alpha \in H$, the set

$$\{ \beta < \kappa \mid g_{\tau}'(\alpha) < g_{\tau'}'(\alpha) \leq g_{\tau}'(\alpha) \} \in U(\kappa, \theta).$$

But then

$$H \subseteq \{ \alpha \in [\kappa]^{\alpha*+1} \mid \{ \beta < \kappa \mid g_{\tau}'(\alpha, \beta) < g_{\tau'}'(\alpha, \beta) \leq g_{\tau}'(\alpha, \beta) \} \in U(\kappa, \theta) \}.$$

Hence,

$$\{ \alpha \in [\kappa]^{\alpha*+1} \mid \{ \beta < \kappa \mid g_{\tau}'(\alpha, \beta) < g_{\tau'}'(\alpha, \beta) \leq g_{\tau}'(\alpha, \beta) \} \in U(\kappa, \theta) \} \in U \upharpoonright [\kappa]^{\alpha*+1}.$$

Which is impossible.

Hence, $\tau, \tau' \in Z, \tau \neq \tau'$ implies $\neg(g_{\tau}' < g_{\tau'}' \leq g_\tau')$ mod $U \upharpoonright [\kappa]^{\alpha*+1}$. Which means, by switching between τ and τ' is necessary, that $g_{\tau}' < g_{\tau'}'$ mod $U \upharpoonright [\kappa]^{\alpha*+1}$ or $g_{\tau}' < g_{\tau'}'$ mod $U \upharpoonright [\kappa]^{\alpha*+1}$.

Now, using induction, normality of components of $U \upharpoonright [\kappa]^{\alpha*+1}$ and covering the set

$$\{ \{g_{\tau}', g_{\tau}'\} \mid \tau \in Z \}$$

by a set in K of cardinality κ, if necessary, we can find $A \in U \upharpoonright [\kappa]^{\alpha*+1}$ such that $\tau, \tau' \in Z, \tau \neq \tau'$ implies that for every $\vec{\nu}, \vec{\nu}' \in A$ with $\min(\vec{\nu}) > \tau, \min(\vec{\nu}') > \tau'$ the intervals

$$[g_{\tau}'(\vec{\nu}), g_{\tau'}'(\vec{\nu})], [g_{\tau}'(\vec{\nu}'), g_{\tau'}'(\vec{\nu}')]$$

are disjoint.

Thus, we can assume that the functions g_{τ}', g_{τ}' are not constant, just otherwise the set of relevant generators can be reduced to a smaller one.

Split into two cases according to the supremums of the ranges.

Case 1. Same supremum.

So assume for simplification of notation that for every $\tau \in Z$ the ranges of the functions g_{τ}', g_{τ}' have the same supremum χ. Then χ has cofinality κ, and let $\langle \chi, \gamma \mid \gamma < \kappa \rangle$ be a cofinal sequence.

Now we proceed similar to what was done in the beginning with h_{τ}, only an induction on size of a^{**} should be used.

Case 1. Different supremums.

Then we deal with this different supremums and split them. This will provide the desired conclusion also for g_{τ}', g_{τ}''s.

Now, the statement that for every $\vec{\nu}, \vec{\nu}' \in A$ with $\min(\vec{\nu}) > \tau, \min(\vec{\nu}') > \tau'$ the intervals

$$[g_{\tau}'(\vec{\nu}), g_{\tau'}'(\vec{\nu})], [g_{\tau}'(\vec{\nu}'), g_{\tau'}'(\vec{\nu}')]$$

are disjoint,
is true in K, hence by elementarity,

$$\{ \beta < \kappa \mid \forall \bar{\nu}, \bar{\nu}' \in A \cap [\beta]^{\alpha+1}_\tau \min(\bar{\nu}) > \tau \land \min(\bar{\nu}') > \tau' \rightarrow [g^-_{\tau}(\bar{\nu}), g^\beta_\tau(\bar{\nu})] \cap [g^-_{\tau'}(\bar{\nu}'), g^\beta_{\tau'}(\bar{\nu}')] = \emptyset \} \in U(\kappa, \theta).$$

Fix $\tau \in Z$. Let $\tau' \in Z$ be different from τ. Set

$$B'_\tau = \{ \beta < \kappa \mid \forall \bar{\nu}, \bar{\nu}' \in A \cap [\beta \setminus \tau']^{\alpha+1}_\tau ([g^-_{\tau}(\bar{\nu}), g^\beta_\tau(\bar{\nu})] \cap [g^-_{\tau'}(\bar{\nu}'), g^\beta_{\tau'}(\bar{\nu}')] = \emptyset) \},$$

if $\tau < \tau'$ and

$$B''_\tau = \{ \beta < \kappa \mid \forall \bar{\nu}, \bar{\nu}' \in A \cap [\beta \setminus \tau]^{\alpha+1}_\tau ([g^-_{\tau}(\bar{\nu}), g^\beta_\tau(\bar{\nu})] \cap [g^-_{\tau'}(\bar{\nu}'), g^\beta_{\tau'}(\bar{\nu}')] = \emptyset) \},$$

if $\tau' < \tau$. Then $B'_\tau \subseteq U(\kappa, \theta)$. The set

$$E_\tau = \{ \beta < \kappa \mid \forall \bar{\alpha} < \beta < \beta'(g_{\tau}(\bar{\alpha}, \beta') < \beta) \} \in U(\kappa, \theta).$$

Set $C_\tau = E_\tau \cap \Delta_{\tau' \in Z, \tau' \neq \tau} B''_\tau$. Then for every $\bar{\alpha}, \bar{\alpha}' \in (A \setminus \tau), \beta \in C_\tau$ with $\alpha, \alpha' < \beta, \alpha \neq \alpha'$ we have

$$(**)[g^-_{\tau}(\bar{\alpha}, \beta), g_{\tau}(\bar{\alpha}, \beta)] \cap [g^-_{\tau'}(\bar{\alpha}', \beta'), g_{\tau'}(\bar{\alpha}', \beta')] = \emptyset$$

once $\tau' \in Z, \tau' \neq \tau$ and $\tau' < \beta$.

Suppose now $\tau, \tau' \in Z, \tau \neq \tau', \bar{\alpha}, \bar{\alpha}' \in (A \setminus \tau) \cap (A \setminus \tau'), \beta \in C_\tau, \beta' \in C_{\tau'}$. Assume for a moment that

$$[g^-_{\tau}(\bar{\alpha}, \beta), g_{\tau}(\bar{\alpha}, \beta)] \cap [g^-_{\tau'}(\bar{\alpha}', \beta'), g_{\tau'}(\bar{\alpha}', \beta')] \neq \emptyset$$

Note first that $\beta = \beta'$, since $\beta \leq g^-_{\tau}(\bar{\alpha}, \beta) \leq g_{\tau}(\alpha, \beta), \beta' \leq g^-_{\tau'}(\bar{\alpha}', \beta') \leq g_{\tau'}(\alpha', \beta')$ and $\beta, \beta' \in E_\tau \cap E_{\tau'}$. But then

$$[g^-_{\tau}(\bar{\alpha}, \beta), g_{\tau}(\bar{\alpha}, \beta)] \cap [g^-_{\tau'}(\bar{\alpha}', \beta'), g_{\tau'}(\bar{\alpha}', \beta')] \neq \emptyset,$$

by the previous paragraph.

Finally let $\tilde{C} = \Delta_{\tau \in Z} C_\tau$ and

$$C = \{(\bar{\alpha}, \beta) \mid \bar{\alpha} \in A, \beta \in \tilde{C} \text{ and } \beta > \max(\bar{\alpha}) \}.$$

Such C will be as desired. Thus let $\tau < \tau', \tau' \in Z$ and $(\bar{\alpha}, \beta) \in C \setminus \tau + 1, (\bar{\alpha}', \beta') \in C \setminus \tau' + 1.$

If $\beta \leq \tau'$, then $g_{\tau}(\alpha, \beta) < \beta' \leq g^-_{\tau'}(\alpha', \beta')$, since $(\bar{\alpha}', \beta') \in C \setminus \tau' + 1$, and so, $\beta' \in C_\tau \subseteq E_\tau$.

