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Abstract. Let (X, T ) be a topologically transitive dynamical system. We show
that if there is a subsystem (Y, T ) of (X, T ) such that (X×Y, T ×T ) is transitive,
then (X, T ) is strongly chaotic in the sense of Li and Yorke. We then show that
many of the known sufficient conditions in the literature, as well as a few new
results, are corollaries of this statement. In fact the kind of chaotic behavior we
deduce in these results is a much stronger variant of Li-Yorke chaos which we call
uniform chaos. For minimal systems we show, among other results, that uniform
chaos is preserved by extensions and that a minimal system which is not uniformly
chaotic is PI.
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Introduction

The presence or the lack of chaotic behavior is one of the most prominent traits
of a dynamical system. However, by now there exists in the literature on dynamical
systems a plethora of ways to define chaos. In 1975, Li and Yorke introduced a
notion of chaos [LY75], known now as Li-Yorke chaos, for interval maps. With a
small modification this notion can be extended to any metric space. Another notion
was introduced later by Devaney [D89].

In [GW93] the authors suggested using positive topological entropy as the defining
criterion for chaotic behavior. More recently it was shown that both Devaney chaos
[HY02], and positive entropy [BGKM02] imply Li-Yorke chaos. We remark that
weak mixing as well (or even scattering) implies Li-Yorke chaos. Thus, in a certain
sense Li-Yorke chaos is the weakest notion of chaos. We refer the reader to the
recent monograph [AAG08] and the review [GY08] on local entropy theory, which
include discussions of the above notions.

It is natural to ask which transitive systems are chaotic and this is the main theme
of this work. In Section 1 we introduce our terminology and review some basic facts.
In Section 2 we first prove, the somewhat surprising fact (Theorem 2.11) that every
transitive system is “partially rigid”. This is then used in Section 3 to deduce the
following criterion. For a transitive topological dynamical system (X,T ) if there is
a subsystem (Y, T ) of (X,T ) (i.e. Y is a non-empty closed and T -invariant subset of
X) such that (X × Y, T × T ) is transitive, then (X,T ) is strongly Li-Yorke chaotic.
As we will see many of the known sufficient conditions in the literature, as well as a
few new results, are corollaries of this fact. In fact the kind of chaotic behavior we
deduce in these results is a much stronger variant of Li-Yorke chaos which we call
uniform chaos. In Section 4 we reexamine these results in view of the Kuratowski-
Mycielski theory. In Section 5 we specialize to minimal dynamical systems. After
reviewing some structure theory we show, among other results that for minimal
systems uniform chaos is preserved by extensions, and that if a minimal system is
not uniformly chaotic then it is a PI system. We also show that a minimal strictly
PI system which is not point distal admits a proximal scrambled Mycielski set. This
perhaps suggests that a minimal system which does not contain such a set is actually
point distal, but we have to leave that issue as an open problem.
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Throughout the paper and mostly in Section 5 we make heavy use of structure the-
ory and of the extension to βN of the N action given by T to. We refer, for example,
to the sources [G76], [V77], [Au88], and [Ak97] for the necessary background.

We thank Hanfeng Li for reading the Arxiv version of this paper and for sug-
gesting some improvements which now appear in the Remarks 5.19 and 5.20 below.
We thank Joe Auslander for several corrections, and many helpful remarks and
suggestions throughout the paper, which greatly improved the presentation.

Eli Glasner thanks his coauthors and gracious hosts, Xiangdong Ye and Song Shao
for their hospitality during a long visit to Hefei in 2004, where most of this work
was done.

1. Preliminary definitions and results

In this section we briefly review some basic definitions and results from topolog-
ical dynamics. Relevant references are [GM89], [GW93], [AAB96], [Ak97], [AG01],
[HY02], [Ak03], [AAG08]. The latter is perhaps a good starting point for a begin-
ner. One can also try to trace the historical development of these notions from that
source and the reference list thereof.

1.1. Transitivity and ideas of chaos. We write Z to denote the integers, N for
the natural numbers, i.e the positive integers. Throughout this paper a topological
dynamical system (TDS for short) is a pair (X,T ), where X is a non-vacuous com-
pact metric space with a metric d and T is a continuous surjective map from X to
itself. A non-vacuous closed invariant subset Y ⊂ X defines naturally a subsystem
(Y, T ) of (X,T ).

For subsets A,B ⊂ X we define for a TDS (X,T ) the hitting time set N(A,B) :=
{n ∈ N : A ∩ T−nB 6= ∅}. When A = {x} is a singleton we write simply N(x,B)
and if moreover B is a neighborhood of x we refer to N(x,B) as the set of return
times to B.

Recall that (X,T ) is called topologically transitive (or just transitive) if for every
pair of nonempty open subsets U and V , the set N(U, V ) is non-empty.

Let ω(x, T ) be the set of the limit points of the orbit of x,

Orb(x, T ) := {x, T (x), T 2(x), . . .}.
A point x ∈ X is called a transitive point if ω(x, T ) = X. It is easy to see that if
(X,T ) is transitive then the set of all transitive points, denoted TransT , is a dense
Gδ set of X.

Remark 1.1. Notice that if (X,T ) is transitive with z ∈ TransT and X has an
isolated point x then x = T k(z) for arbitrarily large values of k. Hence, x is periodic
and is a transitive point. That is, X consists of a single periodic orbit. In particular,
since we have defined N(A,B) ⊂ N it follows that the compactifications of the
translation map n 7→ n+ 1 on Z or N are not transitive systems.

If TransT = X then we say that (X,T ) is minimal. Equivalently, (X,T ) is
minimal if and only if it contains no proper subsystems. By the well-known Zorn’s
Lemma argument any dynamical system (X,T ) contains some minimal subsystem,
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which is called a minimal set of X. Each point belonging to some minimal set of X
is called a minimal point.

A TDS (X,T ) is (topologically) weakly mixing if the product system(X×X,T×T )
is transitive. Furstenberg’s 2 implies n Theorem, [F67], says that the product system
(Xn, T × ...× T ) is then transitive for every positive integer n.

A pair (x, y) ∈ X ×X is said to be proximal if lim infn→+∞ d(T nx, T ny) = 0 and
it is called asymptotic when limn→+∞ d(T nx, T ny) = 0. If in addition x 6= y, then
(x, y) is a proper proximal (or asymptotic) pair. The sets of proximal pairs and
asymptotic pairs of (X,T ) are denoted by P (X,T ) and Asym(X,T ) respectively.
A point x ∈ X is a recurrent point if there are ni ↗ +∞ such that T nix → x. A
pair (x, y) ∈ X2 which is not proximal is said to be distal. A pair is said to be
a Li-Yorke pair if it is proximal but not asymptotic. A pair (x, y) ∈ X2 \ ∆X is
said to be a strong Li-Yorke pair if it is proximal and is also a recurrent point of
X2. Clearly a strong Li-Yorke pair is a Li-Yorke pair. A system without proper
proximal pairs (Li-Yorke pairs, strong Li-Yorke pairs) is called distal (almost distal,
semi-distal respectively). It follows directly from the definitions that a distal system
is almost distal and an almost distal system is semi-distal.

One can localize the concept of distality. A point x is called a distal point if its
proximal cell P [x] = {x′ ∈ X : (x, x′) ∈ P (X,T )} = {x}. A theorem of Auslander
says that any proximal cell contains some minimal point (see below). Hence, a distal
point is necessarily a minimal point. A minimal system (X,T ) is called point distal
if it contains a distal point. A theorem of Ellis [E73] says that in a metric minimal
point distal system the set of distal points is dense and Gδ.

A dynamical system (X,T ) is equicontinuous if for every ε > 0 there is δ > 0 such
that d(x, y) < δ implies d(T nx, T ny) < ε, for every n ∈ N. It can be shown, see e.g.
[Ak96], that if T is an equicontinuous surjection then it is an isometry of a metric
topologically equivalent to d. It clearly follows that an equicontinuous system is
distal.

As with distality, the notion of equicontinuity can be localized. A point x ∈ X is
called an equicontinuity point if for every ε > 0 there is δ > 0 such that d(x, y) < δ
implies d(T nx, T ny) < ε for all n ∈ N. We denote by EqT the set of equicontinuity
points of (X,T ). Notice that the term equicontinuity is used because it describes
exactly the usual analysts’ notion of equicontinuity for the set of iterates {T n : n ∈
N}. EqT is always a Gδ set. A TDS (X,T ) is called almost equicontinuous if EqT
is dense and so is residual. When EqT = X then the usual compactness argument
implies that the system is equicontinuous.

A TDS (X,T ) is called sensitive if there is an ε > 0 such that whenever U is a
nonempty open set there exist x, y ∈ U such that d(T nx, T ny) > ε for some n ∈ N.
While this clearly implies that EqT = ∅, the converse is not true for general systems.

If the system (X,T ) is transitive then the Auslander-Yorke Dichotomy Theorem
says that either the system is sensitive and so EqT = ∅ or else EqT = TransT and
so the system is almost equicontinuous. In particular a minimal system is either
equicontinuous or sensitive (see [AY80], [GW93] and [AAB96]). For more recent
results on sensitivity, see [HLY, YZ08] and the references therein.
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A homomorphism π : (X,T )→ (Y, S) is a continuous map from X to Y such that
S ◦π = π ◦T . It is called a factor map or an extension when π is onto, in which case
we say that (X,T ) an extension of (Y, S) and that (Y, S) is a factor of (X,T ). An
extension π is determined by the corresponding closed invariant equivalence relation
Rπ = {(x1, x2) : πx1 = πx2} = (π × π)−1∆Y ⊂ X ×X.

An extension π : (X,T ) → (Y, S) is called asymptotic if Rπ ⊂ Asmp(X,T ).
Similarly we define proximal, distal extensions. We define π to be an equicontinuous
extension if for every ε > 0 there is δ > 0 such that (x, y) ∈ Rπ and d(x, y) < δ
implies d(T nx, T ny) < ε, for every n ∈ N. The extension π is called almost one-to-
one if the set X0 = {x ∈ X : π−1(π(x)) = {x}} is a dense Gδ subset of X.

A subset A ⊂ X is called scrambled (strongly scrambled) if every pair of distinct
points in A is Li-Yorke (strong Li-Yorke). The system (X,T ) is said to be Li-Yorke
chaotic (strong Li-Yorke chaotic) if it contains an uncountable scrambled (strongly
scrambled) set.

A TDS (X,T ) is said to be chaotic in the sense of Devaney (or an infinite P -
system) if it is transitive and X is infinite with a dense set of periodic points. Such
a system is always sensitive (see [BBCDS92] and [GW93]).

1.2. Ellis semigroups. An Ellis semigroup is a semigroup equipped with a com-
pact Hausdorff topology such that for every p ∈ E the map Rp : E → E defined
by Rp(q) = qp is continuous. (This is sometimes called a right topological, or a
left topological, or a right semi-topological semigroup. Here we try to use a non-
ambiguous term which we hope will standardize the terminology.)

A subset I of E is called an ideal (= left ideal) when it is nonempty and q ∈
E, p ∈ I implies qp ∈ I. For example, if p ∈ E then Ep is a closed ideal. A subset H
of E is called a co-ideal when it is nonempty and for q ∈ E, p ∈ H we have qp ∈ H
if and only if q ∈ H. So both ideals and co-ideals are nonempty subsemigroups of
E. An Ellis action is an action of an Ellis semigroup E on a compact Hausdorff
space X such that for every x ∈ X the map Rx : E → X defined by Rx(q) = qx is
continuous. For example, the semigroup multiplication on an Ellis semigroup E is
an action of E on itself called the translation action. For an Ellis action of E on X
and x ∈ X, the isotropy set Hx := {p ∈ E : px = x} is a co-ideal if it is nonempty.

