Some constructions of ultrafilters over a measurable cardinal.

Moti Gitik

April 30, 2020

Abstract

Some non-normal κ–complete ultrafilters over a measurable κ with special properties are constructed. Questions by A. Kanamori [4] about infinite Rudin-Frolik sequences, discreteness and products are answered.

1 Introduction.

We present here several constructions of κ–complete ultrafilters over a measurable cardinal κ and examine their consistency strength. Some questions of Aki Kanamori from [4] are answered.

Let us state some basic definitions, we refer to a basic paper by A. Kanamori [4] for a comprehensive account.

Definition 1.1 The Rudin-Keisler ordering (\leq_{R-K}) on ultrafilters is defined as follows: If U is an ultrafilter on a set I and V an ultrafilter on a set J, $V \leq_{R-K} U$ iff there is a function $f : I \to J$ so that $V = f_*(U)$, where

$$f_*(U) = \{X \subseteq J | f^{-1}(X) \in U\}.$$

Let $U =_{R-K} V$ iff both $V \leq_{R-K} U$ and $U \leq_{R-K} V$; in this case, U is said to be isomorphic to V. Finally, let $V <_{R-K} U$ iff $V \leq_{R-K} U$ and $V \neq U$.

*The work was partially supported by Israel Science Foundation Grants No. 58/14, 1216/18. We are grateful to Eilon Bilinski who drew our attention to the subject, to Tom Benhamou and Eyal Kaplan for stimulating questions and discussions. We would like to thank to the referee of the paper for his suggestions, remarks and corrections. 2010 Mathematics Subject Classification, Primary 03E35, Secondary 03E55. Key words and phrases. measurable cardinals, ultrafilters, ultrapowers.
If $U = R - K \mathcal{V}$, then a function f above can be picked one to one on a set in U.

The order \leq_{R-K} is well-founded on $\kappa-$complete ultrafilters and isomorphic ultrafilters have the same ultrapower.

Definition 1.2 Let D be an ultrafilter over a set I and E_i be an ultrafilter over a set J, for every $i \in I$.

(i) The $D-$limit of $\langle E_i \mid i \in I \rangle$ is the ultrafilter $D - \lim \langle E_i \mid i \in I \rangle$ over J defined by

$$X \in D - \lim \langle E_i \mid i \in I \rangle \text{ iff } \{i \in I \mid X \in E_i\} \in D.$$

(ii) The $D-$sum of $\langle E_i \mid i \in I \rangle$ is the ultrafilter $D - \Sigma \langle E_i \mid i \in I \rangle$ over $I \times J$ defined by

$$X \in D - \Sigma \langle E_i \mid i \in I \rangle \text{ iff } \{i \in I \mid \{j \in J \mid \langle i,j \rangle \in X\} \in E_i\} \in D.$$

Definition 1.3 A family of ultrafilters $\langle E_i \mid i \in I \rangle$ is called a discrete family iff there is a disjoint family $\langle X_i \mid i \in I \rangle$ such that $X_i \in E_i$, for every $i \in I$.

Definition 1.4 The Rudin-Frolik ordering (\leq_{R-F}) on ultrafilters is defined as follows:

Let D be an ultrafilters over a set I. $U \geq_{R-F} D$ iff for some J and a discrete family $\{E_i \mid i \in I\}$ of ultrafilters over J, $U = D - \lim \{E_i \mid i \in I\}$.

\leq_{R-F} is a sub-ordering of the Rudin-Keisler ordering.

Definition 1.5 The Mitchell ordering (\ll) on $\kappa-$complete ultrafilters is defined as follows:

Let \mathcal{U}, \mathcal{V} be two $\kappa-$complete ultrafilters over a measurable cardinal κ. $\mathcal{U} \ll \mathcal{V}$ iff \mathcal{U} belongs to the ultrapower by \mathcal{V}.

The Mitchell order on $\kappa-$complete ultrafilters over κ is well-founded and inside the Mitchell Core Model \mathcal{K} ([5], [6]) it is a well-order.

In [1], [3] forcing notions which allow to turn the Mitchell order into the Rudin-Keisler order were introduced.

We assume some familiarity with basics of \mathcal{K} and this forcing notions.

The structure of the paper is as follows:

Section 2 deals with Rudin-Frolik ordering and answers Question 5.11 from [4] about infinite increasing Rudin-Frolik sequences. In Section 3, an example of non-discrete family of ultrafilters is constructed, answering Question 5.12 from [4]. Also the strength of existence of such family is examined. Section 4 deals with products of ultrafilters. A negative answer to Question 5.8 from [4] given.
2 On Rudin-Frolik increasing sequences.

In [4], Aki Kanamori asked if there exists a κ–ultrafilter with an infinite number of Rudin-Frolik predecessors.

We show that starting with $o(\kappa) = 2$ it is possible.

Assume GCH. Let

$$\vec{U} = \langle U(\alpha, \beta) \mid (\alpha, \beta) \in \text{dom}(\vec{U}), \alpha \leq \kappa, \beta < \omega(\alpha) \rangle$$

be a coherent sequence such that $o(\vec{U}) = 2$ and for every $\alpha < \kappa$, $o(\vec{U}) \leq 1$. Let

$$A = \{ \alpha \mid \exists \beta(\alpha, \beta) \in \text{dom}(\vec{U}) \}.$$

Then for every $\alpha \in A$, $o(\vec{U}) = 1$ and $U(\alpha, 0)$ is a normal ultrafilter over α.

We force with Easton support iteration of the Prikry forcings with $U(\alpha, 0)$'s (and their extensions), $\alpha \in A$, as in [1] (a better presentation appears in [2]). Let G be a generic.

Then for every increasing sequence t of ordinals less than κ, the normal ultrafilter $U(\kappa, 1)$ of V extends to a κ–complete ultrafilter $U(\kappa, 1, t)$ in $V[G]$, see [1], p.291.

Denote by b_α the Prikry sequence from G added to α, for every $\alpha \in A$. Then $U(\kappa, 1, t)$ concentrates on $\alpha \in A$ for which b_α starts from t, i.e. $b_\alpha \upharpoonright |t| = t$.

Let $\vec{U}(\kappa, 0)$ be the canonical extension of $U(\kappa, 0)$ to a normal ultrafilter in $V[G]$ defined as in [2] on page 290.

Denote $U(\kappa, 1, \langle \rangle)$ by $\vec{U}(\kappa, 1)$.

Lemma 2.1 For every $n, 0 < n < \omega$, $\vec{U}(\kappa, 1) = \vec{U}(\kappa, 0)^n - \lim \langle U(\kappa, 1, t) \mid t \in [\kappa]^n \rangle$.

Proof. Recall the definition of $U(\kappa, 1, t)$, $t \in [\kappa]^m, m < \omega$:

$X \in U(\kappa, 1, t)$ iff for some $r \in G, \gamma < \kappa^+, B \in \vec{U}(\kappa, 0)$, in $M_{U(\kappa, 1)}$ the following holds:

$$r \cup \{ \langle t, B \rangle \} \cup p_\gamma \forces \kappa \in i_{U(\kappa, 1)}(X),$$

where p_γ is the γ–th element of the canonical master sequence.

In particular, $X \in \vec{U}(\kappa, 1)$ iff for some $r \in G, \gamma < \kappa^+, B \in \vec{U}(\kappa, 0)$, in $M_{U(\kappa, 1)}$ the following holds:

$$r \cup \{ \langle \langle \rangle, B \rangle \} \cup p_\gamma \forces \kappa \in i_{U(\kappa, 1)}(X).$$

Then, for every $t \in [B]^n$, we will have

$$r \cup \{ \langle t, B \setminus \text{max}(t) + 1 \} \cup p_\gamma \forces \kappa \in i_{U(\kappa, 1)}(X).$$
So, $X \in U(\kappa, 1, t)$. But $[B]^n \in \bar{U}(\kappa, 0)^n$, hence $X \in \bar{U}(\kappa, 0)^n - \lim \langle U(\kappa, 1, t) \mid t \in [\kappa]^n \rangle$.

Hence we showed that $\bar{U}(\kappa, 1) \subseteq \bar{U}(\kappa, 0)^n - \lim \langle U(\kappa, 1, t) \mid t \in [\kappa]^n \rangle$. But this already implies the equality, since both $\bar{U}(\kappa, 1)$ and $\bar{U}(\kappa, 0)^n - \lim \langle U(\kappa, 1, t) \mid t \in [\kappa]^n \rangle$ are ultrafilters.

□

Lemma 2.2 The family $\langle U(\kappa, 1, t) \mid t \in [\kappa]^n \rangle$ is a discrete family of ultrafilters.

Proof. For each $t \in [\kappa]^n$ set

$$A_t := \{ \alpha \in A \mid b_\alpha \upharpoonright n = t \}.$$

Let $t, t' \in [\kappa]^n$ be two different sequences, then, clearly, $A_t \cap A_{t'} = \emptyset$.

□

Recall the following definition:

Definition 2.3 The Rudin-Frolik ordering (≤\text{RF}) on ultrafilters is defined as follows:
Let D be an ultrafilters over a set I. $U \geq \text{RF} D$ iff for some J and a discrete family $\{ E_i \mid i \in I \}$ of ultrafilters over J, $U = D - \lim \{ E_i \mid i \in I \}$.

So we obtain the following:

Theorem 2.4 $\bar{U}(\kappa, 1)$ has infinitely many predecessors in the Rudin-Frolik ordering.

Proof. For every $n, 0 < n < \omega$, use a bijection between $[\kappa]^n$ and κ and transfer $\bar{U}(\kappa, 0)^n$ to κ. The rest follows by Lemmas 2.1, 2.2.

□

Note that for κ–complete ultrafilters U and D over κ, $U \geq \text{RF} D$ implies $U \geq \text{K} D$.

So, by [5], the existence of a κ–complete ultrafilter over κ with infinitely many predecessors in the Rudin-Frolik ordering implies by Kanamori [4], that 0^+ exists. Let us improve this in order to give the exact strength.

Theorem 2.5 The existence of a κ–complete ultrafilter over κ with infinitely many predecessors in the Rudin-Frolik ordering implies that $\mathcal{O}(\kappa) \geq 2$ in the core model1.

Proof. Note first that for κ–complete ultrafilters U and D over κ, $U \geq \text{RF} D$ implies $U \geq \text{K} D$. So, by [5], the existence of a κ–complete ultrafilter over κ with infinitely many predecessors in the Rudin-Frolik ordering implies that $\exists \lambda \mathcal{O}(\lambda) \geq 2$. Let us argue that actually $\mathcal{O}(\kappa) \geq 2$ in the core model.

1By the core model we mean the Mitchell core model for sequences of measures [5].
Suppose otherwise. So, $o(\kappa) = 1$. Let $U(\kappa, 0)$ be the unique normal measure over κ in the core model \mathcal{K}.

