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Abstract. We show that every infinite discrete group G has an infinite minimal
subflow in its Bernoulli flow {0, 1}G. A countably infinite group G has an effective
minimal subflow in {0, 1}G. If G is countable and residually finite then it has such
a subflow which is free. We do not know whether there are groups G with no free
subflows in {0, 1}G.

1. Introduction

A well known theorem of Ellis asserts that every discrete group admits a free
compact flow. This was later extended by Veech to the class of locally compact
groups [10]. What Ellis and Veech have actually shown is that the “greatest ambit”
of the group G is a free G-flow. A G-flow is a pair (X,G) where X is a compact
Hausdorff space, G is a discrete group, and G acts on X by homeomorphisms. The
action is free if no element of G but the identity admits a fixed point. An ambit is
a G-flow (X,G) with a distinguished point x0 ∈ X whose orbit is dense: Gx0 = X.
The greatest ambit is the Stone–Čech compactification for a discrete group, and it
is the Gelfand space of the Banach algebra BRUC(G) of bounded, right uniformly
continuous, complex valued functions on G, for a general topological group. For a
discrete group G, it is known that the enveloping semigroup of the Bernoulli flow on
Ω = {0, 1}G, i.e. the action defined on Ω by (gω)(h) = ω(g−1h), coincides with the
greatest ambit of G. (The enveloping semigroup of a G-flow (X,G) is defined as the
closure in XX of the set of translations defined by the elements of G; for a discussion
of the enveloping semigroup including a proof of the above statement see for example
[4, Chapter 1, Section 4].) This implies that, in some sense, the Bernoulli G-flow is
sufficiently rich to recapture the universal G-flow, namely the greatest G-ambit. It is
thus natural to ask whether for every such G, its Bernoulli flow ({0, 1}G, G) admits
a free subflow. Recently some variants of this question appeared in other contexts as
well. In [2] the authors relate some versions of the above problem to combinatorial
group theory via tiling, coloring and other geometrical constructions on groups.

Let e denote the identity element of G. A flow (X,G) is aperiodic if it does not
contain finite orbits. It is minimal if it does not contain proper compact subflows, or,

Date: December 14, 2007.
Key words and phrases. Bernoulli flow, free actions, symbolically-free groups.
This work is partially supported by BSF grant 2006119.
2000 Mathematical Subject Classification: Primary 54H20. Secondary 20E99, 37B10.

1



2 E. GLASNER AND V.V. USPENSKIJ

equivalently, the orbit of each point x ∈ X is dense. The flow (X,G) is effective if
for every g 6= e in G there is some x ∈ X with gx 6= x. It is strongly effective if there
is a point x0 ∈ X such that the map g 7→ gx0, g ∈ G is 1-1 from G into X. Finally,
the flow is free if for every g ∈ G \ {e} and every x ∈ X, we have gx 6= x.

We introduce the following definitions. Let G be a discrete group. For a positive
integer n ≥ 2 set Ωn = {0, 1, . . . , n− 1}G and let G act on Ωn by left translations:

(gω)(h) = ω(g−1h), ω ∈ Ωn, g, h ∈ G,
Then (Ωn, G) is the Bernoulli G-flow on n symbols. We say that G is symbolically
{-aperiodic}, {-effective}, {-strongly effective}, {-free} if for some n the Bernoulli flow
(Ωn, G) admits an {infinite minimal}, {effective}, {strongly effective}, {free} compact
subflow, respectively. We denote Ω2 = {0, 1}G simply by 2G.

In this paper we show that every infinite group is symbolically-aperiodic, every
countable infinite group is symbolically-effective, and every countable infinite resid-
ually finite group is symbolically-free. In all these cases we can take n = 2. More
precisely: (1) for every infinite G the Bernoulli flow 2G has an infinite minimal subflow
(Theorem 2.1); (2) if additionally G is countable (we do not know if this restriction
is essential), then there is a minimal effective subflow of 2G (Theorem 3.1); (3) if G is
countable and residually finite, then there is a minimal subflow of 2G on which G acts
freely (Theorem 4.2). We provide some further examples of symbolically-free groups
and give a combinatorial characterization of this property. We do not know whether
there are groups G with no free subflows in 2G. We would like to thank Vladimir
Pestov for the elegant formulation of the combinatorial condition in Section 6.

