Symbolic Representations

2. Kakutani, Rohlin and K-R towers

Let **X** be a dynamical system and $B \subset X$; an array $\mathfrak{c} = \{B, TB, \dots, T^{N-1}B\}$ with T^jB , $0 \le j < N$ pairwise disjoint is called a *Rohlin tower* or a *column over* B of height N. The set B is called the base of the tower and $T^{N-1}B$ is its roof. Let $|\mathfrak{c}| = \bigcup_{j=0}^{N-1} T^jB$, the carrier of the tower \mathfrak{t} . A collection (finite or countable) \mathfrak{t} of disjoint columns \mathfrak{c}_k (with bases B_k and heights N_k) is called a tower and we let $|\mathfrak{t}| = \bigcup_{k=0}^{\infty} |\mathfrak{c}_k|$. The union of the bases $B = \bigcup_k B_k$ is the base of \mathfrak{t} , and the union of the roofs is the roof of \mathfrak{t} . We sometimes write (a bit imprecisely) $\mathfrak{t} = \{\mathfrak{c}_k : k = 1, 2, \dots\}$. The sets $\{T^ix : 0 \le i < N_k(x)\}$ for $x \in B$ are called the fibers of \mathfrak{t} .

Given a tower \mathfrak{t} with columns $\{\mathfrak{c}_k : k = 1, 2, \dots\}$, base $B = \cup_k B_k$, and a finite (or countable) partition $\alpha = \{A_1, \dots, A_t\}$, we define an equivalence relation on B as follows: $x \sim y$ iff x and y are in the same B_k and for every $0 \leq j < N_k$, $T^j x$ and $T^j y$ are in the same element of α ; i.e. x and y have the same (α, N_k) -name. We now consider each equivalence class $B_{k,\mathbf{a}}$, with \mathbf{a} a name in $\alpha_0^{N_k-1}$, as a basis of a column $\mathfrak{c}_{k,\mathbf{a}} = \{B_{k,\mathbf{a}}, TB_{k,\mathbf{a}}, \dots, T^{N_k-1}B_{k,\mathbf{a}}\}$ and say that the resulting tower $\mathfrak{t}_{\alpha} = \{\mathfrak{c}_{k,\mathbf{a}} : \mathbf{a} \in \alpha_0^{N_k-1}, \ k = 1, \dots\}$ is the tower \mathfrak{t} refined according to α . When $\alpha = \{C, X \setminus C\}$, C a subset of X, we write $\mathfrak{t}_{\alpha} = \mathfrak{t}_{C}$ and say that \mathfrak{t} is refined according to C.

A subset B of X is called a *sweeping set* if $\bigcup_{n\geq 0} T^n B = X$. For an ergodic system every set of positive measure is sweeping. Given any set B of positive measure, define the *return time function* $r_B: B \to \mathbb{N} \cup \{\infty\}$ by

$$r_B(x) = \min\{n \ge 1 : T^n x \in B\},\$$

when this minimum is finite and $r_B(x) = \infty$ otherwise. Let $B_k = \{x \in B : r_B(x) = k\}$ and note that by Poincaré's recurrence theorem B_∞ is a null set. We let \mathfrak{c}_k be the column $\{B_k, TB_k, \ldots, T^{k-1}B_k\}$ and we call the tower $\mathfrak{t} = \mathfrak{t}(B) = \{\mathfrak{c}_k : k = 1, 2, \ldots\}$, the Kakutani tower over B. Thus the Kakutani tower \mathfrak{t} is a partition of the set $|\mathfrak{t}|$. For a sweeping set B, $|\mathfrak{t}| = X$ and the Kakutani tower over B is then a partition of the whole space. If the Kakutani tower over B has finitely many columns (i.e. the function r_B is bounded) we say that B has a finite height and we call the Kakutani tower over B a K-R tower. The number $\max r_B$ is called the height of B or the height of the K-R tower.

