EFFECTIVE MINIMAL SUBFLOWS OF BERNOULLI FLOWS
ELI GLASNER AND VLADIMIR V. USPENSKIJ

ABSTRACT. We show that every infinite discrete group GG has an infinite minimal
subflow in its Bernoulli flow {0,1}%. A countably infinite group G has an effective
minimal subflow in {0,1}¢. If G is countable and residually finite then it has such
a subflow which is free. We do not know whether there are groups G with no free
subflows in {0, 1}%.

1. INTRODUCTION

A well known theorem of Ellis asserts that every discrete group admits a free
compact flow. This was later extended by Veech to the class of locally compact
groups [10]. What Ellis and Veech have actually shown is that the “greatest ambit”
of the group G is a free G-flow. A G-flow is a pair (X,G) where X is a compact
Hausdorff space, GG is a discrete group, and G acts on X by homeomorphisms. The
action is free if no element of G' but the identity admits a fixed point. An ambit is
a G-flow (X, G) with a distinguished point zo € X whose orbit is dense: Gxg = X.
The greatest ambit is the Stone-Cech compactification for a discrete group, and it
is the Gelfand space of the Banach algebra BRUC(G) of bounded, right uniformly
continuous, complex valued functions on G, for a general topological group. For a
discrete group G, it is known that the enveloping semigroup of the Bernoulli flow on
Q = {0,1}9, ie. the action defined on Q by (gw)(h) = w(g'h), coincides with the
greatest ambit of G. (The enveloping semigroup of a G-flow (X, G) is defined as the
closure in X of the set of translations defined by the elements of G; for a discussion
of the enveloping semigroup including a proof of the above statement see for example
[4, Chapter 1, Section 4].) This implies that, in some sense, the Bernoulli G-flow is
sufficiently rich to recapture the universal G-flow, namely the greatest G-ambit. It is
thus natural to ask whether for every such G, its Bernoulli flow ({0,1}¢, G) admits
a free subflow. Recently some variants of this question appeared in other contexts as
well. In [2] the authors relate some versions of the above problem to combinatorial
group theory via tiling, coloring and other geometrical constructions on groups.

Let e denote the identity element of G. A flow (X, G) is aperiodic if it does not
contain finite orbits. It is minimal if it does not contain proper compact subflows, or,
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equivalently, the orbit of each point € X is dense. The flow (X, G) is effective if
for every g # e in G there is some x € X with gz # x. It is strongly effective if there
is a point zy € X such that the map g — gy, g € G is 1-1 from G into X. Finally,
the flow is free if for every g € G \ {e} and every x € X, we have gz # x.

We introduce the following definitions. Let G be a discrete group. For a positive
integer n > 2 set Q, = {0,1,...,n — 1} and let G act on §,, by left translations:

(gw)(h) =w(g™'h), weEQ,, gheq,

Then (£2,,G) is the Bernoulli G-flow on n symbols. We say that G is symbolically
{-aperiodic}, {-effective}, {-strongly effective}, {-free} if for some n the Bernoulli flow
(Q,, G) admits an {infinite minimal}, {effective}, {strongly effective}, {free} compact
subflow, respectively. We denote Qy = {0, 1} simply by 2.

In this paper we show that every infinite group is symbolically-aperiodic, every
countable infinite group is symbolically-effective, and every countable infinite resid-
ually finite group is symbolically-free. In all these cases we can take n = 2. More
precisely: (1) for every infinite G the Bernoulli flow 2¢ has an infinite minimal subflow
(Theorem 2.1); (2) if additionally G is countable (we do not know if this restriction
is essential), then there is a minimal effective subflow of 2¢ (Theorem 3.1); (3) if G is
countable and residually finite, then there is a minimal subflow of 2¢ on which G acts
freely (Theorem 4.2). We provide some further examples of symbolically-free groups
and give a combinatorial characterization of this property. We do not know whether
there are groups G with no free subflows in 2¢. We would like to thank Vladimir
Pestov for the elegant formulation of the combinatorial condition in Section 6.

What we call symbolically-free or symbolically-aperiodic groups, were called in
[2] groups admitting limit aperiodic colorings or limit weakly aperiodic colorings,
respectively. We are grateful to Alexander Dranishnikov for making the paper [2]
available to us before its publication and for stimulating discussions.