If $\beta > \tau'$, then $\beta \in C_{\tau'}$. So, $\beta \neq \beta'$, say $\beta > \beta'$ will imply

$$\beta' \leq g_{\tau'}(\bar{\alpha'}, \beta') < \beta \leq g^-_{\tau}(\bar{\alpha}, \beta).$$
Suppose that $\beta = \beta'$. But $\beta > \tau'$, hence by (***) above

$$[g_\tau(\vec{\alpha}, \beta), g_\tau(\vec{\alpha}, \beta)] \cap [g'_\tau(\vec{\alpha}', \beta), g'_\tau(\vec{\alpha}', \beta)] = \emptyset.$$

□

4 Products of ultrafilters.

In [4], Aki Kanamori asked the following question (Question 5.8 there):

If \mathcal{U} and \mathcal{V} are κ-complete ultrafilters over κ such that $\mathcal{U} \times \mathcal{V} \leq_{R-K} \mathcal{V} \times \mathcal{U}$, is there a \mathcal{W} and integers n and m so that $\mathcal{U} \cong \mathcal{W}^n$ and $\mathcal{V} \cong \mathcal{W}^m$?

Solovay gave an affirmative answer once "$\mathcal{U} \times \mathcal{V} \leq_{R-K} \mathcal{V} \times \mathcal{U}$" is replaced by "$\mathcal{U} \times \mathcal{V} \cong \mathcal{V} \times \mathcal{U}$", and Kanamori once \mathcal{U} is a p-point, see [4] 5.7, 5.9.

We would like to show that the negative answer is consistent assuming $o(\kappa) = \kappa$. Two examples will be produced. The following will be shown:

Theorem 4.1 Assume $o(\kappa) = \kappa$. Then in a cardinal preserving generic extension there are two κ-complete ultrafilters \mathcal{U} and \mathcal{V} over κ such that

1. $\mathcal{V} \not\leq_{R-K} \mathcal{U}$,
2. $\mathcal{V} \times \mathcal{U} \not\leq_{R-K} \mathcal{U} \times \mathcal{V}$.

Theorem 4.2 Assume $o(\kappa) = \kappa$. Then in a cardinal preserving generic extension there are two κ-complete ultrafilters \mathcal{U} and \mathcal{V} over κ such that

1. \mathcal{V} is a normal measure,
2. \mathcal{V} is the projection of \mathcal{U} to its least normal measure,
3. $\mathcal{V} \times \mathcal{U} \not\leq_{R-K} \mathcal{U} \times \mathcal{V}$.

Proof of the first theorem.

Let us keep the notation of the previous section.

So, we have κ-complete ultrafilters $U(\kappa, \alpha, t), \alpha < \kappa, t \in [\kappa]^{<\omega}$ which extend $U(\kappa, \alpha)$'s. Denote $U(\kappa, \alpha, \langle \rangle)$ by $\bar{U}(\kappa, \alpha)$.

Let $f : \kappa \to \kappa$. Define

$$U_f = \{ X \subseteq \kappa \mid \{ \alpha < \kappa \mid X \in \bar{U}(\kappa, f(\alpha)) \} \in \bar{U}(\kappa, 0) \}.$$
i.e.

\[U_f = \bar{U}(\kappa, 0) - \lim_{\alpha \prec \kappa} \bar{U}(\kappa, f(\alpha)). \]

Then \(U_f \) is a \(\kappa \)-complete ultrafilter over \(\kappa \).

It is noted in [3], that if \(f \leq g \mod \bar{U}(\kappa, 0) \), then \(U_f \leq R - K U_g \).

Our prime interest will be in \(f = id \) and \(g = id + 1 \).

Set \(U = U_{id} \) and \(V = U_{id + 1} \).

We would like to argue that \(U \times V <_{R - K} V \times U \).

Note that neither \(U \) nor \(V \) are of the form \(W^n \), for \(n > 1 \), since the only ultrafilters Rudin-Keisler below \(U \) are \(\bar{U}(\kappa, \alpha) \), \(\alpha < \kappa \) and their finite powers, those below \(V \) are \(\bar{U}(\kappa, \alpha) \), \(\alpha < \kappa \), \(U \) and their finite powers. Just examine the ultrapowers by \(U \) nor \(V \).

In particular, \(V \neq U^n, n < \omega \).