Suppose that, in V, we have a κ–complete ultrafilter E over κ with infinitely many predecessors in the Rudin-Frolik ordering. Let $\langle E_n \mid n < \omega \rangle$ be a Rudin-Frolik increasing sequence of predecessors of E. Recall that by M.E. Rudin (see [4], 5.5) the predecessors of E are linearly ordered by \leq_{R-F} and also, \leq_{R-F} is well founded on κ–complete ultrafilters.

Consider $i := i_E \upharpoonright \mathcal{K}$. Then, by [5], it is an iterated ultrapower of \mathcal{K} by its measures. The critical point of i_E is κ, hence $U(\kappa, 0)$ is applied first. Note that $U(\kappa, 0)$ (and its images) can be applied only finitely many times, since \mathcal{M} is closed under countable (and even κ) sequences of its elements. Denote by k^* the number of such applications.

Let $n \leq \omega$. Similar, consider $i_n := i_{E_n} \upharpoonright \mathcal{K}$. Again, the critical point of i_{E_n} is κ, hence $U(\kappa, 0)$ is applied first. The number of applications of $U(\kappa, 0)$ (and its images) is finite. Denote by k_n the number of such applications.

Now let $n < m < \omega$. We have $E_n <_{R-F} E_m$. Hence, there is a discrete sequence $\langle E_{n\alpha} \mid \alpha < \kappa \rangle$ of ultrafilters over κ such that

$$E_m = E_n - \lim \langle E_{n\alpha} \mid \alpha < \kappa \rangle.$$

Then the ultrapower M_{E_m} of V by E_m is $\text{Ult}(M_{E_n}, E'_{nm}[id]_{E_n})$, where $E'_{nm}[id]_{E_n} = i_{E_n}(\langle E_{n\alpha} \mid \alpha < \kappa \rangle)([id]_{E_n})$ is an ultrafilter over $i_{E_n}(\kappa)$.

Now, in $i_n(\mathcal{K})$, the only normal ultrafilter over $i_{E_n}(\kappa) = i_n(\kappa)$ is $i_n(U(\kappa, 0))$. But this means that i_{E_m} is obtained by more applications of $U(\kappa, 0)$ than i_{E_n}, i.e. $k_n < k_m$.

Similar, $k^* > k_n$, for every $n < \omega$. This means, in particular, that $k^* \geq \omega$, which is impossible. Contradiction.

□

Remark 2.6 Note that the situation with Rudin-Keisler order is different in this respect. Thus, by [3], starting with a measurable κ with $\{o(\alpha) \mid \alpha < \kappa\}$ unbounded in it, it is possible to construct a model with an increasing Rudin-Keisler sequence of the length κ^+.

A similar arguments can be used to produce long increasing Rudin-Frolik sequences.

Let us show how to get a sequence of the length $\kappa + 1^2$.

Assume GCH. Let

$$\bar{U} = \langle U(\alpha, \beta) \mid (\alpha, \beta) \in \text{dom}(\bar{U}), \alpha \leq \kappa, \beta < o(\alpha) \rangle.$$

\footnote{Theorem 5.10 of [4] states that this is impossible, however we think that there is a problem in the argument. Namely, on page 346, line 7 - sets depend on β's; this effects the further definition of a function f (line 16). Its unclear how to insure $f(\xi) > f(\xi')$ for most ξ's, and, so f may be constant mod D_0.}
be a coherent sequence such that $o^U(\kappa) = \kappa + 1$ and for every $\alpha < \kappa$, $o^U(\alpha) \leq \kappa$. Let

$$A = \{ \alpha \mid \exists \beta(\alpha, \beta) \in \text{dom}(U) \}.$$

Then for every $\alpha \in A$, $o^U(\alpha) \leq \kappa$.

We force with Easton support iteration of the Prikry type forcings with extensions of $\langle U(\alpha, \beta) \mid \beta < o^U(\alpha) \rangle$’s, $\alpha \in A$, as in [1]. Let G be a generic. Then, for every $\alpha \in A$ with $o^U(\alpha) = 1$ or being a regular uncountable cardinal, Prikry sequence or Magidor sequence of order type $o^U(\alpha)$ is added by G (more sequences are added, see [1] for detailed descriptions, but be do not need them here). Denote such sequences by b_α.

Let $\bar{U}(\kappa, 0)$ be the canonical extension of $U(\kappa, 0)$ to a normal ultrafilter in $V[G]$ defined as in [2].

Denote by A' the subset of A which consists of α’s with $o^U(\alpha) = 1$ or being a regular uncountable cardinal.

For every $\delta, \alpha \in A' \cup \{ \kappa \}$, $\delta < \alpha$ we will use an extensions $U(\kappa, \alpha, \langle \rangle)$ and $U(\kappa, \alpha, \langle \delta \rangle)$ of $U(\kappa, \alpha)$. They were defined in [1] as follows:

$$X \in U(\kappa, \alpha, \langle \rangle) \iff \text{for some } r \in G, \gamma < \kappa^+ \text{ and a tree } T, \text{ in } M_{U(\kappa, \alpha)} \text{ the following holds:}$$

$$r \cup \{ \langle \langle \rangle, T \rangle \} \cup p_\gamma \models \kappa \in i_{U(\kappa, \alpha)}(X),$$

where p_γ is the γ–th element of the canonical master sequence.

$$X \in U(\kappa, \alpha, \langle \delta \rangle) \iff \text{for some } r \in G, \gamma < \kappa^+ \text{ and a tree } T, \text{ in } M_{U(\kappa, \alpha)} \text{ the following holds:}$$

$$r \cup \{ \langle \langle \delta \rangle, T \rangle \} \cup p_\gamma \models \kappa \in i_{U(\kappa, \alpha)}(X),$$

where p_γ is the γ–th element of the canonical master sequence.

Denote further $U(\kappa, \alpha, \langle \rangle)$ by $\bar{U}(\kappa, \alpha)$.

Notice that $U(\kappa, \alpha, \langle \delta \rangle)$ concentrates on ν’s with $o^U(\nu) = \alpha$, $\delta \in b_\nu$ and $b_\nu \cap \delta = b_\delta$.

We have now the following analog of 2.1:

Lemma 2.7 For every $\alpha \in A'$, $\bar{U}(\kappa, \kappa) = \bar{U}(\kappa, \alpha) - \lim \langle U(\kappa, \kappa, \langle \nu \rangle) \mid o^U(\nu) = \alpha \rangle$.

Proof. $X \in \bar{U}(\kappa, \kappa)$ iff for some $r \in G, \gamma < \kappa^+, T$, in $M_{U(\kappa, \kappa)}$ the following holds:

$$r \cup \{ \langle \langle \nu \rangle, T(\nu) \} \cup p_\gamma \models \kappa \in i_{U(\kappa, \kappa)}(X).$$

Recall that T is a tree consisting of coherent sequences, as defined in [1], and $\text{Suc}_T(\langle \rangle) \in \bar{U}(\kappa, \alpha)$. Then, for every $\nu \in \text{Suc}_T(\langle \rangle)$ with $o^U(\nu) = \alpha$, we will have

$$r \cup \{ \langle \langle \nu \rangle, T(\nu) \} \cup p_\gamma \models \kappa \in i_{U(\kappa, \kappa)}(X).$$
So, \(X \in U(\kappa, \kappa, \langle \nu \rangle) \). But this holds for \(\dot{U}(\kappa, \alpha) \)–measure one many \(\nu \)'s, hence \(X \in \dot{U}(\kappa, \alpha) \)–\lim \langle U(\kappa, \kappa, \langle \nu \rangle) | o^\dot{U}(\nu) = \alpha \rangle.

Hence we showed that \(\dot{U}(\kappa, \kappa) \subseteq \dot{U}(\kappa, \alpha) \)–\lim \langle U(\kappa, \kappa, \langle \nu \rangle) | o^\dot{U}(\nu) = \alpha \rangle \). But this already implies the equality, since both \(\dot{U}(\kappa, \kappa) \) and \(\dot{U}(\kappa, \alpha) \)–\lim \langle U(\kappa, \kappa, \langle \nu \rangle) | o^\dot{U}(\nu) = \alpha \rangle \) are ultrafilters.

□

The same argument shows the following:

Lemma 2.8 For every \(\gamma, \alpha \in A', \alpha < \gamma \), \(\dot{U}(\kappa, \gamma) = \dot{U}(\kappa, \alpha) \)–\lim \langle U(\kappa, \gamma, \langle \nu \rangle) | o^\dot{U}(\nu) = \alpha \rangle.

Lemma 2.9 The family \(\langle U(\kappa, \gamma, \langle \nu \rangle) | o^\dot{U}(\nu) = \alpha \rangle \) is a discrete family of ultrafilters, for every \(\gamma, \alpha \in A' \cup \{ \kappa \}, \alpha < \gamma \).

Proof. Fix \(\gamma, \alpha \in A' \cup \{ \kappa \}, \alpha < \gamma \). For each \(\nu \) with \(o^\dot{U}(\nu) = \alpha \) set

\[
A_\nu := \{ \xi \in A' | o^\dot{U}(\xi) = \gamma, \nu \in b_\gamma \text{ and } b_\gamma \cap \nu = b_\nu \}.
\]

Let \(\nu, \nu' \in A' \) be two different elements with \(o^\dot{U}(\nu) = o^\dot{U}(\nu') = \alpha \), then, clearly, \(A_\nu \cap A_{\nu'} = \emptyset \).

□

So, again as above, we obtain the following:

Theorem 2.10 \(\dot{U}(\kappa, \kappa) \) has \(\kappa \)–many predecessors in the Rudin-Frolik ordering.

Proof. By Lemmas 2.7, 2.8, the sequence \(\langle \dot{U}(\kappa, \gamma) | \gamma \in A' \cup \{ \kappa \} \rangle \) is R-F-increasing.

□

It follows now that:

Corollary 2.11 The consistency strength of existence of a \(\kappa \)–complete ultrafilter over \(\kappa \) with \(\kappa \)–many predecessors in the Rudin-Frolik ordering is at least \(\{ o(\alpha) | \alpha < \kappa \} \) is unbounded in \(\kappa \) and at most \(o(\kappa) = \kappa + 1 \).

3 Discrete families of ultrafilters.

Aki Kanamori asked in [4] the following natural question (Question 5.12):

If \(\{ U_\tau | \tau < \kappa \} \) is a family of distinct \(\kappa \)–complete ultrafilters over \(\kappa \) and \(E \) is any \(\kappa \)–complete ultrafilter over \(\kappa \), is there an \(X \in E \) so that \(\{ U_\tau | \tau \in X \} \) is a discrete family?

We will give a negative answer to this question below.
Let us use the previous construction. We preserve all the notation made there.