2. EVERY GROUP IS SYMBOLICALLY-APERIODIC

2.1. Theorem. For every infinite G the Bernoulli flow 2 has an infinite minimal
subflow. Thus every infinite group is symbolically-aperiodic.

We need some preliminaries. We have already mentioned that every discrete group
G acts freely on the Stone-Cech compactification S := 3G which is the greatest ambit
of G. This is due to Ellis [3]. The proof is by constructing, for every g in G \ {e},
a three-valued function v : G — Z (the integers) such that v(gh) # v(h) for every
h € G (an easy exercise), and then extending v to S. By Zorn’s lemma there is a
minimal G-flow M C §. Such an M is called the universal minimal flow, and it is
unique up to an isomorphism of G-spaces. As the action of G on S is free, (M, G) is
a minimal free flow.

A topological space X is extremally disconnected if the closure of every open set
U C X is clopen, or, equivalently, if disjoint open sets have disjoint closures. R
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2.2. Lemma (Ellis [3]). For every infinite discrete group G there exists an extremally
disconnected minimal compact G-space X such that the action of G on X is free.

Proof. The universal minimal compact G-space M is a retract of the greatest ambit
BG (see e.g. [9] or [8, Proof of Lemma 6.1.2.]). The Stone-Cech compactification 3G
is extremally disconnected, and it is easy to see that the property of being extremally
disconnected is preserved by retracts. We have observed that G acts freely on G
and hence on M. 0

2.3. Lemma. If X is an infinite extremally disconnected minimal compact G-space,
then there is a clopen susbset U C X such that the G-orbit {gU : g € G} of U is
infinite.

Proof. Assume, in order to get a contradiction, that every clopen subset of X has a
finite G-orbit. Let B be the (complete) Boolean algebra of all clopen subsets of X.
According to our assumption, every U € B lies in a finite G-invariant subalgebra of B.
It follows that the collection € of all G-invariant finite clopen partitions of X contains
“arbitrarily fine” covers: every open cover o of X has a refinement 5 € €. Consider
a sequence {7, : n € N} of partitions in € such that each v,,; is a refinement of
Yn, and each U € 7, is the union of at least three members of 7,,;. Construct by
induction distinct U, V;, € 7, such that U, 1 UV, 11 CV,. Let U =JU,. We claim
that the clopen set O = U has an infinite G-orbit.

Indeed, Uy is the only member of vy contained in O, and U,y is the only member
of v,41 disjoint from U, and contained in O. It follows that for every g € G the
only disjoint sequence {W,,} such that |JW,, C ¢gO and W, € =, is the sequence
{gU,}. Thus for every n € N the map gO — gU, from the G-orbit of O onto ~, is
well-defined (this map is onto because X is minimal). Therefore, the cardinality of
the G-orbit of O is not less than |7,|. Since |v,| — oo, the orbit of O is infinite. [

Proof of Theorem 2.1. According to Lemmas 2.2 and 2.3, there exists a compact min-
imal G-space X and a clopen set U C X such that the collection {gU : g € G} is
infinite. Let xy : X — {0, 1} be the characteristic function of U. Consider the G-map
¢ X — 2¢ defined by ¢(z)(g) = xv(97'z) (z € X, g € G). Since X is compact
and minimal, so is its image under ¢. If z,y € X, then ¢(x) = ¢(y) if and only if =
and y cannot be separated by a set of the form gU, g € G. It follows that ¢(X) is
infinite. 0

3. EVERY COUNTABLE GROUP IS SYMBOLICALLY-EFFECTIVE

In the proof of the next theorem we will use the following fact. A surjective ho-
momorphism of metric G-flows 7 : X — Y is called an almost 1-1 extension if the
subset {y € Y : |77 (y)| = 1} is dense and Gj. It is an easy exercise to show that if
7 is an almost 1-1 extension, Y is minimal and X is point transitive (i.e. has a point
whose orbit is dense), then X is also minimal.
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3.1. Theorem. For every discrete infinite countable group G there is a minimal sub-
flowY C 29 and a point yy € Y such that the map g — gqyo s 1-1. Thus every
infinite countable group is symbolically-strongly effective.

Proof. Let (M,G) be a minimal free flow (see the previous section). Fix a point
mo € M.