Suppose that \(B \in U \times V \). Then

\[\{ \mu < \kappa \mid \{ \xi < \kappa \mid (\mu, \xi) \in B \} \in V \} \in U. \]

Denote

\[A = \{ \mu < \kappa \mid \{ \xi < \kappa \mid (\mu, \xi) \in B \} \in V \} \]

and for each \(\mu < \kappa \), let

\[A_\mu = \{ \xi < \kappa \mid (\mu, \xi) \in B \}. \]

Recall that

\[U = \bar{U}(\kappa, 0) - \lim \langle \bar{U}(\kappa, \alpha) \mid \alpha < \kappa \rangle. \]

Hence, there is \(Z \in \bar{U}(\kappa, 0) \) such that for every \(\alpha \in Z \), \(A \in \bar{U}(\kappa, \alpha) \).

Similar,

\[V = \bar{U}(\kappa, 0) - \lim \langle \bar{U}(\kappa, \alpha + 1) \mid \alpha < \kappa \rangle. \]

Hence, for every \(\mu \in A \), there is \(Y_\mu \in \bar{U}(\kappa, 0) \) such that for every \(\alpha \in Y_\mu \), \(A_\mu \in \bar{U}(\kappa, \alpha + 1) \).

Set

\[X = Z \cap \Delta_{\mu \in A} Y_\mu. \]

Then \(X \in \bar{U}(\kappa, 0) \) and for every \(\alpha \in X \) we have

\[A \in \bar{U}(\kappa, \alpha) \text{ and } \forall \mu \in A \cap \alpha (A_\mu \in \bar{U}(\kappa, \alpha + 1)). \]

Then, by elementarity, in \(M_\nu \), for every \(\alpha \in i_\nu(X) \),

\[i_\nu(A) \in \bar{U}(i_\nu(\kappa), \alpha) \text{ and } \forall \mu \in i_\nu(A) \cap \alpha (A'_\mu \in \bar{U}(i_\nu(\kappa), \alpha + 1)), \]

17
where $i_V(\langle A_\mu | \mu < \kappa \rangle) = \langle A'_\mu | \mu < i_V(\kappa) \rangle$.

Let ρ^U denotes $[id]_U$. Then $\rho^U \in i_U(A)$. We have a natural embedding $\sigma : M_U \to M_V$ and it does not move ρ^U, since its critical point is $i_U(\kappa)$.

Then,

$$\rho^U = \sigma(\rho^U) \in \sigma(i_U(A)) = i_V(A).$$

Note that generators of $\bar{U}(\kappa, 0)$ appear unboundedly many times below $\rho_V > \rho_U$. Let α^* be, say, the least generator such generator above ρ^U.

Then $\alpha^* \in i_V(X) \setminus \rho^U + 1$. So,

$$\forall \mu \in i_V(A) \cap \alpha^*(A'_\mu \in \bar{U}(i_V(\kappa), \alpha^* + 1)).$$

Now, $\bar{U}(i_V(\kappa), \alpha^* + 1) <_{R-K} \bar{U}(i_V(\kappa), id) = i_V(U)$. Let η represents a corresponding projection function in the ultrapower of M_V by $i_V(U)$.

Then for all $\mu \in i_V(A) \cap \alpha^*$, $\eta \in i_V(U)(A'_\mu)$.

Hence,

$$\eta \in i_V(U)(A'_\mu).$$

So,

$$(\rho^U, \eta) \in i_V(U)(B).$$

We are done, since then

$$\{E \subseteq [\kappa]^2 | (\rho^U, \eta) \in i_V(U)(E)\} \supseteq \mathcal{U} \times \mathcal{V},$$

but $\mathcal{U} \times \mathcal{V}$ is an ultrafilter, so

$$\{E \subseteq [\kappa]^2 | (\rho^U, \eta) \in i_V(U)(E)\} = \mathcal{U} \times \mathcal{V},$$