The main example we will use is the Čech-Stone compactification of the positive
integers, βN. The translation map g on N defined by n 7→ n + 1 extends to a
continuous (not surjective) map T0 on βN. If T is any continuous map on a compact
Hausdorff space X then for each x ∈ X the map given by n 7→ T n(x) extends to
a continuous map from βN to X. Concatenating these maps, we obtain a map
βN × X → X. In particular, from T0 we get a map βN × βN → βN which is
associative and so gives βN the structure of an Ellis semigroup. For a TDS (X,T )
the map βN×X → X is an Ellis action extending the N action. We let β∗N denote
the closed subset βN\N. A closed subset J of βN is an ideal if and only if J ⊂ T0(J).
In particular, β∗N is an ideal and the map T0 restricts to a homeomorphism on β∗N.
For any x ∈ X observe that βNx = Rx(βN) is the orbit-closure of x in X and
β∗Nx = ω(x, T ). For the βN action on X associated with a TDS (X,T ) and x ∈ X
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we use Hx := {p ∈ β∗N : px = x}, the isotropy set with respect to the closed ideal
β∗N. Thus, Hx is nonempty exactly when x is recurrent.

At times it is useful that the semigroup act faithfully on X, i.e. distinct elements
act by different maps on X. We then use the enveloping semigroup E = E(X,T )
which is the closure in XX (with its compact, usually non-metrizable, pointwise
convergence topology) of the set {T n : n ∈ N}. With the operation of composition
of maps this is an Ellis semigroup and the operation of evaluation is an Ellis action
of E(X,T ) on X which extends the action of N via T . The map n 7→ T n extends
to define a continuous map βN→ XX whose image is E(X,T ).

The elements of E(X,T ) may behave very badly as maps of X into itself; usually
they are not even Borel measurable. However our main interest in this Ellis action
lies in its algebraic structure and its dynamical significance. A key lemma in the
study of this algebraic structure is the following:

Lemma 1.2 (Ellis). If E is an Ellis semigroup, then E contains an idempotent;
i.e., an element v with v2 = v.

If v ∈ E is an idempotent then v ∈ Hv and so Hv is a co-ideal.
In the next proposition we state some basic properties of Ellis semigroups.

Proposition 1.3. Let E be an Ellis semigroup.

(1) A nonempty closed subsemigroup H of E is a minimal closed co-ideal if and
only if H = Hu for every idempotent u ∈ H.

(2) A nonempty subset I of E is a minimal ideal of the semigroup E if and only
if for every I = Ep for every p ∈ I. In particular a minimal ideal is closed.
We will refer to it simply as a minimal ideal. Minimal ideals I in E exist
and for each such ideal the set of idempotents in I, denoted by J = J(I), is
non-empty.

(3) Let I be a minimal ideal and J its set of idempotents then:
(a) For v ∈ J and p ∈ I, pv = p.
(b) For each v ∈ J , vI = {vp : p ∈ I} = {p ∈ I : vp = p} is a subgroup of

I with identity element v. For every w ∈ J the map p 7→ wp is a group
isomorphism of vI onto wI.

(c) {vI : v ∈ J} is a partition of I. Thus if p ∈ I then there exists a unique
v ∈ J such that p ∈ vI.

(4) Let K,L, and I be minimal ideals of E. Let v be an idempotent in I, then
there exists a unique idempotent v′ in L such that vv′ = v′ and v′v = v. (We
write v ∼ v′ and say that v′ is equivalent to v.) If v′′ ∈ K is equivalent to
v′, then v′′ ∼ v.

Let (X,T ) be a TDS and let (p, x) 7→ px be the induced Ellis action of βN on X.

(4) I is a minimal ideal of the semigroup βN if and only if it is a minimal
subsystem of (β∗N, T0). If I and L are minimal ideals of βN and v ∈ J(I)
then The map p 7→ pv of L to I is an isomorphism of dynamical systems.

(5) A pair (x, x′) ∈ X×X is proximal if and only if px = px′ for some p ∈ E, if
and only if there exists a minimal ideal I in E with px = px′ for every p ∈ I.
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(6) If (X,T ) is minimal, then the proximal cell of x

P [x] = {x′ ∈ X : (x, x′) ∈ P} = {vx : v ∈ Ĵ},
where Ĵ =

⋃
{J(I) : I is a minimal left ideal in βN} is the set of minimal

idempotents in βN.

Finally, a homomorphism π : (X,T ) → (Y, S) is an action map for the βN Ellis
actions, i.e. π(px) = pπ(x) for all (p, x) ∈ βN×X.

We refer to [G76], [Au88], [Ak97] and [G03] for more details.

1.3. Families and filters. We say that a collection F of subsets of N (or Z) is a a
family if it is hereditary upward, i.e. F1 ⊆ F2 and F1 ∈ F imply F2 ∈ F . A family F
is called proper if it is neither empty nor the entire power set of N, or, equivalently
if N ∈ F and ∅ 6∈ F . Any nonempty collection A of subsets of N generates a family
F(A) := {F ⊆ N : F ⊃ A for some A ∈ A}.

If a family F is closed under finite intersections and is proper, then it is called
a filter. A collection of nonempty subsets B is a filter base if for every B1, B2 ∈ B
there is B3 ∈ B with B3 ⊂ B1 ∩ B2. Clearly, B is a filter base if and only if the
family F(B) is a filter. A maximal filter is called an ultrafilter. By Zorn’s lemma
every filter is contained in an ultrafilter.

For a family F its dual is the family F∗ := {F ⊆ N : F ∩F ′ 6= ∅ for all F ′ ∈ F}.
The collection of ultrafilters on N can be identified with the Čech-Stone compact-

ification βN, where to n ∈ N corresponds the principle ultrafilter {A : n ∈ A ⊂ N}.
(see Subsection 1.2 above).

Lemma 1.4. Let (X,T ) be a transitive TDS. Then the collection of sets

A = {N(U,U) : U is a nonempty open subset of X}
is a filter base, whence the family F(A) is a filter.

Proof. Let U1 and U2 be nonempty open subsets of X. As (X,T ) is transitive, there
is an n ∈ N such that U3 = U1 ∩ T−nU2 6= ∅. Then

N(U3, U3) ⊆ N(U1, U1) ∩N(T−nU2, T
−nU2)

= N(U1, U1) ∩N(T nT−nU2, U2)

= N(U1, U1) ∩N(U2, U2),

and our claim follows. �

A subset of F of N is called thick when it contains arbitrarily long runs. That
is, for every n ∈ N there exists i ∈ N such that i, i + 1, . . . , i + n ∈ F . With
g the translation map n 7→ n + 1 on N, F ⊆ N is thick exactly when any finite
intersection of translates {g−i(F ) : i = 0, 1, ...} is nonempty. In that case these
intersections generate a filter of thick subsets. We will then denote this filter by FF .
It is a theorem of Furstenberg [F67] that a TDS (X,T ) is weak mixing if and only
if N(U1, U2) is thick for every pair of nonempty open U1, U2 ⊆ X.
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For a TDS (X,T ) and a point x ∈ X define

Ix = {N(x, U) : U is a neighborhood of x}.
A point x is recurrent for (X,T ) if and only if each such return time set N(x, U) is
nonempty and so if and only if Ix is a filter base. For a pair (x1, x2) ∈ X×X define

P(x1,x2) = {N((x1, x2), V ) : V is a neighborhood of the diagonal in X ×X}.
A pair (x1, x2) is proximal if and only if each such N((x1, x2), V ) is nonempty and
so if and only if P(x1,x2) is a filter base.

2. Transitivity, recurrence and proximality

2.1. Recurrent and proximal sets.

Definition 2.1. Let (X,T ) be a TDS and K ⊆ X .

(1) We say that K is pointwise recurrent if every x ∈ K is a recurrent point.
(2) K is uniformly recurrent if for every ε > 0 there is an n ∈ N with d(T nx, x) <

ε for all x in K.
(3) K is recurrent if every finite subset of K is uniformly recurrent.

In [GM89], these concepts were introduced for the total space X. When X is
uniformly recurrent, the system (X,T ) is called uniformly rigid and when X is
recurrent, the system is called weakly rigid. (X,T ) is called rigid when the identity
on X is the pointwise limit of some sequence of iterates {T nk} with nk ↗∞.

There are related concepts for proximality.

Definition 2.2. Let (X,T ) be a TDS and K ⊂ X.

(1) A subset K of X is called pairwise proximal if every pair (x, x′) ∈ K ×K is
proximal.

(2) The subset K is called uniformly proximal if for every ε > 0 there is n ∈ N
with diamT nK < ε.

(3) A subset K of X is called proximal if every finite subset of K is uniformly
proximal.

Remark 2.3. Let (Ω = {1, 2, 3, 4}Z, σ) be the Bernoulli shift on four symbols. Let
an, bn, cn and dn denote the blocks of n consecutive 1s, 2s, 3s and 4s, respectively. Let
ω1 ∈ Ω be defined on N as the concatenation of the blocks anbncndn, n = 1, 2, 3, . . . .
Then, let ω1(−j) = ω1(j). Define ω2 similarly but with blocks ancndnbn, and ω3

using cnbndnan. Clearly the set {ω1, ω2, ω3} is pairwise proximal but not proximal.
It seems that, e.g. by using the method of concatenation flows developed in [GM89],
it is possible to construct a minimal subsystem of the shift ([0, 1]Z, σ) which contains
such a three point set as required. However, we have not worked out the details of
such a construction.
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Observe that

uniform recurrence ⇒ recurrence ⇒ pointwise recurrence,

and
uniform proximality ⇒ proximality ⇒ pairwise proximality.

Remark 2.4. Clearly, if K satisfies any of these properties then each subset of K
satisfies the corresponding property. If K is either uniformly recurrent or uniformly
proximal then its closure K satisfies the corresponding property.

Recurrence and proximality are properties of finite type, that is, they hold for K
if and only if they hold for every finite subset of K. It follows that if K is a chain of
recurrent subsets (or proximal subsets) then

⋃
K is recurrent (resp. proximal). It

then follows from Zorn’s Lemma that any recurrent/proximal set is contained in a
maximal recurrent/proximal set.

For a TDS (X,T ) and n ≥ 1, we define subsets of Xn

Recurn(X) = {(x1, . . . , xn) : ∀ε > 0, ∃k ∈ N with d(T kxi, xi) < ε,∀i}.
P roxn(X) = {(x1, x2, · · · , xn) : ∀ε > 0 ∃k ∈ Nwith d(T kxi, T

kxj) < ε,∀i, j}.
Clearly, Recurn(X) and Proxn(X) are Gδ subsets of Xn.
For K ⊂ X we use the Ellis action of βN on X to define subsets of βN

HK = {p ∈ β∗N : px = x for all x ∈ K},
AK = {p ∈ β∗N : px1 = px2 for all x1, x2 ∈ K}.

If K = {x} then the three notions of recurrence agree for K and they hold if
and only if x is a recurrent point. Since a point x is a recurrent point if and only
if x ∈ ω(x, T ) = β∗Nx, it is recurrent exactly when there exists p ∈ β∗N such
that px = x and so when HK is nonempty. On the other hand, (x1, ..., xn) is an
element of Recurn(X) if and only if it is a recurrent point for the n-fold product
(Xn, T × · · · × T ).

If K = {x1, ..., xn} then K is proximal if and only if (x1, ..., xn) ∈ Proxn(X) in
which case proximality is automatically uniform. Furthermore, K is proximal if and
only if there exists p ∈ β∗N such that pK is a singleton and so if and only if AK is
nonempty.

Proposition 2.5. Let (X,T ) be a TDS and K ⊂ X.

(a) When it is nonempty, the subset HK is a closed co-ideal in β∗N.
The following are equivalent.

(1) K is recurrent.
(2) For every n ≥ 1 Kn ⊂ Recurn(X).
(3) HK is a nonempty subset of β∗N.
(4) There exists an idempotent u ∈ β∗N such that ux = x for all x ∈ K.

(b) When it is nonempty, the subset AK is a closed ideal in β∗N. The following
are equivalent.
(1) K is proximal.
(2) For every n ≥ 1 Kn ⊂ Proxn(X).
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(3) AK is a nonempty subset of β∗N.
(4) There exists an idempotent u ∈ β∗N such that uK is a singleton subset

of X.

Proof. It is clear that HK is a closed subsemigroup and that AK is an ideal when it
is nonempty (by convention an ideal is required to be nonempty). Furthermore, if
L1, L2 ⊂ X then

HL1∪L2 = HL1 ∩HL2 ,

AL1∪L2 ⊂ AL1 ∩ AL2 .

