
CHAPTER 15

Symbolic Representations

2. Kakutani, Rohlin and K-R towers

Let X be a dynamical system and B ⊂ X; an array c = {B, TB, . . . , TN−1B} with T jB, 0 ≤
j < N pairwise disjoint is called a Rohlin tower or a column over B of height N . The set B is
called the base of the tower and TN−1B is its roof . Let |c| = ∪N−1

j=0 T jB, the carrier of the tower t.
A collection (finite or countable) t of disjoint columns ck (with bases Bk and heights Nk) is called
a tower and we let |t| = ∪∞k=0|ck|. The union of the bases B = ∪kBk is the base of t, and the union
of the roofs is the roof of t. We sometimes write (a bit imprecisely) t = {ck : k = 1, 2, . . . }. The
sets {T ix : 0 ≤ i < Nk(x)} for x ∈ B are called the fibers of t.

Given a tower t with columns {ck : k = 1, 2, . . . }, base B = ∪kBk, and a finite (or countable)
partition α = {A1, . . . , At}, we define an equivalence relation on B as follows: x ∼ y iff x and
y are in the same Bk and for every 0 ≤ j < Nk, T jx and T jy are in the same element of α;
i.e. x and y have the same (α, Nk)-name. We now consider each equivalence class Bk,a, with a
a name in αNk−1

0 , as a basis of a column ck,a = {Bk,a, TBk,a, . . . , T
Nk−1Bk,a} and say that the

resulting tower tα = {ck,a : a ∈ αNk−1
0 , k = 1, . . . } is the tower t refined according to α. When

α = {C,X \ C}, C a subset of X, we write tα = tC and say that t is refined according to C.
A subset B of X is called a sweeping set if ∪n≥0T

nB = X. For an ergodic system every set of
positive measure is sweeping. Given any set B of positive measure, define the return time function
rB : B → N ∪ {∞} by

rB(x) = min{n ≥ 1 : Tnx ∈ B},
when this minimum is finite and rB(x) = ∞ otherwise. Let Bk = {x ∈ B : rB(x) = k}
and note that by Poincaré’s recurrence theorem B∞ is a null set. We let ck be the column
{Bk, TBk, . . . , T k−1Bk} and we call the tower t = t(B) = {ck : k = 1, 2, . . . }, the Kakutani tower
over B. Thus the Kakutani tower t is a partition of the set |t|. For a sweeping set B, |t| = X and
the Kakutani tower over B is then a partition of the whole space. If the Kakutani tower over B
has finitely many columns (i.e. the function rB is bounded) we say that B has a finite height and
we call the Kakutani tower over B a K-R tower . The number max rB is called the height of B or
the height of the K-R tower.

Note that for an ergodic Z-system X, either the space X consists of a finite set of points on
which µ is equidistributed, or the measure µ is atom-less. In the first case the system is called
periodic, and it is called non-periodic in the latter. Next we present the famous “Rohlin lemma”.
We shall prove it in the ergodic case but in fact it holds for every aperiodic Z-system (see Halmos’
book [113]).

Theorem 2.1 (Rohlin’s lemma). Let X be a non-periodic ergodic system, N a positive integer
and ε > 0, then there exists a subset B such that the sets B, TB, . . . , TN−1B are pairwise disjoint
and µ(∪N−1

j=0 T jB) > 1− ε.

Proof. Let C ⊂ X be a set with measure 0 < µ(C) < ε/N . Consider the Kakutani tower
t(C) over C. For every k ≥ N divide the column ck = {T iCk : 0 ≤ i < k}, starting from its base
Ck = {x ∈ C : rC(x) = k}, into blocks of size N . Mark the first level of each of these blocks as
belonging to B. Taking the union of these marked levels over the columns ck, k = N,N + 1, . . . ,
gives us a set B with rB ≥ N . Clearly q = {B, TB, . . . , TN−1B} is a Rohlin tower; i.e. the sets
T jB for 0 ≤ j < N are disjoint. Now |t| \ |q| = X \ |q| is composed of the first N columns ck of
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height k < N and some top levels from the other columns, with a contribution of at most N − 1
levels from each. A simple calculation shows therefore that

µ(X \ |q|) < Nµ(C) < ε.

�

Theorem 2.2. Let X be a non-periodic ergodic system.
(1) For any positive integer N there exists a set C of finite height such that the K-R tower

t(C) satisfies range rC ⊂ {N,N + 1}.
(2) Given a K-R tower with base C and height N , for any sufficiently large n there is a

bounded K-R tower with base D contained in C whose column heights are all at least n
and at most n + 4N .

Proof. 1. Let n > 10N2 and use Rohlin’s lemma to construct a Rohlin tower q = {B, TB, . . . , Tn−1B}.
Thus the return time function rB(x) is greater than 10 ·N2 on B. Let

Bk = {x ∈ B : rB(x) = k}.
When Bk is non-empty one can therefore write k as a positive combination of N and N + 1, say

k = Nuk + (N + 1)vk.

Now consider the Kakutani tower over B and divide the column ck = {T iBk : 0 ≤ i < k} into
uk blocks of size N and vk blocks of size N + 1. The set C is now defined as the union over the
various columns, of the first levels of these blocks. Clearly the function rC takes only two values,
either N or N + 1 as required.

2. Start with a Rohlin tower q = {B, TB, . . . , TM−1B} with M = 10(n + 2N)2, and look at
the unbounded (in general) Kakutani tower t over B. As can be seen by the proof of Rohlin’s
lemma we can choose B ⊂ C. Refine this tower according to C and call the refined tower tC . For
each m ≥ 10 (n + 2N)2, the column qm over Bm = {x ∈ B : rB = m} in t, is split in tC into a
finite number of columns so that each level is either a subset of C or of Cc.

As in the first part of the proof we partition each column of the tower tC into blocks of sizes
n + 2N and n + 2N + 1. Since we want the base D of the K-R tower we construct to belong to C
we move the base level of each block (up or down) to the nearest level that belongs to C. Since
the height of C is N we do not move these levels more than N − 1 steps. The new blocks, with
bases in C, are of size between n and n + 4N , and we let D be the union of these bases. �


