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Abstract. The main object of this work is to present a powerful
method of construction of subshifts which we use chiefly to con-
struct WAP systems with various properties. Among many other
applications of this so called labeled subshifts, we obtain examples
of null as well as non-null WAP subshifts, WAP subshifts of arbi-
trary countable (Birkhoff) height, and completely scrambled WAP
systems of arbitrary countable height. We also construct LE but
not HAE subshifts, and recurrent non-tame subshifts

Contents

Introduction 2
1. WAP Systems 6
2. Coalescence, LE, HAE and CT-WAP systems 17
3. Discrete suspensions and spin constructions 25
4. The space of labels 30
4.1. Finitary and simple labels 49
5. Labeled subshifts 57
5.1. Expanding functions 57
5.2. Labeled integers 63
5.3. Subshifts 66
5.4. The elements of X(M) and X+(M) 79
5.5. WAP Subshifts 84
6. Dynamical properties of X(M) 90
6.1. Translation finite subsets of Z 90
6.2. Non-null and non-tame labels 92
6.3. Gamow transformations 98
6.4. Ordinal constructions 101
7. Scrambled sets 109
References 115

Date: December 21, 2014.
Key words and phrases. WAP, HAE, LE dynamical systems, space of labels,

expanding functions, enveloping semigroup, adherence semigroup, subshifts, count-
able subshifts, symbolic dynamics, null, tame.

2010 Mathematical Subject Classification 37Bxx, 37B10, 54H20, 54H15.
1



2 ETHAN AKIN AND ELI GLASNER

Index 118

Introduction

The notion of weakly almost periodic (WAP) functions on a LCA
group G was introduced by Eberlein [10], generalizing Bohr’s notion
of almost periodic (AP) functions. As the theory of AP functions
was eventually reduced to the study of the largest topological group
compactification of G, so the theory of WAP functions can be reduced
to the study of the largest semi-topological semigroup compactification
of G. Following Eberlein’s work there evolved a general theory of WAP
functions on a general topological group G, or even more generally, on
various type of semigroups. From the very beginning it was realized
that a dual approach, via topological dynamics, is a very fruitful tool
as well as an end in itself. Thus in the more recent literature on the
subject one is usually concerned with WAP dynamical systems (X,G).
These are defined as continuous actions of the group G on a compact
Hausdorff space X such that, for every f ∈ C(X), the weak closure of
the orbit {f ◦ g : g ∈ G} is weakly compact. The turning point toward
this view point is the paper of Ellis and Nerurkar [11], which used
the famous double limit criterion of Grothendiek to reformulate the
definition of WAP dynamical systems as those (X,G) whose enveloping
semigroup E(X,G) consists of continuous maps (and is thus a semi-
topological semigroup).

In the last two decades the theory of WAP dynamical systems was
put into the broader context of hereditarily almost equicontinuous
(HAE) and tame dynamical systems. The starting point for this direc-
tion was the proof, in the work [5] of Akin Auslander and Berg, that
WAP systems are HAE. For later development along these lines see e.g.
[17].

Most of the extensive literature on the subject of WAP functions and
WAP dynamical systems has a very abstract flavor. The research in
these works is mostly concerned with related questions in harmonic
analysis, Banach space theory, and the topology and the algebraic
structure of the universal WAP semigroup compactification. Very few
papers deal with presentations and constructions of concrete WAP dy-
namical systems. As a few exceptions let us point out the works of
Katznelson-Weiss [28], Akin-Auslander-Berg [4], Downarowicz [9] and
Glasner-Weiss [20, Example 1, page 349]. Even in these few works
the attention is usually directed toward examples of recurrent WAP
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topologically transitive systems. These are the (usually metric) WAP
dynamical systems (X,G) which admit a recurrent transitive point.

A point x in a metric dynamical system (X,G) is a point of equicon-
tinuity if for every ε > 0 there is a δ > 0 such that d(gx, gx′) < ε for
every x′ ∈ Bδ(x) and every g ∈ G. The system is called almost equicon-
tinuous (AE) if it has a dense (necessarily Gδ) subset of equicontinuity
points. It is hereditarily almost equicontinuous (HAE) if every subsys-
tem (i.e. non-empty closed invariant subset) is AE.

As our work deals almost exclusively with cascades (i.e. Z-dynamical
systems), in the sequel we will consider dynamical systems of the form
(X,T ) where T : X → X is a surjective map, usually a homeomor-
phism. A large and important class of cascades is the class of sym-
bolic systems or subshifts. We will deal only with subsystems of the
Bernoulli dynamical system ({0, 1}Z, S), where S is the shift transfor-
mation defined by

(0.1) (Sx)n = xn+1 (x ∈ {0, 1}Z, n ∈ Z).

We will call such dynamical systems subshifts. It was first observed in
[17] that a subshift is HAE iff it is countable (see Proposition 2.2 be-
low). In particular it follows that WAP subshifts are countable. Since a
dynamical system which admits a recurrent non-periodic point is neces-
sarily uncountable, it follows that in a WAP subshift the only recurrent
points are the periodic points. These considerations immediately raise
the question which countable subshifts are WAP, and how rich is this
class ? This question was the starting point of our investigation.

As we proceeded with our study of that problem we were able to
construct several simple examples of both WAP and non WAP topo-
logically transitive countable subshifts, but particular constructions of
WAP subshifts turned out to be quite complicated. After many tri-
als we finally discovered the beautiful world of labels. We begin with
FIN(N), the additive semigroup of nonnegative integer-valued func-
tions with finite support defined on N, the set of positive integers. A
label is a subset M of FIN(N) which is hereditary in the sense that
0 ≤ m1 ≤ m and m ∈ M imply m1 ∈ M. The space LAB of labels
has a natural compact metric space structure. An expansion system
consists of a choice of an expanding function k : Z → Z such that
k(−n) = −k(n) and k(n + 1) > 3Σn

i=0 k(i) for n ≥ 0, together with
an infinite partition {D` : ` ∈ N} of N by infinite subsets. The set
IP (k) ⊂ Z consists of the sums of finite subsets of the image of k.
Each t ∈ IP (k), which we call an expanding time, has a unique expan-
sion t = k(j1) + · · · + k(jr) with |j1| > · · · > |jr|. The length vector
r(t) ∈ FIN(N) counts the number of occurrences of each member of
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the partition in the expansion. That is, r(t)` = #{i : ji ∈ D`}. For a
label M the set A[M] is the set of t ∈ IP (k) such that r(t) ∈ M. For
example, ∅ and 0 = {0} are labels with A[∅] = ∅ and A[0] = {0}.

Once a system of expansion is fixed, there is a canonical injective,
continuous map from the space of labels LAB into {0, 1}Z, M 7→ x[M]
where x[M] is the characteristic function of the set A[M]. Thus to a
label M there is assigned a subshift X(M), the orbit closure of x[M]
under S.

We show in Theorem 5.7 that the set IP (k) of all expanding times
has upper Banach density zero. This, in turn, implies that for every
label M the corresponding subshift (X(M), S) is uniquely ergodic with
the point measure at e = x[∅] the unique invariant probability measure.
It follows that each such system has zero topological entropy.

The space LAB is naturally equipped with an action of the discrete
semigroup FIN(N),

(r,M) 7→M− r = {w ∈ FIN(N) : w + r ∈M}.

We denote the compact orbit closure of a label M under this action by
Θ(M).

The key lemma which connects the two actions (the FIN(N) action
on labels and the shift S on subshifts) is Lemma 5.22. Let {ti} be any
sequence of expanding times such that the sequence of smallest terms
{|jr(ti)|} tends to infinity and let {r(ti)} be the corresponding sequence
of length vectors. Then for any sequence of labels {Mi}, the sequences

{Sti(x[Mi])} and {x[Mi − r(ti)]} are asymptotic in {0, 1}Z.
We show that for a FIN(N)-recurrent label the corresponding x[M]

is an S-recurrent point. At the other extreme we have the labels of
finite type. For such a label M, e = x[∅] is the only recurrent point in
X(M). These labels are particularly amenable to our analysis, which
leads to a complete picture of the resulting subshift. In fact for a label
M of finite type

X(M) = {Skx[N] : k ∈ Z, N ∈ Θ(M)} =
⋃
k∈Z

Skx[Θ(X(M))].

Two useful subcollections of the collection of finite type labels are the
classes of the finitary labels and of the simple labels. For each label M
in either one of these special classes, the corresponding subshift X(M)
is a countable WAP system whose enveloping semigroup structure is
encoded in the structure of the label M. This fact enables us to produce
WAP subshifts with various dynamical properties by tinkering with
their labels.
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The recurrent labels are far less transparent and for these labels the
image x[Θ(X(M))], which in this case is a Cantor set, forms only a mea-
gre subset of the subshift X(M). Nonetheless it seems that this image
forms a kind of nucleolus which encapsulates the dynamical properties
of X(M).

The table of contents will now give the reader a rough notion of the
structure of our work. In the first section we deal with abstract WAP
systems, their enveloping semigroups, and, for an arbitrary separable
metric system the hierarchies zNW and zLIM of non-wandering and
α ∪ ω limiting procedures, which lead by transfinite induction to the
Birkhoff center of the dynamical system. We call the ordinal at which
the limiting α ∪ ω transfinite sequence stabilizes, the height of the
system. We also consider various simple examples of some WAP and
non-WAP systems. In the second section we study HAE systems and
show, among other considerations, that topologically transitive WAP
systems are coalescent and that a general WAP system is E-coalescent.
The third section, describes some general constructions like the discrete
suspension, and the spin construction.

The space of labels is introduced and studied in section 4. The ex-
panding function systems and the associated subshifts are introduced
and studied in section 5. A rather technical subsection 5.4 is dedicated
to the fine structure of a general system of the form X(M). We hope
it will be useful in further investigations of these enigmatic systems.
On a first reading the reader may choose to skip this detailed analysis
as it is not used in the sequel. Subsection 5.5 is dedicated to WAP
systems that arise as X(M) for labels M which are either finitary or
simple. Finally, in sections 6 and 7 these tools are applied to obtain
many interesting and subtle constructions of subshifts. Let us men-
tion just a few. On the finite type side we obtain examples of null
as well as non-null WAP subshifts, Example 6.21 (answering a ques-
tion of Downarowicz); WAP subshifts of arbitrary (countable) height,
Theorem 6.31; topologically transitive subshifts which are LE but not
HAE, Example 5.36 and Remark 6.22 (these seem to be the first such
examples); and completely scrambled WAP systems (although not sub-
shifts) of arbitrary countable height, Example 7.14 (answering a ques-
tion which is left open in Huang and Ye’s work [27]). On the recurrent
side we construct various examples of non-tame subshifts. Of course
many questions are left open, especially when labels which are not of
finite type are considered, and we present some of these throughout
the work at the relevant places.
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1. WAP Systems

A compact dynamical system (X,T ) is a homeomorphism T on a
compact space X.

We follow some of the notation of [1] concerning relations on a space.
In particular, we will use the the orbit relation

OT = { (x, T n(x)) : x ∈ X,n ∈ Z }

and the associated limit relation:
RT = ωT ∪ αT ,

where

ωT = { (x, x′) : x ∈ X, x′ = lim
i→∞

T nix with ni ↗∞ },

and

αT = { (x, x′) : x ∈ X, x′ = lim
i→∞

T−nix with ni ↗∞ }.

RT is a pointwise closed relation (each RT (x) is closed) but not
usually a closed relation (i.e. RT is usually not closed in X ×X).

The dynamical system (X,T ) is called topologically transitive if for
every two non-empty open sets U, V in X there is an n ∈ Z with T−nU∩
V 6= ∅. When X is metrizable this is equivalent to the requirement
that Xtr, the set of points with dense orbit, is a dense Gδ subset of X.
The points of Xtr are the transitive points of X. The system (X,T )
is called weakly mixing when the product system (X × X,T × T ) is
topologically transitive. We also recall the definitions of ε-chains and
chain transitivity. Given ε > 0 an ε-chain from x to y ε-chain from x
to y is a finite sequence x = x0, x1, . . . , xn = y such that n > 0 and
d(T (xi), xi+1) < ε for i = 0, . . . , n − 1. The system (X,T ) is chain
transitive if for any nonempty open sets U, V and any ε > 0 there is
an ε-chain going from a point in U to a point in V . An asymptotic
chain is an infinite sequence {xi : i ∈ Z+} or {xi : i ∈ Z} such that
lim|i|→∞ d(T (xi), xi+1) = 0. It is a dense asymptotic chain if for every
N ∈ N {xi : i ≥ N} is dense in X. If (X,T ) is chain transitive and
x ∈ X then there exists a dense asymptotic chain {xi : i ∈ Z} with
x = x0.

The following construction is due to Takens (see, e. g. [1, Chapter
4, Exercise 29].
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Example 1.1. If (X,T ) is a chain transitive metric system and {xi :
i ∈ Z} is a dense asymptotic chain then let

(1.1) zi =

{
(xi, (2i+ 1)−1) for i ≥ 0,

(xi, (2|i|)−1 for i < 0.

Let X∗ = X × {0} ∪ {zi : i ∈ Z}, x∗ = z0. Extend T = T × id0 on
X × {0} identified with X, by T (zi) = zi+1 for i ∈ Z. Then (X∗, T )
is a topologically transitive metrizable system with transitive point x∗

and X∗ = X ∪OT (x∗) and X = ωT (x∗).

More generally given a monoid ( = a semigroup with an identity
element) Γ, a Γ-dynamical system is a pair (X,Γ) where X is a compact
Hausdorff space and Γ acts on X via a homomorphism of Γ into the
semigroup C(X,X) of continuous maps from X to itself, mapping idΓ

to idX .
The enveloping semigroup E = E(X,Γ) of the dynamical system

(X,Γ) is defined as the closure in XX (with its compact, usually
non-metrizable, pointwise convergence topology) of the image of Γ in
C(X,X) considered as a subset of XX .

It follows directly from the definitions that, under composition of
maps, E forms a compact semigroup in which the operations

p 7→ pq and p 7→ γp

for p, q ∈ E, γ ∈ Γ, are continuous. Notice that this makes Γ act on
E by left multiplication, so that (E,Γ) is a Γ-system (though usually
non-metrizable). It is easy to see that the subset A(X,Γ) ⊂ E(X,Γ),
consisting of the limit points in E(X,Γ), forms a closed left ideal,
called the adherence semigroup of (X,Γ). Technically, A(X,Γ) is the

intersection of E(X,Γ) \K as K varies over compact (and so finite in
the discrete case) subsets of Γ.

The elements of E may behave very badly as maps of X into itself;
usually they are not even Borel measurable. However our main interest
in E lies in its algebraic structure and its dynamical significance. A
key lemma in the study of this algebraic structure is the following:

Lemma 1.2 (Ellis-Numakura). Let L be a compact Hausdorff semi-
group in which all maps p 7→ pq are continuous. Then L contains an
idempotent ; i.e., an element v with v2 = v.

Given two Γ dynamical systems, say (X,Γ) and (Y,Γ), a continuous
surjective map π : X → Y is a homomorphism or an action map if
it intertwines the Γ actions, i.e. γπ(x) = π(γx) for every x ∈ X and
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γ ∈ Γ. An action map π : X → Y induces a surjective semigroup
homomorphism (and an action map) π∗ : E(X,Γ)→ E(Y,Γ).

For more details see e.g. [13, Chapter 1, Section 4] and [6].

In our cascade case, from a dynamical system (X,T ), we let (E(X,T ),
A(X,T )) denote the enveloping semigroup and the ideal which is the
adherence semigroup (= the limit points of {T n} as n→ ±∞). Let T∗
on E(X,T ) be the homeomorphism given by T∗(p) = Tp = pT . Thus,
y ∈ RT (x) iff y = px for some p ∈ A(X,T ) and A(X,T ) = RT∗(idX).

A point x ∈ X is recurrent when x ∈ RT (x) and so when there exists
an idempotent u ∈ A(X,T ) such that ux = x. On the other hand, x is
non-recurrent iff the orbit OT (x) is disjoint from the limit set RT (x).
The closure of the set of recurrent points is the Birkhoff Center. We
will denote by CentT the Birkhoff center for (X,T ).

A point x∗ is a transitive point when the orbit OT (x∗) is dense in X.
In that case, the evaluation map evx∗ defined by p→ px∗ is a surjective
action map from (E(X,T ), T∗) to (X,T ).

Lemma 1.3. If p ∈ E(X,T ) is continuous at x ∈ X, then for any
q ∈ E(X,T ) and y ∈ X if qy = x then pqy = qpy.

Proof: If T ni → q pointwise then T niy → qy = x and so by conti-
nuity of p at x, pT niy → pqy. But pT niy = T nipy → qpy.