Consider the family
\[\{ U(\kappa, \kappa, \langle \delta \rangle) \mid \delta \in A', \delta < \kappa \}. \]

Lemma 3.1 The family \(\{ U(\kappa, \kappa, \langle \delta \rangle) \mid \delta \in A', \delta < \kappa \} \) consists of different ultrafilters.

Proof. Let \(U(\kappa, \kappa, \langle \delta \rangle), U(\kappa, \kappa, \langle \delta' \rangle) \) be two different members of the family. If \(o^U(\delta) = o^U(\delta') \), then they are different by Lemma 2.9. Suppose that \(o^U(\delta) < o^U(\delta') \). Then the set
\[\{ \nu < \kappa \mid o^U(\nu) = \nu, \delta \in b_\nu, b_\nu \cap \delta = b_\delta \text{ and } \delta' \notin b_\nu \} \in U(\kappa, \kappa, \langle \delta \rangle) \setminus U(\kappa, \kappa, \langle \delta' \rangle). \]

So we are done.

\(\square \)

Pick now a \(\kappa \)-complete (non-principal) ultrafilter \(D \) such that the set
\[Z := \{ \alpha < \kappa \mid \alpha \text{ is a regular uncountable cardinal } \} \in D. \]

Define now a \(\kappa \)-complete ultrafilter \(E \) over \([\kappa]^2\) as follows:
\[X \in E \text{ iff } \{ \alpha \in Z \mid \{ \delta < \kappa \mid (\alpha, \delta) \in X \} \in U(\kappa, \alpha, \langle \rangle) \} \in D. \]

I.e. \(E = D - \lim_{\alpha} U(\kappa, \alpha, \langle \rangle) \). We can assume that if \((\alpha, \delta) \in X \), for a set \(X \in E \), then \(o^U(\delta) = \alpha \), since \(U(\kappa, \alpha) \) concentrates on such \(\delta \)'s.

Now, for every pair \((\alpha, \delta) \) with \(o^U(\delta) = \alpha \), define \(U_{(\alpha, \delta)} = U(\kappa, \kappa, \langle \delta \rangle) \).

Lemma 3.2 For every \(X \in E \), the family \(\{ U_\tau \mid \tau \in X \} \) is not discrete.

Proof. Let \(X \in E \). Suppose that there is a separating sequence \(\langle Y_{(\alpha, \delta)} \mid (\alpha, \delta) \in X \rangle \) for \(\langle U_{(\alpha, \delta)} \mid (\alpha, \delta) \in X \rangle \). Pick some \(\alpha, \alpha' \in \text{dom}(X), \alpha < \alpha' \). Let
\[A_\alpha = \{ \delta < \kappa \mid (\alpha, \delta) \in X \} \]
and
\[A_{\alpha'} = \{ \delta < \kappa \mid (\alpha', \delta) \in X \}. \]

Then \(A_\alpha \in U(\kappa, \alpha, \langle \rangle) \) and \(A_{\alpha'} \in U(\kappa, \alpha', \langle \rangle) \). By shrinking \(X \) if necessary, assume that \(\delta \in A_\alpha \) implies \(o^U(\delta) = \alpha \) and \(\delta' \in A_{\alpha'} \) implies \(o^U(\delta') = \alpha' \).

Consider the following set
\[B = \{ \nu < \kappa \mid o^U(\nu) = \nu \text{ and (there are } \delta \in A_\alpha, \delta' \in A_{\alpha'} \text{ such that } \delta < \delta' \text{ and } \delta, \delta' \in b_\nu) \}. \]
Then \(B \in U(\kappa, \kappa, \varnothing)\). Just take the witnessing tree \(T_B\) (as in the definition of \(U(\kappa, \kappa, \varnothing)\)) with the first level
\[
A_\alpha \cup A_{\alpha'} \cup (\kappa \setminus (A_\alpha \cup A_{\alpha'})).
\]
Then for every \(\delta \in A_\alpha, B \in U(\kappa, \kappa, \{\delta\})\). So, \(B' := B \cap Y_{(\alpha, \delta)}\) is a subset of \(B\) in \(U(\kappa, \kappa, \{\delta\})\). But then an extension of \(T_B\) will witness this. In particular there will be \(\delta' \in A_{\alpha'}\) such that \(B' \in U(\kappa, \kappa, \{\delta'\})\). This implies that both \(Y_{(\alpha, \delta)}\) and \(Y_{(\alpha', \delta')}\) are in \(U(\kappa, \kappa, \{\delta'\}) = U_{(\alpha, \delta')}.\)
Hence, \(Y_{(\alpha, \delta)} \cap Y_{(\alpha', \delta')} \neq \emptyset\). Contradiction.
\[\square\]

Now combining Lemmas 3.1, 3.2 we obtain the following:

Theorem 3.3 In \(V[G]\) there are a family \(\{U_\tau \mid \tau < \kappa\}\) of distinct \(\kappa\)-complete ultrafilters over \(\kappa\) and a \(\kappa\)-complete ultrafilter \(E\) over \(\kappa\), so that \(\{U_\tau \mid \tau \in X\}\) is a not discrete family for any \(X \in E\).

Corollary 3.4 The consistency strength of existence a family \(\{U_\tau \mid \tau < \kappa\}\) of distinct \(\kappa\)-complete ultrafilters over \(\kappa\) and a \(\kappa\)-complete ultrafilter \(E\) over \(\kappa\), so that \(\{U_\tau \mid \tau \in X\}\) is a not discrete family for any \(X \in E\), is at most \(o(\kappa) = \kappa + 1\).

Let us argue now that that \(\{o(\alpha) \mid \alpha < \kappa\}\) is unbounded in \(\kappa\) is necessary for this.

Theorem 3.5 Suppose that there are a family \(\{U_\tau \mid \tau < \kappa\}\) of distinct \(\kappa\)-complete ultrafilters over \(\kappa\) and a \(\kappa\)-complete ultrafilter \(E\) over \(\kappa\), so that \(\{U_\tau \mid \tau \in X\}\) is not a discrete family for any \(X \in E\). Then \(\{o(\alpha) \mid \alpha < \kappa\}\) is unbounded in \(\kappa\) in the Mitchell core model.

Proof. Suppose that for some large enough \(\eta < \kappa\), there is no \(\alpha \leq \kappa\) with \(o(\alpha) \geq \eta\) in the Mitchell core model \(\mathcal{K}\).

Let \(\{U_\tau \mid \tau < \kappa\}\) be a family of distinct \(\kappa\)-complete ultrafilters over \(\kappa\) and \(E\) be a \(\kappa\)-complete ultrafilter over \(\kappa\).

For every \(\tau < \kappa\), let \(j_\tau\) be \(i_{U_\tau} \restriction \mathcal{K}\). Then, by [5], \(j_\tau\) is an iterated ultrapower of \(\mathcal{K}\). By [3], the are less than \(\kappa\) possibilities for \(j_\tau(\kappa)\). By \(\kappa\)-completeness of \(E\), we can assume that for every \(\tau < \kappa\), \(j_\tau(\kappa)\) has a fixed value \(\theta\). Denote by \(Gen_\tau\) the set of generators of \(j_\tau\), i.e. the set of ordinals \(\nu, \kappa \leq \nu < \theta\) such that for every \(n < \omega, f : [\kappa]^n \to \kappa, f \in \mathcal{K}\) and \(a \in [\nu]^n, \nu \neq j_\tau(f)(a)\).
Let \(\text{Gen}_\tau^*\) be the subset of \(\text{Gen}_\tau\) consisting of all principal generators of \(j_\tau\), i.e. of all \(\nu \in \text{Gen}_\tau\) such that for every \(n < \omega, f : [\kappa]^n \to \kappa, f \in \mathcal{K}\) and \(a \in [\nu]^n, \nu > j_\tau(f)(a)\). Again by [3], there are less than \(\kappa\) possibilities for \(\text{Gen}_\tau^*\)'s. So, by \(\kappa\)-completeness of \(E\), we can assume that for every \(\tau < \kappa\), \(\text{Gen}_\tau^* = \text{Gen}^*\).
Suppose that \(\nu \in \text{Gen}_\tau \) and \(\nu \) is not a principal generator. Then there are finite set of generators \(b \subseteq \nu \) and \(f : [\kappa]^{[b]} \to \kappa, f \in \mathcal{K} \) such that \(\nu < j_\tau(f)(b) \).

Set, following W. Mitchell [6],
\[
\alpha(\nu) = \min \{ j_\tau(f)(b) \mid b \subseteq \nu \text{ is a finite set of generators, } f : [\kappa]^{[b]} \to \kappa, f \in \mathcal{K} \text{ and } \nu < j_\tau(f)(b) \}.
\]

Let \(b_\nu \subseteq \nu \) be the smallest finite set of generators such that for some \(f : [\kappa]^{[b_\nu]} \to \kappa, f \in \mathcal{K}, \alpha(\nu) = j_\tau(f)(b_\nu). \)

Let us call a finite set of generators \(a \subseteq \text{Gen}_\tau \) nice iff for each \(\nu \in a \) either \(\nu \) is a principal generator or it is not and then \(b_\nu \subseteq a \).

Consider now \([id]_{U_\tau} \). Find the smallest finite nice set of generators \(a_\tau \) in \(\text{Gen}_\tau \) such that for some \(h_\tau : [\kappa]^{[a_\tau]} \to \kappa, h_\tau \in \mathcal{K} \) we have \([id]_{U_\tau} = j_\tau(h_\tau)(a_\tau) \). We may assume, using \(\kappa \)-completeness of \(E \), that \(a_\tau \cap \text{Gen}^* \) has a constant value. Denote it by \(a^* \).

We would like to stabilize much of the things involved here, using \(\kappa \)-completeness of \(E \). In order to state this precise, let us deal with substructures of \(H_\chi \) for some large enough cardinal \(\chi \).

For every \(\tau < \kappa \) pick \(\mathcal{A}_\tau \preceq H_\chi \) of cardinality \(\eta \) which includes \(\{ \tau, U_\tau, a^* \} \cup \eta + 1 \).

The number of non-isomorphic structures among \(\mathcal{A}_\tau \) is less than \(\kappa \).

Now, using \(\kappa \)-completeness of \(E \), we can find \(X \in E \) such that for every \(\tau, \tau' \in X, \mathcal{A}_\tau \) and \(\mathcal{A}_{\tau'} \) are isomorphic.

Assume for simplicity that \(X = \kappa \).

Let \(\tau < \kappa \). Then \(j_\tau \) can be decomposed into a composition of two embeddings \(j^* : \mathcal{K} \to \mathcal{K}^* \) followed by \(k_\tau : \mathcal{K}^* \to (\mathcal{K})^{M_{U_\tau}}, \) where \(j^* \) is generated by the principal generators \(\text{Gen}^* \), and so, it is an iterated ultrapower which critical points are \(\kappa \) and its images, and \(k_\tau \) is the rest of the iteration generated by the non-principal generators \(\text{Gen}_\tau \setminus \text{Gen}^* \).

