
This is a correction to the proof of Theorem 3.3 in [1]. On page 124, line 8, from
above replace the part of the proof starting with the words “Consider the Z-system
(Tk, Rα) ...” till the end of the proof, with the following:

Consider the Z-system (Tk, Rα), that is the rotation by α = (α1, α2, . . . ,αk) on the
k-torus Tk, and let K ⊂ Tk be given by

K = {κ : ∃ni �∞, T ni → Id, & niα → κ}.
Clearly K is a closed sub-semi-group of Tk and therefore also a closed subgroup.

If K is a proper subgroup of Tk then, as is easy to check, the map T n �→ nαK
is a continuous group homomorphism which can be extended to a continuous homo-
morphism φ : G → Tk/K. However, since we assume that G is minimally almost
periodic, such homomorphism can not exist. Thus we are led to the conclusion that
K = Tk. In turn this implies that the subgroup

L = closure{(T n, nα) : n ∈ Z} ⊂ G× Tk

coincides with G× Tk.
In particular it is possible to find a sequence {nj} ⊂ Z such that (T nj , njα) →

(T, 0). For all sufficiently large j we have

nj ∈ B ⊂ S − S = N(U,U),

and we conclude that also TU ∩ U �= ∅, contradicting the way U was chosen.
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Abstract 

We show the existence of an infinite monothetic Polish topological group G with the fixed point 

on compacta property. Such a group provides a positive answer to a question of Mitchell who asked 

whether such groups exist, and a negative answer to a problem of R. Ellis on the isomorphism of 

L(G), the universal point transitive G-system (for discrete G this is the same as PG the Stone- 

tech compactification of G) and E(M, G), the enveloping semigroup of the universal minimal 

G-system (M, G). For G with the fixed point on compacta property A4 is trivial while L(G) is 

not. Our next result is that even for Z with the discrete topology, L(Z) = /?Z is not isomorphic 

to E(M, Z). Finally we show that the existence of a minimally almost periodic monothetic Polish 

topological group which does not have the fixed point property will provide a negative answer to 

an old problem in combinatorial number theory. 0 1998 Elsevier Science B.V. 
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0. Introduction 

During the 8th Prague Topological Symposium, August 1996, a recent paper of 

Pestov [ 141, was brought to my attention in which he deals with several problems con- 

cerning actions of certain Polish topological groups and related to a problem of R. Ellis. 

Reading the paper I found that to some of the questions he mentions I have ready an- 

swers, Curiously enough in the same week, talking with J. Lawson who also participated 

in the Symposium, I learned that he and N. Hindman were also interested in some of 

these questions. I therefore concluded that the time to write down these results has come 

and that the Symposium’s proceedings is the most appropriate place for it. I would like 

to thank the organizers for the invitation to speak at the Symposium and for their warm 

hospitality. I would like to thank H. Furstenberg and B. Weiss for many disscusions on 
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these subjects and Vladimir Pestov for supplying information regarding the history of 

these problems. 

1. A monothetic group with the !‘ixed point property 

Let G be a topological group. We say that G has theJixed point on compacta property 

(fp.c.), if for every (jointly continuous) G action on a compact space X, there is a fixed 

point; i.e., there exists z E X with gx = x for all g E G. (When G acts on a compact 

space X we say that (X, G) is a compact G-system.) The following theorem answers a 

question of Mitchell [ 111. 

Theorem 1.1. There exists an infinite monothetic Polish topological group with thefied 

point on compacta property. 

The proof relies on the following definitions and theorems. Let (Xi, di, pi), i = 

1,2,3 . . , be a family of metric spaces (Xi, di) with diam(Xi) = 1 and pi proba- 

bility measures. Call such a family a Levy family if the following condition is satisfied: 

If Ai c Xi is such that liminf pi(Ai) > 0 then for any E > 0, limp(B,(Ai)) = 1, 

where B,(A) is the E neighborhood of A. 

Let G be a topological group and d(., .) a metric on G with diameter 1. Suppose 

G = U Gi where Gi C Gi+t are compact subgroups. For each i let phi be normalized 

Haar measure on Gi. The group G (with the metric d) is called a Levy group if the 

family (Gi ) d, pi) is a Levy family. The next theorem is due to Gromov and Milman [lo] 

(the equicontinuity of the action assumed there is not necessary). For completeness we 

reproduce the short proof. 

Theorem 1.2. Let (X, G) be a continuous action of the Levy group G on a compact 

space X. Then there exists a point x E X with gx = x for all g E G; i.e., G has the 

jIp. c. property 

Proof. Since G is a Polish group it is enough to prove the theorem for compact metric 

spaces. Fix xc E X and let 4: G + X be defined by $(g) = gxc. Let vi = $+(pi). 

Fix E > 0 and let BE(xj), j = 1,2,. . . , N, be a finite cover of X with balls of radius 

E. There exists then some xj = X(E) with .vn,(BE(xj)) 3 b = l/N > 0 for some 

infinite sequence ni. The Levy property implies limi,, vni (BzE(xj)) = 1. Now take a 

convergent sequence lim&,m Xj (ek) = x with &k --f 0. It is easy to see that x is a fixed 

point for every g E G. In fact if gx # x then for some open ball U around x we have 

gU n U = 8. NOW for large enough i, g E Gi and /.~i({h E Gi: hxo E U}) > l/2. Since 

also pi({h E Gi: hxo E gU}) > l/2 we get a contradiction. •I 

Theorem 1.3. Let (KS’, t?, m) be a nonatomic Lebesgue measure space, and let 

G = {f : 0 -+ @ 1 f measurable, IfI = l}, 
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equipped with the metric 

d(f,g) = .I If - i dm. 

as the group operation) is a Polish topological group 

contains 

Proof. With a A c associate the group H(A) ‘F of two-valued 

functions on R f(z) = for some E T II: is A and = 1 

for z E A”. With measurable partition P = {Al. ~ AN} of R associate the group 

G(P) = H(AI) x . x H(AN) ” TN. Clearly GO = U G(IP,), for a suitable sequence 

of refining partitions P,, is a dense subgroup of G and it is well known that Go is Levy 

(see, e.g., [13, Section 7.131). 0 

Proof of Theorem 1.1. It is clear that up to isomorphism the group G described in 

Theorem 1.3 does not depend on the particular Lebesgue space. Take f1 to be a Kronecker 

subset of the circle T and nr any continuous probability measure on Q. Then from 

the definition of a Kronecker set (the continuous characters on T, restricted to R, are 

uniformly dense in the set of complex valued continuous functions on 0 of modulus 1) 

it follows that the subgroup 

Ga = {x : f2 ---) 1 x continuous of T} 

dense in Since the of continuous of ll’ isomorphic to it 

follows G is Theorem 1 now follows Theorems 1.2 1.3. 0 

(1) One a faithful representation of group G Theorem 1.3 

L2(T) by the elements G as operators. The 

Gaussian process yield nontrivial measure preserving Thus 

although admits no minimal actions a compact it does 

nontrivial unitary and nontrivial measure preserving 

(2) Independently the work Gromov and and at the same 

H. Furstenberg B. Weiss Theorem 1 (private communication) 

this work never published. 

In [14] shows that, the Polish Aut(Q), of automorphisms 

of rational numbers with the of pointwise has the 

property by clever use Ramsey’s theorem. 

Ellis’ problem 

enveloping semigroup G) of G-system (X, is by the clo- 

of G Xx. Introduced Ellis in this object central in 

cal dynamics. is well that the semigroup of Bernoulli system 
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(fi,Z)-where R = (0, 1)” and the Z action is by translation-is isomorphic to PiZ 

the Stone2ech compactification of Z. A question, due apparently to Ellis (see also [2, 

p. 1201 and [16, note IV.7.4.13]), is whether the enveloping semigroup E(M) of the 

universal minimal dynamical system (n/r, G) is isomorphic to the universal point transi- 

tive G-system L(G). The latter system can be identified with the Gelfand space of the 

Banach algebra C consisting of bounded left uniformly continuous real valued functions 

on G. Thus when G is discrete we have L(G) = PG, where PG is the Stone-Tech 

compactification of G. As was observed by Pestov, for a nontrivial group G with the 

f.p.c. property, A4 is trivial while L(G), which contains a copy of G, is not. Thus every 

nontrivial f.p.c. group provides a negative answer to Ellis’ question. In particular if we let 

r denote the topology induced on Z as a dense subgroup of the monothetic f.p.c. group 

G described in Section 1, then (Z, 7) has the f.p.c. property and we get a negative answer 

to Ellis’s problem with acting group (Z, r). However, using the results of the 1983 paper 

[9], we can show that even for Z with the discrete topology E(M) is not isomorphic to 

,f3Z. (Recall that a system (X, G) is called point transitive if there exists a point IC E X 

with dense orbit.) 

Theorem 2.1. For the group of integers Z with the discrete topology, the enveloping 

semigroup E(M, 2%) of the universal minimal system (M, Z) is a proper factor of the 

universal point transitive Z-system (PZ, Z). Hence these two systems are not isomorphic. 

Proof (Sketch). Briefly the argument is as follows. Let 

(W, wu) = V {(X, ~0): (X, zu) a pointed minimal system} 

be the join of all minimal pointed systems. It is not hard to check that the Z-system 

W is isomorphic to the enveloping semigroup E(M) and we identify (E(M), id) with 

(W, we). Next we show that the natural homomorphism 11, : (PZ, 0) + (E(M), id) is not 

l-l. Let 

7/J* : C(W) + Cb(Z) ” C(j3Z) ” l”(Z), 

be the adjoint map from C(W), the algebra of real valued continuous functions on W, 

into 1”(Z). Let A = +*C(W) be its image in 1”(Z). By [9], d-interpolation sets are 

“small” subsets of Z while every subset of Z is an lm(Z)-interpolation set. (A subset 

L of Z is small if for every n the set of starting points of intervals of length at least n 

contained in L” is syndetic (i.e., has bounded gaps).) Thus A # l”(Z), hence $ is not 

l-l. The universal property of /ZZ now shows that no isomorphism can exist between 

PZ and W = E(M). 0 

3. An open problem in combinatorial number theory 

A subset B of Z is called a Bohr-neighborhood of zero if there exist E > 0 and a finite 

set of real numbers (~1, . . . , a~} such that 

{n E Z: Vj 11 - exp(2nriaj)l < &} c B. 
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Let bZ denote the Bohr compactification of Z. It is a compact topological group con- 

taining an isomorphic dense copy of Z. In fact bZ is characterized up to topological 

isomorphism as the largest compact group with this property. A subset B of Z is a 

Bohr neighborhood of zero iff there exists a neighborhood V of zero in bZ such that 

B = V n Z. Notice that Z acts on bZ in a natural way and that this action is minimal. 

(Recall that a compact system (X. G) is minimal if X and 8 are the only closed invariant 

subsets of X.) 

A subset S of Z is called syndetic if there exists a finite subset F of Z such that 

Z = S + F. The following characterization of minimality is well known and easy to 

prove. 

Lemma 3.1. Let (X, T) b e a compact Z-system. Then the orbit closure of a point IC E X 

is minimal ifffor every neighborhood U of x the set N(x, U) = {n E Z: T”x E U} is 

syndetic. 

The proof of the following lemma is an easy exercise. 

Lemma 3.2. Let (X, T) be u minimal Z-system, U c  X a nonempty open subset and 

x0 an arbitrary point in U. Let N(U, U) = {n E Z: T”U n U # 8}, then 

N(U. U) = N(xo, U) - N(zo. U). 

Let B be a Bohr neighborhood of zero in Z. Then, Z with the Bohr topology being a 

topological group, we can find a Bohr neighborhood of zero S with S - S c  B. There 

exists a Bohr neighborhood of zero in bZ say V such that V n Z = S and since the 

action of Z on bZ is minimal we conclude that S = {n: 0 + n E V} = N(0, V) is 

syndetic. 

Conversely, in [15] it was shown that if S is a syndetic subset of Z then there exists 

a Bohr neighborhood of zero B such that (S - S) \ B is a set of upper Banach density 

zero. It is an open question whether one can actually always find a Bohr neighborhood 

BcS-S. 

A monothetic topological group G is called maximally almost periodic if the contin- 

uous characters separate points on G. It is called minimally almost periodic if the only 

continuous character on G is the constant function 1. Thus Z with the discrete topology is 

maximally almost periodic while clearly every monothetic group with the f.p.c. property 

(like the one described in Theorem 1.3) is minimally almost periodic. A wealth of Polish 

monothetic minimally almost periodic topological groups is constructed in [ 11. 

Theorem 3.3. If a Polish monothetic topological group G exists which is minimally 

almost periodic yet does not have theJixed point on compacta property, then there exists 

a syndetic subset S of Z for which S - S does not contain u Bohr neighborhood of zero. 

Proof. Since by assumption G does not have the f.p.c. property there exists a nontriv- 

ial minimal metrizable G-system (X, G). We can assume that G is a subgroup of the 
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Polish group Homeo(X) of all homeomorphisms of X with the topology of uniform con- 

vergence of homeomorphisms and their inverses. Let T be the homeomorphism which 

represents the element 1 E Z c  G. Let 20 be an arbitrary point in X and let U be an open 

neighborhood of 20 such that U n TU = 0. Set S = N(zc, U) = {n E Z: Tnzg E U}. 

Then S is a syndetic subset of Z and we now assume that for some E > 0 and 

Qi,...! ok E IR the Bohr neighborhood 

B = {n E Z: Yj / 1 - exp(2nriaj)l < E} 

is contained in S - S = N(U, U) = {n E Z: T”U n U # 0) (Lemma 3.2). Consider 

the Z-system (T”, R,) which is the rotation by cr = (~1, . . . ! arc) on the k-torus T” and 

let L c  G x ‘FIT” be given by 

L = closure{ (Tn, RZO): R E Z}. 

Clearly L is a closed subgroup of G x T” which projects onto all of G in the first 

component and on some closed subgroup K of T” in the second component. We claim 

that L = G x K. Otherwise the set H = {/3 E K: (id,@) E L} is a closed proper 

subgroup of K and it is easy to check that the map g H /? + H, where ,I!? is any element 

of K with (g?p) E L, is well defined and is a continuous homomorphism from G onto 

K/H. This, however, contradicts our assumption that G is minimally almost periodic. 

Thus L = G x K and in particular it is possible to find a sequence nj E Z such that 

(Tn3, RE’) ---f (T, 0). For all large j we have 

njEBC(S-S)=N(U,U), 

and we conclude that also TU n U # 0 contradicting the way U was chosen. 0 

Remarks. 

(1) One can think of two approaches to the problem of finding a monothetic group 

of the type described in Theorem 3.3. The first is to try and show that some of 

the known examples of monothetic minimally almost periodic groups (like those 

constructed in [l]) do not have the f.p.c. property. Perhaps this can be done using a 

modification of the probabilistic method developed in [ 11. The other is to construct 

a minimal Z-system (X, T) with the following properties: 

(i) the action is uniformly rigid (see [7]), and 

(ii) the topology induced from Homeo(X) on Z = {T”: n E Z} makes it a 

minimally almost periodic group. 

In fact, when (X, T) is uniformly rigid, the uniform closure, say G, of Z in 

Homeo(X) forms a perfect Polish monothetic group which by construction admits 

a nontrivial minimal action. Notice that such a system (X, T) is necessarily weakly 

mixing. (Otherwise any character of the nontrivial Kronecker factor of (X, T) can 

be lifted to obtain a continuous character on G.) A way of constructing minimal 

weakly mixing uniformly rigid Z-systems is described in [7,8]; however, we do 

not know how to control the characters of the monothetic groups obtained this 

way and in particular how to make them minimally almost periodic. 



E. 

(2) See [17] for a related discussion of this problem. Similar problems are treated in 

[5,121.  
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