2

Proposition 1.4. If (X,T ) is a compact system with a transitive point
x∗ and p ∈ E(X,T ) then the following are equivalent.

(i) p is continuous on X.
(ii) For all q ∈ E(X,T ) pq = qp on X.

(iii) For all q ∈ E(X,T ) pqx∗ = qpx∗.

Proof: (i) ⇒ (ii): This follows from Lemma 1.3.
(ii) ⇒ (iii): Obvious.
(iii) ⇒ (i): Suppose xi → x. To show that then pxi → px, it

suffices to show that every convergent subnet has limit px. So we can
assume that lim pxi exists. There are ri ∈ E(X,T ) with xi = rix

∗.
Let ri′ → r be a convergent subnet. Then, necessarily rx∗ = x and
lim pxi = lim pxi′ = lim pri′x

∗ = lim ri′px
∗ = rpx∗ = prx∗ = px.

2

(X,T ) is called WAP when the elements of E(X,T ) are all continu-
ous functions on X.
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Corollary 1.5. If (X,T ) is a compact system with a transitive point
x∗ then the following are equivalent.

(i) (X,T ) is WAP
(ii) E(X,T ) is abelian.
(iii) For every p, q ∈ E(X,T ) pqx∗ = qpx∗.

When these conditions hold evx∗ : (E(X,T ), T∗) → (X,T ) is an iso-
morphism and there is a unique minimal subset of X.

Proof: The equivalence of (i), (ii) and (iii) follows from Proposition
1.4

If (X,T ) is WAP and px∗ = qx∗ then p = q on O(x∗) which is dense
and so p = q by continuity. That is, evx∗ is injective and so is an
isomorphism.

If xi ∈ Mi for minimal sets M1,M2 there exist p1, p2 ∈ E(X,T )
s.t. pi(x

∗) = xi and so p2(x1) = p2(p1(x∗)) ∈ M1 while p1(x2) =
p1(p2(x∗)) ∈ M2. Since E(X,T ) is abelian, M1 ∩ M2 6= ∅ and so
M1 = M2.
2

Proposition 1.6. If evx∗ : E(X,T ) → X is an homeomorphism (e.g.
if (X,T ) is WAP with transitive point x∗) and {T ni(x∗)} is a net con-
verging to a point x ∈ X then {T ni(z)} is a net converging in X
for every z ∈ X. In fact, {T ni} converges pointwise to the unique
p ∈ E(X,T ) such that p(x∗) = x.

In general, if p ∈ E(X,T ) and {qi} is a net in E(X,T ) such that
{qi(x∗)} → p(x∗) in X then {qi} → p in E(X,T ).

Proof: Obvious by inverting the homeomorphism evx∗ .
2

Example 1.7. The surjection evx∗ can be a homeomorphism in non-
WAP cases.

Let X be a compact, connected metric space and T = idX , the iden-
tity map. So E(X,T ) = {idX}. Let {xi : i ∈ Z} be a sequence of
distinct points in X such that Lim|i|→∞d(xi, xi+1) = 0 and so that the
positive and negative tails are dense in X. Thus, {xi} is a dense as-
ymptotic chain for (X,T ). Following Example 1.1 we embed (X,T ) as
a subsystem of (X∗, T ) with X∗ = X∪OT (x∗) and {T i(x∗)} asymptotic
to {xi}.

Now assume that y ∈ X and T nk converges to y ( and so with
|nk| → ∞). Then T nk+N(x∗) converges to TN(y) = y. Furthermore, for
any z ∈ X0, T nk(z) = z converges to z. Thus, T nk converges pointwise
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to the function which is the identity on X and which is constantly y
on the orbit of x∗. In particular, evx∗ : (E(X,T ), T∗) → (X,T ) is an
isomorphism. On the other hand, E(X,T ) is not abelian and none of
the elements of E(X,T ) are continuous except for the iterates T n.

2

Example 1.8. Abelian enveloping semigroup does not imply WAP in
general. (a) Let the circle be R/Z. Let X = R/Z × Z∗ where Z∗
is the one-point compactification of Z. Define T to be the identity
on R/Z × {∞} and by (t, n) 7→ (t + 3−(|n|+1), n). On each circle the
map is just a rotation and so is WAP. Hence the enveloping semigroup
is abelian. Consider the sequence {TΣki=0 3i}. On R/Z × {n} this is

eventually constant at the rotation t 7→ t+Σ
|n|
i=0 3−(|n|−i+1). As |n| → ∞

this approaches the rotation t 7→ t + 1
2
. But on the circle R/Z× {∞}

the identity is the only element of the enveloping semigroup.

(b) A countable example is the spin (Z, T ) of the identity on Z∗. Z
is a subset of Z∗ × Z∗

Z = (Z∗ × {∞}) ∪
⋃
n∈Z

{[−|n|,+|n| ]× {n}},

f(x) =


(∞,∞) for x = (∞,∞)

(t+ 1,∞) for x = (t,∞)

(t+ 1, n) for x = (t, n) with t < |n|,
(−|n|, n) for x = (|n|, n).

(1.2)

2

The following describes the equivalences to what might be called
local WAP.

Proposition 1.9. For a system (X,T) the following are equivalent.

(i) Multiplication for the enveloping semigroup is continuous in
each variable.

(ii) Every element of the enveloping semigroup has a continuous
restriction on the orbit closure of each element of X.

(iii) The enveloping semigroup is abelian.
(iv) Each orbit closure in X is a WAP system.

Proof: Since each orbit closure is invariant for the enveloping semi-
group and since the topology of the latter is pointwise convergence,
each of these conditions holds (X,T ) iff it holds for the restriction to
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each orbit closure. This restricts to the topologically transitive case
for which (iii) implies (ii) by Proposition 1.4. Because of pointwise
convergence, (ii) implies (i) is obvious. If p, q are in the enveloping
semigroup and T nj is a net converging to q then pT nj = T njp and
two-sided continuity at p imply pq = qp.

2

Let (X,T ) be an arbitrary separable metric system. Define zCAN(X)
to be the complement of the set of isolated points in X. Let zNW (X)
be the complement of the union of all wandering open sets. Note that
if a point is isolated and non-periodic then it is wandering. Thus, if
there are no isolated periodic points, then zNW (X) ⊂ zCAN(X).

Let zLIM(X) = RT (X). If U meets RT (X) then there exist x, y ∈ X
such that y ∈ U ∩ RT (x) and so for infinitely many n ∈ Z T n(x) ∈ U .
It follows that zLIM(X) ⊂ zNW (X).

For each of these operators we define the descending transfinite se-
quence of closed sets by

(1.3) z0(X) = X, zα+1(X) = z(zα(X)), zβ =
⋂
α<β

zα(X),

for β a limit ordinal. We say that the sequence stabilizes at β when
zβ(X) = zβ+1(X) in which case it is constant from then on. The first β
at which stabilization occurs for the CAN/NW/LIM sequence is called
the CAN/NW/LIM level. Since X is a separable metric space, each
level is a countable ordinal (because {X \ zα : α ≤ β} is an increasing
open cover of the Lindelöf space X \ zβ).

We let z∞(X) = zβ(X) when the sequence stabilizes at β. Clearly
zLIM,α(X) ⊂ zNW,α(X) for all α. Recall that when (X,T ) is non-
wandering, i.e. zNW (X) = X then the recurrent points are dense.
Since all recurrent points are contained in zLIM,∞(X) it follows that
zLIM,∞(X) = zNW,∞(X) is the closure of the set of recurrent points,
i.e. the Birkhoff Center.

If X is Polish then a nonempty Gδ subset without isolated points
contains a Cantor Set. Hence, if X is Polish, zCAN,∞ = {x : every
neighborhood of x is uncountable }. In particular, if X is Polish and
countable then zCAN,∞ = ∅ and the isolated points are dense in X.
Since the intersection of the decreasing family of nonempty closed sets
has a nonempty intersection, βCAN(X) is not a limit ordinal if X is
compact and countable.

Definition 1.10. We will call the ordinal βLIM(X) at which the zLIM
sequence stabilizes, the height of (X,T ).
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Call (X,T ) semi-trivial (hereafter ST) if RT = X × {e} for a point,
a fixed point, e ∈ X. That is, for every x ∈ X, RT (x) = {e}. Call
(X,T ) center periodic (hereafter CP) if the only recurrent points are
periodic. Call (X,T ) center trivial (hereafter CT) if there is a unique
recurrent point e, necessarily a fixed point, and so the Birkhoff center
is {e}. Call (X,T ) min center trivial (hereafter minCT) if there is a
unique minimal point e, necessarily a fixed point.

Clearly, ST implies CT and CT implies CP and minCT. A nontrivial
system is ST iff it is a CT system of height 1. For a minCT system we
will denote by u the retraction to the fixed point e. If (X,T ) is minCT
then u is the only minimal element of E(X,T ) and so (E(X,T ), T∗) is
minCT.

In a CP system every point is isolated in its orbit closure. If (X,T )
is CP and non-wandering then the recurrent points and so the periodic
points form a dense Gδ and so for some finite positive n {x : T n(x) = x}
has nonempty interior. In fact the union of such interiors is dense in X.
If there are only countably many periodic points then this open dense
set is countable and Polish and so the isolated points are dense in X.
If X is non-wandering then every isolated point must be periodic.

The identity on any compact space defines a CP system and the
finite product of CP’s is CP (not the infinite product since the product
of periodic orbits can contain an adding machine). Any subsystem and
factor of CP is CP (since any recurrent point in the factor lifts to some
recurrent point in the top). Inverse limit does not work. Again, an
adding machine is the inverse limit of periodic orbits.

Remark 1.11. A nontrivial CP system (X,T ) can never be weak mix-
ing, i.e. (X × X,T × T ) is never topologically transitive. If x∗ is a
transitive point for a CP system (X,T ) then it is isolated in X. If
x∗ is an isolated, transitive point for a nontrivial system (X,T ) then
T (x∗) 6= x∗ and so U = {x∗} and V = {T (x∗)} are nonempty open
subsets of X, but N(U × U,U × V ) = ∅.

2

The CT condition is closed under arbitrary products and subsystems.
In particular, the enveloping semigroup of a CT system is CT. The
retraction u to the fixed point e ∈ X is the unique fixed pointf in
E(X,T ) (the system is minCT). Also, it is the unique idempotent in
A(X,T ). If π : (X,T )→ (Y, S) is an action map andX is CT then Y is.
In general, (X,T ) is CT iff (Y, S) is CT and π−1(e) is a CT subsystem
of X. If Y is a metrizable CT then since it is chain transitive we can
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attach a single orbit of isolated points and obtain a metrizable CT
which is topologically transitive, see Example 1.1.

Mapping (X,T ) to the factor system on X/CentT defines a functor
from compact systems to CT systems. An action map X → Y with
Y CT factors through the projection from X to X/CentT and so the
functor is adjoint to the inclusion functor.

If (X,T ) is a countable CT system, then e is not an isolated point in
any invariant closed subset, of X except {e} itself. Thus, if the Cantor
sequence stabilizes at β + 1 then zCAN,β = {e} and conversely. In that
case, for any α ≤ β zLIM,α ⊂ zNW,α ⊂ zCAN,α. That is, up to α = β
the isolated points are all non-wandering.

A CT system (X,T ) has height 0 iff X = {e}, i.e. the system is
trivial, and has height 1 iff it is ST.

Proposition 1.12. (a) If (X,T ) is an ST system then it is WAP.
(b) If (X,T ) is a CT system with height at most 2 then E(X,T )

is abelian. If, in addition, (X,T ) is topologically transitive then it is
WAP.

Proof: (a) E(X,T ) = {T n : n ∈ Z} ∪ {u} if (X,T ) is ST.
(b)If p, q ∈ A(X,T ) then pq = u = qp where u is the retraction

onto e. Hence, the semigroup is abelian. So if (X,T ) is topologically
transitive, then it is WAP by Proposition 1.4.

2

Example 1.13. In his work [33] Shapovalov shows that within the
class of countable subshifts one can find, for any countable ordinal
α, a subshift Xα ⊂ {0, 1}Z whose Birkhoff degree, i.e. its NW level, is
α+1. Now it is easy to verify that all of these subshifts Xα constructed
by Shapovalov are in fact ST and therefore also WAP. One can make
them topologically transitive by attaching a single orbit. Thus we
conclude that the class of WAP, topologically transitive subshifts is
rich enough to present every countable Birkhoff degree. Note however
that being semi-trivial Shapovalov’s original examples all are of height
2 and they become of height 3 when an orbit is attached to make them
topologically transitive. As we will show later (Theorem 6.31) the class
of WAP, topologically transitive subshifts is also rich enough to present
every countable height.

Let S denote the shift homeomorphism on {0, 1}Z.

Example 1.14. Various non-WAP examples.
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Let e = 0̄, x[0] = 0∞1̇0∞. Let X(0) be the ST subshift generated
by x[0]. Thus, (X(0), S) is isomorphic to translation on the one point
compactification Z∗ of Z.

(a) For k = 1, 2, . . . let bkj = 1 for j = 10nk, n ∈ Z and = 0 otherwise.
Let (X,S) be the generated subshift. RS(X) = X(0) and so (X,S) has

height 2. bk → x[0] as k → ∞. The sequence S10n! → p in A(X,T )
with p(bk) = x[0] for all k and p(x[0]) = e. So p is not continuous at
x[0], despite the fact that all of the points of X \ X(0) are isolated.
That is, the assumption of topological transitivity in Proposition 1.12
(b) is necessary.

(b) A topologically transitive system of height 1 with minimal set
not a fixed point need not be WAP. Let c be given by ci = 1 for
i = 2n,−1 − 2n for n ∈ N and = 0 otherwise, i.e. c = (01)∞(10)∞.
The orbit closure of c consists of OS(c) together with the periodic orbit
{10, 10}. S−2k(c)→ 01, S2k(c)→ 10. S−2k → p and S2k → q both p, q
are identity on the periodic orbit. Hence, q = pq 6= qp = p on c.

(c) For a countable topologically transitive, height 3 CT subshift
which is not WAP let di = 1, for i = 0,±2k, (k = 0, 1, . . . ) and = 0
otherwise, X1 be the orbit closure of d which is the orbit of d together
with X(0).

Let Blockk denote the kth block, of d defined to be the word of length
2k+1 + 1 which agrees with d[−2k,+2k]. Three successive 1’s uniquely
determine where in the block a subblock is. It follows, that one can
build x∗ on the positive side as follows

(1.4) Block1 N10′s Block2 N20′s Block3 . . .

with Block1 = 111 centered at position 0. Then reflect to define x∗.
Provided the sequence Nk increases much faster than 2k+1 + 1 then it
can be chosen arbitrarily and the orbit closure X2 of x∗ will consist of
the dense orbit of x∗ together with the limit point set which is equal
to X1. Let mk be the location of the center of Blockk in x∗. Since the
Nk’s are rather arbitrary we can arrange that mk is a power of 2 for
k even, and 1 plus a power of 2 for k odd. Then Smk(x∗) converges
to d, but Sm2k(d) converges to x[0] and Sm2k+1(d) converges to S(x[0]).
Thus, Smk(d) is not a convergent sequence. From Proposition 1.6 it
follows that (X,S) is not WAP.

(d) For (Y, S) any compact metric system, let (X,T ) be the one point
compactification of (Y × Z, S × t) with t the translation on Z. This
is an ST system. If S = idY it is easy to build a countable sequence
of periodic orbits with limit set (X,T ). The expanded system is CP
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with an uncountable center although there are only countably many
periodic orbits.

(e) Call x selective if for any n the word 10n1 occurs at most once
in x. Let X be the set of all selective x. Clearly, if x is selective
then RS(x) ⊂ X(0). Note that if A ⊂ Z is such that all the nonzero
differences ai − aj are distinct then the characteristic function χ(A)
of A in {0, 1}Z, is a selective element. (X,S) is an uncountable CT
subshift with height 2.

(f) Let (Y, S) be any CP subshift. Let {wi} count the finite words
in Y . Then Y ∪

⋃
{wi} is a CP subshift with dense periodic points.

2

Any CT metric WAP (X,T ) is chain transitive and so there exists
(X∗, T ) topologically transitive so that of X∗ the disjoint union of X
and the dense orbit of isolated points OT (x∗). See Example 1.1.

Example 1.15. It may happen that we cannot choose the extension
so that (X∗, T ) is WAP.

Let (X,T ) be a CT WAP with fixed point e and which is not semi-
trivial. That is, there exists p in the A(X,T ) with p 6= u and so
p(X) \ {e} is nonempty. Let X̄ = X1 ∨X2, two copies of X with the
fixed points identified. For any map g on X which fixes e, let ḡ on X̄ be
copies of g on each term. The system (X̄, T̄ ) is clearly WAP and p 7→ p̄
is an isomorphism from E(X,T ) onto E(X̄, T̄ ). Notice the p̄(X̄) \Xi

is nonempty for i = 1, 2.
Now let (X̂, T̂ ) contain (X̄, T̄ ) and with X̂ \ X̄ consisting of a single

dense orbit OT̂ (x∗).

Let q be an element of the enveloping semigroup of E(X̂, T̂ ) with
q(x∗) ∈ X1. Then q maps the whole orbit of x∗ into X1 and if q is

continuous then q(X̂) ⊂ X1. Thus, every continuous element of the

enveloping semigroup E(X̂, T̂ ) maps all of X̂ either into X1 or into X2.
Every element of the enveloping semigroup of (X̄, T̄ ) extends to some

element of the enveloping semigroup of (X̂, T̂ ). Thus, if p̂ extends p̄ it

cannot be continuous and so (X̂, T̂ ) is not WAP.

2

We will say that A(X,T ) distinguishes points when p(x1) = p(x2)
for all p ∈ A(X,T ) implies x1 = x2. It suffices that some p ∈ A(X,T )
be injective. If X has any non-trivial, but semi-trivial subspace then
A(X,T ) does not distinguish points.
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Let T∗ be composition with T on E(X,T ). Clearly idX is a tran-
sitive point for T∗. If (X,T ) is not weakly rigid, i.e. idX is not a
recurrent point for T∗, then idX is an isolated transitive point for T∗
and A(X,T ) = RT∗(idX) is a proper subset of E(X,T ).

Assume that x∗ is a transitive point for (X∗, T ). Then evx∗ : (E(X∗, T ),
T∗) → (X∗, T ) is a factor map sending A(X∗, T ) to X = RT (x∗). If
(X∗, T ) is WAP then the map is an isomorphism by Proposition 1.4.

Now assume that the subspace (X,T ) is WAP. As is true for any
subsystem the restriction map ρ : A(X∗, T )→ A(X,T ) is surjective.

Proposition 1.16. Assume that (X∗, T ) is topologically transitive with
an isolated transitive point x∗ such that the subsystem (X,T ) with X =
RT (x∗) is WAP. The map ρ is injective, and so is an isomorphism, iff
(X∗, T ) is WAP and, in addition, A(X,T ) distinguishes points of X.

Proof: Since X is WAP, A(X,T ) is abelian. If ρ is injective then
A(X∗, T ) is abelian and so (X∗, T ) is WAP by Proposition 1.4.

Now assume (X∗, T ) is WAP. We show that ρ is injective iff A(X,T )
distinguishes the points of X.

Let p1, p2 ∈ A(X∗, T ). SinceA(X∗, T ) is abelian, p1(q(x∗)) = p2(q(x∗))
for all q ∈ A(X∗, T ) iff q(p1(x∗)) = q(p2(x∗)) for all q ∈ A(X∗, T ). The
first says ρ(p1) = ρ(p2) and the second says p1(x∗), p2(x∗) ∈ X1 are
not distinguished by A(X,T ). ρ is injective says that the first implies
p1 = p2 while A(X,T ) distinguishes points says that the second im-
plies p1(x∗) = p2(x∗) and so by continuity p1 = p2. This proves the
equivalence.

2

Corollary 1.17. Assume (X,T ) is WAP, is not weakly rigid and is
such that A(X,T ) distinguishes points. If there exists (X∗, T ) topo-
logically transitive with an isolated transitive point x∗ such that (X,T )
is the subsystem with X = RT (x∗) then (X∗, X, T ) is isomorphic to
(E(X,T ), A(X,T ), T∗).

Proof: Since X is not weakly rigid, ρ is an isomorphism from
(E(X∗, T ), A(X∗, T ), T∗) onto (E(X,T ), A(X,T ), T∗). On the other
hand, evx∗ is an isomorphism from (E(X∗, T ), A(X∗, T ), T∗) onto (X∗, X, T ).

2

More generally, if we define E = {(x1, x2) ∈ X×X : q(x1) = q(x2) for
all q ∈ A(X,T )} then E is an ICER and the factor (X/E,X1/E, T ) is
isomorphic to (E(X,T ), A(X,T ), T∗), because ρ(p1) = ρ(p2) iff (p1(x∗),
p2(x∗)) ∈ E.
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2. Coalescence, LE, HAE and CT-WAP systems

Given a metric dynamical system (X,T ), a point x ∈ X is an
equicontinuity point if for every ε > 0 there is δ > 0 such that d(x′, x) <
δ implies d(T nx′, T nx) < ε for every n ∈ Z. The system (X,T ) is
called equicontinuous if every point in X is an equicontinuity point
(and then it is already uniformly equicontinuous meaning that the δ
in the above definition does not depend on x). It is called almost
equicontinuous, hereafter AE, when there is a dense set of points in X
at which {T n : n ∈ Z} is equicontinuous. Following [16] we will call
(X,T ) hereditarily almost equicontinuous, hereafter HAE, when every
subsystem (i.e. closed invariant subset) is again an AE system. As was
shown in [5] every WAP is HAE (see also [13, Chapter 1, Sections 8
and 9]).

An isolated point is an equicontinuity point and so if the isolated
points are dense then the system is AE. Any countable Polish space
has isolated points and so applying this to any nonempty open subset
we see that the isolated points are dense. Hence, if (X,T ) is countable
then every subsystem is AE i.e. it is HAE.

A compact, metric system (X,T ) is expansive if there exists ε > 0
such that for every x1 6= x2 there exists n ∈ Z such that d(T n(x1), T n(x2)) >
ε. Any subshift is expansive. The following is obvious.

Lemma 2.1. If (X,T ) is expansive then x ∈ X is an equicontinuity
point iff it is isolated.

2

From this follows the result from [17] that a subshift is HAE iff it is
countable.

Proposition 2.2. An expansive, compact, metric dynamical system
(X,T ) is HAE iff X is countable. In particular, a subshift is HAE iff
it is countable.

Proof: It was observed above that a countable system is HAE.
Now assume that X is uncountable and so contains a Cantor set

C. If X1 is the closure of
⋃
n {T n(C)}, then the subsystem (X1, T ) is

expansive and contains no isolated points. So by Lemma 2.1 it has no
equicontinuity points. Thus, (X,T ) is not HAE.

2

Thus:
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Proposition 2.3. A WAP subshift is countable.

2

Following [20] we call (X,T ) locally equicontinuous (hereafter LE) if
each point x is an equicontinuity point in its orbit closure or, equiv-
alently, if each orbit closure is an almost equicontinuous subsystem.
The equivalence follows from the Auslander-Yorke Dichotomy Theo-
rem, [8], which says that in a topologically transitive system the set of
equicontinuity points either coincides with the set of transitive points
or else it is empty.

2

Remark 2.4. From the latter condition, it follows that an HAE sys-
tem is LE. Any CP system is LE since each point is isolated in its
orbit closure. From Proposition 2.2 it follows that any uncountable
CP subshift is LE but not HAE.

A system (X,T ) is coalescent when any surjective action map π on
(X,T ) is an isomorphism.

Proposition 2.5. A topologically transitive system which is WAP is
coalescent.

Proof: There exists p in the enveloping semigroup with p(x∗) =
π(x∗). Because p is continuous it is an action map and so since p and
π agree on the dense orbit of x∗, p = π. Since p is surjective, p(x∗) is
a transitive point and so there exists q such that qp(x∗) = x∗ and so
qp = id. Hence, p is injective with inverse q.

2

Example 2.6. In general a WAP system need not be coalescent.
If (X,T ) is WAP then the countable product (XN, TN) is WAP and

the shift map is a surjective action map which is not injective. If X is
CT with fixed point e then the infinite wedge which is {x ∈ XN : xi 6= e
for at most one i} is a closed invariant set which is shift invariant as
well. This is also WAP and not coalescent. In addition, it is countable
if X is.

2
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Lemma 2.7. If a dynamical system (X,T ) contains an increasing net
of topologically transitive subsystems {X i} with

⋃
i {X i} dense in X,

then X is also topologically transitive.

Proof: Let U, V ⊂ X be two nonempty open subsets. For some i

U ∩X i 6= ∅ and V ∩X i 6= ∅.

As X i is topologically transitive, there exists k ∈ Z with T k(U ∩X i)∩
(V ∩X i) 6= ∅ and, a fortiori, also T k(U) ∩ V 6= ∅.

2

Proposition 2.8. Every dynamical system is a union of maximal topo-
logically transitive subsystems.

Proof: Let (X,T ) be a dynamical system and consider the family
T of topologically transitive subsystems of X. Using Lemma 2.7 it is
easy to check that this family is inductive. Hence, by Zorns lemma,
every topologically transitive subsystem of X is contained in a maximal
element of T. In particular, for x ∈ X, the orbit closure of X is
contained in a maximal element of T.

2

We then obtain the following results on E-Coalescence (i.e. the prop-
erty that every continuous surjective element of E(X,T ) is injective).

Recall that a dynamical system (X,T ) is called (i) weakly rigid if
there is a net {T ni} with |ni| → ∞ and {T ni(x)} → x for every x ∈ X,
or, equivalently, if idX ∈ A(X,T ). (ii) rigid if the net can be chosen to
be a sequence, and (iii) uniformly rigid if the convergence can be taken
to be uniform (see [15]). Recall that if X is a metrizable, topologi-
cally transitive AE system, and a fortiori a metrizable, topologically
transitive WAP, then it is uniformly rigid (see [17], [18] and [4]).

Theorem 2.9. Let (X,T ) be an AE compact, metrizable system. As-
sume that p ∈ A(X,T ) is continuous and surjective.

(i) If (X,T ) is topologically transitive then p is injective and so
is an isomorphism. If T nj is a net converging pointwise to p
then it converges uniformly to p and T−nj converges uniformly
to p−1. Thus, p−1, idX ∈ E(X,T ) = A(X,T ).

(ii) If X1 is a maximal topologically transitive subset of X then
p(X1) = X1.

(iii) If (X,T ) is HAE then p is an isomorphism and if T nj is a net
converging pointwise to p then T−nj converges pointwise to p−1.
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Thus, p−1, idX ∈ E(X,T ) = A(X,T ) and the system is weakly
rigid.

Proof: (i) Let x∗ be a transitive point for X. Since p is surjec-
tive and continuous, px∗ is a transitive point and so there exists a
sequence T ni with T nipx∗ converging to x∗. Let ε > 0. Since x∗ is
an equicontinuity point eventually T nipT kx∗ = T kT nipx∗ is within ε
of T kx∗ for all k. Since the orbit of x∗ is dense it follows that T nip
converges uniformly to idX . Hence, p is injective and so is an isomor-
phism by compactness. If q is any limit point of T ni in E(X,T ) then
pq which is the limit of pT ni = T nip is the identity and so q = p−1.
Thus, p−1 ∈ E(X,T ). Hence, idX = p−1p ∈ A(X,T ) and so (X,T )
is weakly rigid and E(X,T ) = A(X,T ). Since pT ni = T nip converges
uniformly to pp−1, uniform continuity of p−1 implies T ni converges uni-
formly to p−1. Hence, Limi,j→∞T

ni−nj = idX and so the system is
uniformly rigid. Finally, if a net Tmi converges to p pointwise then
p−1Tmix∗ is eventually close to x∗ and so as above p−1Tmi converges to
idX uniformly and so Tmi converges to p uniformly and T−mi converges
uniformly to p−1.

(ii) Let x∗ be a transitive point for X1. Since p is surjective, there
exists x1 ∈ X such that px1 = x∗. The orbit closure of x1 is a topologi-
cally transitive subset ofX and it contains px1 = x∗ and so containsX1,
which is the orbit closure of x∗. Hence, by maximality, X1 = OT (x1).

Since p is a continuous action map, p(X1) = p(OT (x1)) = OT (x∗) = X1.
(iii) Each point is contained in a maximal topologically transitive

subset of X, which is necessarily closed.
Now if for some points x1, x2 ∈ X we have z = px1 = px2, then let

Xi be a maximal topologically transitive subset of X which contains xi.
Since they are closed, z ∈ X1 ∩X2. By (ii) p is surjective on each Xi

and so by (i) there exist qi ∈ A(X,T ) such that on Xi qip is the identity.
In particular, qiz = xi. Hence, q2px1 = x2 and so x2 as well as x1 is in
X1. Since q1p is the identity on X1 it follows that x1 = x2. Thus, p is
an isomorphism. Now let Tmi be a net converging to p pointwise. By
part (i) T−mi converges to p−1 uniformly on each orbit closure and so
pointwise on X. Hence, p−1 and idX = p−1p are in A(X,T ). Hence,
E(X,T ) = A(X,T ) and (X,T ) is weakly rigid.

2

Corollary 2.10. Every WAP dynamical system is E-coalescent.

Proof: If (X,T ) is a WAP dynamical system then (i) it is is HAE,
and (ii) every p ∈ E(X,T ) is continuous. Now apply Theorem 2.9.
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2

Corollary 2.11. Let (X,T ) be a WAP system and p ∈ A(X,T ).
The restriction of p to the subsystem Z =

⋂
n∈N p

nX is an automor-
phism of Z. In particular the system (Z, T ) is weakly rigid.

If, in addition, (X,T ) is CP, then every point of Z is periodic. If
moreover (X,T ) is topologically transitive then Z consists of a single
periodic orbit.

Proof: Assume first that X is metrizable. Hence, (X,T ) is HAE
because it is WAP.

Clearly Z is a (nonempty) subsystem and pZ = Z. Thus, by The-
orem 2.9 p|Z is an automorphism of Z. Since p ∈ A(X,T ) it follows
that Z is weakly rigid and so every point of Z is recurrent. The last
assertion is now easily deduced.

Since the group Z is countable, (X,T ) is an inverse limit of a net
{(X i, T i)} metrizable systems which are WAP since the latter property
is preserved by factors. The set Z projects onto the corresponding set
Zi. Thus, the restriction of p to Z is the inverse limit of isomorphisms
and so is an isomorphism. The inverse limit of weakly rigid systems is
weakly rigid.

2

Questions 2.12.

(1) Is there a metric WAP system with every point non-wandering
(and so it is its own Birkhoff center) but which is not rigid?

(2) If a homeomorphism for X is in A(X,T ) then is its inverse also
in A(X,T ) (and so it is weakly rigid)? For WAP or even for
HAE the answer is yes, by Theorem 2.9 above.

Lemma 2.13. Assume (X,T ) is a CP system. If there is an infinite
sequence {xi : i ∈ N} in X such that xi ∈ RT (xi+1) for all i, then x1 is
a periodic point and all xi’s are in the orbit of x1.

Proof: First, assume that X is metrizable.
If xi is periodic then all xj’s with j < i are in the orbit of xi. Hence,

if infinitely many of the xi’s are periodic then they all are and all lie
in the same periodic orbit. If xi+1 ∈ RT (xi+1) then it is positively
or negatively recurrent. Since X is CP the only recurrent points are
periodic. Hence, if xi+1 is not periodic then xi+1 is not in the orbit
closure of xi.
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We show that the alternative to finitely many periodic points cannot
happen. As usual we can use inverse limits to reduce to the metric case.
If instead there are only finitely many periodic points in the sequence
then by omitting finitely many initial terms and re-numbering we can
assume that none are periodic. Let Ai be the orbit closure of xi. Since
xi ∈ Ai+1 we have Ai ⊂ Ai+1. Since xi+1 ∈ Ai+1 \ Ai, each inclusion is
strict. Each Ai is topologically transitive. Therefore the closure of the
union A =

⋃
Ai is topologically transitive. Let z be a transitive point

for A. It is isolated in A =
⋃
Ai and so must lie in some Aj, but since

the {Ai} sequence is a strictly increasing sequence of closed invariant
sets, it cannot be in any of them.

For the general case, we can assume that some xi is not periodic.
There is a metrizable factor for which the image of xi is not periodic
and this contradicts the metric result above.

2

Proposition 2.14. Assume that (X,T ) is a CP-WAP. If {pi : i ∈ N}
is a sequence in A(X,T ) then

⋂∞
n=1 pnpn−1 · · · p1X is a closed subset

consisting of periodic points.

Proof: For i = 1, 2, . . . and n ≥ i let Xi,n = pipi+1 · · · pnX. Xi =⋂∞
n=i Xi,n. Since each pi is a continuous, each Xi,n is a closed, invari-

ant subspace and the sequence is decreasing in n and pi(Xi+1,n) = Xi,n

when n ≥ i + 1. Hence, continuity and compactness imply that
pi(Xi+1) = Xi. Since the semigroup is abelian, Xi,n = pnpn−1 · · · piX.
Let x1 ∈ X1. By induction we can build a sequence xi ∈ Xi such that
pi(xi+1) = xi and so xi ∈ RT (xi+1). From Lemma 2.13 it follows that
x1 is periodic.

2

Corollary 2.15. Assume that (X,T ) is a CP-WAP. If {xi : i ∈ N}
is a sequence in X such that xi+1 ∈ RT (xi) for all i, then

⋂
i O(xi)

(the orbit closures of the xi’s) is a closed subset consisting of periodic
points.

Proof: The sequenceO(xi) is decreasing and so we can restrict to the

caseX = O(x1). As this is a transitive subspace and the system is WAP
the elements of the semigroup are continuous on it. By assumption,
there exists pi ∈ A(X,T ) such that pi(xi) = xi+1. In the notation
of the proof of Proposition 2.14, xn+1 ∈ X1,n for all n ≥ 1. Hence,⋃
n O(xn) ⊂

⋃
nX1,n and the latter consists of periodic points by

Proposition 2.14.
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2

Remark 2.16. A closed invariant set K ⊂ X is an isolated invariant
set if there is an open set U containing K such that K is the maximum
invariant subset of U , i.e. K =

⋂
i∈Z T i(U). If {Kn} is a decreasing

sequence of closed invariant sets with intersection K isolated, then
Kn ⊂ U implies Kn = K and so eventually Kn = K. In an expansive
system, like a subshift, any fixed point is an isolated invariant set. It
thus follows from Proposition 2.14 that if X be a countable CT-WAP
subshift with {e} the unique minimal subset of X, then for any infinite
sequence p1, p2, . . . of elements of A(X,T ) there there exists an n with
p1p2 · · · pn(X) = {e}.

Now we restrict to the case where (X,T ) is a metrizable CT-WAP
with a single minimal set consisting of a fixed point e.

For ε > 0 let Aε denote the maximal invariant subset of X which is
contained in the closed neighborhood V̄ε(e), i.e. Aε =

⋂
i∈Z T i(V̄ε(e)).

If Vε(e) is clopen, Aε is an isolated invariant set. If (X,T ) is expansive
then we can choose ε > 0 so that Aε = {e}.

Proposition 2.17. Let A be any invariant set which contains Aε. If
x 6∈ A then there exists q ∈ E(X,T ) such that qx 6∈ A ∪ Vε(e) but for
all p ∈ A(X,T ), pqx ∈ A, i.e. RT (qx) = q(RT (x)) ⊂ A.

Proof: Clearly,

(2.1) A ⊂
⋂
`∈Z

T `(A ∪ Vε(e)) ⊂ A ∪ Aε = A

So for some i ∈ Z, T i(x) 6∈ A ∪ Vε(e). If RT (T i(x)) ⊂ A ∪ Vε(e)
then let q = T i. Otherwise, there exists q1 such that q1(T i(x)) 6∈
A∪Vε(e). Continue inductively defining qn such that qn · · · q1(T i(x)) 6∈
A∪ Vε(e) whenever RT (qn−1 · · · q1(T i(x)) is not contained in A∪ Vε(e).
This process must terminate because for any infinite sequence {qn} in
A(X,T ) the sequence {RT (qn . . . q1(T i(x))} is a decreasing sequence of
invariant sets which must eventually equal e.

If qn · · · q1(T i(x)) 6∈ A ∪ Vε(e) but RT (qn · · · q1(T i(x)) ⊂ A ∪ Vε(e),
then let q = qn · · · q1T

i. Since RT (qx) ⊂ A ∪ Vε(e) and RT (qx) is an
invariant set, equation 2.1 implies RT (qx) ⊂ A.
2

Remark: Notice that A need not be closed.
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Recall that for the relation RT on X and A ⊂ X we let R∗T (A) =

{x : RT (x) ⊂ A}. Let R∗nT (A) = R∗T (R
∗(n−1)
T (A)) = {x : Rn

T (x) ⊂ A}.
Observe that R∗T (A) =

⋂
{p−1(A) : p ∈ A(X, f)}. Hence, in the case

with all members of A(X,T ) continuous, R∗T (A) is closed when A is.
Proposition 2.17 says exactly

Proposition 2.18. Let A be any invariant set which contains Aε. If
x 6∈ A then there exists q ∈ E(X,T ) such that qx ∈ R∗T (A)\(A∪Vε(e)).

2

If A is not closed then R∗T (A) need not be a closed invariant set, but
it is always invariant and satisfies the following weakening of closure.

Lemma 2.19. Let A ⊂ X.

(2.2) x ∈ R∗T (A) ⇒ O(x) ⊂ R∗T (A)

Proof: Since RT (T i(x)) = RT (x) for all i ∈ Z it follows that R∗T (A)
is invariant. Since RT ◦ RT ⊂ RT it follows that x ∈ R∗T (A) implies
RT (x) ⊂ R∗T (A).

2

Inductively define A0 = Aε and for an ordinal α, Aα+1 = R∗T (Aα)
and Aα =

⋃
β<αAβ for α a limit ordinal. At every stage, x ∈ Aα ⇒

O(x) ⊂ Aα although it is not clear that Aα is closed when α is infinite.

Proposition 2.20. For any ordinal α, if x 6∈ Aα then there exists
q ∈ E(X, f) such that

qx 6∈ Aα ∪ Vε(e) and RT (qx) ⊂ Aα

i.e. qx ∈ Aα+1 \ (Aα ∪ Vε(e)).
(2.3)

For any such q, RT (qx) meets Aβ+1 \ (Aβ ∪ Vε(e)) for every β < α.

Proof: We repeatedly apply Proposition 2.17. First we obtain q ∈
E(X,T ) which satisfies (2.3).

For any β < α there exists q1 ∈ E(X,T ) such that q1qx ∈ Aβ+1 \
(Aβ ∪Vε(e)). Since β+ 1 ≤ α, qx 6∈ Aβ+1 and so T i(qx) 6∈ Aβ+1 for any
i ∈ Z. Hence, q1 ∈ A(X,T ) and so q1(qx) ∈ RT (qx).
2

Corollary 2.21. If for any ordinal α, Aα is a proper subset of X then
Aα+1 \ Aα is nonempty. So the transfinite sequence {Aα} is strictly
increasing until the first ordinal α∗ such that Aα∗ = X. If (X,T )
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is topologically transitive with transitive point x∗ then α∗ is the first
ordinal such that x∗ ∈ Aα∗ and α∗ is a non-limit ordinal.

Proof: That the sequence is strictly increasing until Aα = X is clear
from Proposition 2.20. It is also clear that if x∗ is a transitive point
then x∗ ∈ Aα implies X = O(x∗) ⊂ Aα by (2.2) and so Aα = X iff
x∗ ∈ Aα. If x∗ ∈

⋃
β<αAβ then x∗ ∈ Aβ for some β < α and so α∗

cannot then be a limit ordinal.
2

For the case when (X,T ) is a metrizable CT-WAP with the fixed
point e isolated (as a closed invariant subset), e.g. a CT-WAP subshift,
we choose ε > 0 so that Aε = A0 = {e}. We then call the ordinal at
which the Aα sequence stabilizes the height∗ of (X,T ). Because X is
then countable it follows that the ordinal α∗ is countable.

3. Discrete suspensions and spin constructions

For any (X,T ) and positive integer N we define on X × [0, N − 1]
the homeomorphism T̃ by

T̃ (x, i) =

{
(x, i+ 1) for i < N − 1,

(T (x), 0) for i = N − 1.

so that T̃N = T × 1[0,N−1].

(3.1)

(X× [0, N −1], T̃ ) is called the discrete N step suspension. It is count-
able if X is, it is CP if (X,T ) is CT. It is WAP if (X,T ) is. Apply the
following

Lemma 3.1. A point x ∈ X is an equicontinuity point for T on X
iff it is an equicontinuity point for TN on X. Hence, (X,T ) is AE or
HAE iff (X,TN) is. In general, (X,T ) is WAP iff (X,TN) is.

Proof: Since {TNi : i ∈ Z} ⊂ {T i : i ∈ Z}, an equicontinuity point
for T is one for TN , E(X,TN) ⊂ E(X,T ) and so each of the conditions
for T implies the corresponding condition for TN . In fact,

{T i : i ∈ Z} = {TNi ◦ T k : i ∈ Z, k = 0, . . . , N − 1}

=
N−1⋃
k=0

T k ◦ {TNi : i ∈ Z}.
(3.2)
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It follows that if x is an equicontinuity point for TN then it is for T .
Also, we obtain E(X,T ) =

⋃N−1
k=0 T

k ◦E(X,TN) and so the elements
of E(X,T ) are continuous when those of E(X,TN) are.

2

Theorem 3.2. If (X,T ) is a CP WAP system with a unique mini-
mal set, a periodic orbit of period N , then (X,T ) is isomorphic to the
discrete N step suspension of a CT WAP.

Proof: Let {x0, . . . , xN−1} be the periodic orbit in X. By Lemma
spinlem1 (X,TN) is a WAP with N minimal fixed points x0, . . . , xN−1.
For any x ∈ X the restriction of TN to the TN orbit closure of x is a
point transitive WAP and so with a unique minimal set, necessarily one
of the xi’s. Let Xi = {x ∈ X : xi ∈ OTN (x)} = R∗TN ({xi}). Clearly,
T (Xi) = Xi+1 (addition mod N) and the Xi’s are pairwise disjoint.
Each is TN invariant. Let u be a minimal element of E(X,TN). If
x ∈ Xi then u(x) is a minimal element of the TN orbit closure of x and
so u(x) = xi. That is, u retracts Xi to xi. Because (X,TN) is WAP, u
is continuous and so each Xi = u−1(xi) is closed.

Define H : X0 × {0, . . . , N − l} → X by H(x, i) = T i(x). This is
continuous and surjective with inverse, x 7→ (T−ix, i) for x ∈ Xi and
so H is bijective. Furthermore, H(x, i+1) = T (H(x, i)) for i < N−1
and H(TN(x), 0) = TN(x) = T (TN−1(x)) = T (H(x,N − 1)). Thus, H
is an isomorphism from the discrete suspension of height N of (X0, T

N)
onto (X,T ).

2

Recall that (X,T ) minCT when there is a fixed point which is the
unique minimal subset, i.e. the mincenter is a single point.

Lemma 3.3. Let (X,T ) be a nontrivial, metric minCT system with
fixed point e and let ε > 0. There exists an ε-dense sequence of distinct
points {e = x0, . . . , xN−1} in X such that with xN = e, {x0, . . . , xN} is
an ε chain for (X,T ), i.e. d(T (xi), xi+1) < ε for i = 0, . . . , N − 1.

Proof: Since X is separable we can choose a finite or infinite se-
quence {a1, a2, . . . } of points of X \ {e} with pairwise distinct orbits
and such that the union of the orbits is dense in X \ {e}. Since this
set is nonempty the sequence contains at least one point. Since e is the
only minimal point, e ∈ αT (x)∩ ωT (x) for every x ∈ X. Now truncate
so that the union of the orbits of the finite sequence {a1, . . . , aK} is
ε/2 dense in X \ {e}. For each ai we can choose a finite piece of the
orbit {y0,i, . . . , yKi+1,i} which begins and ends ε/2 close to e and which
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is ε/2 dense in the orbit of ai. We concatenate to obtain the sequence
{x1, . . . , xN−1}. Then let x0 = e.

2

On the one-point compactification Z∗ with e the point at infinity and
T (t) = t+ 1, define the ultra-metric d by

(3.3) d(i, j) =

{
0 if i = j,

max(1/(|i|+ 1), 1/(|j|+ 1)) if i 6= j,

where 1/(|i| + 1) = 0 if i = e. If (X,T ) = (Z∗, T ) then with K > 1/ε
and N = 2K + 2 we can use the sequence {e,−K,−K + 1, . . . , K}.

When (X,T ) is a nontrivial metric minCT system we define a prepa-
ration for (X,T ) to be a choice for each i = 0, 1, . . . of a sequence
{e = xi0, . . . , x

i
Ni−1} which is an 2−i dense sequence of distinct elements

of X so that {e = xi0, . . . , x
i
Ni−1, e} is an 2−i chain. For i = 0 we let

N0 = 1 so that with i = 0 the sequence is {e}.
An ultrametric minCT system is a minCT system (X,T ) with d ≤ 1

an ultra-metric on X (and so X is zero-dimensional).
Let (X1, T1), (X2, T2) be nontrivial ultrametric minCT systems with

fixed points e1, e2. Assume that (X2, T2) is given a preparation.
Let 1 ≥ ε > 0. We will define the ε spin of (X2, T2) into (X1, T1)

to be the ultrametric system (X,T ) where X is the closed subset of
X1 × X2 described below. On X1 × X2 we will use the ultrametric
max(π∗1d1, επ

∗
2d2) so that π1 has Lipschitz constant 1 and for any δ > 0

(3.4) Vδ(e1, e2) ⊂ π−1
1 (Vδ(e1))

with equality if δ ≥ ε.
In X1 we define the sequence of pairwise disjoint clopen sets: A0 =

X1 \ Vε(e1) and for i = 1, 2, . . . , Ai = Vε2−i+1(e1) \ Vε2−i(e1). So X1 =
{e1} ∪

⋃∞
i=0 Ai.

X = ({e1} ×X2) ∪ (
∞⋃
i=0

Ai × { xi0, . . . , xiNi−1},

T (x, y) =


(e1, T2(y)) when x = e1,

(x, xik+1) when x ∈ Ai, y = xik with k < Ni − 1,

(T1(x), e2) when x ∈ Ai, y = xiNi−1.

(3.5)

It is obvious that X is a closed subset of X1 × X2 and easy to check
that T is invertible with T−1(x, e) = (T−1

1 (x), xiNi−1) when T−1
1 (x) ∈ Ai.
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Continuity of T is clear on each Ai × { xi0, . . . , xiNi−1}. Continuity at
the points of {e1} ×X2 follows from the following estimate.

Lemma 3.4. (a) Let δ ≥ ε. If (x, y) ∈ X with x ∈ Vδ(e1)∩T−1
1 (Vδ(e1))

then (x, y) ∈ Vδ(e1, e2) ∩ T−1(Vδ(e1, e2)).
(b) For i ≥ 1, let δ with 2−i > δ > 0 be a 2−i modulus of uniform

continuity for T2 on X2. For (x, y) ∈ X, ỹ ∈ X2

(3.6)
x ∈ Vε2−i+1(e1)∩T−1

1 (V2−i+1(e1)), y ∈ Vδ(ỹ) =⇒ T (x, y) ∈ V2−i+1(e1, T2(ỹ)).

Proof: (a) follows from (3.4) applied to x and to T1(x).
(b) If x = e1 then T (x, y) = (e1, T2(y)) and d(T2(y), T2(ỹ)) ≤ 2−i if

y ∈ Vδ(ỹ).
x ∈ Vε2−i+1(e1) \ {e1} then the fiber in X over x is a 2−i chain for

T2 and so if y ∈ Vδ(ỹ) then the second coordinate of T (x, y) is within
2−i+1 = 2−i + 2−i of T (ỹ).
2

So we obtain the ultrametric system (X,T ).
From (3.4) it follows that the restriction

π1 : X \ Vε(e1, e2) = (π1)−1(X1 \ Vε(e1)) → X1 \ Vε(e1) is bijective,

and on it π1 ◦ T = T1 ◦ π1,

x ∈ X1 \ Vε(e1) =⇒ (π1)−1(x) = {(x, e2)}, T (x, e2) = (T1(x), e2).

(3.7)

On the rest of the space the map π1 : X → X1 does not define an
action map, but we obviously have for x ∈ X1 \ {e1}:

π−1
1 ({T i1(x) : i = 0, 1, . . . }) = {T i(x, e2) : i = 0, 1, . . . },

π−1
1 ({T−i1 (x) : i = 1, 2, . . . }) = {T−i(x, e2) : i = 1, 2, . . . }.

(3.8)

Proposition 3.5. If x ∈ X1 \ {e1}, then
(3.9)
π−1

1 (ωT1(x)) = ωT (x, e2), π−1
1 (αT1(x)) = αT (x, e2).

If A is a T1 invariant subset of X1 then π−1
1 (A) is a T invariant

subset of X.
If B is a T invariant subset of X then π1(B) is a T invariant subset

of X1.

Proof: The equations (3.8) clearly imply that π1 maps the limit
point set ωT (x, e2) onto ωT1(x). Then they imply that if z ∈ X1 \ {e1}
then all the points of π−1

1 (z) all lie in the same orbit. Finally, for
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z ∈ V2−i(e1) \ {e1} the set π2(π−1
1 (z)) is ε2−i dense in X2. This proves

the result for ωT (x) and the result for αT (x) is similar.
The invariant set results are obvious from (3.8).
2

Corollary 3.6. (X,T ) is a minCT system.
If (X1, T1) and (X2, T2) are CT systems then (X,T ) is a CT system.

Furthermore, if the Birkhoff center sequences for (X1, T1) and (X2, T2)
stabilize at ordinals ω1 and ω2 respectively, then the Birkhoff center
sequence for (X,T ) stabilizes at ω1 + ω2.

Proof: If M is a minimal subset of X then by Proposition 3.5 π1 is
a minimal subset of X1 and so M ⊂ {e1} ×X2 where T is isomorphic
to T2 and so the M = {(e1, e2)}.

Now assume (X1, T1) and (X2, T2) are CT systems. If (x, y) is a
recurrent point for T then x1 is a recurrent point for X1 by (3.9).
Hence, x = e1 and y is a recurrent point for T2. So y = e2. Hence,
(X,T ) is CT. If A is a closed T1 invariant subset of X1 then the limit
point set RT (π−1

1 (A)) is the limit point set π−1
1 (RT1(A)). So exactly

at ω1 the Birkhoff center sequence for X arrives at {e1} ×X2. It then
stabilizes at (e1, e2) after ω2 more steps.

2

Notice that by replacing the metric d on X by the equivalent metric
min(1,max∞n=02−n(T n)∗d) we can assume that the metric is bounded
by 1 and that T has Lipschitz constant at most 2. The new metric is
an ultrametric if d was.

Let {(Xn, Tn) : n = 1, 2, . . . } be a sequence of ultrametric minCT
systems with ultrametric dn ≤ 1 on Xn and with each Tn having Lip-
schitz constant at most 2. Assume that for n > 1 each (Xn, Tn) is
given a preparation. Let (Z1, U1) = (X1, T1), let (Z2, U2) be the 2−1

spin of (X2, T2) into (Z1, U1) with ξ2 : Z2 → Z1 be the first coordinate
projection. Thus, Z2 ⊂ X1 ×X2. Inductively, let (Zn+1, Un+1) be the
2−n spin of (Xn+1, Tn+1) into (Zn, Un) which we can regard as a subset
of the product Πn = X1×· · ·×Xn×Xn+1 equipped with the ultramet-
ric max(π∗1d1, 2

−1π∗2d2, . . . , 2
−n−1π∗n+1dn+1). Let ξn+1 : Zn+1 → Zn be

the restriction of the coordinate projection from Πn+1 → Πn which
has Lipschitz constant 1. Note again that the ξn’s are not action
maps, but by (3.7)the restriction ξn : (ξn)−1(Zn \ V2−n(e1, · · · , en)) →
Zn \ V2−n(e1, . . . , en) is injective and on it ξn ◦ Un+1 = Un ◦ ξn.

Let Z∞ denote the inverse limit, regarded as a closed subset of Π∞ =
Π∞i=1 Xi equipped with the ultrametric max{2−i+1π∗i di : i = 1, 2, . . . }
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which yields the product topology. The space Z∞ consists of the points
z such that ξn(z) = (z1, . . . , zn) ∈ Zn for n = 1, 2, . . . . We let e ∈ Z∞
denote the point (e1, e2, . . . ).

Assume that z ∈ Z∞ with z 6= e and let n be the smallest value such
that x = ξn(z) 6= ξn(e) = (e1, . . . , en). Let δ = 1

2
d(x, (e1, . . . , en)). Let

i > n be such that 2−i ≤ δ. Since the projections have Lipschitz con-
stant 1, (ξn+k−1 ◦ · · · ◦ ξn)−1(Vδ(x)) is disjoint from Vδ(e1, . . . ., en+k) for
every positive integer k. Once n + k ≥ i it follows that (ξn+k−1 ◦
ξn)−1(Vδ(x)) is disjoint from V2−n−k(e1, . . . , en+k). By (3.7) if x̃ ∈
Zn+k \ V2−n−k(e1, . . . , en+k) and z̃ = (x̃, en+k+1, en+k+2, . . . ) ∈ Z∞ then
ξ−1
n+k(x̃) = {z̃} and by (3.7) U(z̃) is unambiguously defined by U(z̃) =

(Un+k(x̃), en+k+1, en+k+2, . . . ). Since each Un+k has Lipschitz constant
at most 2, it follows that on each Z∞ \ξ−1

n+k(V2−n−k(e1, . . . , en+k)) U has
Lipschitz constant at most 2. Finally,
(3.10)
d(U(z̃), e) = d(Un+k(x̃), (e1, . . . , en+k)) ≤ 2d(x̃, (e1, . . . , en+k)) = 2d(z̃, e)

shows that U has Lipschitz constant at most 2 on all of Z∞.
Finally, with essentially the same proof as that of Corollary 3.6 we

have

Corollary 3.7. (Z∞, U) is a minCT system.
If each (Xn, Tn) is a CT system then (Z∞, U) is a CT system. Fur-

thermore, if the Birkhoff center sequences for (Xn, Tn) stabilize at the
ordinals ωn, then the Birkhoff center sequence for (Z∞, U) stabilizes at
Limn→∞ ω1 + ω2 + · · ·+ ωn.

2

4. The space of labels

Let Z,Z+,N denote the sets of integers, of non-negative integers and
of positive integers, respectively. Let Z+∞ = Z+ ∪ {∞} = N ∪ {0,∞}.
On the vector space RN we will use the lattice structure, with x ≥ y, x ≤
y, x ∨ y, x ∧ y, the pointwise relations and the pointwise operations
of maximum and minimum for vectors x, y ∈ RN. As usual x > y
means x ≥ y and x 6= y so that the inequality is strict for at least
one coordinate. The support of a vector x ∈ RN, denoted supp x, is
{` : x` 6= 0}.

We will call m ∈ ZN an N-vector when it is non-negative and has
finite support, that is, when m ≥ 0 for all ` ∈ N and supp m = {` :
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m` > 0} is finite. We call #supp m the size of m and call |m| = Σ` m`

the norm of m.
If S ⊂ N we let χ(S) be the characteristic function of S with χ(`) =

χ({`}). Thus, χ(S) = Σ`∈S χ(`) is an N-vector when S is a finite set.
We denote by FIN(N) the discrete abelian monoid of all N-vectors

with identity 0. It is also a lattice via the pointwise order relations
described above.

For an N-vector m and a positive integer `∗ we define m ∧ [1, `∗] to
be the N-vector with

(4.1) (m ∧ [1, `∗])` =

{
m` for ` ≤ `∗,

0 for ` > `∗.

Definition 4.1. A set M of N-vectors is called a label when it satisfies
the following

[Heredity Condition] 0 ≤ m1 ≤ m and m ∈M imply m1 ∈M.

Definition 4.2. (a) For S ⊂ ZN
+, we define 〈S〉 = {m ∈ FIN(N) :

m ≤ ν for some ν ∈ S}. We call 〈S〉 the label generated by S. We
will write 〈ν〉 for 〈S〉 when S = {ν}.

(b) For ρ : N → Z+∞ let 〈ρ〉 = {m ∈ FIN(N) : m ≤ ρ}. In
particular, 〈ν〉 = 〈S〉 when S = {ν}.

Definition 4.3. Given N ∈ Z+, let BN = 〈Nχ([1, N ])〉. That is,
m ∈ BN iff m ≤ N and supp m ⊂ [1, N ].

In particular, B0 = ∅. Thus, {BN} is an increasing sequence of finite
labels with union FIN(N), the maximum label.

Definition 4.4. A label M is bounded if it satisfies the following
[Bound Condition] There exists µ ∈ ZN

+ such that 0 ≤ m ≤ µ for
all m ∈M.

A label M is of finite type if it satisfies the following
[Finite Chain Condition] There does not exist an infinite increasing

sequence in M, or equivalently, any infinite nondecreasing sequence in
M is eventually constant.

A label M is size bounded if it satisfies the following [Size Bound
Condition] There exists n ∈ N such that size(m) ≤ n for all m ∈M.
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Clearly, a finite label is of finite type.
For example, ∅ and 0 = {0} are finite labels. M 6= ∅ iff 0 ∈ M. We

call M a positive label when it is neither empty nor 0.
Define the roof ρ(M) : N→ Z+∞ of a label M by

ρ(M)` = supm∈M {m`} = sup{r ∈ Z+ : rχ(`) ∈M } ≤ ∞
Thus, M is bounded iff ρ(M)` < ∞ for all ` in which case the roof is
the minimum of the functions µ ∈ ZN

+ which bound the elements of M.
Clearly, ρ(0) = 0 and by convention we let ρ(∅) = 0 as well.

We let Supp M = { supp m : m ∈M }.

Lemma 4.5. If a label M is of finite type then it is bounded. If a label
is bounded and size bounded then it is of finite type.

Proof: If ρ(M)` = ∞ then {iχ(`) : i ∈ N} is an infinite increasing
sequence in M.

Now assume that M is bounded by µ ∈ ZN
+. If m1 < m2 < · · · is

an infinite sequence of N-vectors then at each step either some already
positive entry increases or the size increases. Since the entries in M

are bounded by µ and the size is assumed bounded the sequence must
eventually leave M. Hence, the Finite Chain Condition holds.
2

For a label M and `∗ ∈ N we define

(4.2) M ∧ [1, `∗] =

{
∅ when `∗ = 0,

{ m ∧ [1, `∗] : m ∈M } when `∗ > 0.

Thus, M ∧ [1, `∗] = { m ∈M : supp m ⊂ [1, `∗] }.
For a label M and an N-vector r we define

(4.3) M− r = { w ∈ FIN(N) : w + r ∈M }.
Thus, M − r is the set of all non-negative vectors of the form m − r
for m ∈M. Clearly, (M− r)− s = M− (r + s) = (M− s)− r (and so
we can omit the parentheses) since each is the set of N-vectors w such
that w + r + s ∈M.

Let max M be the set of N-vectors which are maximal in M. That
is, n ∈ max M if

(4.4) m ≥ n and m ∈M ⇐⇒ m = n.

Definition 4.6. We will say that SuppM f-contains a set L ⊂ N when
every finite subset of L is a member of SuppM. That is, PfL ⊂ SuppM
where PfL is the set of finite subsets of L. Equivalently, M ⊃ 〈χ(L)〉.
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Proposition 4.7. Let M be a label and let r > 0 be an N-vector.

(a) If M is of finite type then for every m ∈ M there exists n ∈
maxM such that m ≤ n. Hence, M = 〈max M〉. Thus, a
label M of finite type is determined by max M. Also, every A ∈
Supp M is contained in some B ∈ Supp M which is maximal
with respect to inclusion in Supp M.

(b) If a label M f-contains some infinite set L ⊂ N then M is not
of finite type. If M is bounded but not of finite type then it f-
contains some infinite set L. Thus a bounded label is of finite
type iff it does not f-contain an infinite set.

(c) If M1 ⊂ M and M1 satisfies the Heredity Condition then M1

is a label and is bounded/of finite type/size bounded/finite if M
satisfies the corresponding condition.

(d) If M is a bounded label and `∗ ∈ N then M ∧ [1, `∗] is a finite
label.

(e) M− r is a label contained in M with max M ⊂ M \ (M− r).
If M is nonempty and bounded then M− r is a proper subset of
M.

(f) M− r 6= ∅ iff r ∈M.
(g) If Φ is a set of labels then

⋃
Φ and

⋂
Φ are labels.

(h) If Φ is a finite set of labels then
⋃

Φ is of finite type iff all of
the labels in Φ are.

Proof: (a): If m is not maximal then there exists m1 ∈ M with
m1 > m. Continue if m1 is not maximal. This sequence can continue
only finitely many steps by the Finite Chain Condition. It terminates
at a maximal vector n. Similarly, if A ∈ Supp M is not contained in a
maximal element then there is an increasing sequence in {A0, A1, . . . }
in Supp M with A = A0. Then mk = χ(Ak) is a strictly increasing
sequence in M.

(b) If M f-contains L = {`1, `2, . . . } then nk = Σk
i=1 χ(`i) is a strictly

increasing infinite sequence in M and so M is not of finite type. Con-
versely, that if nk ∈M is an infinite increasing sequence in M then M

f-contains the union L of the increasing sequence {supp nk} of finite
sets. If M is bounded then L must be an infinite set.

(c): Obvious.
(d): For any µ ∈ ZN

+ there are only finitely many m ∈ ZN
+ such that

m ≤ µ and supp m ⊂ [1, `∗].
(e) M−r satisfies the Heredity Condition and so is a label contained

in M. If m ∈ M− r then m + r is an element of M with m + r > m
since r > 0. Hence, m is not a maximal element of M.
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Now assume M is nonempty and bounded. Then 0 = 0r ∈ M. If
r` > 0 then for n ∈ N such that n > ρ(M)`/r`, nr 6∈ M. So there is a
maximum n ≥ 0 such that nr ∈M. It follows that nr ∈M \ (M− r).

(f) If r ∈M then 0 ∈M− r. If m ∈M− r then m + r ∈M and so
m + r ≥ r implies r ∈M.

(h) If Φ is finite collection of labels of finite type and {mi} is a
strictly increasing sequence of N -vectors then it can remain in each
member of Φ for only finitely many terms. As Φ is finite, the sequence
must eventually leave

⋃
Φ. Hence, the union satisfies the Finite Chain

Condition.
If the union is of finite type then each member of Φ is of finite type

by (b).
2

Example 4.8. A label M which is generated by max M need not be
of finite type.

(a) If M = 〈{ 2χ(k+1)+Σk
`=1 χ(`) : k ∈ N}}〉 then M is not of finite

type although every m ∈M is bounded by an element of max M.
(b) Let M = 〈{ χ(2k + 1) + Σk

`=1 χ(2`) : k ∈ N}}〉. Clearly M

f-contains L the infinite set of even numbers, but every A ∈ Supp M

is contained in some B ∈ Supp M which is maximal with respect to
inclusion in Supp M.

2

A set Φ (or a sequence {Mi}) of labels is said to be uniformly bounded
when the union is a bounded label, or, equivalently, there exists a
bounded label N such that M ⊂ N for all M ∈ Φ (resp. M = Mi for
all i). In that case we will call N a bound for the set or sequence or
say that the set or sequence is bounded by N.

For any label N the set [[N]] of all labels which are contained in
N is a uniformly bounded set of labels if N is bounded. Thus a set
or sequence is uniformly bounded iff it is contained in [[N]] for some
bounded label N.

If N is of finite type then all the members of [[N]] are labels of finite
type.

We denote by LAB the space of labels. On LAB we define an
ultrametric by

(4.5) d(M1,M2) = inf { 2−N : N ∈ Z+ and M1∩BN = M2∩BN }.
Notice that since B0 = ∅, M1 ∩B0 = M2 ∩B0 is always true.

Lemma 4.9. (a) d(M1,M2) = 0 iff M1 = M2.
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(b) The label ∅ is an isolated point of LAB with d(∅,M) = 1 for all
M 6= ∅.

(c) If N1 ⊂ N are finite labels and m ∈ FIN(N) then each of the
following is a clopen subset of LAB:

{M : M ∩N = N1}, {M : M ∩N = 0}, {M : N ⊂M},
{M : m ∈M}, {M : m 6∈M}.

The set {(M,M1) : M ∩N = M1 ∩N} is a clopen subset of LAB×
LAB.

(d) For any label M the set [[M]] of labels contained in M is a closed
subset of LAB. The set

INC = {(M1,M2) : M1 ⊂M2}

is a closed subset of LAB× LAB.
(e) The set of finite labels is a countable dense subset of LAB.
(f) The set of bounded labels is a dense Gδ subset of LAB.

Proof: (a) Every m ∈ BN for some N .
(b) If M 6= ∅ then 0 ∈M ∩N1.
(c) If N ⊂ BN then the 2−N ball around M is either contained in or

disjoint from {M : M ∩ N = N1}. So {M : M ∩ N = N1} is clopen.
With N1 = 0 or N these become {M : M∩N = 0}. and {M : N ⊂M}.
Finally, let N = 〈m〉.

The set of pairs such that M∩N = M1∩N is the union of the set of
pairs such that M ∩N = N1 = M1 ∩N taken of the finite set of labels
N1 ⊂ N.

(d) The complement of [[M]] is the union of {M1 : m ∈ M1} as
m varies over FIN(N) \M. The complement of INC is the union of
{M1 : m ∈M1} × {M2 : m 6∈M2} as m varies over FIN(N).

(e) M ∩ BN is a finite label in the 2−N ball about M. The set of
finite labels is countable since FIN(N) is countable.

(f) For each `, {M : ρ(M)` = ∞} =
⋂
k{M : kχ(`) ∈ M} is a closed

set. So the set of bounded labels is Gδ. It is dense because it contains
the set of finite labels.

2

Let Mi be a sequence of labels. Define the labels

LIMSUP {Mi} =
⋂
i

[
⋃
j≥i

{Mj} ],

LIMINF {Mi} =
⋃
i

[
⋂
j≥i

{Mj} ].
(4.6)
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Clearly, m ∈ LIMSUP iff frequently m ∈ Mi and m ∈ LIMINF iff
eventually m ∈Mi and so LIMINF ⊂ LIMSUP .

As usual, if we go to a subsequence {Mi′} with LIMSUP ′ and
LIMINF ′ then LIMINF ⊂ LIMINF ′ ⊂ LIMSUP ′ ⊂ LIMSUP .

Both LIMSUP and LIMINF are bounded labels if
⋃
i{Mi} satis-

fies the Bound Condition. That is, if the sequence is bounded. Con-
versely, if LIMSUP is a bounded label with roof ρ then for every `
there exists i` such that (ρ(`)+1)χ(`) 6∈

⋃
j≥i` {M

j}. Hence, {ρ(Mi)(`)}
is bounded for each `. That is,

⋃
i{Mi} is bounded. Thus, LIMSUP is

a label iff
⋃
i{Mi} satisfies the Bound Condition, i. e. iff the sequence

is uniformly bounded.
If Mi ⊂ M for all i then both LIMINF ⊂ LIMSUP ⊂ M and

both LIMSUP and LIMINF are labels of finite type if M is of finite
type.

Proposition 4.10. Let {Mi} be a sequence of labels.

(a) The following are equivalent.
(1) The sequence {Mi} is a Cauchy sequence.
(2) For every finite label N, the sequence {Mi ∩ N} of finite

labels is eventually constant.
(3) LIMSUP = LIMINF .

The common value LIMSUP = LIMINF is then the limit,
and is then denoted LIM {Mi}.

(b) If M i ⊂ M i+1 then LIM{Mi} =
⋃
{Mi}. If M i ⊃ M i+1 then

LIM{Mi} =
⋂
{Mi}.

Proof: (a) (1) ⇔ (2): Since N ⊂ BN for some N this is obvious
from the definition of the ultrametric.

(2) ⇒ (3): If m ∈ BN then since Mi ∩ BN is eventually con-
stant, either eventually m ∈ Mi or eventually m 6∈ Mi. This means
LIMSUP = LIMINF .

(3) ⇒ (2): Assume that M = LIMSUP = LIMINF . Let N1 =
M ∩ N. If m ∈ N1 then eventually m ∈ Mi and if m ∈ N \ N1 then
eventually m 6∈ Mi. Since N is a finite set it follows that eventually
Mi ∩N = N1.

(b): For an increasing sequence the LIMSUP = LIMINF is the
union and for a decreasing sequence LIMSUP = LIMINF is the
intersection.

2

Proposition 4.11. Let {Mi} be a sequence of labels.
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m ∈ LIMSUP{Mi} iff there is a subsequence {Mi′} which is con-
vergent with m ∈ LIM {Mi′}.

m 6∈ LIMINF{Mi} iff there is a subsequence {Mi′} which is con-
vergent with m 6∈ LIM {Mi′}.

Proof: The LIMSUP of a subsequence is contained in the LIMSUP
of the original sequence and the LIMINF of a subsequence contains
the LIMINF of the original sequence Thus, sufficiency is clear in each
case.

Let {m1,m2, . . . } be a numbering of the countable set FIN(N) with
m1 = m. Since m ∈ Mi frequently, we can choose SEQ1 an infinite
subset of N so that m1 ∈Mi for all i ∈ SEQ1. If eventually m2 ∈Mi

for i ∈ SEQ1 let these values of i define SEQ2 ⊂ SEQ1. Otherwise,
let SEQ2 be the i ∈ SEQ1 such that m2 6∈ Mi. Inductively we define
a decreasing sequence SEQn of infinite subsets of N such that p ≤ n
implies either mp ∈ Mi for all i ∈ SEQn or for no i ∈ SEQn. Diago-
nalizing, we obtain a convergent subsequence whose limit contains m.
That is, if in be the nth element of SEQn, then {M in} is convergent
and the limit contains m.

Alternatively, if m 6∈ LIMINF we begin by choosing SEQ1 so that
m1 6∈Mi for all i ∈ SEQ1 and continue as before.

2

Corollary 4.12. LAB is a compact, separable, zero-dimensional met-
ric space with ∅ the only isolated point.

Proof: LAB is compact by Proposition 4.11. It is separable because
the countable set of finite labels is dense. It is zero-dimensional because
it has an ultrametric. If N is a finite, nonempty label then N ∪ {χ(`)}
is a sequence of finite labels which converges to N as ` → ∞. Hence,
no nonempty label is isolated.

2

Lemma 4.13. Let Φ be a compact subset of LAB. If {mi : i ∈ N} is
a nondecreasing sequence in

⋃
Φ then there exists M ∈ Φ such that

mi ∈M for all i.

Proof: Assume mi ∈ Mi ∈ Φ for all i. By compactness some
subsequence {Mi′} converges to M ∈ Φ. For each k, i′ > k implies
mk ≤ mi′ ∈ Mi′ . That is, each mk is eventually in Mi′ as i′ → ∞.
Hence, mk ∈M for all k.

2
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Proposition 4.14. Let L ⊂ LAB be either the set of bounded labels
or the set of labels of finite type. A subset Φ ⊂ L is compact iff Φ
is closed in the relative topology of L and

⋃
Φ ∈ L. In particular, a

compact set of bounded labels is uniformly bounded.

Proof: If
⋃

Φ ∈ L then the compact set [[
⋃

Φ]] is contained in L

and since Φ ⊂ [[
⋃

Φ]] is closed relative to L, it is closed relative to
[[
⋃

Φ]] and so is itself compact.
Now assume that Φ is compact.
If
⋃

Φ is not bounded then for some ` ∈ N the strictly increasing
sequence {mi = iχ(`)} is in

⋃
Φ and so Lemma 4.13 implies that the

sequence is contained in some M ∈ Φ and so M is unbounded.
Similarly, if

⋃
Φ is not of finite type then there exists a strictly

increasing sequence {mi} in
⋃

Φ and so again Lemma 4.13 implies
that the sequence is contained in some M ∈ Φ and so M is not of finite
type.

In each case the contrapositive says that Φ ⊂ L implies
⋃

Φ ∈ L.
2

Given an N-vector r we define the map Pr on LAB , by Pr(M) =
M− r.

Proposition 4.15. The function Pr is continuous. In particular, if
{Mi} is a convergent sequence of labels then {Mi − r} is convergent
with LIM{Mi − r} = LIM{Mi} − r.

Proof: Let N(r) be the minimum value such that r ∈ BN(r). Notice
that N(m + r) ≤ N(m) + N(r) because m + r ≤ N(m) + N(r) and
supp m + r = (supp m) ∪ (supp r) ⊂ [1,max(N(m), N(r))].

It follows that for labels M1,M2

(4.7)
M1∩BN+N(r) = M2∩BN+N(r) =⇒ (M1−r)∩BN = (M2−r)∩BN .

For if m ∈ (M1−r)∩BN then m+r ∈M1∩BN+N(r) = M2∩BN+N(r).
Hence, m ∈M2−r. Since m ∈ BN , it follows that m ∈ (M2−r)∩BN .
Symmetrically for reverse inclusion.

From (4.7) it follows that d(M1,M2) < 2−N−N(r) implies d(PrM1, PrM2)
< 2−N . This shows that Pr is Lipschitz with Lipschitz constant at most
2N(r).

2
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Corollary 4.16. The map P : FIN(N) × LAB → LAB given by
(r,M) = M − r = Pr(M) is a continuous monoid action of FIN(N)
on LAB.

The action is faithful i.e. if Pr(M) = Ps(M) for all M then r = s.

Proof: It is an action since (M − r1) − r2 = M − (r1 + r2) for N-
vectors r1, r2 and M−0 = M. It is a continuous action by Proposition
4.15.

For a label r let M be the finite label 〈r〉. Since {r} = max M,
Pr(M) = 0. If Ps(M) = 0 then s ∈ M and so s ≤ r. Clearly, r − s ∈
Ps(M) and so r− s = 0.

2

Notice that FIN(N) is the free abelian monoid generated by { χ(`) :
` ∈ N} and it is a submonoid of the free abelian group consisting of the
members of ZN with finite support. In particular, it is a cancellation
semigroup: r1 + s = r2 + s implies r1 = r2. In particular, r + r = r
only when r = 0. Also, r + s = 0 iff r = s = 0.

Giving FIN(N) the discrete topology, we obtain on the Stone-Čech
compactification βFIN(N) the structure of an Ellis semigroup with
product which extends the addition on FIN(N) and is such that Q 7→
QR is continuous for anyR ∈ βFIN(N). Let β∗FIN(N) = βFIN(N)\
{0} and β∗∗FIN(N) = βFIN(N) \ FIN(N). Notice that since
FIN(N) is discrete, it is the set of isolated points in βFIN(N). Since
the elements of FIN(N) commute with all elements of βFIN(N), the
submonoid FIN(N) acts continuously on βFIN(N).

The action of FIN(N) extends to an Ellis action of βFIN(N) on
LAB.

Theorem 4.17. (a) For any label M the map r 7→ Pr(M) extends to
a continuous map from βFIN(N) to [[M]] and this defines an Ellis
action βP : βFIN(N)× LAB→ LAB.

(b) If N ⊂M then Q(N) ⊂ Q(M) for all Q ∈ βFIN(N).
(c) The sets β∗FIN(N) and β∗∗FIN(N) are closed, invariant subsets

of βFIN(N) and so are ideals in the Ellis semigroup.
(d) Every nonempty, closed sub-semigroup of βFIN(N) contains an

idempotent and all the idempotents of β∗FIN(N) lie in β∗∗FIN(N).

Proof: (a) The extension to βFIN(N) of the map to the compact
space LAB is a standard property of the Stone-Čech compactifica-
tion. It thus defines a function βFIN(N) × LAB → LAB. As usual
the equation (QR)(M) = Q(R(M)) for Q,R ∈ βFIN(N) holds when
Q,R ∈ FIN(N). With Q fixed in FIN(N), continuity of Q implies
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that it holds for all R ∈ βFIN(N). Then with R ∈ βFIN(N) fixed it
then extends to all Q ∈ βFIN(N).

(b) Each Pr preserves inclusions. Thus, the closed set INC ⊂ LAB×
LAB is invariant with respect to the FIN(N) product action. It follows
that it is invariant with respect to the βFIN(N) product action as well.

(c) Suppose that rQ = Qr = s for some r, s ∈ FIN(N). Assume
that {ri} is a net in FIN(N) converging to Q. Since s is isolated and
{ri + r} converges to Qr it follows that eventually ri + r = s. By can-
celation, eventually {ri} is constant and so the limit Q is in FIN(N).
Contrapositively, Q ∈ β∗∗FIN(N) implies PrQ ∈ β∗∗FIN(N). Hence,
β∗∗FIN(N) is invariant. As the complement of the set of isolated
points, it is closed. If rQ = 0 then Q = s for some s ∈ FIN(N) and
r + s = 0. So r = s = 0. Hence, β∗FIN(N) is invariant and since 0 is
isolated, it is closed. A closed, FIN(N) invariant subset of βFIN(N)
is an ideal.

(d) The existence of idempotents is the Ellis-Namakura Lemma. We
saw above that 0 is the only idempotent in FIN(N) and so there are
no idempotents in β∗FIN(N) \ β∗∗FIN(N).

2

Define β0FIN(N) = { Q ∈ βFIN(N) : Q(M) = ∅ for all M ∈
LAB}. Let γFIN(N) be the quotient space of βFIN(N) obtained by
collapsing β0FIN(N) to a point which we will denote U .

Proposition 4.18. β0FIN(N) is a closed, two-sided ideal in the semi-
group βFIN(N). The projection map βFIN(N) → γFIN(N) in-
duces an Ellis semigroup structure so that the projection becomes a
continuous, surjective homomorphism. The images γ∗FIN(N) and
γ∗∗FIN(N) of β∗FIN(N) and β∗∗FIN(N) are closed ideals in γFIN(N).
The action of βFIN(N) on LAB factors to define an Ellis action of
γFIN(N) on LAB. If r > 0 then any idempotent in the closed ideal
(βFIN(N))Pr maps to U in γFIN(N).

Proof: By definition of an Ellis action Q 7→ Q(M) is continuous
and so Q(M) = ∅ is a closed condition. If Q ∈ β0FIN(N) and Q1 ∈
βFIN(N) then Q1(∅) = ∅ implies Q1Q ∈ β0FIN(N) and Q1(M) ∈
LAB implies QQ1 ∈ β0FIN(N). So multiplication is well-defined on
γFIN(N) so that the projection is a homomorphism and Q1 7→ Q1Q2

and Q1 7→ Q1(M) are continuous by definition of the quotient topology.
Finally, if Q = Q1Pr is an idempotent in βFIN(N) then since Pr

commutes with Q1, we have Q = Qn = Qn
1Pnr for all positive integers n.

For any M, Pnr(M) = ∅ for n sufficiently large. Hence, Q ∈ β0FIN(N)
and so maps to U .
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2

Let Θ(M) be the closure in the space of labels of the set {M−r : r
an N-vector }. That is, Θ(M) is the orbit closure of M with respect
to the FIN(N) action or, equivalently, Θ(M) = βFIN(N)(M). Since
[[M]] is closed and invariant, Θ(M) ⊂ [[M]]. Even in the finite case, it
can happen that the inclusion is proper.

Example 4.19. Set M = 〈χ(1) + χ(2), 2χ(2) + χ(3)〉, and let N =
〈χ(1) + χ(2), χ(2) + χ(3)〉. It is easy to check that N ∈ [[M]] \ΘM.

If M = FIN(N), the maximum label then Pr(M) = M for all r ∈
FIN(N) and so Θ(FIN(N)) = {FIN(N)}.

Lemma 4.20. For any label M 6= FIN(N), ∅ ∈ Θ(M). If M is
nonempty and bounded then 0 ∈ Θ(M).

Proof: If r 6∈ M then M − r = ∅ and so ∅ ∈ Θ(M). If r ∈ max M

then M− r = 0.
Now assume that M is bounded so that each M∧[1, i] is a finite label.

Let ri be maximal element of M ∧ [1, i]. in the finite label . Clearly
0 ∈ LIMINF{M− ri}. On the other hand if w ∈ LIMSUP{M− ri}
then for some j we have supp w ⊂ [1, j]. Frequently w + ri ∈M, and
so there exists i ≥ j, w + ri ∈ M ∧ [1, i]. Maximality implies w = 0.
That is, 0 = LIM{M− ri}.
2

Remark: Notice that M−r = 0 iff r ∈ maxM and so if maxM = ∅
then M− r 6= 0 for any r ∈ FIN(N).

Let Θ′(M) be the closure in the space of labels of the set { M −
r : r ∈ FIN(N) with r > 0}. Thus, Θ(M) = Θ′(M) ∪ {M} and
Θ′(M) = β∗FIN(N)M.

If m ∈ maxM then {N : m ∈ N} is a clopen subset of LAB which is
disjoint from Θ′(M). In particular, if M is of finite type and nonempty
then M 6∈ Θ′(M).

Definition 4.21. In general, call M a recurrent label if M ∈ Θ′(M).
So M is recurrent if there exists a sequence {ri > 0} such that M =
LIM{M− ri} and so for all m ∈M eventually m + ri ∈M.

Clearly, if M is a recurrent label then max M = ∅.
For example M = FIN(N) is a recurrent label since then M = Pr(M)

for all r ∈ M. By Proposition 4.7 (e) Pr(M) is a proper subset of M
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when M is bounded and so then cannot equal M. Nonetheless, there
are bounded recurrent labels.

If M is bounded then

(4.8) M = LIM{M− ri} =⇒ LIMSUP{supp ri} = ∅.

This is because ` ∈ supp ri implies ρ(M)` · χ(`) ∈M \ (M− ri). So it
cannot happen that ` ∈ supp ri infinitely often.

Define

(4.9) ISO(M) = { Q ∈ βFIN(N) : Q(M) = M }

Clearly, 0 ∈ ISO(M) and M is recurrent iff there exists Q ∈ β∗FIN(N)
such that Q(M) = M and so iff ISO(M) ∩ β∗FIN(N) 6= ∅.