which means that

$$\mathcal{U} \times \mathcal{V} <_{R-K} \mathcal{V} \times \mathcal{U}.$$
We have
\[U = U(\kappa, 0) - \lim (\bar{U}(\kappa, \alpha) \mid \alpha < \kappa). \]
So, the ultrapower with \(U \) is obtained as follows. First \(\bar{U}(\kappa, 0) \) is applied. We have
\[i_{\bar{U}(\kappa, 0)} : V \to M_{\bar{U}(\kappa, 0)}. \]
Next \(\bar{U}(i_{\bar{U}(\kappa, 0)})(\kappa), \kappa \) is applied over \(M_{\bar{U}(\kappa, 0)} \). We have
\[i_{U(i_{\bar{U}(\kappa, 0)}(\kappa), \kappa)} : M_{\bar{U}(\kappa, 0)} \to M_{\bar{U}(i_{\bar{U}(\kappa, 0)}(\kappa), \kappa)}. \]
The composition is the ultrapower embedding by \(U \), i.e.
\[i_U = i_{U(i_{\bar{U}(\kappa, 0)}(\kappa), \kappa)} \circ i_{\bar{U}(\kappa, 0)} : V \to M_U = M_{U(i_{\bar{U}(\kappa, 0)}(\kappa), \kappa)}. \]
Consider \(\bar{U}(\kappa, 0) \times U \).
So, we have \(i_{U(\kappa, 0)} : V \to M_{U(\kappa, 0)} \) followed by \(i_{U(\kappa, 0)}(U) = U(i_{U(\kappa, 0)}(\kappa), id) \). The application of \(U(i_{U(\kappa, 0)}(\kappa), id) \) to \(M_{U(\kappa, 0)} \) has the similar description to the one above.
Namely, \(i_{U(\kappa, 0)}(U(\kappa, 0)) \) is used first followed by
\[\bar{U}(i_{i_{U(\kappa, 0)}(U(\kappa, 0))}(i_{U(\kappa, 0)}(\kappa)), i_{U(\kappa, 0)}(\kappa)). \]
In order to simplify the notation, let us denote \(i_{U(\kappa, 0)} \) by \(i_1 \), \(M_{U(\kappa, 0)} \) by \(M_1 \), \(i_{U(\kappa, 0)}(\kappa) \) by \(\kappa_1 \), the second ultrapower of \(U(\kappa, 0) \) by \(M_2 \) and the image of \(\kappa_1 \) there by \(\kappa_2 \).
Then \(i_{U(\kappa, 0) \times U} : V \to M_{U(\kappa, 0) \times U} \) is \(i_1 : V \to M_1 \) followed by \(i_{U(\kappa_1, 0)} : M_1 \to M_2 \) and then by \(i_{\bar{U}(\kappa_2, \kappa_1)} : M_2 \to M_{\bar{U}(\kappa, 0) \times U} \).
Note that in \(M_2 \), we have \(\bar{U}(\kappa_2, \kappa_1) >_{R-K} \bar{U}(\kappa_2, \kappa) \) and even \(\bar{U}(\kappa_2, \kappa_1) >_{R-K} \bar{U}(\kappa_2, \kappa) \times \bar{U}(\kappa_2, 0) \).
Pick \((\eta, \rho) \) which represents a corresponding projection function in the ultrapower of \(M_2 \) by \(\bar{U}(\kappa_2, \kappa_1) \).
Let us argue that
\[\{ E \subseteq [\kappa]^2 \mid (\eta, \rho) \in i_{U(\kappa, 0) \times U}(E) \} \supseteq U \times \bar{U}(\kappa, 0). \]
Let \(A \in U \), then
\[[id]_{\bar{U}(\kappa_1, \kappa)} \in i_U(A) = i_{\bar{U}(\kappa_1, \kappa)}(i_1(A)). \]
Then, in \(M_1 \),
\[i_1(A) \in \bar{U}(\kappa_1, \kappa). \]
Apply the second ultrapower embedding $i\bar{U}(\kappa_1,0)$ to it. Note that its critical point is $\kappa_1 > \kappa$. Then,

$$i_2(A) = i\bar{U}(\kappa_1,0)(i_1(A)) \in i\bar{U}(\kappa_1,0)(\bar{U}(\kappa_1,\kappa)) = \bar{U}(\kappa_2,\kappa).$$