What we call symbolically-free or symbolically-aperiodic groups, were called in
[2] groups admitting limit aperiodic colorings or limit weakly aperiodic colorings,
respectively. We are grateful to Alexander Dranishnikov for making the paper [2]
available to us before its publication and for stimulating discussions.

2. Every group is symbolically-aperiodic

2.1. Theorem. For every infinite G the Bernoulli flow 2G has an infinite minimal
subflow. Thus every infinite group is symbolically-aperiodic.

We need some preliminaries. We have already mentioned that every discrete group
G acts freely on the Stone–Čech compactification S := βG which is the greatest ambit
of G. This is due to Ellis [3]. The proof is by constructing, for every g in G \ {e},
a three-valued function v : G → Z (the integers) such that v(gh) 6= v(h) for every
h ∈ G (an easy exercise), and then extending v to S. By Zorn’s lemma there is a
minimal G-flow M ⊂ S. Such an M is called the universal minimal flow, and it is
unique up to an isomorphism of G-spaces. As the action of G on S is free, (M,G) is
a minimal free flow.

A topological space X is extremally disconnected if the closure of every open set
U ⊂ X is clopen, or, equivalently, if disjoint open sets have disjoint closures. Ṙ
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2.2. Lemma (Ellis [3]). For every infinite discrete group G there exists an extremally
disconnected minimal compact G-space X such that the action of G on X is free.

Proof. The universal minimal compact G-space M is a retract of the greatest ambit
βG (see e.g. [9] or [8, Proof of Lemma 6.1.2.]). The Stone–Čech compactification βG
is extremally disconnected, and it is easy to see that the property of being extremally
disconnected is preserved by retracts. We have observed that G acts freely on βG
and hence on M . �

2.3. Lemma. If X is an infinite extremally disconnected minimal compact G-space,
then there is a clopen susbset U ⊂ X such that the G-orbit {gU : g ∈ G} of U is
infinite.

Proof. Assume, in order to get a contradiction, that every clopen subset of X has a
finite G-orbit. Let B be the (complete) Boolean algebra of all clopen subsets of X.
According to our assumption, every U ∈ B lies in a finite G-invariant subalgebra of B.
It follows that the collection E of all G-invariant finite clopen partitions of X contains
“arbitrarily fine” covers: every open cover α of X has a refinement β ∈ E. Consider
a sequence {γn : n ∈ N} of partitions in E such that each γn+1 is a refinement of
γn, and each U ∈ γn is the union of at least three members of γn+1. Construct by
induction distinct Un, Vn ∈ γn such that Un+1 ∪ Vn+1 ⊂ Vn. Let U =

⋃
Un. We claim

that the clopen set O = U has an infinite G-orbit.
Indeed, U0 is the only member of γ0 contained in O, and Un+1 is the only member

of γn+1 disjoint from Un and contained in O. It follows that for every g ∈ G the
only disjoint sequence {Wn} such that

⋃
Wn ⊂ gO and Wn ∈ γn is the sequence

{gUn}. Thus for every n ∈ N the map gO 7→ gUn from the G-orbit of O onto γn is
well-defined (this map is onto because X is minimal). Therefore, the cardinality of
the G-orbit of O is not less than |γn|. Since |γn| → ∞, the orbit of O is infinite. �

Proof of Theorem 2.1. According to Lemmas 2.2 and 2.3, there exists a compact min-
imal G-space X and a clopen set U ⊂ X such that the collection {gU : g ∈ G} is
infinite. Let χU : X → {0, 1} be the characteristic function of U . Consider the G-map
φ : X → 2G defined by φ(x)(g) = χU(g−1x) (x ∈ X, g ∈ G). Since X is compact
and minimal, so is its image under φ. If x, y ∈ X, then φ(x) = φ(y) if and only if x
and y cannot be separated by a set of the form gU , g ∈ G. It follows that φ(X) is
infinite. �

3. Every countable group is symbolically-effective

In the proof of the next theorem we will use the following fact. A surjective ho-
momorphism of metric G-flows π : X → Y is called an almost 1-1 extension if the
subset {y ∈ Y : |π−1(y)| = 1} is dense and Gδ. It is an easy exercise to show that if
π is an almost 1-1 extension, Y is minimal and X is point transitive (i.e. has a point
whose orbit is dense), then X is also minimal.
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3.1. Theorem. For every discrete infinite countable group G there is a minimal sub-
flow Y ⊂ 2G and a point y0 ∈ Y such that the map g 7→ gy0 is 1-1. Thus every
infinite countable group is symbolically-strongly effective.

Proof. Let (M,G) be a minimal free flow (see the previous section). Fix a point
m0 ∈M .

Next consider a metric factor π : (M,G) → (X,G) such that π � Gm0 is 1 − 1;
i.e., denoting x0 = π(m0), the map g 7→ gx0 from G onto the orbit Gx0 is 1-1 (this is
possible since for a countable G the metric factors separate points on βG). Let ξ ∈ X
be a point which is not in Gx0. Let {g1, g2, . . . } be an enumeration of G \ {e}. We
construct by induction a sequence of open sets Un ⊂ X, n = 0, 1, 2, . . . , such that:

(i) For each n, Un+1 ⊂ Un,
(ii)

⋂∞
n=0 Un = {ξ},

(iii) for each n > 0, ∂Un ∩Gx0 = ∅, and
(iv) for every gj ∈ G \ {e} there are hj ∈ G and n ∈ N such that Un distinguishes

the points hjx0 and hjgjx0.

Let d be the metric on X. We denote by Br(x) the closed ball of radius r centered
at x (x ∈ X, r > 0). Let U0 = X and let U1 be an open set containing ξ which
separates x0 and g1x0 and such that ∂U1 ∩ Gx0 = ∅. Suppose U1 ⊃ U2 ⊃ · · · ⊃ Un
with ∂Uk ∩ Gx0 = ∅ and diamUk < 1/k, k = 2, . . . , n, have been constructed. Let
0 < δ < 1

n+1
be such that Bδ(ξ) ⊂ Un and such that all the points hjx0 and hjgjx0

for j ≤ n are not in Bδ(ξ). By minimality, there is some g = hn+1 ∈ G with
d(gx0, ξ) < δ/2. Consider the point z = ggn+1x0.

Case I: Suppose z 6∈ Un. Then there is a unique 0 ≤ t ≤ n−1 such that z ∈ Ut\Ut+1.
Choose radii 0 < 2 d(gx0, ξ) < r2 < r1 < δ such that ∂Bri(ξ)∩Gx0 = ∅, i = 1, 2, and
set Un+1 = Br1(ξ). If n+ 1 and t have the same parity, set also Un+2 = Br2(ξ).

Case II: If z ∈ Un, choose Un+1 to be an open set such that ξ ∈ Un+1 ⊂ Un,
∂Un+1 ∩ Gx0 = ∅, with diameter < 1

n+1
, and so that gx0 ∈ Un+1 but z = ggn+1x0 ∈

Un \ Un+1.
This concludes the inductive construction of the sequence {Un}∞n=0. Next define a

function F : X \ {ξ} → {0, 1} by setting F to be 0 and 1 alternately on Un \ Un+1.
Note that F is continuous at every point of Gx0 = {gx0 : g ∈ G}. Set y0(g) =

f(g) = F (g−1x0); then f is a {0, 1}-valued function on G and the flow it generates
in {0, 1}G under the shift action, say (Y,G), is minimal. In fact the natural joining
Z = X∨Y , obtained as the orbit closure in X×Y of the point (x0, y0), is an almost 1-1
extension of X and, being point transitive, it is minimal. Therefore Y , as a factor of
Z, is also minimal. Denote by Pe : Y → {0, 1} the restriction to Y of the projection
of {0, 1}G onto the e-th coordinate. We then have F (g−1x0) = f(g) = y0(g) =
(g−1y0)(e) = Pe(g

−1y0) and, by our construction, for every gj ∈ {g1, g2, . . . } = G\{e},
there is g ∈ G with

1 = |F (ggjx0)− F (gx0)| = |f(g−1
j g−1)− f(g−1)| = |Pe(ggjy0)− Pe(gy0)|.
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Thus the map g 7→ gy0, from G into Y , is 1-1. This completes the proof. �

4. Residually finite groups are symbolically-free

We recall that a discrete group G is residually finite when the intersection of all its
subgroups of finite index is trivial.

4.1. Lemma. Let G be a discrete infinite countable group. There is then a metrizable
zero-dimensional free flow (X,G).

Proof. As we have seen in the proof of Lemma 2.2, the action of G on the universal
minimal flow M is free. Let {fg}g∈G\{e} be a countable collection of bounded integer
valued functions on G with infh∈G |fg(gh) − fg(h)| ≥ 1 (“Ellis functions”). Let A

be the uniformly closed G-invariant subalgebra of `∞(G) containing {fg}g∈G and
let X = |A| be its Gelfand space, with π : βG → X denoting the corresponding

canonical map. Then (X,G) is a metrizable flow with C(X) ∼= A. For f ∈ A let f̂
be the corresponding function in C(X). Set x0 = π(e).

Given x ∈ X and g ∈ G \ {e}, there is a sequence gn ∈ G with limn→∞ gnx0 = x so
that

f̂g(gx) = lim
n→∞

f̂g(ggnx0) = lim
n→∞

fg(ggn)

and

f̂g(x) = lim
n→∞

f̂g(gnx0) = lim
n→∞

fg(gn).

Thus

|f̂g(gx)− f̂g(x)| = lim
n→∞

|fg(ggn)− fg(gn)| ≥ 1.

In particular gx 6= x and the action (X,G) is free.
Thus we have shown that for every countable infinite G there is a metrizable free

G-flow (X,G). By [1] (see also [5]) there exists a metrizable zero-dimensional cover
(X ′, G)→ (X,G) and we can therefore assume that X is zero-dimensional. �

Let us denote by I the class of groups G which admit an effective metric, zero-
dimensional, isometric action. If (X,G) is such an action then, since all these prop-
erties are preserved in subsystems, we may assume that (X,G) is also minimal. The
group Iso (X) of isometries of the zero-dimensional compact metric space X is itself
zero-dimensional and compact. To sum up: G is in I iff it admits a 1-1, metrizable,
zero-dimensional, topological group compactification (see e.g. [4]).

A conspicuous subclass of I is the class of residually finite countable groups. Let G
be a residually finite countable group. Let H be the collection of subgroups H < G
with [G : H] <∞. Pick a decreasing sequence {Hn} ⊂ H such that

⋂
Hn = {e}, and

consider the associated inverse limit

X = lim
←−

G/Hn.
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The corresponding flow (X,G) is topologically a Cantor set, algebraically a compact
zero-dimensional topological group, and dynamically an isometric free G-action with
a bi-invariant metric. Thus G ∈ I. Note that it was necessary to pass to a countable
subsequence of H, since the profinite completion

lim
←−H∈H

G/H

of G need not be metrizable.

4.2. Theorem. Let G be an infinite countable discrete group in the class I. Then
there is a minimal subflow Y ⊂ 2G on which G acts freely. Thus every group in
I is symbolically-free. In particular this holds for infinite countable residually finite
groups.

Proof. Let X be a 1-1, metrizable, zero-dimensional, topological group compactifica-
tion of G (see Lemma 4.1 above).

Repeat the construction in the proof of Theorem 3.1, with the extra property that
∂Un = ∅ for every n. This can be done as now X is zero dimensional.

Let C(F ) be the set of continuity points of F . With this additional condition we
have C(F ) = X \ {ξ} and therefore C0(F ) =

⋂
{gC(F ) : g ∈ G} = X \Gξ is a dense

Gδ subset of X with a countable complement.
We can now give a full description of the points of Y . Set f(g) = fx0(g) = y0(g) =

F (g−1x0), (g ∈ G). Then for h ∈ G we have (hy0)(g) = y0(h
−1g) = F (g−1hx0), (g ∈

G). Suppose now that limi→∞ hix0 = x with x ∈ C0(F ). We then have

lim
i→∞

(hiy0)(g) = lim
i→∞

y0(h
−1
i g) = lim

i→∞
F (g−1hix0) = F (g−1x).