Next consider a metric factor 7 : (M,G) — (X, G) such that 7 [ Gmg is 1 — 1;
i.e., denoting xy = m(myg), the map g — gxo from G onto the orbit Gzg is 1-1 (this is
possible since for a countable G the metric factors separate points on G). Let £ € X
be a point which is not in Gxg. Let {g1,¢2,...} be an enumeration of G \ {e}. We
construct by induction a sequence of open sets U, C X, n=0,1,2,..., such that:

(i) For each n, U,+1 C Uy,
(i) Mazo Un = {1,

(iii) for each n >0, OU, N Gy = 0, and

iv) for every g; € G \ {e} there are h; € GG and n € N such that U,, distinguishes
(iv) Y 9j j g

the points h;zg and h;g;xo.

Let d be the metric on X. We denote by B, (z) the closed ball of radius r centered
at  (z € X, r > 0). Let Uy = X and let U; be an open set containing ¢ which
separates xo and g;xy and such that OU; N Gxy = (0. Suppose Uy D Uy D --- D U,
with OU, N Gzg = 0 and diam Uy, < 1/k, k = 2,...,n, have been constructed. Let
0<d< n+r1 be such that B;(§) C U, and such that all the points hjz, and h;g;x
for j < m are not in Bs(§). By minimality, there is some g = h,y; € G with
d(gxo,&) < 0/2. Consider the point z = gg, 1.

Case I: Suppose z € U,,. Then there is a unique 0 < ¢ < n—1 such that z € U;\Uy.;.
Choose radii 0 < 2d(gxg,&) < 12 < r1 < § such that 9B,,(§) NGzo =0, i = 1,2, and
set Upy1 = B, (€). If n+ 1 and ¢ have the same parity, set also U, 12 = B,,(&).

Case II: If z € U,, choose U,.; to be an open set such that £ € U,.; C U,,
OU,+1 N Gy = B, with diameter < n+r1, and so that gxy € U, but 2 = gg,1120 €
Un \ Ups1.

This concludes the inductive construction of the sequence {U, }2°,. Next define a
function F': X \ {{} — {0, 1} by setting F' to be 0 and 1 alternately on U, \ Uy41.

Note that F' is continuous at every point of Grg = {gzg : g € G}. Set yo(g) =
f(g) = F(g 'xz); then f is a {0,1}-valued function on G and the flow it generates
in {0,1}% under the shift action, say (Y, ), is minimal. In fact the natural joining
Z = X VY, obtained as the orbit closure in X xY of the point (¢, yo), is an almost 1-1
extension of X and, being point transitive, it is minimal. Therefore Y, as a factor of
Z, is also minimal. Denote by P, : Y — {0,1} the restriction to Y of the projection
of {0,1}¢ onto the e-th coordinate. We then have F(g~'zo) = f(g9) = wolg) =
(97 'yo)(€) = P.(g 'yo) and, by our construction, for every g; € {g1, g2, ... } = G\{e},
there is g € G with

1 = |F(gg;wo) — Fgmo)| = |f(g;'g™") — g~ ") = |Pe(99590) — P-(gy0)|-
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Thus the map g — gyo, from G into Y, is 1-1. This completes the proof. U

4. RESIDUALLY FINITE GROUPS ARE SYMBOLICALLY-FREE

We recall that a discrete group G is residually finite when the intersection of all its
subgroups of finite index is trivial.

4.1. Lemma. Let G be a discrete infinite countable group. There is then a metrizable
zero-dimensional free flow (X, G).

Proof. As we have seen in the proof of Lemma 2.2, the action of G on the universal
minimal flow M is free. Let {f;}4cc (e} be a countable collection of bounded integer
valued functions on G with inf,cq |f,(gh) — fy(h)| > 1 (“Ellis functions”). Let A
be the uniformly closed G-invariant subalgebra of ¢*°(G) containing {f,},ec and
let X = |A| be its Gelfand space, with 7 : 8G — X denoting the corresponding
canonical map. Then (X, G) is a metrizable flow with C'(X) = A. For f € A let f
be the corresponding function in C(X). Set zo = m(e).

Given x € X and g € G\ {e}, there is a sequence g,, € G with lim,, ., ¢,To = T S0
that

folgz) = lim fy(9gn0) = lim f4(9g)

and

~

fo(@) = lim fy(gazo) = lm f(ga).
Thus A )
[fo(gx) = fo(@)| = Tim [fy(9gn) = fo(gn)] = 1.