(a) (1)⇔ (2)⇔ (3) These conditions are clearly equivalent when K is finite and
conditions (1) and (2) hold if and only if they hold for every finite subset of K. Now
assume that HL is nonempty for every finite subset L of K. The above equation
implies that the collection {HL : L ⊂ K and L finite} is a filterbase and so its
intersection HK is nonempty.

By Lemma 1.2 HK contains an idempotent when it is nonempty and so (3)⇒ (4).
Finally (4)⇒ (1) is clear.

The proof of (b) is completely analogous.
�

Proposition 2.6. Let (X,T ) be a topologically transitive TDS. For every n ≥
1 Recurn(X) is dense in Xn.

Proof. Fix n and define for κ ∈ (N)n, T κ : X → Xn by T κ(x) = (T κ1(x), ..., T κn(x)).
This defines a homomorphism from (X,T ) to the n-fold product (Xn, T × · · · × T ).

Let z ∈ X be a transitive point for (X,T ). For any ε > 0 and any (x1, ..., xn) ∈ Xn

there exists κ such that d(T κi(z), xi) < ε for all i. Since z is a recurrent point, T κ(z)
is a recurrent point ε close to (x1, ..., xn). Thus, Recurn(X) is dense in Xn.

�

As we will now see, there is no analogue of Furstenberg’s 2 ⇒ n theorem for
density of recurrent points.

If (X,T ) is a TDS then A ⊆ X is called wandering when the sets {T−k(A) : k =
0, 1, 2, . . . } are pairwise disjoint. It is clear that a wandering open set contains no
recurrent points.

Lemma 2.7. For any n ≥ 2 there exists a finite collection of TDS,W = {(X1, T1), ...,
(Xn, Tn)} such that for each i = 1, ..., n the n− 1-fold product system (Yi, Si) which
omits the factor (Xi, Ti) is weak mixing, but the n-fold product (X1× · · · ×Xn, T1×
· · · × Tn) contains a nonempty wandering open set U .

Proof. We uses a construction due to Weiss, see the Appendix in [AG01]. Recall
from Section 1.3 that a subset of F of N is called thick when each finite intersection
of the translates {g−i(F ) : i = 0, 1, ...} is nonempty. The intersections generate a
filter of thick sets denoted FF . Furthermore, a TDS (X,T ) is weak mixing if and
only if N(U, V ) is thick for every pair of nonempty open sets U, V ⊆ X by a theorem
of Furstenberg.
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On the other hand, given a thick F ⊂ N the Weiss construction yields a TDS
(X,T ) and a nonempty open U ⊆ X such that N(U,U) = F and, in addition,
N(V1, V2) ∈ FF for every pair of nonempty open V1, V2 ⊆ X. In particular, the
system is weak mixing.

Now choose R1, ..., Rn pairwise disjoint thick subsets of N with union F and for
k = 1, ..., n let Fk = F \ Rk. Apply the Weiss construction to Fk to define (Xk, Tk)
and Uk ⊆ Xk. For nonempty open V1, V2 ⊆ Xk, N(V1, V2) ∈ FFk ⊆ FRi provided
i 6= k. Since FRi is a filter it easily follows that for nonempty open W1,W2 ⊆ Yi
N(W1,W2) ∈ FRi . Hence, each (Yi, Si) is weak mixing.

On the other hand, for U = U1× · · · ×Un ⊆ X1× · · · ×Xn, we have N(U,U) = ∅
which says that U is wandering. �

Remark 2.8. Note that this can not happen when all the systems inW are minimal,
since it was proved in [HY04] that if (X,T ) is minimal and weakly mixing then
N(A,B) has lower Banach density 1 for each pair of non-empty open subsets of X.

Theorem 2.9. For any n ≥ 2 there exists a TDS (X,T ) such that Recurk(X) is
dense in Xk for all k < n but Recurn(X) is not dense in Xn.

Proof. Let W be the list of n weak mixing systems given by Lemma 2.7 and let
(X,T ) be the co-product, i.e. the disjoint union of the (Xi, Ti)’s. For k < n the
product Xk is the disjoint union of nk clopen invariant subsets on each of which the
induced subsystem is weak mixing. Hence, Recurk(X) is dense in Xk. However,
Xn contains a clopen invariant subset on which the subsystem is isomorphic to the
product (X1 × · · · ×Xn, T1 × · · · × Tn) which contains a wandering nonempty open
set U . U is disjoint from Recurn(X). �

Remark 2.10. We remark that (1) if (X,T ) is transitive, then Recurk(X) is dense
in Xk for all k ∈ N, see Proposition 2.6, and (2) if the TDS (Xi, Ti) has a dense set
of minimal points for each 1 ≤ i ≤ k, then the set of minimal points of (X1 × . . .×
Xk, T1 × . . .× Tk) is also dense, see [AG01].

2.2. Transitivity implies dense recurrence. A nonempty subset K of a compact
space X is a Mycielski set if it is a countable union of Cantor sets. In the following
theorem we show that every transitive TDS contains a dense recurrent Mycielski sub-
set. While we will later derive this result, and more, from the Kuratowski-Mycielski
Theorem, we include here a direct proof which employs an explicit construction
rather than an abstract machinery (see Theorem 4.7 below).

Theorem 2.11. Let (X,T ) be a transitive TDS without isolated points. Then there

are Cantor sets C1 ⊆ C2 ⊆ · · · such that K =
∞⋃
i=1

Cn is a dense recurrent subset of

X and for each N ∈ N, CN is uniformly recurrent.
If in additional, for each n ∈ N, Proxn(X) is dense in Xn, then we can require

that for each N ∈ N, CN is uniformly proximal, whence K is a proximal set.
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Proof. Let Y = {y1, y2, . . . } be a countable dense subset of X and for each n ≥ 1
let Yn = {y1, y2, . . . , yn}. Let F be the smallest family containing the collection

{N(U,U) : U is a nonempty open subset of X}.
Since (X,T ) is transitive, F is a filter by Lemma 1.4. Let a0 = 0 and V0,1 = X. We
have the following claim.

Claim: For each S ∈ F∗ there are sequences {an} ⊆ N, {kn} ⊆ S, and sequences
{Un}∞n=1 and {Vn,1, Vn,2, · · · , Vn,an}∞n=1 of nonempty open subsets of X with the fol-
lowing properties:

(1) 2an−1 ≤ an ≤ 2an−1 + n.
(2) diamVn,i <

1
n
, i = 1, 2, . . . , an.

(3) The closures {Vn,i}ani=1 are pairwise disjoint.
(4) Vn,2i−1 ∪ Vn,2i ⊂ Vn−1,i, i = 1, 2, · · · , an−1.

(5) Yn ⊂ B(
an⋃
i=1

Vn,i,
1
n
), where B(A, ε) := {x ∈ X : d(x,A) < ε} .

(6) T kn(Vn,2i−1 ∪ Vn,2i) ⊆ Vn−1,i, i = 1, 2, · · · , an−1.

Proof of Claim: For j = 1, take a1 = 2, k1 = 1, and V1,1, V1,2 any two nonempty open
sets of diameter < 1 with disjoint closures such that y1 ∈ B(V1,1 ∪ V1,2, 1). Suppose
now that for 1 ≤ j ≤ n − 1 we have {aj}n−1

j=1 , {kj}n−1
j=1 and {Vj,1, Vj,2, · · · , Vj,aj},

satisfying conditions (1)-(6).

Choose 2an−1 ≤ an ≤ 2an−1 + n and nonempty open subsets V
(0)
n,1 , V

(0)
n,2 , · · · , V

(0)
n,an

of X such that:
(a) diamV

(0)
n,i <

1
2n

, i = 1, 2, · · · , an.

(b) The closures {V (0)
n,i }

an
i=1 are pairwise disjoint.

(c) V
(0)
n,2i−1 ∪ V

(0)
n,2i ⊂ Vn−1,i, i = 1, 2, · · · , an−1.

(d) Yn ⊂ B(
an⋃
i=1

V
(0)
n,i ,

1
2n

).

As N(V
(0)
n,i , V

(0)
n,i ) ∈ F for each 1 ≤ i ≤ an,

an⋂
i=1

N(V
(0)
n,i , V

(0)
n,i ) ∈ F . Take kn ∈

S ∩
an⋂
i=1

N(V
(0)
n,i , V

(0)
n,i ). Hence there are nonempty open sets V

(1)
n,i ⊆ V

(0)
n,i , 1 ≤ i ≤ an,

such that
(e) T kn(V

(1)
n,2i−1 ∪ V

(1)
n,2i) ⊆ Vn−1,i, i = 1, 2, · · · , an−1.

Let Vn,i = V
(1)
n,i , 1 ≤ i ≤ an. Then the conditions (1)−(6) hold for n. By induction

we have the claim.

Let Cn =
∞⋂
j=n

⋃2j−nan
i=1 Vj,i. Then C1 ⊆ C2 ⊆ · · · , and by (1)− (4), Cn is a Cantor

set. By (2),(4) and (5), K =
∞⋃
n=1

Cn is dense in X. For each N ∈ N, by (6), CN is

uniformly recurrent.
Finally, if in addition for each n ∈ N, Proxn(X) is dense in X(n) then we can in

the above construction, when choosing the subsets V
(1)
n,i ⊆ V

(0)
n,i , 1 ≤ i ≤ an, add the
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following condition to the claim above:

(7) for each n ∈ N there is tn ∈ N such that diamT tn(
an⋃
i=1

Vn,i) <
1

n
.

By the requirement (7) we obtain that for eachN ∈ N, CN is uniformly proximal. �

Remark 2.12. Using the fact that the set TransT of transitive points is dense in X

we can in the above construction, when choosing the subsets V
(1)
n,i ⊆ V

(0)
n,i , 1 ≤ i ≤ an,

add the following condition to the claim in the proof:

(8) Yn ⊆ B(Orb(x, T ),
1

n
) for each x ∈

an⋃
i=1

Vn,i.

It then follows that every point in
∞⋃
i=1

Cn is a transitive point.

Motivated by Theorem 2.11 we define uniformly chaotic set as follows:

Definition 2.13. Let (X,T ) be a TDS. A subset K ⊆ X is called a uniformly
chaotic set if there are Cantor sets C1 ⊆ C2 ⊆ · · · such that

(1) K =
∞⋃
i=1

Cn is a recurrent subset of X and also a proximal subset of X;

(2) for each N ∈ N, CN is uniformly recurrent; and
(3) for each N ∈ N, CN is uniformly proximal.

(X,T ) is called (densely) uniformly chaotic, if (X,T ) has a (dense) uniformly chaotic
subset.

Remark 2.14. In fact condition (1) actually follows from (2) and (3), see Remark
2.4.

Actually, it follows that the inclusion of K is a pointwise limit of a sequence of
restrictions {T nk � K}. Let JN = {n : d(T nx, x) < 1/N for all x ∈ CN}. Each JN is
nonempty by assumption and JN+1 ⊂ JN . Choose nk ∈ Ji. As k → ∞, T nkx → x
for all x ∈

⋃∞
i=1 Ci.

Obviously, a uniformly chaotic set is an uncountable strongly scrambled set, hence
every uniformly chaotic system is strongly Li-Yorke chaotic. Restating Theorem 2.11
we have:

Theorem 2.15. Let (X,T ) be a nontrivial transitive TDS. If for each n ∈ N,
Proxn(X) is dense in Xn, then (X,T ) is densely uniformly chaotic. In particular
every such system is strongly Li-Yorke chaotic.

Notice that if X has an isolated point then it is a single periodic orbit and so the
system is distal. So Proxn(X) is not dense except when X is a singleton.
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3. A criterion for chaos and applications

3.1. A criterion for chaos.

Theorem 3.1 (A criterion for chaos). Let (X,T ) be a nontrivial transitive TDS.
If there is some subsystem (Y, T ) of (X,T ) such that (X × Y, T ) is transitive, then
(X,T ) is densely uniformly chaotic.

