Errata to “Ergodic theory via joinings”
January, 2011

Page 4, line 6:
(see [97], [9] and [10])

Page 5, line -8:
In the second section Choquet’s theorem is used to prove the ...

Page 16, line 5:
(e) \((X, \Gamma)\) is point transitive and for every \(x \in X\) and neighborhood \(U\) of \(x\), the set \(N(x, U) = \{\gamma \in \Gamma : \gamma x \in U\}\) is syndetic in \(\Gamma\).

Page 26, line 5:
Show that the system \((X, \Gamma)\) is minimal, admits no nontrivial equicontinuous factor, but the relation \(Q\) is not an equivalence relation ...

Page 37, line -5:
For \(m \in \mathbb{N}\) set \(V_1/m = B_{\delta_{1/m}}(x_{1/m}), U_m = \Gamma V_1/m\) and let \(R = \bigcap_{m \in \mathbb{N}} U_m\).

Page 47, line -18:
General references to topological dynamics, structure theory and Ellis’ algebraic theory of minimal systems are [106], [58], [85], [36], [11] and [256].

Page 52, line 13:
By part 2 ...

Page 57, line 3:
\[d(\phi, \psi) = \sum_{n=1}^{\infty} 2^{-n \frac{1}{2}} (\mu(\phi A_n \triangle \psi A_n) + \mu(\phi^{-1} A_n \triangle \psi^{-1} A_n)) \]

Page 58, line 3:
\[\alpha(n, y) = \begin{cases} \alpha(T^{-1} y) \cdots \alpha(T y) \alpha(y) & \text{for } n \geq 1 \\ \text{id} & \text{for } n = 0 \\ \alpha(T^n y)^{-1} \cdots \alpha(T^{-1} y)^{-1} & \text{for } n < 0. \end{cases} \]

Page 65, line -13:
Conversely, assume that \(\pi\) admits no non-zero invariant vectors and suppose that \(m(f) \neq 0\) for some function \(0 \neq f \in B_\pi\). By Theorem 1.51.2(c) we can assume that \(f\) is in \(\mathcal{AP}(\Gamma)\) and, therefore, that it arises as \(f(\gamma) = \langle \pi(\gamma) x, x \rangle\) for a finite dimensional irreducible sub-representation of \(\pi\). This however contradicts the previous lemma and we conclude that \(m(f) = 0\) for every function \(f \in B_\pi\).

Page 68, line -3:
Denote weak-cls \(\pi(X) = Y \subset L^2(\mu) \), and \(\nu = \pi_\ast(\mu) \), then, since the action of \(\Gamma \) on the compact space \(Y \) is WAP and topologically transitive, we can apply Lemma 1.50 to deduce that \((Y, \nu, \Gamma) \) is a nontrivial isometric factor.

Page 79, line 6:
... the Tits alternative ...

Page 81, line 11:
This is wrong; condition 2 does not imply mixing.

Page 82, line 7:
... iff no eigenvalue of \(A \) is a root of 1.

Page 98, line 5:
In the first two questions in Exercise 4.8 one needs to assume that the acting group is amenable. Here is a counterexample for the acting group \(G = \text{SL}(2, \mathbb{R}) \).

Example: Consider the topological dynamical system \((Y, G)\) where
\(Y = T^2 = \mathbb{R}^2 / \mathbb{Z}^2 \) and \(G \) acts by automorphisms. It is well known that the only ergodic \(G \)-invariant probability measures on \(Y \) are the Lebesgue measure \(\lambda \) and finitely supported measures on periodic orbits.

Now, by a well known procedure, one can “blow-up” a periodic point into a projective line \(\mathbb{P}^1 \), consisting of all the lines through the origin in \(\mathbb{R}^2 \). Thus, e.g. the point \((0, 0) \in T^2 \) is replaced by \((0, 0) \times \mathbb{P}^1 \), in such a way that a sequence \((x_n, y_n) \) in \(T^2 \) approaches \((0, 0), \ell \) iff \(\lim_{n \to \infty} (x_n, y_n) = (0, 0) \) and the sequence of lines \(\ell_n \), where \(\ell_n \) is the unique line through the origin and \((x_n, y_n) \), tends to the line \(\ell \in \mathbb{P}^1 \). The \(G \)-action on the larger space is clear.

We enumerate the periodic orbits and attach a projective line with diameter \(\epsilon_n \) at each point of the \(n \)-th orbit. An appropriate choice of a sequence of positive numbers \(\epsilon_n \) tending to zero will ensure that the resulting space \(X \) is compact and metrizable. Again the action of \(G \) on \(X \) is naturally defined and we obtain the system \((X, G)\). Finally by collapsing each \(\mathbb{P}^1 \) back to the point it is attached to we get a natural homomorphism \(\pi : X \to Y \).

It is easy to check now that \(X \) carries a unique invariant measure (the natural lift of the Lebesgue measure on \(Y \)) which is full. Thus the system \((X, G)\) is strictly ergodic, but of course it is not minimal. Also, the factor \((Y, G)\) is not uniquely ergodic.

Page 112, line 5:
... with \(T^i z \in U \). Now \(T^i z \in U \) implies ...

Page 116, line -10:
In particular \(|\sigma_{x,y}| \ll \sigma_x \).

Page 119, line 11:
If \((X, X, \mu, T)\) is not totally ergodic ...
Group extensions and Veech’s theorem: My main source here is [138].

A joining characterization of homogeneous skew-products: Theorem 6.19, an extension of Veech’s characterization of group extensions to isometric extensions, seems to be new (see also Lemańczyk, Thouvenot and Weiss [168] for related results).

In Chapter 3, Section 9 we have defined ...

\[\text{gr} (\mu, \gamma_n)(A_0 \times A_1 \times \cdots \times A_k) = \mu(A_0 \cap (\gamma_n)^{-1} A_1 \cap \cdots \cap (\gamma_n)^{-1} A_k). \]

... we must have \(\hat{\pi}_{k+1}(\hat{\lambda}) = \nu_{k+1} \). The assumption that \(\Gamma \) is abelian implies that \(\hat{\lambda} \) is \(\Gamma \)-invariant. Set \(\lambda = \sigma^{k+1}(\hat{\lambda}); \)

... the measure \(\lambda \) is ergodic and symmetric ...

Thus every ergodic symmetric ...

... for \(M_n \), and write ...

We show that \(c(n_1, n_2, n_3) = \hat{\rho}_1(n_1, n_2, n_3) \) is the Fourier transform of a measure \(\rho_1 \) supported on the subgroup \(H \) of \(\mathbb{T}^3 \).

Replace \(C(X) \) by \(\text{Aut} (X) \) (4 times in the statement and proof of Theorem 12.7)

Replace \(n \) by \(r \).

Replace 3 by \(r \).
Page 228, lines -11 and -17:
... Theorem 12.14 ...

Page 237, line 20:
Replace H by g throughout the proof.

Page 254, line -10:
$$I(\alpha)(x) = -\sum_{j \in J} 1_{A_j}(x) \log \mu(A_j),$$

Page 292, line 1:
A subset $A \subset X$ is called \textit{uniform} if
$$\lim_{N \to \infty} \text{ess sup}_x \left| \frac{1}{N} \sum_{n=0}^{N-1} 1_A(T^n x) - \mu(A) \right| = 0.$$
A partition α is \textit{uniform} if every set in $\bigcup_{n=0}^{\infty} \alpha_n$ is uniform.

Page 303, line -10:
The rigidity resides in the b_1 part of the tower $b = t_{n+1}$.

Page 338, line -13:
By (iv) ...

Page 383, line -4 right:
syndetically transitive, 24, 111