In order to construct a separating family, we will not use all of \(j_\tau = k_\tau \circ j^* \), but rather their finite part which \(a_\tau \) generates. Let \(j'_{\tau}, j'_*, k'_\tau \) be this parts, i.e., \(j' \) is generated by \(a^*, k'_\tau \) by \(a_\tau \setminus a^* \) and \(j'_* = k'_\tau \circ j' \).

Note that every embedding \(j'_\tau, j'_*, k'_\tau \) is in \(\mathcal{K} \), since it is finite.

Pick embeddings \(\sigma_\tau, \sigma' \) such that \(j_\tau = \sigma_\tau \circ j'_\tau, j^* = \sigma' \circ j' \).

Denote by \(a'_\tau \) and \(a^* \) the corresponding pre-images of \(a_\tau \) and \(a^* \).

Define in \(\mathcal{K} \) an ultrafilter over \(\kappa \):
\[
\mathcal{V}_\tau = \{ X \subseteq \kappa \mid j'_{\tau}(h_\tau)(a'_\tau) \in j'_\tau(X) \}.
\]
Then, clearly, $\mathcal{V}_\tau \subseteq U_\tau$.

Let $\pi_\tau : \kappa \to \kappa$, $\pi_\tau \in K$ be a projection of \mathcal{V}_τ to the normal ultrafilter Rudin–Keisler below \mathcal{V}_τ.

The next lemma is likely well known:

Lemma 3.6 Let $\langle E_\alpha \mid \alpha < \kappa \rangle$ be a family of pairwise different κ–complete ultrafilters over κ which have the same projection to their least normal measures. Then the family is discrete.

Proof. Denote by π this common projection.

Let $\alpha < \kappa$. For every $\beta < \kappa$, $\beta \neq \alpha$, pick $A_\alpha^\beta \in E_\alpha \setminus E_\beta$. Let

$$B_\alpha = \{ \nu < \kappa \mid \pi(\nu) > \alpha \}.$$

Then $B_\alpha \in E_\alpha$, since π_*, E_α is not principal ultrafilter. Set

$$A_\alpha = \Delta_{\beta < \kappa, \beta \neq \alpha} A_\alpha^\beta = \{ \nu < \kappa \mid \forall \beta < \pi(\nu) (\beta \neq \alpha \to \nu \in A_\alpha^\beta) \}.$$

Then $A_\alpha \in E_\alpha$. Let

$$A_\alpha^* = A_\alpha \cap B_\alpha \cap \bigcap_{\beta < \alpha} (\kappa \setminus A_\alpha^\beta).$$

Clearly, $A_\alpha^* \in E_\alpha$.

Let us argue that the sets $\langle A_\alpha^* \mid \alpha < \kappa \rangle$ are pairwise disjoint. So, let $\alpha < \alpha' < \kappa$. Suppose that $\nu \in A_\alpha^* \cap A_{\alpha'}^*$. Then $\nu \in B_{\alpha'}$, and hence, $\pi(\nu) > \alpha' > \alpha$. But then, $\nu \in A_\alpha$ implies that $\nu \in A_{\alpha'}^*$, which is impossible since $\nu \in A_{\alpha'}^* \subseteq \kappa \setminus A_\alpha^\alpha$.

□

Lemma 3.7 Let $Z \subseteq \kappa$ be such that for every $\tau, \tau' \in Z$, $\pi_\tau = \pi_{\tau'}$. Then the family $\langle \mathcal{V}_\tau \mid \tau \in Z \rangle$, and hence also $\langle U_\tau \mid \tau \in Z \rangle$, is discrete.

Proof. Note that \mathcal{V}_τ’s are ultrafilters only inside K and Z is not required to be in K.

However, our initial assumption allows to use the Mitchell Covering Lemma [6] in order to find $Z^* \subseteq Z$, $Z^* \in K$, $|Z^*| \leq \kappa$ and a sequence in K of κ–complete ultrafilters $\langle \mathcal{V}_\tau \mid \tau \in Z^* \rangle$ which agrees with the original on τ’s in Z and has the same projections to the normal measure.

Now we can work in K and to apply Lemma 3.6 to the sequence $\langle \mathcal{V}_\tau \mid \tau \in Z^* \rangle$.

□

The following is a particular case of the previous lemma:
Lemma 3.8 Let $\mathcal{Z} \subseteq \kappa$ be such that for every $\tau, \tau' \in \mathcal{Z}$, $a'_\tau = a'_\tau$. Then the family $\langle \mathcal{V}_\tau \mid \tau \in \mathcal{Z} \rangle$, and hence, also $\langle U_\tau \mid \tau \in \mathcal{Z} \rangle$, is a discrete family.

Note that in general (by forcing over \mathcal{K}), it is possible to have many ultrafilters U_τ with the same j_τ, and so with the same \mathcal{V}_τ. For example, forcing a Cohen subset to κ (with appropriate preparation below) will give a situation where a ground model embedding extends in different ways.

We would like to argue that $\langle \mathcal{V}_\tau \mid \tau < \kappa \rangle$ is a discrete family, i.e., can be separated. It follows then that $\langle U_\tau \mid \tau < \kappa \rangle$ is a discrete family as well, since $\mathcal{V}_\tau \subseteq U_\tau$, for every $\tau < \kappa$.

Without loss of generality, we can assume that $\langle \mathcal{V}_\tau \mid \tau < \kappa \rangle$ is in \mathcal{K}. Just otherwise use the Mitchell Covering Lemma [6] and cover this family by a family in \mathcal{K} of the same cardinality κ.

Work in \mathcal{K}. We separate $\langle \mathcal{V}_\tau \mid \tau < \kappa \rangle$ there.

Suppose first that $a' = \{\kappa\}$.

Then j' is just the ultrapower embedding of \mathcal{K} into $\mathcal{K}_1 = j'(\mathcal{K})$ by a normal measure \mathcal{F} over κ in \mathcal{K}.

Let $\tau < \kappa$. Then k'_τ is an ultrapower embedding of \mathcal{K}_1 by the ultrafilter generated by $a'_\tau \setminus \{\kappa\}$.

Let δ_τ be the least δ such that $k'_\tau(\delta) > \max(a'_\tau)$.

For example, if $\alpha(\max(a'_\tau))$ depend only on κ, then $\delta_\tau = \alpha(\max(a'_\tau))$.

Define in \mathcal{K}_1 a $\min(a_\tau \setminus \{\kappa\})$-complete ultrafilter W_τ over $[\delta_\tau]^{|a'_\tau|} - 1$:

$$X \in W_\tau \text{ iff } a_\tau \setminus \{\kappa\} \in k'_\tau(X).$$

W_τ is a uniform ultrafilter, i.e., every $X \in W_\tau$ has cardinality δ_τ. Note that δ_τ can be a singular cardinal.

Consider in \mathcal{K}_1 a function h'_τ on $[\delta_\tau]^{|a'_\tau|} - 1$ defined as follows:

$$h'_\tau(\nu_1, ..., \nu_{|a'_\tau|} - 1) = j'(h_\tau)(\kappa, \nu_1, ..., \nu_{|a'_\tau|} - 1).$$

Then $k'_\tau(h'_\tau)(a_\tau \setminus \{\kappa\}) = j'_\tau(h_\tau)(a'_\tau)$.

Consider $h'_\tau * W_\tau$.

Due to the minimality of a_τ, the ultrafilter $h'_\tau * W_\tau$ is Rudin-Keisler equivalent to W_τ.

Let us shrink it a bit. Proceed as follows.

Let $\tau < \kappa$. Set $\mu_\tau = j'_\tau(h_\tau)(a'_\tau)$.

Let $\alpha_\tau = \min(\alpha \mid k'_\tau(\alpha) > \mu_\tau)$.

Set in \mathcal{K}_1,

$$W_\tau = \{X \subseteq \alpha_\tau \mid \mu_\tau \in k'_\tau(X)\}.$$
Clearly, \mathcal{W}_τ is a min$(a_\tau \setminus \{\kappa\})$—complete ultrafilter (in \mathcal{K}_1). Also, by minimality of α_τ, every co-bounded subset of α_τ is in \mathcal{W}_τ. In particular, $\text{cof}(\alpha_\tau) > \kappa$.

Suppose now that for every $\tau_0, \tau_1 < \kappa$, if $\tau_0 \neq \tau_1$, then $\alpha_{\tau_0} \neq \alpha_{\tau_1}$.

Set $\beta_\tau = \sup\{\alpha_\rho \mid \rho < \kappa \text{ and } \alpha_\rho < \alpha_\tau\} + \kappa$. Then $\beta_\tau < \alpha_\tau$, and so, $\alpha_\tau \setminus \beta_\tau \in \mathcal{W}_\tau$.

Then the family $\langle \alpha_\tau \setminus \beta_\tau \mid \tau < \kappa \rangle$ separates $\langle \mathcal{W}_\tau \mid \tau < \kappa \rangle$.

Let us move this below κ.

Just pick one to one functions $s_\tau, r_\tau : \kappa \to \kappa, \tau < \kappa$ such that

1. $j'(s_\tau)(\kappa) = \alpha_\tau$,
2. $j'(r_\tau)(\kappa) = \beta_\tau$,
3. for every $\nu < \kappa$, $\nu < r_\tau(\nu) < s_\tau(\nu)$.

Let

$$C = \{\nu < \kappa \mid \forall \rho < \nu \forall \tau < \nu (s_\tau(\rho) < \nu)\}.$$

Clearly, it is a club in κ.

Consider

$$Z = \{\nu < \kappa \mid \forall \tau, \xi < \nu (\text{if } \xi \neq \tau \text{ then } (\alpha_\xi < \alpha_\tau \rightarrow s_\xi(\nu) < r_\tau(\nu))) \text{ and } (\alpha_\xi > \alpha_\tau \rightarrow s_\tau(\nu) < r_\xi(\nu))\}.$$

Clearly, Z and C are in \mathcal{F}.

For every $\tau < \kappa$, let

$$A_\tau = \bigcup\{[r_\tau(\nu), s_\tau(\nu)) \mid \nu \in Z \cap C \setminus \tau + 1\}.$$

Note that if $\tau, \rho < \kappa$ and $\tau \neq \rho$, then $A_\tau \cap A_\rho = \emptyset$. Thus, say $\rho < \tau$ and $\zeta \in A_\tau \cap A_\rho$, then there are $\nu_\tau > \tau, \nu_\rho > \rho$ such that $\zeta \in [r_\tau(\nu_\tau), s_\tau(\nu_\tau))$ and $\zeta \in [r_\tau(\nu_\rho), s_\tau(\nu_\rho))$. But this intervals should be disjoint, since $\nu_\rho, \nu_\tau \in Z \cap C$, and so, $r_\tau(\nu_\tau) > \nu_\tau > s_\rho(\nu_\rho)$.

Now, for every $\tau < \kappa$,

$$j'(A_\tau) \supseteq [j'(r_\tau)(\kappa), j'(s_\tau)(\kappa)) = [\beta_\tau, \alpha_\tau) \in \mathcal{W}_\tau.$$

So, applying k'_τ,

$$[id]_{\mathcal{V}_\tau} = j'_\tau(h_\tau)(a'_\tau) \in j'_\tau(A_\tau).$$

Hence, $A_\tau \in \mathcal{V}_\tau$, and we are done.

Note that such defined A_τ’s depend on α_τ’s, rather then on \mathcal{W}_τ’s.
Next stage will be to deal with ultrafilters having same α_τ.

We will split their common set of measure one A_τ, and hence, the split from the rest of ultrafilters will remain.

So fix some α^* and consider a set

$$Z(\alpha^*) = \{ \tau < \kappa \mid \alpha_\tau = \alpha^* \}.$$

Let $\tau, \tau' \in Z(\alpha^*)$. Both W_τ and $W_{\tau'}$ are obtained in the same fashion. If $a'_\tau \setminus a'$ (and so $a'_{\tau'} \setminus a'$) consists of a single element, then $\alpha_\tau = \alpha_{\tau'}$ will imply $W_\tau = W_{\tau'}$ and $\nu_\tau = \nu_{\tau'}$.

Hence, $a'_\tau \setminus a'$ (and so $a'_{\tau'} \setminus a'$) consists of at least two elements. Then W_τ (and so $W_{\tau'}$) is either a product of the projection of W_τ to the first coordinate with the rest or a sum (see Definition 1.2(ii)) according to the projection of W_τ to the first coordinate with the rest.

The treatment of both cases is similar. Let us deal with the later possibility.

Denote by W^0_τ the projection of W_τ to the first coordinate. It is a normal ultrafilter over $\alpha(\min(a'_\tau \setminus a'))$. For every $\zeta < \alpha(\min(a'_\tau \setminus a'))$, there will be an ultrafilter $W_{\tau\zeta}$ such that

$$X \in W_\tau \text{ iff } \{ \zeta \mid \{ \bar{\rho} \mid \zeta \bar{\rho} \in X \} \in W_{\tau\zeta} \} \in W^0_\tau.$$

Assume for simplicity that each $W_{\tau\zeta}$ is just a normal ultrafilter over some $\chi(\tau, \zeta)$.

The sequence $(\chi(\tau, \zeta) \mid \zeta < \alpha(\min(a'_\tau \setminus a')))$ is increasing mod W^0_τ. Otherwise, using normality of W^0_τ, we can stabilize it and the sum will be replaced by a product.

Assume, by shrinking if necessary, that the sequence $(\chi(\tau, \zeta) \mid \zeta < \alpha(\min(a'_\tau \setminus a')))$ is increasing. Set $\chi(\tau) = \bigcup_{\zeta < \alpha(\min(a'_\tau \setminus a'))} \chi(\tau, \zeta)$. Then $\chi(\tau)$ is a cardinal of cofinality $\alpha(\min(a'_\tau \setminus a'))$. So, W_τ concentrates on a set of cardinality $\chi(\tau)$ with cofinality $\alpha(\min(a'_\tau \setminus a'))$.

Claim. $\text{cof}(\alpha_\tau) = \alpha(\min(a'_\tau \setminus a'))$.

Proof. Set $\varepsilon = \text{cof}(\alpha_\tau)$. Fix $(\alpha_\tau(\gamma) \mid \gamma < \varepsilon)$ a witnessing cofinal sequence in α_τ.

Suppose that $\varepsilon \neq \alpha(\min(a'_\tau \setminus a'))$.

Case 1. $\varepsilon < \alpha(\min(a'_\tau \setminus a'))$.

Then the ultrapower embedding $j_{W^0_\tau}$ of W^0_τ moves the sequence $(\alpha_\tau(\gamma) \mid \gamma < \varepsilon)$ to a sequence $(j_{W^0_\tau}(\alpha_\tau(\gamma)) \mid \gamma < \varepsilon)$ of the same length.

Then the further ultrapower by $W'_{\tau\alpha(\min(a'_\tau \setminus a'))}$ is taken, where $W'_{\tau\alpha(\min(a'_\tau \setminus a'))}$ denotes the $\alpha(\min(a'_\tau \setminus a'))$-th member of the sequence $j_{W^0_\tau}((W_{\tau\zeta} \mid \zeta < \alpha(\min(a'_\tau \setminus a'))))$.

The critical point of such embedding is much above ε, so the sequence $(j_{W^0_\tau}(\alpha_\tau(\gamma)) \mid \gamma < \varepsilon)$ is moved to $(j_{W'_{\tau\alpha(\min(a'_\tau \setminus a'))}}(j_{W^0_\tau}(\alpha_\tau(\gamma)))) \mid \gamma < \varepsilon)$. Now recall that $j_{W'_{\tau\alpha(\min(a'_\tau \setminus a'))}} \circ j_{W^0_\tau}$ is just k_ε' and $\alpha_\tau = \min(\alpha \mid k_\varepsilon'(\alpha) > \mu_\tau)$,
where $\mu_\tau = j_\tau^*(h_\tau)(a'_\tau)$.

This is impossible since $k'_\tau(\alpha_\tau) = \bigcup_{\gamma < \epsilon} k'_\tau(\alpha_\tau(\gamma))$.

Case 2. $\epsilon > \alpha(\min(a'_\tau \setminus a'))$.

Then $j_{W^0}^\prime \epsilon$ is unbounded in $j_{W^0}(\epsilon)$, and so, the sequence $\langle j_{W^0}(\alpha_\tau(\gamma)) \mid \gamma < \epsilon \rangle$ is unbounded in $j_{W^0}(\alpha_\tau)$.

Now turn to the further ultrapower by $W^\prime_{\alpha(\min(a'_\tau \setminus a'))}$.

Clearly, still $j_{W^\prime_{\alpha(\min(a'_\tau \setminus a'))}}^\prime (j_{W^0}(\epsilon))$ is unbounded in $j_{W^\prime_{\alpha(\min(a'_\tau \setminus a'))}}(j_{W^0}(\epsilon))$.

Hence, again, $k'_\tau(\alpha_\tau) = \bigcup_{\gamma < \epsilon} k'_\tau(\alpha_\tau(\gamma))$. Contradiction.

\square of the claim.

Hence, $\text{cof}(\alpha_\tau) = \alpha(\min(a'_\tau \setminus a'))$.

Now, in order to have $\alpha_\tau = \alpha_{\cdot \tau}$ in this situation, we must have $\alpha(\min(a'_\tau \setminus a')) = \alpha(\min(a'_\tau \setminus a'))$.

Then the choice of the structures $A_{\cdot \tau}, A_{\cdot \tau}$ above implies that $W^0_\tau = W^0_\tau$, and so, $\min(a'_\tau \setminus a') = \min(a'_\tau \setminus a')$.

We continue the iteration j' by taking ultrapower with W^0_τ and then proceed as before, but with less generators.

Suppose now that a' contains more elements than just κ.

Suppose for simplicity that $a' = \{\kappa, \kappa_1\}$. The general case treated similar only the notations are more complicated.

Then j' is the iterated ultrapower using two normal measures over κ, or just the ultrapower embedding by their product.

Denote the first normal ultrafilter used by \mathcal{F} and the second by \mathcal{F}_1.

Let $j : \mathcal{K} \rightarrow \mathcal{K}_1 \simeq \text{Ult}(\mathcal{K}, \mathcal{F})$ and $j_1 : \mathcal{K}_1 \rightarrow \mathcal{K}_2 \simeq \text{Ult}(\mathcal{K}_1, j(\mathcal{F}_1))$.

The idea will be to apply the previous argument inside \mathcal{K}_1 and then to move down to \mathcal{K}.

We preserve the notation of the previous case with obvious adoptions to \mathcal{K}_1.

So, we will have disjoint unions of intervals $\langle A^1_\tau \mid \tau < \kappa \rangle$

subsets of $\kappa_1 \setminus \kappa$ such that for every $\tau < \kappa$,

$$A^1_\tau = \bigcup \{ [r^1_\tau(\nu), s^1_\tau(\nu)) \mid \nu \in Z^1 \cap C^1 \},$$

where C^1 and Z^1 are defined as C and Z above, but with κ_1 replacing κ.

Namely,

$$C^1 = \{ \nu < \kappa_1 \mid \forall \rho < \nu \forall \tau < \kappa (s^1_\tau(\rho) < \nu) \},$$

$$Z^1 = \{ \nu < \kappa_1 \mid \forall \tau < \kappa (\nu < r^1_\tau(\nu)) \land \forall \tau, \xi < \kappa (\text{if } \xi \neq \tau \text{ then } (\alpha_\xi < \alpha_\tau \rightarrow s^1_\xi(\nu) < r^1_\tau(\nu)) \land (\alpha_\xi > \alpha_\tau \rightarrow s^1_\xi(\nu) < r^1_\xi(\nu))) \}. $$

15
Also, $C^1 \cap Z^1 \in j(F_1)$ now. By shrinking if necessary, assume that $\min(C^1)$ and $\min(Z^1)$ are above κ.

We have $\alpha_\tau = j'(s_\tau)(\kappa, \kappa_1)$, $\beta_\tau = j'(r_\tau)(\kappa, \kappa_1)$ and $s^1_\tau, r^1_\tau : \kappa_1 \to \kappa_1$ represent them mod $j(F_1)$.

So, $s^1_\tau(\nu) = j(s_\tau)(\kappa, \nu)$ and $r^1_\tau(\nu) = j(r_\tau)(\kappa, \nu)$.

For $\alpha < \kappa$ set

$C^{1\alpha} = \{ \nu < \kappa \mid \forall \rho < \nu \forall \tau < \alpha \exists! s_\tau(\alpha, \rho) < \nu \}$

and

$Z^{1\alpha} = \{ \nu < \kappa \mid \forall \tau < \alpha(\nu < r_\tau(\alpha, \nu)) \wedge \exists! \xi < \alpha(\text{if } \xi \neq \tau \text{ then} \alpha_\xi < \alpha_\tau \to s_\xi(\alpha, \nu) < r_\tau(\alpha, \nu) \text{ and } (\alpha_\xi > \alpha_\tau \to s_\xi(\alpha, \nu) < r_\xi(\alpha, \nu)) \}.$

Then the functions $\alpha \mapsto C^{1\alpha}$ and $\alpha \mapsto Z^{1\alpha}$ represent C^1 and Z^1 mod F.