Thus in {0, 1}G, yx = fx = limi→∞ hiy0 exists, with

yx(g) = fx(g) = F (g−1x),

(so that y0 = yx0). Moreover if limi→∞ hix0 = ξ and limi→∞ hiy0 = y exists then for
g 6= e,

y(g) = lim
i→∞

(hiy0)(g) = lim
i→∞

y0(h
−1
i g) = lim

i→∞
F (g−1hix0) = F (g−1ξ),

and y(e) is either 0 or 1 and accordingly we denote y = y0
ξ or y = y1

ξ . It is now clear
that, with the notation gyεξ = yεgξ,

Y = {yx : x ∈ X0} ∪ {yεgξ : g ∈ G, ε = 0, 1}.

On the dense Gδ, G-invariant subset X0 ⊂ X there is a continuous homomorphism
φ : x 7→ yx from X0 into Y ⊂ {0, 1}G and (with notation as in the proof of Theorem
3.1)

Z = X ∨ Y = cls {(x, φ(x)) : x ∈ X0}.
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Given x1 6= x2 two points in X0 we can find a sequence gn ∈ G such that
limn→∞ gnx1 = ξ. Since for every g ∈ G, d(gx1, gx2) = d(x1, x2), we can choose
some g ∈ G for which gx1 is very close to ξ and

|F (gx1)− F (gx2)| = |fx1(g)− fx2(g)| = 1.

This shows that the map φ : X0 → Y is 1-1. It is now easy to check that the
natural projection map πY : Z → Y is 1-1 (an isomorphism) and it follows that the
map π : Y → X defined by π = πX ◦ π−1

Y (with πX : Z → X denoting the projection
on X) is a continuous homomorphism from (Y,G) onto (X,G). (Explicitly we have
π(yx) = x = φ−1(yx) for x ∈ X0, and π(yεgξ) = gξ on the complement of Y0 = φ(X0)
in Y .)

Thus (Y,G), as an extension of a free action, is itself free and our proof is complete.
�

5. Some further examples

5.1. Theorem. (1) Every Abelian group is symbolically-free.
(2) Every residually finite group is symbolically-free.
(3) Let S0

∞ be the group of permutations of N with finite support. Every infinite
subgroup of S0

∞ is symbolically-free.
(4) Every torsion free hyperbolic group is symbolically-free.

Proof. 1. Apply Theorem 3.1 and then note that for G Abelian, an effective minimal
flow is already free.

2. This is the statement of Theorem 4.2.
3. This follows from [6] (see also [8, Section 6.3]) where it is shown that S∞ (the

group of all permutations of N) admits a minimal action (actually, the universal
minimal flow of S∞ as a Polish group) on which the subgroup S0

∞ acts freely.
4. This is a result of Dranishnikov and Schroeder, [2].

�

5.2. Remark. A famous open problem is whether every hyperbolic group is residually
finite (see e.g. [7]). An affirmative answer will provide — via Theorem 4.2 — a
proof that every hyperbolic group is symbolically-free, improving the Dranishnikov-
Schroeder result.

6. A combinatorial characterization of symbolically-free groups

In the following theorem we use the pictorial term “a 2-coloring of a set X” to
describe a partition of X into two disjoint subsets; each has its own “color”. Thus
elements x and y of X have “different colors” if they belong to different subsets of
the partition.
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6.1. Theorem. Let G be an infinite countable group. The following conditions are
equivalent.

(1) G acts freely on some subflow of 2G.
(2) There exists a 2-coloring of G with the following property. For every g 6= e,

there is a finite set A = A(g) such that for every h ∈ G there is an a ∈ A∩g−1A
such that ha and hga have different colors.

Proof. Suppose first that Y ⊂ Ω2 = {0, 1}G is a free subflow. Let ω be any point in
Y . We consider ω as a coloring of G and will show that it has the property described
in (2). If this is not the case then there is some g ∈ G \ {e} such that for every finite
set A ⊂ G there is some h = hA ∈ G with the property that ω(hga) = ω(ha) for
every a ∈ A ∩ g−1A. Let An be an increasing sequence of finite subsets of G with
G =

⋃∞
n=1An. For each n let hn = hAn be the corresponding element of G, so that

h−1
n ω(ga) = ω(hnga) = ω(hna) = h−1

n ω(a) for every a ∈ An ∩ g−1An.