Next apply $i\bar{U}(\kappa_2,\kappa_1) : M_2 \to M\bar{U}(\kappa,0)$. So, by the choice of η,

$$\eta \in i\bar{U}(\kappa,0)x\bar{U}(A) = i\bar{U}(\kappa_2,\kappa_1)(i_2(A)).$$

Suppose now that $B \in \mathcal{U} \times \bar{U}(\kappa,0)$. Set

$$A := \{ \mu < \kappa \mid \{ \xi < \kappa \mid (\mu, \xi) \in B \} \in \bar{U}(\kappa,0) \}.$$

Then $A \in \mathcal{U}$ and for every $\mu \in A$ the set

$$A_\mu := \{ \xi < \kappa \mid (\mu, \xi) \in B \} \in \bar{U}(\kappa,0).$$

Apply i_2. Then, in M_2,

$$\forall \mu \in i_2(A)(A_\mu \in \bar{U}(\kappa_2,0)).$$

But, by above, we have

$$i_2(A) \in \bar{U}(\kappa_2,\kappa),$$

hence,

$$i_2(B) \in \bar{U}(\kappa_2,\kappa) \times \bar{U}(\kappa_2,0).$$

So,

$$(\eta, \rho) \in i\bar{U}(\kappa,0)x\bar{U}(B),$$

and we are done.

□

Let us address now the strength issue.

Theorem 4.3 Suppose that there is no inner model in which κ is a measurable with

$\{ o(\alpha) \mid \alpha < \kappa \}$ unbounded in it. Then for any two $\kappa-$complete ultrafilters \mathcal{U} and \mathcal{V} over κ, if $\mathcal{V} \times \mathcal{U} \geq_{R-K} \mathcal{U} \times \mathcal{V}$, then there is an integer n such that $\mathcal{V} =_{R-K} \mathcal{U}^n$.

Proof. Suppose that there is no inner model in which κ is a measurable with

$\{ o(\alpha) \mid \alpha < \kappa \}$ unbounded in it. Then the separation holds and there are no κ non-Rudin-Keisler equivalent ultrafilters which are Rudin-Keisler below some $\kappa-$complete ultrafilter.
Let \mathcal{U} and \mathcal{V} be two κ–complete ultrafilters over κ and $\mathcal{V} \times \mathcal{U} \geq _{R-K} \mathcal{U} \times \mathcal{V}$.

Let $(\rho, \eta) \in [i_{\mathcal{U} \times \mathcal{U}}(\kappa)]^2$ generates $\mathcal{U} \times \mathcal{V}$, i.e.

$$\mathcal{U} \times \mathcal{V} = \{ X \subseteq [\kappa]^2 \mid (\rho, \eta) \in i_{\mathcal{U} \times \mathcal{U}}(X) \}.$$

Clearly, then $\eta > i_{\mathcal{V}}(\kappa)$. Consider in $M_\mathcal{V}$ an ultrafilter \mathcal{W} defined by η, i.e.

$$\mathcal{W} := \{ Z \subseteq i_{\mathcal{V}}(\kappa) \mid \eta \in i_{\mathcal{V}}(Z) \}.$$

Clearly, $\mathcal{W} \leq _{R-K} i_{\mathcal{V}}(\mathcal{U})$. Find a sequence of ultrafilters $\langle \mathcal{W}_\alpha \mid \alpha < \kappa \rangle$ which represents \mathcal{W} in the ultrapower by \mathcal{V}, i.e.

$$i_{\mathcal{V}}(\langle \mathcal{W}_\alpha \mid \alpha < \kappa \rangle)([id]_\mathcal{V}) = \mathcal{W}.$$

So, for most (mod \mathcal{V}) α's, $\mathcal{W}_\alpha \leq _{R-K} \mathcal{U}$.

Note that $\mathcal{V} = \mathcal{V} - \lim \langle \mathcal{W}_\alpha \mid \alpha < \kappa \rangle$.