Fix a set $T \in F$ such that for each $\alpha \in T$, $C^{1\alpha}$ is a club in κ and each $Z^{1\alpha}$ is in F_1.

Set

$C^* = \Delta_{\alpha < \kappa} C^{1\alpha}$ and $Z^* = \Delta_{\alpha < \kappa} Z^{1\alpha}$.

Then $C^*, Z^* \in F_1$, due to normality. Also, $j(C^*) \setminus \kappa + 1 \subseteq C^1$ and $j(Z^*) \setminus \kappa + 1 \subseteq Z^1$.

Consider a functions $s^0_\tau : \kappa \to \kappa_1$ and $r^0_\tau : \kappa \to \kappa_1$ defined as follows:

$s^0_\tau(\alpha) = j_{F_1}(s_\tau)(\alpha, \kappa), r^0_\tau(\alpha) = j_{F_1}(r_\tau)(\alpha, \kappa)$.

Then,

$j(s^0_\tau)(\kappa) = j'(s_\tau)(\kappa, \kappa_1), j(r^0_\tau)(\kappa) = j'(r_\tau)(\kappa, \kappa_1)$.

Note that any function $j : \kappa \to On$ is either constant or increasing mod F due to normality. s^0_τ cannot be constant, since then we can remove κ from the set of generators of α_τ.

The function r^0_τ can be constant.

If α is not a constant function, let us compare $\sup(\text{rng}(r^0_\tau))$ with $\sup(\text{rng}(s^0_\tau))$.

Clearly, $\sup(\text{rng}(r^0_\tau)) \leq \sup(\text{rng}(s^0_\tau))$.

If $\sup(\text{rng}(r^0_\tau)) < \sup(\text{rng}(s^0_\tau))$, then we can replace r^0_τ by the constant function $\sup(\text{rng}(r^0_\tau))$.

Note that due to isomorphism of models $A_\xi, \xi < \kappa$, the situation is the same in this respect, for all $\xi < \kappa$.

Suppose that $\sup(\text{rng}(r^0_\tau)) = \sup(\text{rng}(s^0_\tau))$. The treatment of the case of constant function is similar and simpler.

Let $\theta_\tau = \sup(\text{rng}(r^0_\tau)) = \sup(\text{rng}(s^0_\tau))$ and let $\langle \theta_\alpha \mid \alpha < \kappa \rangle$ be a closed cofinal in θ_τ sequence.
Pick a set $T_\tau \subseteq T$ in \mathcal{F} such that for every $\alpha \in T_\tau$ the following hold:

1. $\alpha > \tau$,
2. $\theta_{\alpha \tau} \leq r_\tau^0(\alpha) < s_\xi^0(\alpha)$, for every $\alpha < \kappa$,
3. $r_\tau^0(\alpha') < r_\tau^0(\alpha)$, for every $\alpha' < \alpha < \kappa$,
4. $\forall_\tau, \xi < \alpha < \kappa$ (if $\xi \neq \tau$ then $(\alpha_\xi < \alpha_\tau \rightarrow s_\xi^0(\alpha) < r_\xi^0(\alpha))$ and $(\alpha_\xi > \alpha_\tau \rightarrow s_\xi^0(\alpha) < r_\xi^0(\alpha))$),
5. for every $\xi < \tau$,
 (a) if $\theta_\xi < \theta_\tau$, then $\theta_\xi < \theta_{\alpha \tau}$,
 (b) if $\theta_\xi > \theta_\tau$, then $\theta_{\alpha \xi} > \theta_{\alpha' \xi}$ and $s_\xi^0(\alpha')$, whenever $\alpha' < \kappa$ and $\theta_{\alpha' \xi}, s_\xi^0(\alpha') < \theta_\tau$.

Note that $\text{cof}(\theta_{\alpha \xi}) = \kappa$, and so, the sequence $\theta_{\alpha \xi} (\alpha' < \kappa)$ should be bounded below θ_τ. Also, $\tau < \kappa$, hence the total number of such ξ's is less than κ, and so, there is a common bound.

Now we reflect this down using \mathcal{F}_1. Find a set $Y \in \mathcal{F}_1$ such that for every $\beta \in Y$ the following hold:

1. $\theta_\beta^ \beta > \beta$ has cofinality β and $\{\theta_\alpha^\beta : \alpha < \beta\}$ be a closed cofinal in $\theta_\beta^ \beta$ sequence.
2. $\theta_\alpha^\beta = r_\tau(\alpha, \beta) < s_\tau(\alpha, \beta)$, for every $\alpha < \beta$,
3. for every $\xi < \alpha$, if $\theta_\xi^\beta = \theta_\tau^\beta$, then $s_\xi^0(\alpha') < \theta_{\alpha \tau}^\beta$, for every $\alpha' < \alpha$,
4. for every $\xi < \alpha$, if $\theta_\xi^\beta < \theta_\alpha^\beta$, then $\theta_\xi^\beta < \theta_{\alpha \tau}^\beta$,
5. $r_\tau(\alpha', \beta) < r_\tau^0(\alpha, \beta)$, for every $\alpha' < \alpha < \beta$,
6. $\forall_\tau, \xi < \alpha < \beta$ (if $\xi \neq \tau$ then $(\alpha_\xi < \alpha_\tau \rightarrow s_\xi(\alpha, \beta) < r_\xi(\alpha, \beta))$ and $(\alpha_\xi > \alpha_\tau \rightarrow s_\xi(\alpha, \beta) < r_\xi(\alpha, \beta))$).
7. for every $\xi < \tau$,
 (a) if $\theta_\xi < \theta_\tau$, then $\theta_\xi^\beta < \theta_{\alpha \tau}^\beta$,
 (b) if $\theta_\xi > \theta_\tau$, then $\theta_\xi^\beta > \theta_\tau^\beta$, $\theta_{\alpha' \xi}^\beta > \theta_{\alpha' \tau}^\beta$ and $\theta_{\alpha' \tau}^\beta > s_\xi(\alpha', \beta)$, whenever $\alpha' < \beta$ and $\theta_{\alpha' \xi}^\beta, s_\xi(\alpha', \beta) < \theta_\tau^\beta$.

17
Set

\[A_\tau = \bigcup \{ [r_\tau(\alpha, \beta), s_\tau(\alpha, \beta)] \mid \alpha \in T_\tau, \tau < \alpha < \beta \in C^* \cap Z^* \cap Y \}. \]

Let us show that if \(\xi, \tau < \kappa, \xi \neq \tau \), then \(A_\xi \cap A_\tau = \emptyset \).

Suppose otherwise. Let \(\xi, \tau < \kappa, \xi \neq \tau \) and \(A_\xi \cap A_\tau \neq \emptyset \).

Let \(\zeta \in A_\xi \cap A_\tau \). Then there are \(\alpha < \beta, \alpha' < \beta', \tau < \alpha, \xi < \alpha', \beta, \beta' \in C^* \cap Z^* \cap Y \) such that \(\zeta \in [r_\tau(\alpha, \beta), s_\tau(\alpha, \beta) \cap [r_\xi(\alpha', \beta'), s_\xi(\alpha', \beta')]) \).

Let us argue that the intersection of such intervals must be empty.

We assume that \(\xi \neq \tau \) implies \(\alpha_\xi \neq \alpha_\tau \). Due to a symmetry of the situation it is enough to consider the case \(\xi < \tau \).

First note that if \(\beta' < \beta \) (or if \(\beta < \beta' \)), then for any \(\gamma < \beta, \gamma' < \beta' \),

\[s_\xi(\gamma', \beta') < \beta < r_\tau(\gamma, \beta)(\text{ or } s_\tau(\gamma, \beta) < \beta' < r_\xi(\gamma', \beta')) \]

Which is impossible.

So, suppose that \(\beta = \beta' \). Split into three cases.

Case 1. \(\theta_\tau^\beta > \theta_\xi^\beta \).

Then

\[s_\xi(\alpha', \beta') < \theta_\xi^\beta < \theta_\tau^\beta \leq r_\tau(\alpha, \beta), \]

by 7(a) above, which is impossible.

Case 2. \(\theta_\tau^\beta < \theta_\xi^\beta \).

Then

\[s_\xi(\alpha', \beta') < \theta_\tau^\beta \leq r_\tau(\alpha, \beta), \]

by 7(b) above, which is impossible.

Case 3. \(\theta_\tau^\beta = \theta_\xi^\beta \).

If \(\alpha' < \alpha \), then

\[s_\xi(\alpha') < \theta_\tau^\beta \leq r_\tau(\alpha, \beta), \]

by the items 2,3 above, which is again impossible.

If \(\alpha < \alpha' \), then \(\tau < \alpha \) implies that \(\tau < \alpha' \). So, again,

\[s_\tau(\alpha) < \theta_\alpha^\beta \leq r_\xi(\alpha', \beta), \]

by the items 2,3 above, which is impossible.

Finally, if \(\alpha = \alpha' \), then we apply the item 6.

\(\square \)
4 Products of ultrafilters.

In [4], Aki Kanamori asked the following question (Question 5.8 there):

If U and V are κ-complete ultrafilters over κ such that $U \times V \leq R^{\kappa} V \times U$, is there a W and integers n and m so that $U = R^{\kappa} W^n$ and $V = R^{\kappa} W^m$?

Solovay gave an affirmative answer once "$U \times V \leq R^{\kappa} V \times U$" is replaced by "$U \times V = R^{\kappa} V \times U$", and Kanamori if U is a p-point, see [4] 5.7, 5.9.

We would like to show that the negative answer is consistent assuming $o(\kappa) = \kappa$. Two examples will be produced. The following will be shown:

Theorem 4.1 Assume $o(\kappa) = \kappa$. Then in a cardinal preserving generic extension there are two κ-complete ultrafilters U and V over κ such that

1. $V >_{R^{\kappa}} U$,

2. $V \times U >_{R^{\kappa}} U \times V$.

Remark 4.2 Note that if there are $W, n, m < \omega$ such that $U = R^{\kappa} W^n$ and $V = R^{\kappa} W^m$, then $V \times U = R^{\kappa} U \times V$.

Theorem 4.3 Assume $o(\kappa) = \kappa$. Then in a cardinal preserving generic extension there are two κ-complete ultrafilters U and V over κ such that

1. V is a normal measure,

2. V is the projection of U to its least normal measure,

3. $V \times U >_{R^{\kappa}} U \times V$.

Proof of the first theorem.

Let us keep the notation of the previous section.

So, we have κ-complete ultrafilters $U(\kappa, \alpha, t), \alpha < \kappa, t \in [\kappa]^{<\omega}$ which extend $U(\kappa, \alpha)$’s. Denote $U(\kappa, \alpha, \langle \rangle)$ by $\bar{U}(\kappa, \alpha)$.