Note that for an ergodic \mathbb{Z} -system \mathbf{X} , either the space X consists of a finite set of points on which μ is equidistributed, or the measure μ is atom-less. In the first case the system is called *periodic*, and it is called *non-periodic* in the latter. Next we present the famous "Rohlin lemma". We shall prove it in the ergodic case but in fact it holds for every aperiodic \mathbb{Z} -system (see Halmos' book [113]).

THEOREM 2.1 (Rohlin's lemma). Let \mathbf{X} be a non-periodic ergodic system, N a positive integer and $\epsilon > 0$, then there exists a subset B such that the sets $B, TB, \ldots, T^{N-1}B$ are pairwise disjoint and $\mu(\cup_{j=0}^{N-1}T^jB) > 1 - \epsilon$.

PROOF. Let $C \subset X$ be a set with measure $0 < \mu(C) < \epsilon/N$. Consider the Kakutani tower $\mathfrak{t}(C)$ over C. For every $k \geq N$ divide the column $\mathfrak{c}_k = \{T^iC_k : 0 \leq i < k\}$, starting from its base $C_k = \{x \in C : r_C(x) = k\}$, into blocks of size N. Mark the first level of each of these blocks as belonging to B. Taking the union of these marked levels over the columns $\mathfrak{c}_k, k = N, N+1, \ldots$, gives us a set B with $r_B \geq N$. Clearly $\mathfrak{q} = \{B, TB, \ldots, T^{N-1}B\}$ is a Rohlin tower; i.e. the sets T^jB for $0 \leq j < N$ are disjoint. Now $|\mathfrak{t}| \setminus |\mathfrak{q}| = X \setminus |\mathfrak{q}|$ is composed of the first N columns \mathfrak{c}_k of

1

height k < N and some top levels from the other columns, with a contribution of at most N-1 levels from each. A simple calculation shows therefore that

$$\mu(X \setminus |\mathfrak{q}|) < N\mu(C) < \epsilon.$$

Theorem 2.2. Let X be a non-periodic ergodic system.

- (1) For any positive integer N there exists a set C of finite height such that the K-R tower $\mathfrak{t}(C)$ satisfies range $r_C \subset \{N, N+1\}$.
- (2) Given a K-R tower with base C and height N, for any sufficiently large n there is a bounded K-R tower with base D contained in C whose column heights are all at least n and at most n + 4N.

PROOF. 1. Let $n > 10N^2$ and use Rohlin's lemma to construct a Rohlin tower $\mathfrak{q} = \{B, TB, \dots, T^{n-1}B\}$. Thus the return time function $r_B(x)$ is greater than $10 \cdot N^2$ on B. Let

$$B_k = \{ x \in B : r_B(x) = k \}.$$

When B_k is non-empty one can therefore write k as a positive combination of N and N+1, say

$$k = Nu_k + (N+1)v_k.$$

Now consider the Kakutani tower over B and divide the column $\mathfrak{c}_k = \{T^i B_k : 0 \leq i < k\}$ into u_k blocks of size N and v_k blocks of size N+1. The set C is now defined as the union over the various columns, of the first levels of these blocks. Clearly the function r_C takes only two values, either N or N+1 as required.

2. Start with a Rohlin tower $\mathfrak{q} = \{B, TB, \dots, T^{M-1}B\}$ with $M = 10(n+2N)^2$, and look at the unbounded (in general) Kakutani tower \mathfrak{t} over B. As can be seen by the proof of Rohlin's lemma we can choose $B \subset C$. Refine this tower according to C and call the refined tower \mathfrak{t}_C . For each $m \geq 10$ $(n+2N)^2$, the column \mathfrak{q}_m over $B_m = \{x \in B : r_B = m\}$ in \mathfrak{t} , is split in \mathfrak{t}_C into a finite number of columns so that each level is either a subset of C or of C^c .

As in the first part of the proof we partition each column of the tower \mathfrak{t}_C into blocks of sizes n+2N and n+2N+1. Since we want the base D of the K-R tower we construct to belong to C we move the base level of each block (up or down) to the nearest level that belongs to C. Since the height of C is N we do not move these levels more than N-1 steps. The new blocks, with bases in C, are of size between n and n+4N, and we let D be the union of these bases.