Clearly also G =
⋃∞
n=1(An ∩ g−1An) and taking a convergent subsequence h−1

ni
ω →

ξ ∈ Y , we have
ξ(ga) = ξ(a) for every a ∈ G.

Thus gξ = ξ, contradicting our assumption that the flow (Y,G) is free.
Conversely, assume now that condition (2) is satisfied. Let ω : G → {0, 1} be the

coloring whose existence is ensured by this condition and consider its orbit closure
Y = cls (Gω) in Ω2. Let ξ be any point in Y and let g be an element of G \ {e}.
There exists a sequence hn ∈ G with ξ = limn→∞ h

−1
n ω. This means that for any

finite A ⊂ G, eventually

(1) h−1
n ω(a) = ω(hna) = ξ(a) for every a ∈ A.

In particular this holds for the finite set A = A(g−1) given in condition (2) and we
fix some h = hn for which equation (1) holds with respect to this A. By condition
(2) then, there exists some a ∈ A ∩ g−1A with ω(ha) 6= ω(hga). But then

ξ(a) = h−1ω(a) = ω(ha) 6= ω(hga) = h−1ω(ga) = ξ(ga) = g−1ξ(a).

Thus g−1ξ 6= ξ and we have shown that (Y,G) is a free flow. �

Call the condition (2) in Theorem 6.1 property P . With this terminology, each of
the groups listed in Theorem 5.1 has property P . The main question now is whether
there is any countably infinite group which does not satisfy property P . Stated
explicitly we have the following.

6.2. Problem. Is there a countable infinite group G with the following coloring prop-
erty:

For every 2-coloring of G, there exists g ∈ G \ {e} such that for every
finite set A ⊂ G, there exists an h ∈ G for which the pair ha and hga
have the same color for every a ∈ A ∩ g−1A.
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6.3. Remark. After this paper was accepted for publication we have learnt that
our main question (formulated as the coloring problem 6.2) recently received a neg-
ative answer by Su Gao, Steve Jackson, and Brandon Seward. This paper, enti-
tled “A coloring property for countable groups”, is available on Gao’s homepage at
http://www.cas.unt.edu/ sgao/pub/paper31.html

References

[1] M. Boyle, D. Fiebig and U. Fiebig, Residual entropy, conditional entropy and subshift covers,
Forum Math. 14, (2002), 713-757.

[2] A. Dranishnikov and V. Schroeder, Aperiodic colorings and tilings of Coxeter groups, Groups
Geom. Dyn., 1, (2007), 311–328.

[3] R. Ellis, Universal minimal sets, Proc. Amer. Math. Soc. 11, (1960), 540-543.
[4] Eli Glasner, Ergodic Theory via joinings, Math. Surveys and Monographs, AMS, 101, 2003.
[5] E. Glasner and B. Weiss, Quasi-factors of zero-entropy systems, J. of Amer. Math. Soc. 8,

(1995), 665-686.
[6] E. Glasner and B. Weiss, Minimal actions of the group S(Z) of permutations of the integers,

Geom. funct. anal. 12, (2002), 1-25.
[7] I. Kapovich and D. T. Wise, The equivalence of some residual properties of word-hyperbolic

groups, Journal of Algebra 223, (2000), 562-583.
[8] V. Pestov, Dynamics of infinite-dimensional groups. The Ramsey-Dvoretzky-Milman phenome-

non, University Lecture Series, vol. 40, AMS, 2006.
[9] V. Uspenskij, On universal minimal compact G-spaces, Topology Proceedings 25 (2000), 301-

308; arxiv:math.GN/0006081.
[10] W. A. Veech, Topological dynamics, Bull. Amer. Math. Soc. 83, (1977), 775-830.

Department of Mathematics, Tel-Aviv University, Tel Aviv, Israel
E-mail address: glasner@math.tau.ac.il
URL: http://www.math.tau.ac.il/∼glasner

Department of Mathematics, 321 Morton Hall, Ohio University, Athens, Ohio
45701, USA

E-mail address: uspensk@math.ohiou.edu