In particular gr # x and the action (X, G) is free.

Thus we have shown that for every countable infinite G there is a metrizable free
G-flow (X, G). By [1] (see also [5]) there exists a metrizable zero-dimensional cover
(X',G) — (X, @) and we can therefore assume that X is zero-dimensional. O

Let us denote by J the class of groups GG which admit an effective metric, zero-
dimensional, isometric action. If (X, G) is such an action then, since all these prop-
erties are preserved in subsystems, we may assume that (X, G) is also minimal. The
group Iso (X) of isometries of the zero-dimensional compact metric space X is itself
zero-dimensional and compact. To sum up: G is in J iff it admits a 1-1, metrizable,
zero-dimensional, topological group compactification (see e.g. [4]).

A conspicuous subclass of J is the class of residually finite countable groups. Let G
be a residually finite countable group. Let H be the collection of subgroups H < G
with [G : H] < co. Pick a decreasing sequence {H,,} C H such that (| H,, = {e}, and
consider the associated inverse limit

X =lim G/H,.
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The corresponding flow (X, G) is topologically a Cantor set, algebraically a compact
zero-dimensional topological group, and dynamically an isometric free G-action with
a bi-invariant metric. Thus G € J. Note that it was necessary to pass to a countable
subsequence of H, since the profinite completion

lim G/H

T HeXH

of GG need not be metrizable.

4.2. Theorem. Let G be an infinite countable discrete group in the class J. Then
there is a minimal subflow Y C 2% on which G acts freely. Thus every group in
J is symbolically-free. In particular this holds for infinite countable residually finite
groups.

Proof. Let X be a 1-1, metrizable, zero-dimensional, topological group compactifica-
tion of G (see Lemma 4.1 above).

Repeat the construction in the proof of Theorem 3.1, with the extra property that
OU,, = () for every n. This can be done as now X is zero dimensional.

Let C(F') be the set of continuity points of F. With this additional condition we
have C(F) = X \ {¢} and therefore Co(F) = ({gC(F) : g € G} = X \ G¢ is a dense
G5 subset of X with a countable complement.

We can now give a full description of the points of Y. Set f(g) = fu,(9) = vo(g9) =
F(g7'x9), (g9 € G). Then for h € G we have (hyo)(g) = yo(h™'g) = F(g 'hxy), (g €
(7). Suppose now that lim; .., h;xg = = with x € Cy(F'). We then have

lim (hyyo)(g) = lim yo(h; 'g) = lim F(g~" hixo) = F(g~"x).
Thus in {0,1}%, y, = f, = lim;_o hsyo exists, with

ya(9) = folg) = F(g~'2),

(so that yy = ya,). Moreover if lim; ., h;zo = £ and lim; . h;yo = y exists then for

g7 e
y(g) = lim (hiyo)(9) = lim yo(h;"g) = lim F(g™" hize) = F(g~'€),

1—00

and y(e) is either 0 or 1 and accordingly we denote y = yg ory = yé It is now clear
that, with the notation gyg = yg,,

Y ={y, v € Xo}U{yy:9€G, e=0,1}.

On the dense Gy, G-invariant subset Xy C X there is a continuous homomorphism
¢ x+— vy, from Xy into Y C {0,1}¢ and (with notation as in the proof of Theorem
3.1)

Z=XVY =cls{(z,0(x)) : x € Xo}.
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Given z; # w9 two points in X, we can find a sequence g, € G such that
lim,, .o gnz1 = £ Since for every g € G, d(gry,grs) = d(x1,22), we can choose
some g € G for which gx; is very close to £ and

’F<gw1) - F(QI'Q)‘ = ’fxl(g) - fxz(g)‘ = 1.

This shows that the map ¢ : Xy — Y is 1-1. It is now easy to check that the
natural projection map my : Z — Y is 1-1 (an isomorphism) and it follows that the
map 7 : Y — X defined by m = 7wx o 7r{,1 (with mx : Z — X denoting the projection
on X) is a continuous homomorphism from (Y, G) onto (X, G). (Explicitly we have
T(ye) = v = ¢~ (y») for x € Xy, and 7(y5) = g€ on the complement of Yy = ¢(Xo)
inY.)