Proof. By Theorem 2.15, it suffices to show that for each n ∈ N, Proxn(X) is dense
in X(n). For a fixed n ∈ N and any ε > 0 let

Pn(ε) = {(x1, x2, . . . , xn) : ∃m ∈ N such that diam ({Tmx1, . . . , T
mxn}) < ε}.

Thus Proxn(X) =
⋂∞
m=1 Pn( 1

m
) and by Baire’s category theorem it is enough to

show that for every ε > 0, Pn(ε) is a dense open subset of Xn.
Fix ε > 0, let U1, U2, · · · , Un be a sequence of nonempty open subsets of X, and let

W be a nonempty open subset of Y with diam (W ) < ε. By assumption (X × Y, T )
is transitive, whence

N(U1 ×W,U2 ×W ) = N(U1, U2) ∩N(W ∩ Y,W ∩ Y ) 6= ∅.
Let m2 be a member of this intersection. Then

U1 ∩ T−m2U2 6= ∅ and W ∩ T−n2W ∩ Y 6= ∅.
By induction, we choose natural numbers m3,m4, · · · ,mn such that

U1 ∩
n⋂
i=2

T−miUi 6= ∅ and W ∩
n⋂
i=2

T−miW ∩ Y 6= ∅.

Since (X,T ) is transitive, there is a transitive point x ∈ U1∩
⋂n
i=2 T

−miUi and let
y ∈ W ∩

⋂n
i=2 T

−miW . Since x is a transitive point, there exists a sequence lk such
that limk→∞ T

lkx = y. Thus, limk→∞ T
lk(Tmix) = Tmiy for each 2 ≤ i ≤ n. Since

{y, Tm2y, . . . , Tm3y} ⊂ W and diam (W ) < ε, for large enough lk, we have

diam ({T lkx, T lk(Tm2x), . . . , T lk(Tmnx)}) < ε.

That is, (x, Tm2x, . . . , Tmnx) ∈ Pn(ε). Noting that (x, Tm2x, . . . , Tmnx) ∈ U1×U2×
· · · × Un, we have shown that

Pn(ε) ∩ U1 × U2 × · · · × Un 6= ∅.
As U1, U2, · · · , Un are arbitrary, Pn(ε) is indeed dense in X(n). �

3.2. Some applications. In the rest of this section we will obtain some applications
of the above criterion. First, we need to recall some definitions (see [BHM02, HY02]).

Two topological dynamical systems are said to be weakly disjoint if their product
is transitive. Call a TDS (X,T ):

• scattering if it is weakly disjoint from every minimal system;
• weakly scattering if it is weakly disjoint from every minimal equicontinuous

system;
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• totally transitive if it is weakly disjoint from every periodic system. (Note
that this is equivalent to the usual definition which requires that (X,T n) be
transitive for all n ≥ 1.)

Using this terminology and applying Theorem 2.15 we easily obtain the following:

Corollary 3.2. If (X,T ) is a TDS without isolated points and one of the following
properties, then it is densely uniformly chaotic:

(1) (X,T ) is transitive and has a fixed point;
(2) (X,T ) is totally transitive with a periodic point;
(3) (X,T ) is scattering;
(4) (X,T ) is weakly scattering with an equicontinuous minimal subset;
(5) (X,T ) is weakly mixing.

Finally

(6) If (X,T ) is transitive and has a periodic point of order d, then there is a
closed T d-invariant subset X0 ⊂ X, such that (X0, T

d) is densely uniformly

chaotic and X =
⋃d−1
j=0 T

jX0. In particular (X,T ) is uniformly chaotic.

Proof. The only claim that needs a proof is (6). Suppose y0 ∈ X is a periodic point of

period d and let x0 be a transitive point; so that OrbT (x0) = X. Set OrbT d(x0) = X0

(this may or may not be all of X). In any case the dynamical system (X0, T
d) is

transitive, and has a fixed point. Thus, by case (1), it is densely uniformly chaotic
for T d. Both uniform proximality and uniform recurrence of subsets go over to
(X,T ), hence (X,T ) is uniformly chaotic. Clearly X =

⋃d−1
j=0 T

jX0. �

Part (6) provides a new proof of a result of J-H. Mai [Mai04], and as in Mai’s
paper we have the following corollary.

Theorem 3.3. Devaney chaos implies uniform chaos.

Remark 3.4. If (X,T ) is minimal and Prox(X) is dense then (X,T ) is weak mixing
(as obviously it admits no nontrivial equicontinuous factors). Thus in the minimal
case, dense uniform chaos is equivalent to weak mixing.

One can strengthen Corollary 3.2 (2) in the following way.

Definition 3.5. Let (X,T ) be a TDS. A point x ∈ X is regularly almost periodic
if for each neighborhood U of x there is some k ∈ N such that kN ⊆ N(x, U). Note
that such a point is in particular a minimal point (i.e. its orbit closure is minimal).

Remark 3.6. Let (X,T ) be a minimal system. Then (X,T ) contains a regularly
almost periodic point if and only if it is an almost one-to-one extension of an adding
machine. If in addition (X,T ) is a subshift then it is isomorphic to a Toeplitz system
(see e.g. [MP80]).

Next we recall the following definition from [AG01].

Definition 3.7. A property of topological dynamical systems is said to be residual
if it is non-vacuous and is inherited by factors, almost one-to-one lifts, and inverse
limits.
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It is not hard to check that being weakly disjoint from a fixed TDS (X,T ) is a
residual property (see [AG01]). One can also show that the smallest class of TDS
which contains the periodic orbits and is closed under inverse limits and almost
one-to-one extensions is exactly the class of almost one-to-one extensions of adding
machines. It now follows that a TDS is totally transitive if and only if it is weakly
disjoint from every almost one-to-one extension of an adding machine.

Corollary 3.8. If (X,T ) is totally transitive with a regularly almost periodic point,
then it is densely uniformly chaotic.

In a similar way we see that a TDS is weakly scattering if and only if it is weakly
disjoint from every system which is an almost one-to-one extension of a minimal
equicontinuous system (these systems are also called almost automorphic). Thus we
also have a stronger version of Corollary 3.2 (4)

Corollary 3.9. If (X,T ) is weakly scattering and has an almost automorphic sub-
system then it is densely uniformly chaotic.

The following example shows that we can not weaken the condition “total transi-
tivity” to “transitivity”.

Example. Let (X,T ) be a Toeplitz system and let π : X → Z be the corresponding
almost one-to-one factor map from X onto its maximal adding machine factor.
Clearly then every proximal set in X is contained in a fiber π−1(z) for some z ∈
Z. Suppose now that |π−1(z)| < ∞ for every z ∈ Z, and that for some z ∈ Z
there are points x, y ∈ π−1(z) such that (x, y) is a recurrent pair and therefore a
strong Li-Yorke pair (one can easily construct such systems, see e.g. [W84]). Let

Y = Orb((x, y), T ) ⊆ X ×X. By assumption the point (x, y) is recurrent in X ×X
and forms a proximal pair. Thus the system (Y, T ) is transitive and, as one can
easily check, has ∆X as its unique minimal subset. Since (X,T ) is an almost one to
one extension of an adding machine the diagonal ∆X ⊂ Y contains regularly almost
periodic points. However (Y, T ) can not be Li-Yorke chaotic because our assumption
implies that every proximal set in Y is finite.

This example also shows the existence of a non-minimal transitive system which
is not Li-Yorke chaotic.

4. The Kuratowski-Mycielski Theory

Let X be a compact metric space. We recall that a subset A ⊂ X is called
a Mycielski set if it is a union of countably many Cantor sets. (This definition
was introduced in [BGKM02]. Note that in [Ak03] a Mycielski set is required to be
dense.) The notion of independent sets and the corresponding topological machinery
were introduced by Marczewski [Mar61], and Mycielski [M64]. This theory was
further developed by Kuratowski in [K73]. The first application to dynamics is due
to Iwanik [I89]. Consequently it was used as a main tool in [BGKM02], where among
other results the authors showed that positive entropy implies Li-Yorke chaos. See
[Ak03] for a comprehensive treatment of this topic.
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In this section we first review the Kuratowski-Mycielski theory, mainly as devel-
oped in [Ak03], and then consider the results of Sections 2 and 3 in view of this
theory.

4.1. The Kuratowski-Mycielski Theorem. We begin by citing two classical re-
sults.

Theorem 4.1 (Ulam). Let φ : X → Y be a continuous open surjective map with X
and Y metric compact spaces. If R is a dense Gδ subset of X, then

Y0 = {y ∈ Y : φ−1(y) ∩R is dense in φ−1(y)}
is a dense Gδ subset of Y .

Theorem 4.2 (Mycielski). Let X be a complete metric space with no isolated points.
Let rn ↗ ∞ be a sequence of positive integers and for every n let Rn be a meager
subset of Xrn. Let {Oi}∞i=1 be a sequence of nonempty open subsets of X. Then
there exists a sequence of Cantor sets Ci ⊂ Oi such that the corresponding Mycielski
set K =

⋃∞
i=1Ci has the property that for every n and every x1, x2, . . . , xrn, distinct

elements of K, (x1, x2, . . . , xrn) 6∈ Rn.

An especially useful instance of Mycielski’s theorem is obtained as follows (see
[Ak03, Theorem 5.10], and [AAG08, Theorem 6.32]). Let W be a symmetric dense
Gδ subset of X × X containing the diagonal ∆X , and let R = X × X \W . Let
rn = n and set

Rn = {(x1, . . . , xn) : (xi, xj) 6∈ W, ∀ i 6= j}.

Theorem 4.3. Let X be a perfect compact metric space and W a symmetric dense
Gδ subset of X × X containing the diagonal ∆X . There exists a dense Mycielski
subset K ⊂ X such that K ×K ⊂ W .

We collect some notation and results from Akin [Ak03].
For X a compact metric space we denote by C(X) the compact space of closed

subsets of X equipped with the Hausdorff metric. Since ∅ is an isolated point,
C ′(X) = C(X) \ {∅} is compact as well.

We call a collection of sets Q ⊂ C ′(X) hereditary if it is hereditary downwards,
that is, A ∈ Q implies C ′(A) ⊂ Q and, in particular, every finite subset of A
is in Q. For a hereditary subset Q we define Rn(Q) = {(x1, . . . , xn) ∈ Xn :
{x1, . . . , xn} ∈ Q} = i−1

n (Q) where in : Xn → C ′(X) is the continuous map de-
fined by in(x1, . . . , xn) = {x1, . . . , xn}. In particular, if Q is a Gδ subset of C ′(X)
then Rn(Q) is a Gδ subset of Xn for all n. Call A a {Rn(Q)} set if An ⊂ Rn(Q)
for all n = 1, 2, . . . or, equivalently, if every finite subset of A lies in Q. Clearly, the
union of any chain of {Rn(Q)} sets is an {Rn(Q)} set and so every {Rn(Q)} set is
contained in a maximal {Rn(Q)} set.

If D ⊂ X we define Q(D) = {A ∈ C ′(X) : A ⊂ D}, for which Rn = Dn. If
B ⊂ X ×X is a subset which satisfies

(x, y) ∈ B =⇒ (y, x), (x, x) ∈ B
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then we define Q(B) = {A ∈ C ′(X) : A × A ⊂ B}, for which R2 = B and
(x1, . . . , xn) ∈ Rn if and only if (xi, xj) ∈ B for all i, j = 1, . . . , n.

If D (or B) is a Gδ then so is Q(D) (resp. Q(B)). Because the finite sets are
dense in C ′(X) it follows that if D is dense in X (or B is Gδ and dense in X ×X)
then Q(D) (resp. Q(B) ) is dense in C ′(X).

Examples: (1) Let Q(Recur) = {A ∈ C ′(X) : A is uniformly recurrent}. The
set Recurn(X) defined in Section 2 is exactly Rn(Q(Recur)) = {(x1, . . . , xn) :
recurrent in Xn}. The {Recurn} subsets are the recurrent subsets. For fixed n
and ε the condition d(T nx, x) < ε for all x ∈ A is an open condition on A ∈ C ′(X).
Hence, Q(Recur) and Recurn are Gδ sets.

If (X,T ) is transitive then by Prop. 2.6 Recurn(X) is dense in Xn. Furthermore,
TransT is a dense Gδ in X and so Q(TransT ) = {A ∈ C ′(X) : A ⊂ TransT} is a
dense Gδ subset of C ′(X).

(2) Let Q(Prox) = {A ∈ C ′(X) : A is uniformly proximal}. The set Proxn(X) of
Section 2 is Rn(Q(Prox)). The {Proxn} subsets are the proximal subsets. For fixed
n and ε the condition diamT nA < ε is an open condition on A ∈ C ′(X). Hence,
Q(Prox) and Proxn are Gδ sets.
Prox2(X) = P (X,T ) the set of proximal pairs. The Gδ set Q(P (X,T )) is the set

of compacta A such that A× A ⊂ P (X,T ). The {Rn(Q(P ))} sets are the pairwise
proximal sets.

(3) For use below we define for Y a closed subset of X:

Q(TRANS, Y ) = {A ∈ C ′(X) : for every ε > 0, n ∈ N, pairwise disjoint closed

A1, . . . , An ⊂ A and y1, . . . , yn ∈ Y, there exists a positive

integer k such that d(T kx, yi) < ε for all x ∈ Ai, i = 1, . . . , n}.
It is easy to check that Q(TRANS, Y ) is a Gδ set, see Akin [Ak03], Lemma

6.6(a). Clearly, (x1, . . . , xn) ∈ Rn(Q(TRANS, Y )) if and only if for every ε > 0 and
y1, . . . , yn ∈ Y there exists k such that d(T kxi, yi) < ε for i = 1, . . . , n.

The point of this peculiar condition is given by

Lemma 4.4. If K is a Cantor set in X, then K ∈ Q(TRANS, Y ) if and only if
for every continuous map h : K → Y and every ε > 0 there exists a positive integer
k such that d(T kx, h(x)) < ε for all x ∈ K.

Proof. Recall that the locally constant functions on K, which are the continuous
functions with finite range, form a dense subset of C(K,Y ) the space of continuous
functions. It thus suffices to consider such functions h. If h(K) is the set {y1, . . . , yn}
of n distinct points then {Ai = h−1(yi) : i = 1, . . . , n} is a clopen partition of K.
Hence, K ∈ Q implies there exists a k such that T k � K is within ε of h.

Conversely, given disjoint closed sets A1, . . . , An in K and points y1, . . . , yn ∈ Y
there exists a clopen partition B1, . . . , Bn of X with Ai ⊂ Bi for i = 1, . . . , n. The
function h : X → Y with h(x) = yi for x ∈ Bi is continuous and approximating it
by some T k � K shows that K ∈ Q. �



SUFFICIENT CONDITIONS UNDER WHICH A TRANSITIVE SYSTEM IS CHAOTIC 19

For a TDS (X,T ) and closed Y ⊂ X, motivated by Lemma 4.4, we will call a
Cantor set K ∈ Q(TRANS, Y ) a Kronecker set for Y .

Lemma 4.5. Let (X,T ) be a TDS and Y a closed nonempty subset of X. Then any
Kronecker set for Y , i.e. a Cantor set K ∈ Q(TRANS, Y ), is uniformly proximal.
If, moreover, K ⊂ Y then K is also uniformly recurrent, hence uniformly chaotic.

Proof. Apply Lemma 4.4. For the first assertion take h : K → Y as any constant
map h : K → Y , h(x) = y0, ∀x ∈ K. For the second, take h : K → Y as
h(x) = x, ∀x ∈ K. �

If X is a perfect, nonempty, compact metric space then CANTOR(X) the set of
Cantor sets in X is a dense Gδ subset of C ′(X), see e.g. Akin [Ak03, Propsition
4.3(f)].

The importance of all this stems from the Kuratowski-Mycielski Theorem. This
version comes from Akin [Ak03] Theorem 5.10 and Corollary 5.11.

Theorem 4.6. For X a perfect, nonempty, compact metric space, let Q be a hered-
itary Gδ subset of C ′(X).

(a) The following conditions are equivalent

(1) For n = 1, 2, . . . , Rn(Q) is dense in Xn.
(2) There exists a dense subset A of X which is a {Rn(Q)} set, i.e. An ⊂ Rn(Q)

for n = 1, 2, . . . .
(3) Q is dense in C ′(X).
(4) CANTOR(X) ∩Q is a dense Gδ subset of C ′(X).
(5) There is a sequence {Ki : i = 1, 2, . . . } which is dense in CANTOR(X) such

that
⋃n
i=1 Ki ∈ Q for n = 1, 2, . . . .

(b) The following conditions are equivalent

(1) There is a Cantor set in Q, i.e. CANTOR(X) ∩Q 6= ∅.
(2) There is a Cantor set which is an {Rn(Q)} set.
(3) There is an uncountable {Rn(Q)} set.
(4) There is a nonempty {Rn(Q)} set with no isolated points.
(5) There is a nonempty, closed, perfect subset Y of X such that Y n ∩Rn(Q) is

dense in Y n for n = 1, 2, . . . .

4.2. Uniform chaos in light of the Kuratowski-Mycielski Theorem. With
this new vocabulary we can reprove Theorem 2.11 by showing that for a transitive
system (X,T ) the collection Q(Recur), of uniformly recurrent subset, is a dense
Gδ subset of C ′(X). For the reader’s convenience we repeat the statement of the
theorem (augmented with a statement about pairwise proximality) and provide a
short proof which employs the Kuratowski-Mycielski machinery.

Theorem 4.7. Let (X,T ) be a transitive TDS without isolated points. There are

Cantor sets C1 ⊆ C2 ⊆ · · · such that
∞⋃
i=1

Cn is a dense recurrent subset of TransT

and for each N ∈ N, CN is uniformly recurrent.
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• If in addition, P (X,T ) is dense in X ×X then we can require that
∞⋃
i=1

Cn is

pairwise proximal.
• If in addition, for each n ∈ N, Proxn(X) is dense in Xn, then we can require

that for each N ∈ N, CN is uniformly proximal. Thus under these conditions
(X,T ) is uniformly chaotic.

Proof. As described in Example (1) above, Recurn(X) and (TransT )n are dense
Gδ subsets of Xn. Hence, condition (1) of part (a) of the Kuratowski-Mycielski
Theorem applies to Q(Recur) ∩ Q(TransT ). The result follows from condition (5)

of part (a) with CN =
⋃N
i=1 Ki.

If P (X,T ) is dense in X2 then we can intersect as well with the dense Gδ set
Q(P (X,T )).

If Proxn is dense in Xn for every n then Q(Prox) is also a dense Gδ by the
Kuratowski-Mycielski Theorem and so we can intersect with it as well. �

Remark 4.8. Notice that in general the collection Q(Recur) of uniformly recurrent
subsets of X, is not finitely determined; that is, a closed subset A ⊂ X with An ⊂
Recurn for every n ≥ 1 is merely recurrent and need not be uniformly recurrent.
Similarly Q(Prox) is not finitely determined and a closed subset A ⊂ X with
An ⊂ Proxn for every n ≥ 1 is merely a proximal set and need not be uniformly
proximal.

In general, we have

Theorem 4.9. A TDS (X,T) without isolated points is densely uniformly chaotic
if and only if for every n ≥ 1 the sets Recurn(X) and Proxn(X) are both dense in
Xn.

Proof. IfRecurn(X) and Proxn(X) are both dense inXn for every n thenQ(Recur)∩
Q(Prox) is dense in C ′(X). Apply the Kuratowski-Mycielski Theorem as before. �

We do likewise with the criterion for chaos (Theorem 3.1).

Theorem 4.10 (A criterion for chaos). Let (X,T ) be a transitive TDS without
isolated points. Assume that (Y, T ) is a subsystem of (X,T ) such that (X ×Y, T ) is
transitive. There are Cantor sets C1 ⊆ C2 ⊆ · · · such that

(1) K =
∞⋃
i=1

Cn is a dense subset of TransT and;

(2) for each N ∈ N, CN is a Kronecker set for Y and is uniformly recurrent.

In particular, (X,T ) is densely uniformly chaotic.
If (Y, T ) is non-trivial, i.e. Y contains at least two points, then (X,T ) is sensitive.

Proof. We follow the notation of Examples (1) and (3) above. The work below
will be to show that Rn(Q(TRANS, Y )) is dense in Xn for n = 1, 2, . . . . We have
already seen that Recurn(X) is dense in Xn. By the Kuratowski-Mycielski Theorem
it follows that

Q(TRANS, Y ) ∩Q(Recur) ∩Q(TransT )
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is dense in C ′(X) and that the required sequence of Cantor sets exists.
Fix ε > 0 and y1, . . . , yn ∈ Y and choose open subsets W1, . . . ,Wn of diameter less

than ε with yi ∈ Wi for i = 1, . . . , n. We will prove that the open set
⋃
k∈N T−kW1×

· · ·×T−kWn is dense. Then intersect over positive rational ε and {y1, . . . , yn} chosen
from a countable dense subset of Y . The Baire Category Theorem then implies that
Rn(Q(TRANS, Y )) is a dense Gδ subset of Xn as required.

Let U1, . . . , Un be open nonempty subsets of X. Because X×Y is transitive there
exists r2 ∈ N(U1 × (W1 ∩ Y ), U2 × (W2 ∩ Y )). Let

U12 ×W12 = (U1 ∩ T−r2U2)× (W1 ∩ T−r2W2),

an open set which meetsX×Y . Proceed inductively, finally choosing rn ∈ N((U1...n−1×
(W1...n−1 ∩ Y )), Un × (Wn ∩ Y )) and let

U1...n ×W1...n = (U1...n−1 ∩ T−rnUn)× (W1...n−1 ∩ T−rnWn).

Choose (x, y) ∈ (U1...n×W1...n)∩(X×Y ) with x ∈ TransT . Thus, (x, T r2x, . . . , T rnx) ∈
U1×· · ·×Un and (y, T r2y, . . . , T rny) ∈ W1×· · ·×Wn. Since x is a transitive point, we
can choose T kx close enough to y so that (T kx, T k+r2x, . . . , T k+rnx) ∈ W1×· · ·×Wn.
Thus, (x, T r2x, . . . , T rnx) ∈ (U1 × · · · × Un) ∩ (T−kW1 × · · · × T−kWn), as required.

By Lemma 4.5 the system is densely uniformly chaotic.
Now assume that Y has at least two points, so there exists ε > 0 such that ε is

smaller than the diameter of Y . Choose open sets U1, U2 and points yi ∈ Ui∩Y (i =
1, 2) such d(z1, z2) > ε for all zi ∈ Ui (i = 1, 2). Given V an open set containing x
there there exists N such that CN ∩ V is nonempty and so contains distinct points
x1, x2. Let h : CN → Y be a continuous function with h(xi) = yi (i = 1, 2). Since
CN is a Kronecker set there exists k ∈ N such that zi = T k(xi) ∈ Ui (i = 1, 2).
Hence, d(T k(x1), T

k(x2) > ε. �

Remark 4.11. The condition that Y be nontrivial is necessary for sensitivity. There
exist almost equicontinuous transitive systems with fixed points.

From part (b) of Theorem 4.6 we obtain

Theorem 4.12. Let (X,T ) be a TDS.

(a) If there exists an uncountable K ⊂ X which is both proximal and recurrent
then there exists a Cantor set C ⊂ X which is both uniformly proximal and
uniformly recurrent, i.e. (X,T ) is uniformly chaotic.

(b) If there exists an uncountable K ⊂ X which is strongly scrambled, i.e. (X,T )
is strongly Li-Yorke chaotic, then there exists a Cantor set C ⊂ X which is
strongly scrambled.

(c) If there exists ε > 0 and an uncountable K ⊂ X which is pairwise proximal
and for every x, y ∈ K d(T nx, T ny) > ε for infinitely many n ∈ N then
there exists a Cantor set C ⊂ X which satisfies the same property, and so is
scrambled.