Definition 4.22. Call M a strongly recurrent label if M is bounded
and infinite and for every m ∈M, there is a finite set F (m) ⊂ N such
that M−m ⊃ { w ∈M : (supp w) ∩ F (m) = ∅}.

Call a label N a strongly recurrent set for a bounded label M if N is
infinite, N ⊂ M and for every m ∈ M, there is a finite set F (m) ⊂ N
such that M−m ⊃ { w ∈ N : (supp w) ∩ F (m) = ∅} and if m ∈ N,
N −m ⊃ { w ∈ N : (supp w) ∩ F (m) = ∅}. Thus, the label N is
strongly recurrent and M is strongly recurrent iff M itself is a strongly
recurrent set for M.

Proposition 4.23. (a) If {mi} is a strictly increasing infinite sequence
in M then ρ ∈ ZN

+∞ defined by ρ` = supi{mi(`)} satisfies ρ ≤ ρ(M)
and N = 〈ρ〉 =

⋃
i{〈mi〉} is a recurrent label with N ⊂ M and

mi ∈ N for all i. If M is bounded then N is strongly recurrent.
(b) For any label M ISO(M) is a closed submonoid of βFIN(N)

such that for Q1, Q2 ∈ βFIN(N) the product Q1Q2 is in ISO(M) iff
both Q1 and Q2 are in ISO(M).

(c) A label N is recurrent iff there exists an idempotent Q ∈ β∗∗FIN(N)
such that Q(N) = N. If M is any label and Q is an idempotent in
β∗∗FIN(N) then Q(M) is a recurrent element of Θ′(M). In particular,
if M is of finite type then Q(M) = ∅.

(d) If N is any nonempty recurrent label with N ⊂ M, then there is
a recurrent label M∞ ∈ Θ(M) such that N ⊂M∞.

(e) If M is a recurrent label then M− r is a recurrent label for any
r ∈ FIN(N).

(f) If N is a strongly recurrent set for a bounded label M then for
every net {ri} of elements of N such that LIMSUP{supp ri} = ∅,
M = LIM {M − ri} and N = LIM {N − ri}. In particular, M is
recurrent if it has a strongly recurrent set.
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(g) A bounded, infinite label N is strongly recurrent iff for every
sequence {ri} of elements of N such that LIMSUP{supp ri} = ∅,
N = LIM {N − ri}.

(h) If label M is bounded and recurrent then there exists an infinite
set L ⊂ N such that 〈χ(L)〉 is a strongly recurrent set for M.

(i) For any nonempty label M the following conditions are equivalent.

(1) If m1,m2 ∈M with disjoint supports then m1 + m2 ∈M.
(2) M is a sublattice of FIN(N), i.e. if m1,m2 ∈ M then m1 ∨

m2 ∈M.
(3) M = 〈ρ〉 for some ρ ∈ ZN

+∞.
(4) M = 〈ρ(M)〉.

When these conditions hold, Supp M f-contains supp ρ(M). If, in
addition,

⋃
Supp M is an infinite set, then M is strongly recurrent.

For example, if M is bounded and infinite then
⋃
SuppM is an infinite

set.

Proof: (a) Let ri = mi+1−mi. If m ≤mj and i ≥ j then m + ri ∈
N. That is, N = LIM{N − ri}. Thus, N is recurrent. When M is
bounded, it is strongly recurrent by (i), proved below.

(b) It is clear that ISO(M) is a closed subsemigroup. For Q,P ∈
βFIN(N) if Q(M) 6= M then N = Q(M) is a proper subset of M and
so PQ(M) = P (N) ∈ [[N]] and so it,too, is a proper subset of M. Also,
P (M) ⊂ M and so QP (M) ⊂ Q(M) = N, also a proper subset of M.
Thus, {Q ∈ βFIN(N) : Q(M) 6= M} is a two-sided ideal (though it is
not closed when M is recurrent). It follows that Q1Q2(M) = M implies
Q1(M) = M and Q2(M) = M. The converse is true because ISO(M)
is a semigroup.

(c) ISO(M) ∩ β∗FIN(N) is a closed subsemigroup of β∗FIN(N)
which is nonempty iff N is recurrent. In that case, the subsemi-
group contains an idempotent which must lie in β∗∗FIN(N). If Q ∈
β∗FIN(N) is an idempotent then Q(Q(M)) = Q(M) is recurrent and
lies in Θ′(M) = β∗FIN(N)(M). If M is of finite type and N ∈ [[M]] is
nonempty then N is of finite type and so max N is nonempty. Thus, ∅
is the only recurrent label in [[M]].

(d) Since N is recurrent, there exists Q an idempotent in β∗∗FIN(N)
such that Q(N) = N. Since N ⊂ M, N = Q(N) ⊂ Q(M) which is
recurrent by (c).

(e) If Q(M) = M, then Q(Pr(M)) = Pr(Q(M)) = Pr(M) and so
Pr(M) is recurrent.

(f) For any m ∈ M, m ∈ M − ri as soon as F (m) ∩ supp ri = ∅
which happens eventually.
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(g) If M is bounded and infinite but not strongly recurrent then there
exists m ∈ M and for every F finite subset of N there exists n ∈ M

with supp n ∩ F = ∅ but with m + n 6∈ M. Note that this implies
n > 0.

Let F1 = supp m and choose a positive r1 ∈M with support disjoint
from F1 and is such that m + r1 6∈ M. Let F2 = F1 ∪ supp r1. Induc-
tively, we build an increasing sequence of finite sets {F i} and positive
elements ri ∈ M such that supp ri ⊂ F i+1 \ F i and m + ri 6∈ M.
Since the supports are disjoint, LIMSUP{supp ri} = ∅. Because
m 6∈ LIM {M− ri}, the limit is not M.

The converse follows from (f).
(h) Since M is recurrent there exists a sequence {ri > 0} be such

that M = LIM{M − ri}. Since M is bounded, it follows from (4.8)
that

⋃
i supp ri is infinite. Choose `1 ∈ supp r1 and let N1 = {χ(`1)}∪

M ∧ [1, 1]. There exists ri2 with ri2`2 > 0 and `2 not in the support

of a member of N1 and is such that m + ri2 ∈ M for all m ∈ N1.
Let N2 = {m + χ(`2) : m ∈ N1} ∪M ∧ [1, 2]. Inductively, we can
choose `k+1 such that m + χ(`k+1) ∈ M for all m ∈ Nk and with `k+1

not in the support of any member of Nk. Let Nk+1 = {m + χ(`k+1) :
m ∈ Nk} ∪M ∧ [1, k + 1]. By the inductive construction if m ∈ Nk−1

then m + Σj
i=kχ(`i) ∈ M for all j ≥ k. With m = 0 this says that

Σj
i=1χ(`i) ∈M for all j and so Supp M f-contains L = {`k} and 〈χ(L)〉

is a strongly recurrent set for M.
(i) (4)⇒ (3)⇒ (2): Obvious.
(2) ⇒ (1): If m1 and m2 have disjoint supports then m1 ∨m2 =

m1 + m2.
(1) ⇒ (4): For any M, ρ(M)`χ(`) ∈ M. So if m ≤ ρ(M) then (1)

(and induction) implies that m ≤ Σ { ρ(M)`χ(`) : ` ∈ supp m } is in
M.

If L = supp ρ(M) then χ(L) ≤ ρ(M) and so 〈χ(L)〉 ⊂ 〈ρ(M)〉. This
implies that Supp 〈ρ(M)〉 f-contains L.

Now assume that
⋃

Supp M is infinite and that M is bounded.
For any m ∈ M, let F (m) = supp m and apply (i) to get the strong
recurrence condition.

2

Remark 4.24. Let FIN ` = {m ∈ FIN(N) : suppm ∩ [1, `] = ∅ }.
It is clear from Proposition 4.23 (f) that, when N is a strongly recurrent

set for a bounded label M,
⋂
` N ∩ FIN ` ⊂ ISO(M) ∩ ISO(N),

where the closure is taken in βFIN(N). One can prove, by using (4.8),
that the intersection is equal to ISO(N).
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Corollary 4.25. (a) A label M is of finite type iff ∅ is the only recur-
rent label contained in M, iff ∅ is the only recurrent label in Θ(M).

(b) For a label M, max M = ∅ iff M is the union of the recurrent
labels contained in M. Thus:

{M : finite type} ⊂ {M : max M 6= ∅} =

{M : not a union of recurrent labels} ⊂ {M : not recurrent}.

Proof: (a): If N is a nonempty recurrent label then it is not of finite
type and so if N ⊂M then M is not of finite type. If M is not of finite
type then it contains a strictly increasing infinite sequence and so by
Proposition 4.23 (a) it contains a recurrent label. For the second claim
apply Proposition 4.23.(d).

(b) If m ∈ max M and m ∈ N ⊂ M then m ∈ max N and so N is
not recurrent. That is, max M is disjoint from all nonempty recurrent
labels contained in M.

If max M = ∅ and m ∈M then inductively we can define a strictly
increasing sequence {mi} in M with m = m1. By Proposition 4.23
there is a recurrent label N ⊂M with m ∈ N.

2

Corollary 4.26. Assume M is a nonempty, bounded label. If M is a
recurrent label then Θ(M) is a Cantor set. If M is a label not of finite
type, then Θ(M) is uncountable.

Proof: If M is a nonempty recurrent label then for some sequence
{ri} of positive elements of M, {M − ri} converges to M. Since M is
bounded, each of the M − ri is a proper subset of M and each lies in
Θ(M). It follows that M is not an isolated point of Θ(M). For each
r ∈M, the label M−r is nonempty and bounded and it is recurrent by
Proposition 4.23(e). Hence, M−r is not isolated in Θ(M−r) ⊂ Θ(M).
It follows that { M− r : r ∈M } is a dense subset of Θ(M) no point
of which is isolated and so no point of Θ(M) is isolated. On the other
hand, Θ(M) is a nonempty, compact, ultra-metric space and so it is a
Cantor set.

If M is not of finite type then there exists a nonempty recurrent
N ∈ Θ(M) by Corollary 4.25(a). Hence, Θ(M) contains the Cantor set
Θ(N).

2

Corollary 4.27. For any label M, M is the only FIN(N)-transitive
point in Θ(M).
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Proof: Suppose N ∈ Θ(M) is a transitive point. Then there are
P,Q ∈ βFIN(N) with P (M) = N and Q(N) = M. Thus QP ∈
ISO(M) and it follows, by Proposition 4.23(b), that P ∈ ISO(M) and
so N = M.

2

Remark 4.28. Note the sharp contrast with the case where the acting
semigroup is a group. In fact, for a dynamical system (X,G), where
X is a compact metric space and G is a group, the existence of one
dense orbit implies that the set Xtr of transitive points forms a dense
Gδ subset of X.

Example 4.29. It can happen that Θ(M) is uncountable even with
M of finite type.

Define a bijection w 7→ `w, from the set of finite words on the al-
phabet {0, 1} onto N. For x ∈ {0, 1}N let wk(x) be the initial word of
length k in x, that is, wk(x) = x1x2 . . . xk, for k ∈ N. Let

Mx = { `wk(x) : k ∈ N }
Mx = {0} ∪ { χ(`) : ` ∈Mx },

M(2)
x = Mx ⊕Mx = 〈{ χ(`1) + χ(`2) : `1, `2 ∈Mx }〉,

M =
⋃
{M(2)

x : x ∈ {0, 1}N }.

(4.10)

Since ρ(M) ≤ 2 and the size of the elements of M are bounded by 2, it
follows from Lemma 4.5 that M is a label of finite type. Notice that if
x 6= y in {0, 1}N then Mx ∩ My is finite.

It is easy to see that for each x ∈ {0, 1}N, LIM {M− χ(`wi(x))} =
Mx and it follows that Θ(M) is uncountable.

If Φ is a compact, invariant subset of LAB then the action of FIN(N)
restricts to an action on Φ. Since ΦΦ is an Ellis semigroup with an Ellis
action on Φ, the closure in ΦΦ of {Pr : r ∈ FIN(N)}, denoted E(Φ), is
an Ellis semigroup with an Ellis action on Φ. We call E(Φ) the envelop-
ing semigroup of Φ. A map Q on Φ is an element of E(Φ) iff for every
finite sequence {Mi} in Φ and any N ∈ N there exists r ∈ FIN(N)
such that Pr(M

i) ∩ BN = Q(Mi) ∩ BN for all i. It follows that for
N ∈ Φ, N1 = Q(N) for some some Q ∈ E(Φ) iff N1 is the limit of some
sequence {N− ri}. Notice that this does not necessarily imply that Q
is a pointwise limit of some sequence {Pri}.



WAP SYSTEMS AND LABELED SUBSHIFTS 47

The adherence semigroup A(Φ) is the closure in ΦΦ of {Pr : r > 0}.
It follows that
(4.11)
E(Φ) = A(Φ)∪{P0 = idΦ}, Θ(M) = E(Φ)M, Θ′(M) = A(Φ)M,

for M ∈ Φ.
If Φ1 ⊂ Φ is also closed and invariant then the restriction map defines

a continuous, surjective homomorphism from E(Φ) to E(Φ1).
The homomorphism from FIN(N) into E(Φ) extends to an Ellis

semigroup homomorphism βFIN(N) → E(Φ) with β∗FIN(N) map-
ping onto A(Φ).

The sequences {Mi} that we will find most useful will be given by
Mi = M − ri = Pri(M) for a sequence {ri} of N-vectors. Such a
sequence is bounded by M and m ∈ LIMSUP iff frequently m + ri ∈
M and m ∈ LIMINF iff eventually m + ri ∈M.

If ri > 0 for all i then max M is disjoint from LIMSUP .
If ri ∈M for all i then 0 ∈ LIMINF and so LIMINF 6= ∅.

Lemma 4.30. Assume that {M− ri} is convergent.
(a) If max M 6= ∅, e.g. if M is of finite type, then either eventually

ri = 0 and LIM {M − ri} = M = M − 0 or eventually ri > 0 and
(max M) ∩ LIM {M− ri} = ∅.

(b) Either eventually ri ∈ M and 0 ∈ LIM {M − ri} or eventually
ri 6∈M and LIM {M− ri} = ∅.

(c) If M−m1 = M−m2 then LIM {M− ri} −m1 = LIM {M−
ri} −m2.

(d) If there exists r such that for infinitely many i, M− ri = M− r
then the limit is M− r.

Proof: (a) Since r > 0 implies max M ∩ (M − r) = ∅, if ri = 0
infinitely often then convergence implies that the limit is M and so an
element of maxM is eventually in M−ri which can only happen when
ri is eventually 0.

(b) Since 0 ∈ M− r iff r ∈ M we see that if ri ∈ M infinitely often
then convergence implies that eventually 0 ∈M− ri and so eventually
ri ∈M.

(c) Since Pm1 and Pm2 are continuous,

LIM {M− ri} −m1 = LIM {M−m1 − ri} =

LIM {M−m2 − ri} = LIM {M− ri} −m2.
(4.12)
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(d) By assumption there is a subsequence ri
′

such that M − ri
′

is
constant at M − r and so converges to M − r. By the assumption of
convergence the limit of the original sequence is M− r.

2

Remark: (c) has the following interpretation: If M−m1 = M−m2

then as elements of E(Θ(M)), Pm1 = Pm2 because the set of N ∈ Θ(M)
on which they agree is closed and invariant and includes M.

Corollary 4.31. Assume that M is a bounded label and {ri} is a se-
quence of N-vectors such that {M− ri} is convergent. If

⋃
i supp ri

is finite then the sequence {M − ri} is eventually constant. That is,
there exists I ∈ N such that for i, j ≥ I:

(4.13) M− ri = M− rj,

and this common value is the limit.

Proof: If eventually ri 6∈M then there exists I ∈ N such that i ≥ I
implies M − ri = ∅ and ∅ is the limit. Lemma 4.30 (b) implies that
otherwise eventually ri ∈M. So we may assume ri ∈M for all i. Since
M is bounded

⋃
i supp ri finite implies that the set of vectors {ri} is

finite. There exists I such that for i ≥ I each ri occurs infinitely often
in the sequence. It follows from Lemma 4.30 (d) the limit is M− ri for
each i ≥ I. As the limit is unique, M− ri = M− rj for all i, j ≥ I.
2

Lemma 4.32. Let M be a label. Assume that {ri} and {sj} are se-
quences of N-vectors such that {M− ri} and {M− sj} are convergent
with LIM{M − ri} = M − r for some N-vector r and LIM{M − sj}
denoted LIMs. If either {M − ri} is eventually constant at M − r or
LIMs = M− s for some N-vector s, then

LIMi→∞LIMj→∞{M− ri − sj} = LIMs − r

= LIMj→∞LIMi→∞{M− ri − sj}.
(4.14)

Proof: By Proposition 4.15 applied twice LIMi→∞{M− ri − sj} =
M−r−sj and this sequence converges to LIMs−r. If LIMs = M−s so
that LIMs−r = M−s−r, we similarly, LIMiLIMj = M−r−s. On the
other hand, if eventually M−ri = M−r we can omit terms and assume
this is true for all i. Then by 4.12 LIMj→∞{M−ri−sj} = LIMs−ri =
LIMs− r. That is the sequence {LIMs− ri} is eventually constant at
LIMs−r. Hence, in both cases LIMiLIMj = LIMs−r = LIMjLIMi.
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2

4.1. Finitary and simple labels.

Definition 4.33. A label M is finitary if it is bounded and satisfies
the following

[Finitary condition] Whenever {Si} is a sequence of finite subsets of
N with

⋃
i Si infinite, there are only finitely many subsets S of N such

that eventually S ∪ Si ∈ Supp M.