Namely,

$$X \in \mathcal{V} \Leftrightarrow \eta \in i_{\mathcal{U} \times \mathcal{U}}(X) \Leftrightarrow i_{\mathcal{V}}(X) \in \mathcal{W}$$

$$\Leftrightarrow \{ \alpha < \kappa \mid X \in \mathcal{W}_\alpha \} \in \mathcal{V} \Leftrightarrow X \in \mathcal{V} - \lim \langle \mathcal{W}_\alpha \mid \alpha < \kappa \rangle.$$

The sequence $\langle \mathcal{W}_\alpha \mid \alpha < \kappa \rangle$ may contain same ultrafilters, but among them must be κ different. Just otherwise, mod \mathcal{V} they will be the same. Let \mathcal{W}' be this ultrafilter. Then, $\mathcal{V} = \mathcal{V} - \lim \langle \mathcal{W}_\alpha \mid \alpha < \kappa \rangle$, implies $\mathcal{V} = \mathcal{W}'$. So, $\mathcal{V} \leq _{R-K} \mathcal{U}$.

Now, if $\rho < i_{\mathcal{V}}(\kappa)$, then $\mathcal{U} \leq _{R-K} \mathcal{V}$. Hence, $\mathcal{U} = _{R-K} \mathcal{V}$, which is impossible.

Assume for a while that $\rho < i_{\mathcal{V}}(\kappa)$.

Still among this different \mathcal{W}_α's may be many which are Rudin-Keisler equivalent.

If the number of the equivalence classes has cardinality κ then we are done. Suppose otherwise. Then there is \mathcal{W}' such that $\mathcal{W}_\alpha = _{R-K} \mathcal{W}'$, for almost every α mod \mathcal{V}.

Set $\alpha \sim \beta$ iff $\mathcal{W}_\alpha = \mathcal{W}_\beta$. Let $t : \kappa \rightarrow \kappa$ be a function which picks exactly one ultrafilter in such equivalence classes.

Set $\mathcal{V}' = t_\ast \mathcal{V}$. Then

$$\mathcal{V} = \mathcal{V}' - \lim \langle \mathcal{W}_\alpha \mid \alpha < \kappa \rangle.$$

Now, using the separation property, the ultrapower by \mathcal{V} is the ultrapower by \mathcal{V}' followed by $\mathcal{W}_{[id]_{\mathcal{V}'}}$.

But $\mathcal{W}_{[id]_{\mathcal{V}'}} = _{R-K} i_{\mathcal{V}'}(\mathcal{W}')$, so its ultrapower is the same as those by $i_{\mathcal{V}'}(\mathcal{W}')$. This means
that the iterated ultrapower is just $V' \times W'$.

So, $V' \times W' =_{R-K} V$.

Then

$$V \leq_{R-K} V' \times U \text{ and } V' <_{R-K} V.$$

Following Kanamori [4],5.9, we would like to argue that $U \times V' \leq_{R-K} V'$ and then to apply induction to

$$U \times V' \leq_{R-K} V' \times U.$$

I.e. there will be $n < \omega$ such that $V' =_{R-K} U^n$, and then

$$U \times V' \leq_{R-K} V \leq_{R-K} V' \times U$$

will imply that $V =_{R-K} U^{n+1}$. Denote $[t]_V$ by ρ'. By Kanamori [4],5.4, it is enough to show that for any not constant mod V function $g : \kappa \to \kappa$,

$$\rho < i_{V \times U}(g)(\rho').$$

Also, Kanamori [4],5.4, we know that for any not constant mod V function $g : \kappa \to \kappa$,

$$\rho < i_{V \times U}(g)(\eta).$$

So it will be enough to show that there is $s : \kappa \to \kappa$ such that

$$\rho' = i_{V \times U}(s)(\eta).$$

Define such s by using the separation property W_α’s relatively to V'.

Thus let

$$\langle A_\alpha \mid \alpha \in B \rangle$$

be a disjoint family of sets, $B \in V'$ such that each $A_\alpha \in W_\alpha$. Consider

$$\langle A'_\alpha \mid \alpha \in i_{V \times U}(B) \rangle = i_{V \times U}(\langle A_\alpha \mid \alpha \in B \rangle).$$

Then $\eta \in A'_\rho$, since η generates $W_{\rho'}$ in M_V.