Proof. For (a) we apply Theorem 4.6(b) to Q(Recur) ∩Q(Prox). For (b) we apply
it to Q(Recur2) ∩Q(P (X,T )).
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While the set of asymptotic pairs is not an Fσ set, Asympε =
⋃
k∈N{(x, y) :

d(T nx, T ny) ≤ ε for all n ≥ k} is. For (c) we apply Theorem 4.6(b) to Q(Recur2)∩
Q((X ×X) \ Asympε). �

Remark 4.13. If K is scrambled then for every x, y ∈ K there exists ε > 0 such
that d(T nx, T ny) > ε for infinitely many n ∈ N. However, it is not clear that an ε
can be chosen to work for all pairs. Thus, part (c) leaves open the question asked in
[BHS08] whether (X,T ) Li-Yorke chaotic always implies the existence of a scrambled
Cantor subset.

5. Chaotic subsets of minimal systems

It is well known that a non-equicontinuous minimal system is sensitive In this
section we will have a closer look at chaotic behavior of minimal systems and will
examine the relationship between chaos and structure theory.

5.1. On the structure of minimal systems. The structure theory of minimal
systems originated in Furstenberg’s seminal work [F63]. In this subsection we briefly
review some of the main results of this theory. It was mainly developed for group
actions and accordingly we assume for the rest of the paper that T is a homeomor-
phism. Much of this work can be done for a general locally compact group actions,
but for simplicity we stick to the traditional case of Z-actions. We refer the reader
to [G76], [V77], and [Au88] for details.

The notion of relatively incontractible (RIC) extension was introduced in [EGS75].
As the original definition is a bit technical we use here an equivalent one. In an
appendix below we remind the reader of the original definition and sketch the proof
of the equivalence of the two definitions.

Call an extension π : X → Y of minimal systems relatively incontractible (RIC)
extension if it is open and for every n ≥ 1 the minimal points are dense in the
relation

Rn
π = {(x1, . . . , xn) ∈ Xn : π(xi) = π(xj), ∀ 1 ≤ i ≤ j ≤ n}.

(See Theorem 7.2 in the appendix below.)
We say that a minimal system (X,T ) is a strictly PI system if there is an ordinal η

(which is countable when X is metrizable) and a family of systems {(Wι, wι)}ι≤η such
that (i) W0 is the trivial system, (ii) for every ι < η there exists a homomorphism
φι : Wι+1 → Wι which is either proximal or equicontinuous (isometric when X is
metrizable), (iii) for a limit ordinal ν ≤ η the system Wν is the inverse limit of the
systems {Wι}ι<ν , and (iv) Wη = X. We say that (X,T ) is a PI-system if there

exists a strictly PI system X̃ and a proximal homomorphism θ : X̃ → X.
If in the definition of PI-systems we replace proximal extensions by almost one-to-

one extensions (or by highly proximal extensions in the non-metric case) we get the
notion of HPI systems. If we replace the proximal extensions by trivial extensions
(i.e. we do not allow proximal extensions at all) we have I systems. These notions
can be easily relativize and we then speak about I, HPI, and PI extensions.
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In this terminology Furstenberg’s structure theorem for distal systems (Fursten-
berg [F63]) and the Veech-Ellis structure theorem for point distal systems (Veech
[V70], and Ellis [E73]), can be stated as follows:

Theorem 5.1. A metric minimal system is distal if and only if it is an I-system.

Theorem 5.2. A metric minimal dynamical system is point distal if and only if it
is an HPI-system.

Finally we have the structure theorem for minimal systems, which we will state
in its relative form (Ellis-Glasner-Shapiro [EGS75], McMahon [Mc76], Veech [V77],
and Glasner [G05]).

Theorem 5.3 (Structure theorem for minimal systems). Given a homomorphism
π : X → Y of minimal dynamical system, there exists an ordinal η (countable when
X is metrizable) and a canonically defined commutative diagram (the canonical PI-
Tower)

X

π

��

X0

θ∗0oo

π0

��

σ1

  A
AA

AA
AA

A
X1

θ∗1oo

π1

��

··· Xν

πν

��

σν+1

""D
DD

DD
DD

D
Xν+1

πν+1

��

θ∗ν+1oo ··· Xη = X∞

π∞
��

Y Y0
θ0

oo Z1ρ1
oo Y1

θ1

oo ··· Yν Zν+1ρν+1

oo Yν+1
θν+1

oo ··· Yη = Y∞

where for each ν ≤ η, πν is RIC, ρν is isometric, θν , θ
∗
ν are proximal and π∞ is

RIC and weakly mixing of all orders. For a limit ordinal ν, Xν , Yν , πν etc. are
the inverse limits (or joins) of Xι, Yι, πι etc. for ι < ν. Thus X∞ is a proximal
extension of X and a RIC weakly mixing extension of the strictly PI-system Y∞.
The homomorphism π∞ is an isomorphism (so that X∞ = Y∞) if and only if X is
a PI-system.

5.2. Lifting chaotic sets. Using Ellis semigroup techniques we are able to lift
chaotic sets in minimal systems. We begin with a lemma concerning proximal sets
in minimal systems.

Let I be an ideal in β∗N. For a TDS (X,T ) we say that K is an I pairwise
proximal set if for every pair x1, x2 ∈ K there exists p ∈ I such that px1 = px2.
Thus, K is pairwise proximal exactly when it is β∗N pairwise proximal.

Recall that K is a proximal set when

AK = {p ∈ β∗N : pK is a singleton}
is nonempty. In that case AK is a closed ideal in β∗N. See Proposition 2.5 above.

Similarly, if H is a co-ideal in β∗N, we say that K is an H pointwise recurrent
set if for every x ∈ K there exists p ∈ H such that px = x. Thus, K is pointwise
recurrent exactly when it is β∗N pointwise recurrent.

Lemma 5.4. Let (X,T ) be a minimal TDS and K ⊆ X.

(a) Let H ⊂ β∗N be a co-ideal minimal in β∗N. K is an H pointwise recurrent
set if and only if it is a recurrent set and H ⊆ HK.
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(b) Let I ⊂ β∗N be a minimal ideal. K is an I pairwise proximal set if and only
if it is a proximal set and I ⊆ AK. In that case, there exists for every x ∈ K
an idempotent vx ∈ I such that vxK = {x}. In particular,

K = {vxy : x ∈ K} for any y ∈ K,
and

vyvx = vy for all x, y ∈ K.

Proof. (a) Clearly, if H is a co-ideal contained in HK then K is H pointwise recur-
rent.

On the other hand, assume H is a minimal co-ideal in β∗N and K is H pointwise
recurrent. If x ∈ K then {p ∈ H : px = x} is nonempty and so is a co-ideal which is
contained in H and so equals H by minimality. As x ∈ K was arbitrary, H ⊆ HK

and so K is recurrent.
(b)If I is any ideal contained in AK then K is obviously I pairwise proximal.
Now assume that I ⊂ β∗N is a minimal left ideal, Because (X,T ) is minimal,

Ix = X for any x ∈ X, and so Ix = {p ∈ I : px = x} is a nonempty closed
subsemigroup. By Ellis’ Lemma 1.2 there exists an idempotent vx ∈ Ix. If K is I
pairwise proximal and x, y ∈ K then there exist p, q ∈ I such that px = py and
q(px) = x. Hence, Ix,y = {r ∈ I : ry = rx = x} contains qp and so is a nonempty
closed subsemigroup. Again Lemma 1.2 implies there exists an idempotent u ∈ Ix,y.
By minimality of I, I = β∗Nu and so su = s for all s ∈ I. In particular, vxu = vx
and so vxy = vxuy = vxx = x. As y ∈ K was arbitrary we have vxK = {x}
for any idempotent vx in Ix. In particular, vx ∈ AK and so K is a proximal set.
Since AK is an ideal and I is minimal, I = β∗Nvx ⊆ AK and vyvx = vy. Clearly,
K = {vxy : x ∈ K} for any y ∈ K. �

Theorem 5.5. Let π : (X,T ) −→ (Y, S) be an extension between minimal systems.

(1) For any proximal subset K of Y there is a proximal subset K ′ of X with
π(K ′) = K.

(2) If π is a proximal extension and K is a proximal subset of Y , then any set
K ′ of X with π(K ′) ⊆ K is a proximal set.

(3) For any recurrent subset K of Y , there is a recurrent subset K ′ of X with
π(K ′) = K. Moreover if K is both proximal and recurrent then there is a
subset K ′ of X with π(K ′) = K which is both proximal and recurrent. In
particular, for any strongly Li-Yorke pair (y, y′) in Y × Y there is a strongly
Li-Yorke pair (x, x′) in X ×X with π(x) = y, π(x′) = y′.

(4) If π is a distal extension and K ⊂ Y is a recurrent set of Y , then any set
K ′ of X with π(K ′) = K is a recurrent set.

In the cases (2) and (3) we have π � K ′ is one-to-one.

Proof. If K is a proximal subset of Y we apply Lemma 5.4 and its proof to define the
ideal AK in β∗N, choose a minimal ideal I ⊂ AK and idempotents {vy ∈ I : y ∈ K}
such that vyK = {y} for all y ∈ K.
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1. Fix x0 ∈ X such that y0 = π(x0) ∈ K. Assuming that K is a proximal subset
we define j : K → X by j(y) = vyx0. Observe that π(j(y)) = π(vyx0) = vyy0 = y.
So with K ′ = j(K) we have π(K ′) = K. On the other hand, z ∈ K implies vyvz = vy
and so vyj(z) = vyx0 = j(y) for all z ∈ K. That is, vyK

′ is the singleton {j(y)} and
so K ′ is proximal.

2. Now assume that π is proximal and π(K ′) ⊆ K with K a proximal subset. Let
u be an arbitrary idempotent in I so that uK is a singleton.

For any pair x1, x2 ∈ K ′ we have

π(ux1) = uπ(x1) = uπ(x2) = π(ux2).

As u(ux1, ux2) = (ux1, ux2) and u is a minimal idempotent, (ux1, ux2) is a min-
imal point. Since π is proximal, we have ux1 = ux2. Since the pair x1, x2 was
arbitrary, uK ′ is a singleton.

3. Assume that K is a recurrent subset. By Proposition 2.5

HK = {p ∈ β∗N : py = y for every y ∈ K}
is a nonempty closed subsemigroup. By Lemma 1.2 there is an idempotent u ∈ HK .
Choose for each y ∈ K, `(y) ∈ π−1(y). Let

K ′ = {u`(y) : y ∈ K}.
Since π(u`(y)) = uπ(`(y)) = uy = y it follows that π(K ′) = K. Since u is an
idempotent it acts as the identity on K ′.

Now assume in addition that K is a proximal subset. AKu is a closed ideal. Since
u acts as the identity on K, it follows that pu(K) is a singleton for every p ∈ AK ,
i.e. AKu ⊂ AK . If I a minimal ideal in AKu then pu = p for all p ∈ I. In particular,
the idempotents vx ∈ I satisfy vxu = vx and so uvxuvx = uvxvx = uvx. That is, uvx
is an idempotent in I. Furthermore, uvx(K) = {ux} = {x}. Thus, we can replace
vx by uvx if necessary and so assume that uvx = vx.

As in (1) define j(x) = vxx0 to obtain the proximal set K ′ = j(K). Since uvx = vx,
uj(x) = j(x) and so u acts as the identity on K ′. That is, K ′ is a recurrent set as
well.

4. As in part 3. we can pick an idempotent u ∈ HK . Now for any x ∈ X with
π(x) ∈ K the points x and ux are proximal. But as π(ux) = uπ(x) = π(x) and π
is a distal extension we conclude that ux = x. Thus if π(K ′) ⊆ K then ux = x for
every x ∈ K ′, whence K ′ is recurrent. �

Remark 5.6. Notice that the proof of (3) shows that if K is both proximal and
recurrent then there exist an idempotent u and a minimal ideal I ⊂ β∗Nu and idem-
potents vx ∈ J(I) for all x ∈ K such that uvx = vx and vx(K) = {x}. Conversely,
it is clear that the existence of these idempotents implies that K is both proximal
and recurrent.

Corollary 5.7. Let π : (X,T ) → (Y, S) be a homomorphism of minimal systems.
If Y contains a uniformly chaotic subset then so does X.
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Proof. Theorem 4.12(a) says that a TDS contains a uniformly chaotic set if and only
if it contains an uncountable set which is both proximal and recurrent. So the result
follows from Theorem 5.5(3). �

Remark 5.8. One would like to prove analogous lifting theorems for Li-Yorke and
strong Li-Yorke chaotic sets (i.e. uncountable scrambled and strongly scrambled
sets). Unfortunately the collection of closed scrambled sets is not, in general, a Gδ

subset of C ′(X), and we therefore can not use this kind of argument to show that
Li-Yorke chaos lifts under homomorphisms of minimal systems. The problem with
lifting closed strongly scrambled sets (which do form a Gδ set) is that we do not
know whether an uncountable strongly scrambled set can always be lifted through
an extension of minimal systems.

In general, if π : (X,T ) → (Y, S) is any factor map and K is a proximal (or
recurrent) subset of X then π(K) is a proximal (resp. recurrent) subset of Y . In
fact,

AK ⊆ Aπ(K) and HK ⊆ Hπ(K).

Furthermore, if K is uniformly proximal or uniformly recurrent then π(K) satisfies
the corresponding property. The limitation of these results is that K might lie
entirely in a fiber of π in which case π(K) is trivial. However we do obtain the
following result.

Theorem 5.9. Let π : (X,T ) → (Y, S) be a distal extension of minimal systems.
Y contains a uniformly chaotic subset if and only if X does.

Proof. If K is a pairwise proximal subset of X then the restriction π � K is injective
when π is distal. So if K is a union of uniformly recurrent and uniformly proximal
Cantor sets then π(K) is. The converse is a special case of Corollary 5.7. �

5.3. Weakly mixing extensions.

Theorem 5.10. Let (X,T ) be a TDS and π : (X,T ) → (Y, S) an open nontrivial
weakly mixing extension. Then there is a residual subset Y0 ⊆ Y such that for every
point y ∈ Y0 the set π−1(y) contains a dense strongly scrambled Mycielski subset
K such that K ×K \∆X ⊆ Trans(Rπ). In particular (X,T ) is strongly Li-Yorke
chaotic.

If moreover π is weakly mixing and RIC, then there is a residual subset Y0 ⊆ Y
such that for every point y ∈ Y0 a dense Mycielski set K ⊂ π−1(y), y ∈ Y0 as above
can be found which is uniformly chaotic, whence X is uniformly chaotic.

Proof. Since π is open, it follows that π × π : Rπ → Y, (x1, x2) 7→ π(x1) is open as
well. Since Rπ is transitive, the set of transitive points Trans(Rπ) is a dense Gδ

subset of Rπ. By Ulam’s Theorem there is a residual subset Y0 ⊆ Y such that for
every point y ∈ Y0,

Trans(Rπ) ∩Recur2 ∩ (π−1
∞ (y)× π−1

∞ (y))

is dense Gδ in π−1(y)× π−1(y).
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Now for each y ∈ Y0, we claim that π−1(y) has no isolated points. In fact if
this is not true, then there exists x ∈ π−1(y) such that {x} is an open subset of
π−1(y). Moreover, {(x, x)} is an open subset of π−1(y)×π−1(y). Since Trans(Rπ)∩
(π−1(y)×π−1(y)) is dense Gδ in π−1(y)×π−1(y), one has (x, x) ∈ Trans(Rπ). This
shows that Rπ = ∆X which contradicts the fact that π is a non-trivial extension.
Finally, by Theorem 4.3 there is a dense s-chaotic subset K ⊆ π−1(y) such that

K ×K \∆X ⊆ Trans(Rπ) ∩ (π−1(y)× π−1(y)) \∆X ⊆ Trans(Rπ).

We now further assume that π is a RIC extension. Then by [G05], Theorem 2.7,
π is weakly mixing of all orders (i.e. Rn

π is transitive for all n ≥ 2) and in particular
for every n ≥ 2,

Proxn ∩Recurn ∩ π−1(y)n

is a dense in π−1(y)n, for every y ∈ Y0. Applying Theorem 4.6 we obtain our claim.
�

5.4. The non PI case. The following theorems of Bronstein [Bro79] and van der
Woude [Wo85] give intrinsic characterizations of PI-extensions and HPI-extensions
respectively. Recall that a map π : X → Y between compact spaces is called semi-
open if int π(U) 6= ∅ for every nonempty open subset U ⊂ X. It was observed by
J. Auslander and N. Markley that a homomorphism π : X → Y between minimal
systems is always semi-open (see e.g. [G05, Lemma 5.3]).

Theorem 5.11. Let π : (X,T ) −→ (Y, T ) be a homomorphism of compact metric
minimal systems. Then

(1) The extension π is PI if and only if it satisfies the following property: when-
ever W is a closed invariant subset of Rπ which is transitive and has a dense
subset of minimal points, then W is minimal.

(2) The extension π is HPI if and only if it satisfies the following property:
whenever W is a closed invariant subset of Rπ which is transitive and the
restriction of the projection maps to W are semi-open, then W is minimal.

Next we show that a minimal system which is a non-PI extension has an s-chaotic
subset.

Theorem 5.12. Let π : (X,T ) −→ (Y, T ) be a homomorphism of metric minimal
systems. If π is a non-PI extension, then there is a dense subset Y0 ⊂ Y such that
for each y0 ∈ Y0, there is a uniformly chaotic subset of π−1(y0). In particular (X,T )
is strongly Li-Yorke chaotic.

Proof. Assume that π : (X,T ) −→ (Y, T ) is a non-PI extension. Then by Theorem
5.3 there exist φ : (X∞, T ) → (X,T ), π∞ : (X∞, T ) → (Y∞, T ) and η : Y∞ −→ Y
such that φ is a proximal extension, π∞ is weakly mixing RIC extension, and η is a
PI-extension. As π is non-PI, π∞ is non-trivial.
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Now consider the commutative diagram

X

π

��

X∞
φoo

π∞
��

Y Y∞η
oo

By Theorem 5.10 there is a dense Gδ subset Y 0
∞ ⊂ Y∞ such that, for every y ∈ Y 0

∞,
there is a dense uniformly chaotic subset Ky of π−1

∞ (y).
Since π is not PI, π∞ is not proximal. Thus, there is a distal point (x1, x2) ∈

Rπ∞ \∆X∞ . This implies that φ(x1) 6= φ(x2) as φ is a proximal extension. For any
k1, k2 ∈ K = Ky with k1 6= k2, one has (k1, k2) ∈ Trans(Rπ∞). As φ(x1) 6= φ(x2),
(x1, x2) ∈ Rπ∞ and (k1, k2) ∈ Trans(Rπ∞), one has φ(k1) 6= φ(k2). That is, φ :
K → φ(K) is a bijection. Therefore, as is easy to check, φ(K) is a uniformly chaotic
subset of X. Moreover φ(K) ⊂ π−1(η(y)). Finally we let Y0 = η(Y 0

∞); clearly a
dense subset of Y . �

5.5. The proximal but not almost one-to-one case. Every extension of mini-
mal systems can be lifted to an open extension by almost one-to-one modifications.
To be precise, for every extension π : X → Y of minimal systems there exists a
canonically defined commutative diagram of extensions (called the shadow diagram)

X

π

��

X∗
σoo

π∗
��

Y Y ∗τ
oo

with the following properties:

(a) σ and τ are almost one-to-one;
(b) π∗ is an open extension;
(c) Y ∗ is the unique minimal set in the closure of {π−1(y) : y ∈ Y } in C(X) and

τ is the extension of the uniformly continuous map π−1(y) 7→ y.
(d) X∗ is the unique minimal set in Rπτ = {(x, y) ∈ X × Y ∗ : π(x) = τ(y)} and

σ and π∗ are the restrictions to X∗ of the projections of X ×Y ∗ onto X and
Y ∗ respectively.

We refer to [V70], [G76] and [V77] for the details of this construction.

In [G76] it was shown that a metric minimal system (X,T ) with the property
that Proxn(X) is dense in Xn for every n ≥ 2 is weakly mixing. This was extended
by van der Woude [Wo82] as follows (see also [G05]).

Theorem 5.13. Let π : X → Y be a factor map of the metric minimal system
(X,T ). Suppose that π is open and that for every n ≥ 2, Proxn(X)∩Rπ is dense in
Rπ. Then π is a weakly mixing extension. In particular a nontrivial open proximal
extension is a weakly mixing extension.
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Lemma 5.14. Let π : X → Y be a continuous surjective map between compact
metric spaces which is almost one-to-one. If A ⊂ X is a dense Gδ subset, then π(A)
contains a dense Gδ subset of Y .

Proof. Let A0 = {x ∈ X : π−1π(x) = {x}} and B0 = {y ∈ Y : Card π−1(y) =
1}. Then A0 (resp. B0) is a dense Gδ subset of X (resp. Y ). Now A ∩ A0 is a
dense Gδ subset of X, hence a dense Gδ of A0. As the set of continuity points of
π−1 : Y −→ C(X) contains B0, π : A0 → B0 is a homeomorphism, so π(A ∩ A0)
is a dense Gδ subset of B0. Therefore, there exist open subsets Un of Y such that⋂∞
n=1 Un ∩B0 = π(A ∩A0). This shows that π(A ∩A0) is also a dense Gδ subset of

Y . �

Recall that a subset K of X is a proximal set if each finite tuple from K is uni-
formly proximal (see Definition 2.2). The proof of the following lemma is straight-
forward.

Lemma 5.15. Let π : X −→ Y be a proximal extension between minimal systems.
Then for each y ∈ Y , π−1(y) is a proximal set.

In the sequel it will be convenient to have the following:

Definition 5.16. Let (X,T ) be a TDS.

(1) A scrambled Mycielski subset K ⊂ X will be called a chaotic subset of X.
(2) A strongly scrambled Mycielski subset will be called an s-chaotic subset of

X.

We can now prove the following result (see also [AAG08, Theorem 6.33]).

Theorem 5.17. Let π : X → Y be a proximal but not almost one-to-one extension
between minimal systems. Then there is a residual subset Y0 ⊂ Y such that for each
y ∈ Y0, π−1(y) contains a proximal s-chaotic set K.

Proof. In the shadow diagram for π, the map π∗ is open and proximal. Since π is
not almost one-to-one π∗ is not trivial. Thus, by Theorem 5.13, π∗ is a nontrivial
open weakly mixing extension. Hence by Theorem 5.10 there is a residual subset
Y ∗0 ⊂ Y ∗ such that for each y∗ ∈ Y ∗0 , π∗−1(y∗) contains an s-chaotic set K∗ and
K∗ × K∗ \ ∆X∗ ⊆ Trans(Rπ∗). Moreover, π∗ being proximal, we have for every
n ≥ 2, π∗−1(y∗)n ⊂ Proxn and therefore we can require that K∗ be proximal as
well. Since in the shadow diagram σ and π∗ are the restrictions to X∗ of the
projections of X × Y ∗ onto X and Y ∗ respectively, σ(K∗) is an s-chaotic set, as
πσ(K∗) = τπ∗(K∗) = {τ(y∗)}, σ(K∗) ⊂ π−1(τ(y∗)). Finally, set Y0 = τ(Y ∗0 ). Since
τ is almost one-to-one, Y0 is a residual subset of Y (Lemma 5.14) . �

The following result was first proved in [AAG08].

Corollary 5.18. Assume that π : X → Y is extension between minimal systems
such that the only points (x1, x2) ∈ Recur2(X) with π(x1) = π(x2) satisfy x1 = x2,
e.g. an asymptotic extension between minimal systems. Then π is almost one-to-
one.
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Proof. This follows immediately from Theorem 5.17. Note that π is proximal. If it
is not almost one-to-one, then by Theorem 5.17, there are x1 6= x2, {x1, x2} ⊂ K ⊂
π−1(y) for some y ∈ Y . �

Remark 5.19. In [GW79] the authors construct an example of a minimal system
(X,T ) which admits a factor map π : X → Y such that (i) the factor Y is equicon-
tinuous, (ii) the map π is a nontrivial open proximal extension. Now such an X is
clearly strictly PI but not HPI. However, according to Theorem 5.13 the extension
π is a weakly mixing extension and it follows from Theorem 5.10 that for some
y0 ∈ Y the fiber π−1(y0) contains a dense proximal s-chaotic subset. Moreover,
as suggested to us by Hanfeng Li, using the (Baire category type) method of con-
struction in [GW79], one can enforce on the extension π : X → Y the following
additional property: (iii) there is a point y0 ∈ Y such that π−1(y0) is a uniformly
recurrent subset of X. Of course π−1(y0) is also a proximal set and therefore uni-
formly chaotic. Thus X is an example of a minimal PI system which is uniformly
and a fortiori strongly Li-Yorke chaotic.