Let $f : \kappa \to \kappa$. Define

$$U_f = \{X \subseteq \kappa \mid \alpha < \kappa \mid X \in \bar{U}(\kappa, f(\alpha)) \in \bar{U}(\kappa, 0)\},$$

i.e.

$$U_f = \bar{U}(\kappa, 0) - \lim_{\alpha < \kappa} \bar{U}(\kappa, f(\alpha)).$$
Then U_f is a κ–complete ultrafilter over κ.

It is noted in [3], that if $f \leq g \mod \bar{U}(\kappa, 0)$, then $U_f \leq \kappa \setminus U_g$.

Our prime interest will be in $f = id$ and $g = id + 1$.

Set $\mathcal{U} = U_{id}$ and $\mathcal{V} = U_{id+1}$.

We would like to argue that $\mathcal{U} \times \mathcal{V} < \mathcal{R} - K \mathcal{V} \times \mathcal{U}$.

Note that neither \mathcal{U} nor \mathcal{V} are of the form \mathcal{W}^n, for $n > 1$, since the only ultrafilters Rudin-Keisler below \mathcal{U} are $\bar{U}(\kappa, \alpha)$, $\alpha < \kappa$ and their finite powers, those below \mathcal{V} are $\bar{U}(\kappa, \alpha)$, $\alpha < \kappa$, \mathcal{U} and their finite powers. Just examine the ultrapowers by \mathcal{U} and \mathcal{V}, we refer to [1],[3] for this type analyzes.

In particular, $\mathcal{V} \not\cong \mathcal{U}^n$, $n < \omega$.

Suppose that $B \in \mathcal{U} \times \mathcal{V}$. Then

$$\{\mu < \kappa \mid \{\xi < \kappa \mid (\mu, \xi) \in B\} \in \mathcal{V}\} \in \mathcal{U}.$$

Denote

$$A = \{\mu < \kappa \mid \{\xi < \kappa \mid (\mu, \xi) \in B\} \in \mathcal{V}\}$$

and for each $\mu < \kappa$, let

$$A_\mu = \{\xi < \kappa \mid (\mu, \xi) \in B\}.$$

Recall that

$$\mathcal{U} = \bar{U}(\kappa, 0) - \lim \langle \bar{U}(\kappa, \alpha) \mid \alpha < \kappa \rangle.$$

Hence, there is $Z \in \bar{U}(\kappa, 0)$ such that for every $\alpha \in Z$, $A \in \bar{U}(\kappa, \alpha)$.

Similar,

$$\mathcal{V} = \bar{U}(\kappa, 0) - \lim \langle \bar{U}(\kappa, \alpha + 1) \mid \alpha < \kappa \rangle.$$

Hence, for every $\mu \in A$, there is $Y_\mu \in \bar{U}(\kappa, 0)$ such that for every $\alpha \in Y_\mu$, $A_\mu \in \bar{U}(\kappa, \alpha + 1)$.

Set

$$X = Z \cap \Delta_{\mu \in A} Y_\mu.$$

Then $X \in \bar{U}(\kappa, 0)$ and for every $\alpha \in X$ we have

$$A \in \bar{U}(\kappa, \alpha) \text{ and } \forall \mu \in A \cap \alpha (A_\mu \in \bar{U}(\kappa, \alpha + 1)).$$

Then, by elementarity, in $M_{\mathcal{V}}$ (the ultrapower by \mathcal{V}), for every $\alpha \in i_{\mathcal{V}}(X)$,

$$i_{\mathcal{V}}(A) \in \bar{U}(i_{\mathcal{V}}(\kappa), \alpha) \text{ and } \forall \mu \in i_{\mathcal{V}}(A) \cap \alpha (A'_\mu \in \bar{U}(i_{\mathcal{V}}(\kappa), \alpha + 1)),$$

where $i_{\mathcal{V}}(\langle A_\mu \mid \mu < \kappa \rangle) = \langle A'_\mu \mid \mu < i_{\mathcal{V}}(\kappa) \rangle$.

20
Let ρ^\U denote $[id]_\U$. Then $\rho^\U \in i_\U(A)$. We have a natural embedding $\sigma : M_\U \to M_\V$ and it does not move ρ^\U, since its critical point is $i_\U(\kappa)$. Then,

$$\rho^\U = \sigma(\rho^\U) \in \sigma(i_\U(A)) = i_\V(A).$$

Note that generators of $\bar{U}(\kappa, 0)$ appear unboundedly many times below $\rho_\V > \rho_\U$. Let α^* be, say, the least such generator above ρ^\U. Then $\alpha^* \in i_\V(X) \setminus \rho^\U + 1$. So,

$$\forall \mu \in i_\V(A) \cap \alpha^*(A'_\mu \in \bar{U}(i_\V(\kappa), \alpha^* + 1)).$$

Now, $\bar{U}(i_\V(\kappa), \alpha^* + 1)) <_{R-K} U(i_\V(\kappa), id) = i_\V(\U)$. Let η represents a corresponding projection function in the ultrapower of M_\V by $i_\V(\U)$. Then for all $\mu \in i_\V(A) \cap \alpha^*$, $\eta \in i_\V(\U)(A'_\mu)$. Hence,

$$\eta \in i_\V(\U)(A'_\mu).$$

So,

$$(\rho^\U, \eta) \in i_\V(\U)(B).$$

We are done, since then

$$\{ E \subseteq [\kappa]^2 \mid (\rho^\U, \eta) \in i_\V(\U)(E) \} \supseteq \U \times \V,$$

but $\U \times \V$ is an ultrafilter, so

$$\{ E \subseteq [\kappa]^2 \mid (\rho^\U, \eta) \in i_\V(\U)(E) \} = \U \times \V,$$

which means that

$$\U \times \V <_{R-K} \V \times \U.$$

□

The second theorem can be deduced from the first, but let us give a direct argument.

Proof of the second theorem.

Let us show now that $\bar{U}(\kappa, 0) \times \U >_{R-K} \U \times \bar{U}(\kappa, 0)$.

Note that $\bar{U}(\kappa, 0)$ is normal. By Kanamori [4], it is impossible to have $\V \times \U >_{R-K} \U \times \V$ once \U is normal or even a P–point.

We have

$$\U = \bar{U}(\kappa, 0) - \lim (\bar{U}(\kappa, \alpha) \mid \alpha < \kappa).$$
So, the ultrapower with \mathcal{U} is obtained as follows. First $\bar{U}(\kappa, 0)$ is applied. We have

$$i_{\bar{U}(\kappa, 0)} : V \to M_{\bar{U}(\kappa, 0)}.$$

Next $\bar{U}(i_{\bar{U}(\kappa, 0)}(\kappa), \kappa)$ is applied over $M_{\bar{U}(\kappa, 0)}$. We have

$$i_{\bar{U}(i_{\bar{U}(\kappa, 0)}(\kappa), \kappa)} : M_{\bar{U}(\kappa, 0)} \to M_{\bar{U}(i_{\bar{U}(\kappa, 0)}(\kappa), \kappa)}.$$

The composition is the ultrapower embedding by \mathcal{U}, i.e.

$$i_{\mathcal{U}} = i_{\bar{U}(i_{\bar{U}(\kappa, 0)}(\kappa), \kappa)} \circ i_{\bar{U}(\kappa, 0)} : V \to M_{\mathcal{U}} = M_{\bar{U}(i_{\bar{U}(\kappa, 0)}(\kappa), \kappa)}.$$

Consider $\bar{U}(\kappa, 0) \times \mathcal{U}$. So, we have $i_{\bar{U}(\kappa, 0)} : V \to M_{\bar{U}(\kappa, 0)}$ followed by $i_{\bar{U}(\kappa, 0)}(\mathcal{U}) = U(i_{\bar{U}(\kappa, 0)}(\kappa), id)$. The application of $U(i_{\bar{U}(\kappa, 0)}(\kappa), id)$ to $M_{\bar{U}(\kappa, 0)}$ has the similar description to the one above. Namely, $i_{\bar{U}(\kappa, 0)}(\bar{U}(\kappa, 0))$ is used first followed by

$$\bar{U}(i_{\bar{U}(\kappa, 0)}(\bar{U}(\kappa, 0))(i_{\bar{U}(\kappa, 0)}(\kappa)), i_{\bar{U}(\kappa, 0)}(\kappa)).$$

In order to simplify the notation, let us denote $i_{\bar{U}(\kappa, 0)}$ by i_1, $M_{\bar{U}(\kappa, 0)}$ by M_1, $i_{\bar{U}(\kappa, 0)}(\kappa)$ by κ_1, the second ultrapower of $\bar{U}(\kappa, 0)$ by M_2 and the image of κ_1 there by κ_2.

Then $i_{\bar{U}(\kappa, 0) \times \mathcal{U}} : V \to M_{\bar{U}(\kappa, 0) \times \mathcal{U}}$ is $i_1 : V \to M_1$ followed by $i_{\bar{U}(\kappa_1, 0)} : M_1 \to M_2$ and then by $i_{\bar{U}(\kappa_2, \kappa_1)} : M_2 \to M_{\bar{U}(\kappa, 0) \times \mathcal{U}}$.

Note that in M_2, we have $\bar{U}(\kappa_2, \kappa_1) >_{R-K} \bar{U}(\kappa_2, \kappa)$ and even $\bar{U}(\kappa_2, \kappa_1) >_{R-K} \bar{U}(\kappa_2, \kappa) \times \bar{U}(\kappa_2, 0)$.

Pick (η, ρ) which represents a corresponding projection function in the ultrapower of M_2 by $\bar{U}(\kappa_2, \kappa_1)$.