So, define $s : \kappa \to \kappa$ by setting

$$s(\mu) = \min(\{\alpha \mid \mu \in A_\alpha\}).$$

Suppose now that $\rho \geq i_V(\kappa)$. Then, as above, replacing η by (ρ, η), we will have in M_V an ultrafilter W defined by (ρ, η), i.e.

$$W := \{Z \subseteq [i_V(\kappa)]^2 \mid (\rho, \eta) \in i_{V \times U}(Z)\}.$$
Clearly, $W \leq_{R-K} i_V(U)$. Find a sequence of ultrafilters $\langle W_\alpha \mid \alpha < \kappa \rangle$ which represents W in the ultrapower by V, i.e.

$$i_V(\langle W_\alpha \mid \alpha < \kappa \rangle)([id]_V) = W.$$

So, for most (mod V) α’s, $W_\alpha \leq_{R-K} U$.

Note that

$$U \times V = V - \lim (W_\alpha \mid \alpha < \kappa).$$

Namely,

$$X \in U \times V \iff (\rho, \eta) \in i_V \times U(X) \iff \exists \alpha < \kappa \ X \in W_\alpha \iff X \in V - \lim (W_\alpha \mid \alpha < \kappa).$$

The sequence $\langle W_\alpha \mid \alpha < \kappa \rangle$ may contain same ultrafilters, but among them must be κ different. Just otherwise, mod V they will be the same. Let W' be this ultrafilter. Then, $U \times V = V - \lim (W_\alpha \mid \alpha < \kappa)$, implies $U \times V = W'$. So, $U \times V \leq_{R-K} U$, which is impossible.

Still among this different W_α’s may be many which are Rudin-Keisler equivalent.

If the number of the equivalence classes has cardinality κ then we are done. Suppose otherwise. Then there is W' such that $W_\alpha =_{R-K} W'$, for almost every α mod V.

Set $\alpha \sim \beta$ iff $W_\alpha = W_\beta$. Let $t : \kappa \to \kappa$ be a function which picks exactly one ultrafilter in such equivalence classes.

Set $V' = t_* V$. Then

$$U \times V = V' - \lim (W_\alpha \mid \alpha < \kappa).$$

Now, using the separation property, the ultrapower by $U \times V$ is the ultrapower by V' followed by $W'_{[id]_{V'}}$. But $W'_{[id]_{V'}} =_{R-K} i_V(W')$, so its ultrapower is the same as those by $i_V(W')$. This means that the iterated ultrapower is just $V' \times W'$.

So, $V' \times W' =_{R-K} U \times V$. Then by Kanamori [4] (5.6), at least one of the following three possibilities must holds:

1. $W' =_{R-K} V$ and $V' =_{R-K} U$;

2. there is a κ--complete ultrafilter F, such that $V' =_{R-K} U \times F$ and $V =_{R-K} F \times W'$;

3. there is a κ--complete ultrafilter G such that $U =_{R-K} V' \times G$ and $W' =_{R-K} G \times V$.

Suppose for a moment that the first possibility occurs. Then

$$U \geq_{R-K} W' =_{R-K} V \geq_{R-K} V' =_{R-K} U.$$
So, $\mathcal{U} =_{R-K} \mathcal{V}$, and then $\mathcal{U} \times \mathcal{V} =_{R-K} \mathcal{V} \times \mathcal{U}$, which is impossible.

Suppose now that the second possibility occurs. Then $\mathcal{V} \geq_{R-K} \mathcal{V}'$ and $W' \leq_{R-K} U$ imply

$$\mathcal{U} \times F \leq_{R-K} F \times W' \leq_{R-K} F \times \mathcal{U}.$$

But, also (2) implies that $\mathcal{V} >_{R-K} F$. So, we can apply the induction to

$$\mathcal{U} \times F \leq_{R-K} F \times \mathcal{U}.$$

Consider now the third possibility. Then $\mathcal{U} \geq_{R-K} W'$ and $\mathcal{V} \geq_{R-K} \mathcal{V}'$ imply

$$\mathcal{V} \times G \geq_{R-K} \mathcal{V}' \times G \geq_{R-K} G \times \mathcal{V}.$$

But, also (3) implies that $\mathcal{U} >_{R-K} G$. So, we can apply the induction to

$$\mathcal{V} \times G \geq_{R-K} G \times \mathcal{V}.$$

□
References

[5] W. Mitchell, Core model for sequences of measures,