Remark 5.20. By [BGKM02], positive topological entropy implies the existence of
an s-chaotic subset. In fact in [KL07, Theorem 3.18] Kerr and Li actually prove a
much stronger result from which it follows that positive topological entropy implies
uniform chaos. Since there are HPI systems with positive entropy (e.g. many
Toeplitz systems [W84]) we conclude that there are HPI systems which are uniformly
(hence strongly Li-Yorke) chaotic.

5.6. The PI, non-HPI case. We have shown (Subsection 5.4) that for a non-PI
extension there is a uniformly chaotic set. The natural question now is whether there
is a chaotic (s-chaotic, uniformly chaotic) set for a non-HPI extension? (Recall that
for a metric X the notions ‘HPI extension’ and ‘point distal extension’ coincide.)
At present we are unable to answer this question fully. However we will show that
the answer is affirmative for a sub-class of non-HPI extensions:

Proposition 5.21. Let π : X −→ Y be a strictly PI extension but non-HPI exten-
sion between minimal systems. Then there is a dense set Y0 of Y such that for each
y ∈ Y0, π−1(y) contains a proximal chaotic set.

Proof. Since by assumption π is non-HPI, in its strictly PI-tower at least one of the
proximal extensions in the canonical PI-tower is not an almost one-to-one extension.
Let us denote this segment of the tower by

X
π1−→ Z1

π2−→ Z2
π3−→ Y,

with π1 ◦ π2 ◦ π3 = π, and where π1 and π3 are strictly PI extensions and π2 is a
proximal but not an almost one-to-one extension.

By Theorem 5.17 there exists a dense set Z0 ⊂ Z2 such that for each z ∈ Z2,
π−1

2 (z) contains a proximal s-chaotic set K ⊂ Z1 . By Theorem 5.5 (3), there is a
proximal subset K ′ ⊂ X with π1 ◦ π1(K

′) = K and as K is s-scarambled, K ′ is at
least scrambled. Now the proposition follows by setting Y0 = π3(Z0). �
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Now assume that π : X −→ Y is PI and not HPI. This means that in the canonical
PI-tower there are maps φ : X∞ −→ X which is proximal and η : X∞ −→ Y which
is strictly PI:

X∞
φ

}}{{
{{

{{
{{ η

!!C
CC

CC
CC

C

X
π // Y

Lemma 5.22. The extension η is not a strictly HPI extension.

Proof. Assume η is a strictly HPI-extension. Then by Theorem 5.11.(2) there are
no non-minimal transitive subsystem W of Rη such that the coordinate projection
W → Y is semi-open. Now it is easy to see that there is no non-minimal transitive
subsystem W ′ of Rφ such that the coordinate projection W ′ → X is semi-open.
For if W ′ is a non-minimal transitive subsystem of Rφ such that the coordinate
projection W ′ → X is semi-open, then W ′ is also a subsystem of Rη. But the
composition of two semi-open maps is also semi-open and π : X → Y is semi-open,
hence the coordinate projection W ′ → Y is semi-open, a contradiction.

Hence using Theorem 5.11.(2) again, this shows that φ is an HPI-extension. How-
ever φ is also proximal, so we conclude that φ is almost one-to-one. This shows that
π is an HPI-extension contradicting our assumption. �

Thus combining this lemma with Proposition 5.21 we know that X∞ contains a
proximal chaotic subset K. However, we do not know whether its image φ(K) ⊂ X
is also such a set.

We conclude with the following open problem.

Problem 5.23. A strictly PI system which is not HPI contains a proximal chaotic
subset (Proposition 5.21), is this true also for a PI non-HPI system?

6. Table

In order to ease the reading of this work we summarize in the table below some
of the interrelations between the various kinds of chaos discussed in the paper. In
each case the label refers to the existence of a large chaotic set. We write ‘ch.’ for
chaos and ‘s’ for strong. The labels ch. and s-ch. refer to the existence of Mycielski
scrambled set and Mycielski strongly scrambled set respectively. Proximal means
to say that the chaotic set in question is a proximal set. For most of these arrows
it is easy to produce examples which show they can not be reversed. However for
some, especially at the bottom of the table, this is no longer so clear and we have
not checked what is the exact situation in that respect.
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weak mixing

��
dense uniform ch.

��
Devaney ch. // uniform ch.

��

htop > 0oo

proximal s-ch. //

��

s-ch. //

��

s-LY ch.

��
proximal ch. // ch. // LY ch.

Table 1. Types of chaotic behavior

7. Appendix

7.1. A characterization of RIC extensions. Following usual notation we write
βZ for the Čech-Stone compactification of the integers, and we fix a minimal left
ideal M ⊂ βZ and an idempotent u = u2 ∈ J(M), where J(M) is the nonempty
set of idempotents in M . Then the subset Gu = uM is a maximal subgroup of the
semigroup M which decomposes as a disjoint union M =

⋃
{Gv = vG : v ∈ J(M)}.

The group G can be identified with the group of automorphisms of the dynamical
system (M,Z) (see e.g [G76] or [Au88]). We also recall that the semigroup βZ is
a universal enveloping semigroup and thus “acts” on every compact Z dynamical
system. In particular, when (X,T ) is a dynamical system the homeomorphism T
defines in a natural way a homeomorphism on C(X), the compact space of closed
subsets of X. Now for p ∈ βZ the “action” of p on the point A ∈ C(X) is well
defined. In order to avoid confusion here we denote the resulting element of C(X)
by p ◦A and refer to this action as the circle operation. A more concrete definition
of this set is

p ◦ A = lim supT niA,

where, denoting by S the generator of Z, Sni is any net in βZ which converges to p.
Thus we always have pA = {px : x ∈ A} ⊂ p◦A, but usually the inclusion is proper,
as often pA is not even a closed subset of X. A quasifactor of a system (X,T ) is a
closed invariant set M⊂ C(X) such that

⋃
{A : A ∈M} = X.

For an extension π : X → Y of minimal dynamical systems fix x0 ∈ X such that
x0 = ux0 and let y0 = π(x0), and let F denote the subgroup of Gu = uM which
fixes y0. That is, F = {α ∈ Gu : αy0 = y0}.

We define the minimal quasifactor

M = {p ◦ Fx0 : p ∈M} ⊂ C(X).

Clearly, y = py0 implies p ◦ Fx0 ⊂ π−1(y) for any p ∈ βZ .
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Lemma 7.1. If p ∈M, v ∈ J(M) with vp = p then vπ−1(py0) = pFx0.

Proof. pFx0 ⊂ p ◦ Fx0 ⊂ π−1(y) with y = py0. Since vp = p and vv = v, pFx0 ⊂
{x ∈ π−1(y) : vx = x} = vπ−1(y).

On the other hand, suppose π(x) = y and vx = x. There exists q ∈M such that
qp = u and by replacing q with uq we can assume uq = q. Then qy = qpy0 = uy0 =
y0. Since q, up and u lie in the group Gu with identity u, u = qp = qup implies that q
and up are inverses in the group and so upq = u. Hence, pq = vpq = vupq = vu = v.

Now let x1 = qx. Since uq = q, ux1 = x1. Also, π(x1) = π(qx) = qy = y0. Let
α ∈ M such that αx0 = x1. By replacing α by uα we can assume α ∈ Gu. Finally,
pαx0 = px1 = pqx = vx = x. That is, x ∈ pFx0.

�

In [EGS75] the extension π is called relatively incontractible (RIC) if for every
p ∈ M we have p ◦ Fx0 = π−1(py0). We show that this definition is equivalent
to the one given in Section 5.1. Let us note that in the proof we do not assume
the metrizability of the minimal systems and that the same proof works for general
(non-commutative) discrete group actions.

Theorem 7.2. An extension π : X → Y between minimal systems is RIC if and
only if π is open and for every n ≥ 1 the minimal points are dense in the relation

Rn
π = {(x1, . . . , xn) ∈ Xn : π(xi) = π(xj), ∀ 1 ≤ i ≤ j ≤ n}.

Proof. Define the map π∗ : Y → C(X) by π∗(y) = π−1(y), regarded as a point of
C(X). π is open if and only if π∗ is continuous and so is a homomorphism from
Y to C(X). In that case π−1(py) = p ◦ π−1(y) for any y ∈ Y and p ∈ βZ and the
image π∗(Y ) = {π−1(y) : y ∈ Y } is a minimal quasifactor of X.

On the other hand, it is easy to see that π is RIC exactly when π∗(Y ) = M =
{p ◦ Fx0 : p ∈M}.

Claim: For an extension π : X → Y between minimal systems, π∗(Y ) ⊂ M
if and only if for every n ≥ 1 the minimal points are dense in the relation Rn

π =
{(x1, . . . , xn) ∈ Xn : π(xi) = π(xj), ∀ 1 ≤ i ≤ j ≤ n}.

Assuming the Claim, we complete the proof of the theorem.
If π is RIC then π∗(Y ) is closed since it equals M. If {yi} converges to y in Y

then any limit point of {π∗(yi)} is contained in π−1(y). Since π∗(Y ) is closed this
limit point must equal π−1(y). Hence, π∗ is continuous and π is open. The density
of minimal points then follows from the Claim.

On the other hand, if π is open thenM and π∗(Y ) are both minimal quasifactors.
By the Claim the density of minimal points implies that they meet and so are equal.
So an open extension is RIC when it satisfies the minimal points condition.

Proof of the Claim. Every n-tuple (x1, . . . , xn) with xi ∈ Fx0, i = 1, . . . , n is a
minimal point of Rn

π because x ∈ Fx0 implies ux = x. For any t in the acting group
Z, utx = tux = tx (and if the acting group is nonabelian then u′tx = tux = tx using
the conjugate idempotent u′ = tut−1). Hence, if for every y ∈ Y there exists p ∈ βZ
such that π−1(y) = p ◦ Fx0 then the density of minimal points in Rn

π follows from
the definition of the circle operation.
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Conversely, suppose the minimal points are dense in each Rn
π. We show that

π−1(y) is in M for an arbitrary y ∈ Y .
(If X is not metrizable let d be any continuous pseudo-metric on X.) Let

(x1, . . . , xn) be an n-tuple of elements of π−1(y) which is ε-dense in π−1(y) (with
respect to d). By compactness, we can choose U a neighborhood of y such that
π−1(U) is contained in the ε neighborhood Bd

ε (π−1(y)).
By the density of minimal points there is a point y′ ∈ U and an n-tuple (x′1, . . . , x

′
n)

of points of π−1(y′), such that (i) d(xi, x
′
i) < ε for every i, and (ii) (x′1, . . . , x

′
n) is a

minimal point of Rn
π.

There is a minimal idempotent v ∈ J(M) such that vx′i = x′i for every i and it
follows that {x′1, . . . , x′n} ⊂ vπ−1(y′). Note that we must have vy′ = y′ and there is
therefore some p ∈M such that y′ = py0 and p = vp.

By Lemma 7.1

{x′1, . . . , x′n} ⊂ vπ−1(y′) = pFx0 ⊂ p ◦ Fx0.

Thus, every point of π−1(y) is within 2ε of a point in p◦Fx0 (with respect to d). On
the other hand, p ◦ Fx0 ⊂ π−1(y′) ⊂ π−1(U) implies that every point of p ◦ Fx0 is
within ε of a point in π−1(y). Hence, the d Hausdorff distance between π−1(y) and
p ◦ Fx0 ∈M is at most 2ε. As ε is arbitrary (as is d in the nonmetric case) andM
is closed in C(X), it follows that π−1(y) ∈M. �

Remark 7.3. We see from the proof that if π is open then it is RIC if and only
if M and π∗(Y ) intersect. In particular, π is RIC if and only if it is open and
u ◦ Fx0 = π−1(y0).
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