Thus (Y, G), as an extension of a free action, is itself free and our proof is complete.

O

5. SOME FURTHER EXAMPLES

5.1. Theorem. (1) Every Abelian group is symbolically-free.
(2) Every residually finite group is symbolically-free.
(3) Let S° be the group of permutations of N with finite support. Every infinite
subgroup of S° is symbolically-free.
(4) Ewvery torsion free hyperbolic group is symbolically-free.

Proof. 1. Apply Theorem 3.1 and then note that for G Abelian, an effective minimal
flow is already free.

2. This is the statement of Theorem 4.2.

3. This follows from [6] (see also [8, Section 6.3]) where it is shown that S, (the
group of all permutations of N) admits a minimal action (actually, the universal
minimal flow of S, as a Polish group) on which the subgroup SY. acts freely.

4. This is a result of Dranishnikov and Schroeder, [2].

O

5.2. Remark. A famous open problem is whether every hyperbolic group is residually
finite (see e.g. [7]). An affirmative answer will provide — via Theorem 4.2 — a
proof that every hyperbolic group is symbolically-free, improving the Dranishnikov-
Schroeder result.

6. A COMBINATORIAL CHARACTERIZATION OF SYMBOLICALLY-FREE GROUPS

In the following theorem we use the pictorial term “a 2-coloring of a set X7 to
describe a partition of X into two disjoint subsets; each has its own “color”. Thus
elements x and y of X have “different colors” if they belong to different subsets of
the partition.
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6.1. Theorem. Let G be an infinite countable group. The following conditions are
equivalent.

(1) G acts freely on some subflow of 2¢.

(2) There exists a 2-coloring of G with the following property. For every g # e,
there is a finite set A = A(g) such that for every h € G thereis ana € ANg—'A
such that ha and hga have different colors.

Proof. Suppose first that Y C € = {0,1}¢ is a free subflow. Let w be any point in
Y. We consider w as a coloring of G and will show that it has the property described
in (2). If this is not the case then there is some g € G'\ {e} such that for every finite
set A C G there is some h = hy € G with the property that w(hga) = w(ha) for
every a € AN g 'A. Let A, be an increasing sequence of finite subsets of G with
G = Ufle A,. For each n let h,, = hy, be the corresponding element of GG, so that

h.'w(ga) = w(hnga) = w(h,a) = h,'w(a) for every a € A, N g A,.

Clearly also G = |27, (4, N ¢g7'A,) and taking a convergent subsequence h;il W —
£ €Y, we have
&(ga) = &(a) for every a € G.

Thus g¢ = &, contradicting our assumption that the flow (Y, G) is free.

Conversely, assume now that condition (2) is satisfied. Let w : G — {0,1} be the
coloring whose existence is ensured by this condition and consider its orbit closure
Y = cls(Gw) in Qy. Let £ be any point in Y and let g be an element of G \ {e}.
There exists a sequence h, € G with & = lim,,_ h,'w. This means that for any
finite A C G, eventually

(1) h.'w(a) = w(h,a) = £(a)  for every a € A.

In particular this holds for the finite set A = A(g™') given in condition (2) and we
fix some h = h,, for which equation (1) holds with respect to this A. By condition
(2) then, there exists some a € AN g~'A with w(ha) # w(hga). But then

£(a) = h™'w(a) = w(ha) # w(hga) = h™'w(ga) = £(ga) = g~¢(a).
Thus g7'¢ # € and we have shown that (Y, G) is a free flow. O

Call the condition (2) in Theorem 6.1 property P. With this terminology, each of
the groups listed in Theorem 5.1 has property P. The main question now is whether
there is any countably infinite group which does not satisfy property P. Stated
explicitly we have the following.

6.2. Problem. Is there a countable infinite group G with the following coloring prop-
erty:

For every 2-coloring of G, there exists g € G\ {e} such that for every

finite set A C G, there exists an h € GG for which the pair ha and hga

have the same color for every a € AN g 1A.
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6.3. Remark. After this paper was accepted for publication we have learnt that
our main question (formulated as the coloring problem 6.2) recently received a neg-
ative answer by Su Gao, Steve Jackson, and Brandon Seward. This paper, enti-
tled “A coloring property for countable groups”, is available on Gao’s homepage at
http://www.cas.unt.edu/ sgao/pub/paper31.html
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