Let us argue that

$$\{E \subseteq [\kappa]^2 \mid (\eta, \rho) \in i_{\bar{U}(\kappa, 0) \times \mathcal{U}}(E)\} \supseteq \mathcal{U} \times \bar{U}(\kappa, 0).$$

Let $A \in \mathcal{U}$, then

$$[id]_{\bar{U}(\kappa_1, \kappa)} \in i_{\mathcal{U}}(A) = i_{\bar{U}(\kappa_1, \kappa)}(i_1(A)).$$

Then, in M_1,

$$i_1(A) \in \bar{U}(\kappa_1, \kappa).$$

3V denotes here the generic extension, where all the ultrafilters $\bar{U}(\kappa, \alpha)$ are defined.
Apply the second ultrapower embedding \(i(U_{\kappa_1,0}) \) to it. Note that its critical point is \(\kappa_1 > \kappa \). Then,
\[
i_2(A) = i(U_{\kappa_1,0})(i_1(A)) \in i(U_{\kappa_1,0})(\bar{U}(\kappa_1, \kappa)) = \bar{U}(\kappa_2, \kappa).
\]
Next apply \(i(U_{\kappa_2,\kappa_1}) : M_2 \to M_{U(\kappa,0)\times U} \). So, by the choice of \(\eta \),
\[
\eta \in i(U_{\kappa,0}\times U)(A) = i(U_{\kappa_2,\kappa_1})(i_2(A)).
\]
Suppose now that \(B \in U \times \bar{U}(\kappa, 0) \). Set
\[
A := \{ \mu < \kappa \mid \{ \xi < \kappa \mid (\mu, \xi) \in B \} \in \bar{U}(\kappa, 0) \}.
\]
Then \(A \in U \) and for every \(\mu \in A \) the set
\[
A_\mu := \{ \xi < \kappa \mid (\mu, \xi) \in B \} \in \bar{U}(\kappa, 0).
\]
Apply \(i_2 \). Then, in \(M_2 \),
\[
\forall \mu \in i_2(A)(A_\mu \in \bar{U}(\kappa_2, 0)).
\]
But, by above, we have
\[
i_2(A) \in \bar{U}(\kappa_2, \kappa),
\]
hence,
\[
i_2(B) \in \bar{U}(\kappa_2, \kappa) \times \bar{U}(\kappa_2, 0).
\]
So,
\[
(\eta, \rho) \in i(U(\kappa,0)\times U)(B),
\]
and we are done.
\[\square\]

Let us address now the strength issue.

Theorem 4.4 Suppose that there is no inner model in which \(\kappa \) is a measurable with \(\{ o(\alpha) \mid \alpha < \kappa \} \) unbounded in it. Then for any two \(\kappa \)-complete ultrafilters \(U \) and \(V \) over \(\kappa \), if \(V \times U \geq_{R\neg K} U \times V \), then there is a \(\kappa \)-complete ultrafilter \(W \) over \(\kappa \) and there are integers \(n, m \) such that \(V =_{R\neg K} W^n \) and \(U =_{R\neg K} W^m \).

Proof. Suppose that there is no inner model in which \(\kappa \) is a measurable with \(\{ o(\alpha) \mid \alpha < \kappa \} \) unbounded in it. Then there are no \(\kappa \)-non-Rudin-Keisler equivalent ultrafilters which are Rudin-Keisler below some \(\kappa \)-complete ultrafilter. Also, the separation property holds, i.e., if \(\{ U_\tau \mid \tau < \kappa \} \) is a family of distinct \(\kappa \)-complete ultrafilters over \(\kappa \)
and E is a κ–complete ultrafilter over κ, then there is $X \in E$ such that $\{U_\tau \mid \tau \in X\}$ is a discrete family.

Suppose now that the theorem fails. Using the well-foundedness of \leq_{R-K}, pick then \mathcal{U} and \mathcal{V} to be two κ–complete ultrafilters over κ, $\mathcal{V} \times \mathcal{U} \supseteq_{R-K} \mathcal{U} \times \mathcal{V}$ which are a counterexample to the theorem and assume that the pair $(\mathcal{U}, \mathcal{V})$ is the least in the following sense:

whenever

1. $\mathcal{U}' \leq_{R-K} \mathcal{U}$,
2. $\mathcal{V}' \leq_{R-K} \mathcal{V}$,
3. $\mathcal{U}' <_{R-K} \mathcal{U}$ or $\mathcal{V}' <_{R-K} \mathcal{V}$,
4. $\mathcal{V}' \times \mathcal{U}' \supseteq_{R-K} \mathcal{U}' \times \mathcal{V}'$

hold, then there is a κ–complete ultrafilter W' over κ and there are integers n, m such that $\mathcal{V}' =_{R-K} W'^n$ and $\mathcal{U}' =_{R-K} W'^m$.

Let $(\rho, \eta) \in [i_{V \times U}(\kappa)]^2$ generates $\mathcal{U} \times \mathcal{V}$, i.e.

$$\mathcal{U} \times \mathcal{V} = \{X \subseteq [\kappa]^2 \mid (\rho, \eta) \in i_{V \times U}(X)\}.$$

Clearly, then $\eta > i_{V}(\kappa)$.

Consider in M_V an ultrafilter W defined by (ρ, η), i.e.

$$W := \{Z \subseteq [i_{\mathcal{V}}(\kappa)]^2 \mid (\rho, \eta) \in i_{\mathcal{V}}(U)(Z)\}.$$

Clearly, $W \leq_{R-K} i_{\mathcal{V}}(U)$. Find a sequence of ultrafilters $(W_\alpha \mid \alpha < \kappa)$ which represents W in the ultrapower by \mathcal{V}, i.e.

$$i_{\mathcal{V}}((W_\alpha \mid \alpha < \kappa))(\text{id}_\mathcal{V}) = W.$$

So, for most $(\text{mod } \mathcal{V}) \alpha$’s, $W_\alpha \leq_{R-K} \mathcal{U}$.

Note that

$$\mathcal{U} \times \mathcal{V} = \mathcal{V} - \lim (W_\alpha \mid \alpha < \kappa).$$

Namely,

$$X \in \mathcal{U} \times \mathcal{V} \iff (\rho, \eta) \in i_{\mathcal{V} \times U}(X) \iff i_{\mathcal{V}}(X) \in W$$

$$\iff \{\alpha < \kappa \mid X \in W_\alpha\} \in \mathcal{V} \iff X \in \mathcal{V} - \lim (W_\alpha \mid \alpha < \kappa).$$

The sequence $(W_\alpha \mid \alpha < \kappa)$ may contain same ultrafilters, but among them must be κ different. Just otherwise, mod \mathcal{V} they will be the same. Let W' be this ultrafilter. Then,
\(\mathcal{U} \times \mathcal{V} = \mathcal{V} - \lim (W_\alpha \mid \alpha < \kappa) \), implies \(\mathcal{U} \times \mathcal{V} = W' \). So, \(\mathcal{U} \times \mathcal{V} \leq_{R-K} \mathcal{U} \), which is impossible. Let \(t : \kappa \to \kappa \) be a function such that \(t(\alpha) = t(\beta) \) iff \(W_\alpha = W_\beta \). Then \(t \) is not constant mod \(\mathcal{V} \). Set \(\mathcal{V}' = t_* \mathcal{V} \). Then

\[
\mathcal{U} \times \mathcal{V} = \mathcal{V}' - \lim (W_\alpha \mid \alpha < \kappa),
\]

implies \(\mathcal{U} \times \mathcal{V} = W' \). So, \(\mathcal{U} \times \mathcal{V} \leq \mathcal{R} - K \mathcal{U} \), which is impossible.

Let \(t: \kappa \to \kappa \) be a function such that \(t(\alpha) = t(\beta) \) iff \(W_\alpha = W_\beta \). Then \(t \) is not constant mod \(\mathcal{V} \). Set \(\mathcal{V}' = t_* \mathcal{V} \). Then

\[
\mathcal{U} \times \mathcal{V} = \mathcal{V}' - \lim (W_\alpha \mid \alpha < \kappa),
\]

Now, using the separation property, the ultrapower by \(\mathcal{U} \times \mathcal{V} \) is the ultrapower by \(\mathcal{V}' \) followed by \(W[\text{id}_{\mathcal{V}'}] \).

Still, among this different \(W_\alpha \)'s may be many which are Rudin-Keisler equivalent. It is impossible that the number of the equivalence classes has cardinality \(\kappa \), since then we will have \(\kappa \)—many non-equivalent (R-K) ultrafilters below \(\mathcal{U} \).

Suppose that the number of the equivalence classes has cardinality \(< \kappa \). Then there is \(W' \) such that \(W_\alpha = R-K W' \), for almost every \(\alpha \) mod \(\mathcal{V}' \).

Hence, \(W[\text{id}_{\mathcal{V}'}] = R-K i_{\mathcal{V}'}(W') \), so its ultrapower is the same as those by \(i_{\mathcal{V}'}(W') \). This means that the iterated ultrapower is just \(\mathcal{V}' \times W' \).

So, \(\mathcal{V}' \times W' = R-K \mathcal{U} \times \mathcal{V} \). Then by Kanamori [4] (5.6), at least one of the following three possibilities must holds:

1. \(W' = R-K \mathcal{V} \) and \(\mathcal{V}' = R-K \mathcal{U} \);
2. there is a \(\kappa \)—complete ultrafilter \(F \), such that \(\mathcal{V}' = R-K \mathcal{U} \times F \) and \(\mathcal{V} = R-K F \times W' \);
3. there is a \(\kappa \)—complete ultrafilter \(G \) such that \(\mathcal{U} = R-K \mathcal{V}' \times G \) and \(W' = R-K G \times \mathcal{V} \).

Suppose for a moment that the first possibility occurs. Then

\[
\mathcal{U} \supseteq_{R-K} \mathcal{W}' = R-K \mathcal{V} \supseteq_{R-K} \mathcal{V}' = R-K \mathcal{U}.
\]

So, \(\mathcal{U} = R-K \mathcal{V} \), and then \(\mathcal{U} \times \mathcal{V} = R-K \mathcal{V} \times \mathcal{U} \).

Suppose now that the second possibility occurs. Then \(\mathcal{V}' \leq_{R-K} \mathcal{V} \) and \(W' \leq_{R-K} \mathcal{U} \) imply

\[
\mathcal{U} \times F = R-K \mathcal{V}' \leq_{R-K} \mathcal{V} = R-K F \times W' \leq_{R-K} F \times \mathcal{U}.
\]

But, also (2) implies that \(\mathcal{V} >_{R-K} F \). Hence, we can apply the minimality assumption to the pair \((\mathcal{U}, F) \).

Then there will be a \(\kappa \)—complete ultrafilter \(Z \) and \(k, \ell < \omega \) such that

\[
\mathcal{U} = Z^k \text{ and } F = Z^\ell.
\]
This implies, in particular,
\[U \times F =_{R-K} F \times U. \]

But then also
\[U \times F =_{R-K} F \times W'(=_{R-K} V) =_{R-K} F \times U. \]

Hence \(V = Z^{k+\ell} \), and we are done.

Consider now the third possibility.
Then \(U \geq_{R-K} W' \) and \(V \geq_{R-K} V' \) imply
\[V \times G \geq_{R-K} V' \times G =_{R-K} U \geq_{R-K} W' =_{R-K} G \times V. \]

But, also (3) implies that \(U >_{R-K} G \). Hence, we can apply the minimality assumption to the pair \((V, G)\).

Then there will be a \(\kappa \)-complete ultrafilter \(Y \) and \(n, m < \omega \) such that
\[V = Y^n \text{ and } G = Y^m. \]

This implies, in particular,
\[V \times G =_{R-K} G \times V. \]

But then also
\[V \times G =_{R-K} V' \times G =_{R-K} U =_{R-K} G \times V. \]

Hence \(U = Y^{n+m} \), and we are done.
\[\square \]
References