Clearly, if M1 ⊂M is a label then M1 is finitary if M is.
The unbounded label M = 〈{kχ(1) : k ∈ N}〉 shows that the above

finitary condition alone does not imply that M is bounded.
For a label M and N a nonempty set of N-vectors we define

(4.15) M−N = { m : m + r ∈M for all r ∈ N } =
⋂
r∈N

M− r.

Proposition 4.34. Let M be a bounded label.
(a) The following conditions are equivalent.

(i) M is finitary.
(ii) If {ri} is a sequence of N-vectors with

⋃
i supp ri infinite then

LIMINF {M− ri} is finite.
(iii) If ri is a sequence of N-vectors with

⋃
i supp ri infinite and

{M− ri} convergent then then LIM {M− ri} is finite.
(iv) If N is infinite then M − N is finite, and there is no strictly

increasing sequence of members of {M−N : N infinite }.
(b) If M is finitary then it is of finite type.

(c) If M is finitary, then the following conditions on a finite subset
F of M are equivalent.

(i) There exists ri a sequence of finite vectors with
⋃
i supp ri

infinite such that LIM {M− ri} = F.
(ii) There exists ri a sequence of distinct N-vectors such that LIM
{M− ri} = F.

(iii) There is an infinite set N such that F = M − N1 for every
infinite subset N1 of N.

Proof: If N ⊂ M then by the Bound Condition N is infinite iff⋃
Supp N is infinite. Hence, if {ri} is a sequence with

⋃
i {supp ri}

infinite then we can choose a subsequence of distinct vectors.
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(a) (i)⇒ (ii): If m ∈ LIMINF then eventually supp m∪ supp ri ∈
Supp M . Because M is finitary there are only finitely many such
sets supp m and by the Bound Condition there are only finitely many
m ∈M with such supports.

(ii) ⇔ (iii): If {ri} is a sequence with
⋃
i {supp ri} infinite then we

can choose a subsequence of distinct vectors and then go to a further
subsequence {ri′} which is convergent. Assuming (iii) LIM {M−ri

′} =
LIMINF {M− ri

′} ⊃ LIMINF {M− ri} is finite. This shows that
(iii) implies (ii). The converse is obvious.

(ii)⇒ (iv): Suppose that {Fi} is a nondecreasing sequence of subsets
of M with each M−Fi infinite. Inductively, choose ri ∈M−Fi distinct
from the rj’s with j〈i. Since the sequence {Fi} is a nondecreasing,
Fj ⊂ M − ri for j ≤ i. Hence,

⋃
i F

i ⊂ LIMINF {M − ri} and so it
is finite by (ii). Thus, the sequence {Fi} is eventually constant.

(iv)⇒ (iii): By going to a subsequence we can assume that {ri} is a
sequence of distinct elements. Then {

⋂
j≥i{M−rj}} is a nondecreasing

sequence in {M−N : N infinite }. Hence, its union, which is the limit,
is finite by (iv).

(b) Assume that {mi} is a strictly increasing sequence in M and
that ri = mi+1 −mi. Since M ∧ [1, `] is finite and so is of finite type,
it follows that

⋃
i {supp mi} is infinite and hence so is

⋃
i {supp ri}.

Since each mj ∈ LIMINF{M− ri} it follows that M is not finitary.
(c) (i) ⇔ (ii): This is obvious from our initial remarks.
(ii)⇒ (iii): Assume ri a sequence of N-vectors with LIM {M−ri} =

F. By discarding finitely many terms ri we can assume that the finite
set F equals M − N with N = {ri}. If N1 is any infinite subset of N
then F = M−N ⊂M−N1. On the other hand, if m ∈M−N1 then
m ∈M−ri for infinitely many i and so by convergence m ∈ LIM = F.

(iii) If N = {r1, r2, . . . } is the infinite set given by (iii) then {ri} is a
sequence of distinct elements with F = LIM{M− ri}.
2

We will call F an external limit set (or an external label) for a finitary
label M when it is a limit of a sequence {M− ri} for some sequence of
distinct vectors {ri} in M ( and so 0 ∈ F ).

The value of the assumption that a label is finitary will come from
the following result.

Lemma 4.35. Assume that {ri} and {sj} are sequences in FIN(N)
such that {M−ri} and {M−sj} are convergent and with LIM{M−ri}
and LIM{M− sj} are both finite. If

⋃
j supp sj is infinite then for

sufficiently large i, (LIM{M− sj})− ri = ∅.
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Proof: Suppose for some w ∈ LIMs = LIM{M−sj} that w−rk ≥
0 for k in some infinite subset SEQ of N. For k ∈ SEQ, 0 ≤ rk ≤ w
and so each such rk ∈ LIMs. Since LIMs is finite there must be a
w1 ∈ LIMs such that rk = w1 for k ∈ SEQ1 an infinite subset of
SEQ. There exists J such that j ≥ J implies w1 + sj ∈ M. Thus,
for each j ≥ J sj + rk ∈ M for all k ∈ SEQ1. By convergence of
{M− ri}, this means sj ∈ LIMr = LIM{M− ri} for all j ≥ J . Since
LIMr is also finite, this contradicts the assumption that

⋃
j supp sj is

infinite. Thus, for each w ∈ LIMs it follows that eventually w − rk is
not nonnegative.

As there are only finitely many w ∈ LIMs, it follows that eventually
LIMs − ri is empty.

2

This immediately yields

Corollary 4.36. Assume that {ri} and {sj} are sequences of N-vectors
such that for a label M both {M−ri} and {M−sj} are convergent and
both LIM{M − ri} and LIM{M − sj} are finite. If

⋃
i supp sj and⋃

i supp ri are both infinite then
(4.16)
LIMi→∞LIMj→∞{M−ri−sj} = LIMj→∞LIMi→∞{M−ri−sj} = ∅.

2

Definition 4.37. A label M is simple if it is bounded and satisfies the
following

[Convergence Condition] If {ri} is a sequence of vectors in M such
that the sequence {M− ri} is convergent then LIM {M− ri} = M− r
for some r ∈ FIN(N).

Again M = 〈{kχ(1) : k ∈ N}〉 shows that the above convergence
condition alone does not imply that M is bounded.

It follows from Corollary 4.31 that any finite label is simple as well
as finitary.

Proposition 4.38. Let M be a label.

(a) If M is simple then M− r is simple for all N-vectors r.
(b) If M is simple then it is of finite type.
(c) M is simple iff Θ(M) = { M− r : r ∈ FIN(N) }.
(d) If M is simple then E(Θ(M)) = { Pr : r ∈ FIN(N) } or,

more precisely, the restrictions of these maps to Θ(M). Thus,



52 ETHAN AKIN AND ELI GLASNER

E(Θ(M)) is an abelian semigroup whose members act continu-
ously on Θ(M).

Proof: (a): If {M − r − sj} is a convergent sequence, then we can
choose a convergent subsequence {M− sj

′} with limit LIMs′ . Because
M is simple, LIMs′ = M − s for some s. By Lemma 4.32 the subse-
quence {M− r− sj

′} converges to M− r− s and so this is the limit of
the full convergent sequence {M− r− sj}.

(c): Since Θ(M) consists exactly of the limits of convergent sequences
{M− ri}, the equivalence is clear.

(b) If M is not of finite type then by Corollary 4.25 there exists
N ∈ Θ(M) which is recurrent. Since M is recurrent, max N = ∅. By
Lemma 4.20 and the Remark thereafter 0 ∈ Θ(N) but 0 6= N − r for
any N-vector r. Hence, N is not simple. Since N ∈ Θ(M), (a) and (c)
imply that M is not simple.

(d) We observe first that if {Mi} is a net converging to some N, then
there is a sequence of elements {Mi′} which converges to N, although
not necessarily a subnet. Now let Q ∈ E(Θ(M)) with M of finite type.
There is a net {Pri} which converges pointwise to Q. For any N-vector
r we can choose a sequence {i′} so that {Pri′ (M)} converges to Q(M)
and {Pri′ (M− r)} converges to Q(M− r). Because M is simple, there
exists s such that M − s = LIM {M − ri

′} = Q(M). Then Lemma
4.32 implies that M− r− s = LIM {M− r− ri

′} = Q(M− r). That
is, Q = Ps on Θ(M).

From Corollary 4.16 it follows that E(Θ(M)) is abelian and acts
continuously on Θ(M). Notice that r 7→ Pr is a homomorphism from
the discrete monoid FIN(N) onto the compact monoid E(Θ(M)).
2

If the sequence {M− ri} is eventually constant then, of course, the
limit is of the form M − r. However, it can happen that {ri} is a
sequence of distinct vectors in M\maxM such that 0 = LIM {M−ri}.
In that case, the sequence is not eventually constant but the limit is
M− r for r ∈ max M. Notice that because M is of finite type by (b),
max M 6= ∅.

For labels M1 and M2 define M1⊕M2 = {m1 +m2 : m1 ∈M1,m2 ∈
M2}. Clearly, this is ∅ if either is ∅. If neither term is empty then

(4.17) ρ(M1 ⊕M2) = ρ(M1) + ρ(M2).

and so M1 ⊕M2 is bounded iff both M1 and M2 are bounded.
Observe that for any ` ∈ N, we have (M1 ⊕M2) ∧ [1, `] = (M1 ∧

[1, `])⊕ (M2 ∧ [1, `]). It follows that for any N ∈ N, (M1 ⊕M2) ∩BN
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is determined by M1 ∩BN and M2 ∩BN . Hence, the map ⊕ : LAB×
LAB→ LAB is continuous.

Lemma 4.39. (a) If M is a recurrent label, then M1⊕M is a recurrent
label for any label M1. If M is a strongly recurrent label, then M1⊕M

is a strongly recurrent label for any finite label M1.
(b) If M is any label and ` ∈ N then there exists a recurrent label

M1 with M ⊂M1 and M ∧ [1, `] = M1 ∧ [1, `]. There exists a strongly
recurrent label M2 with M ∧ [1, `] = M2 ∧ [1, `].

Proof: (a) Clearly M1 ⊕ (M − r) ⊂ (M1 ⊕M) − r for any r ∈ M.
Hence, if {M − ri} → M then {(M1 ⊕M) − ri} → M1 ⊕M and so
M1 ⊕M is recurrent.

If m1 ∈ M1 and m ∈ M we let F (m1 + m) =
⋃
Supp M1 ∪ F (m)

(see Definition 4.22). If r1 + r has support disjoint from this set then
r1 = 0 and r + m ∈M. Hence, r1 + r + m ∈M1 ⊕M.

(b) Build a recurrent label N1 with N1∧[1, `] = 0. Then M1 = M⊕N1

is a recurrent label with M ∧ [1, `] = M1 ∧ [1, `]. If one starts with a
strongly recurrent label N2 with N2∧ [1, `] = 0 then M2 = (M∧ [1, `])⊕
N2 is a strongly recurrent label.

2

Example 4.40. If L is an infinite set disjoint from
⋃
Supp M. Let

M1 = {∅} ∪ { χ(`) : ` ∈ L }. If M is strongly recurrent then M1⊕M

is recurrent by (a) but it is not strongly recurrent.

2

Proposition 4.41. The set RECUR of recurrent labels is a dense, Gδ

subset of LAB.

Proof: For any N ∈ N and r ∈ FIN(N), the set { M : M ∩
BN = Pr(M)∩BN } is a clopen subset of LAB by Lemma 4.9 (c) and
continuity of the map Pr.

Clearly,

(4.18) RECUR =
⋂
N∈N

⋃
r∈FIN

{ M : M ∩BN = Pr(M) ∩BN }

and so RECUR is a Gδ subset of LAB. It is dense by Lemma 4.39
(b).

2

Thus, the labels of finite type, upon which we focus most of our
attention, comprise a subset of first category. Since the finite labels
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are dense, the labels of finite type are dense. Thus, the set of recurrent
labels has empty interior. As the intersection of dense Gδ sets the set
of bounded recurrent labels is a dense Gδ set.

We will need a combinatorial lemma. Let M be a collection of finite
subsets of N. Call it hereditary if A ⊂ B and B ∈ M implies A ∈ M .
We say that M f-contains L ⊂ N if every finite subset of L is in M , i.e.
PfL ⊂ M . For two hereditary collections M1,M2 define M1 ⊕M2 =
{A1 ∪ A2 : A1 ∈M1, A2 ⊂M2}.

Lemma 4.42. Let M1 and M2 be hereditary collections of finite subsets
of N. If M1 ⊕M2 f-contains an infinite set then either M1 or M2 f-
contains an infinite set.

Proof: Let L = {`1, `2, . . . } be a counting for an infinite set f-
contained in M1 ⊕M2. Define the directed binary tree with vertices
at level n = 0, 1, . . . consisting of the 2n ordered partitions (A,B) of
{`1, . . . , `n}. Connect (A,B) to the n+ 1 level vertices (A∪{`n+1}, B)
and (A,B ∪ {`n+1}). The set of paths to infinity form a Cantor set.
Call a path good at level n if for the partition (An, Bn) at level n,
An ∈ M1 and Bn ∈ M2. Since M1 ⊕M2 f-contains L, the set Gn of
paths good at level n is nonempty. Each Gn is closed and Gn+1 ⊂ Gn.
So the intersection contains a path {(Ai, Bi) : i = 0, 1, . . . }. Let A∞ =⋃

Ai, B∞ =
⋃

Bi. Clearly, {Ai} is a nondecreasing sequence of finite
sets in M1 with union A∞ and so A∞ is f-contained in M1. Similarly,
B∞ is f-contained in M2. Since A∞ ∪ B∞ = L, at least one of them is
infinite.

2

For a label M, if m ∈ M then 0 ≤ χ(supp m) ≤ m and so
χ(supp m) ∈ M. Hence, Supp M = { A ⊂ N : χ(A) ∈ M}.
Thus, Supp M is a hereditary collection of finite subsets of N with
Supp M = ∅ iff M = ∅. Thus, Proposition 4.7(b) says that a bounded
label M is not of finite type iff Supp M f-contains some infinite subset.

Theorem 4.43. Let N be a nonempty label.

(a) Assume M is a nonempty label. The nonempty label N ⊕M is
of finite type iff N and M are labels of finite type.

If N ∩ M = 0 and both N and M are simple, then N⊕M is
simple.

If N is finite and M is finitary, then N ⊕M is finitary.
(b) If {Ma} is a finite or infinite sequence of labels such that Ma ∩

Mb ⊂ N when a 6= b, then M =
⋃
a Ma is a label which is
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bounded if all the Ma’s and N are bounded, and of finite type if
all the Ma’s and N are of finite type.

If N is finite and the Ma’s are all finitary then
⋃
a Ma is

finitary.
If N = 0 and the Ma’s are all simple then

⋃
a Ma is simple.

Proof: Notice first that for labels M1,M2

(4.19)
⋃

Supp(M1 ∩ M2) = (
⋃

SuppM1) ∩ (
⋃

SuppM2).

For if ` ∈ (
⋃

Supp M1) ∩ (
⋃

SuppM2) then χ(`) ∈M1 ∩ M2.
With M and N labels with N finite, we let N+ be the finite label

consisting of the N-vectors m with support contained in
⋃
Supp N

and with m ≤ ρ(N) + ρ(M). Let M 	 N = {m ∈ M with supp m ∩⋃
Supp N = ∅}. Any finite vector m ∈ N⊕M can be written uniquely

as mN + mM	N where mN ∈ N+ and mM	N ∈M	N.
(a) Assume that M and N are nonempty labels of finite type and so

N⊕M is bounded. If N⊕M is not of finite type then Supp (N⊕M)
f-contains an infinite set by Proposition 4.7(c).

Since Supp (N⊕M) = (Supp N)⊕(SuppM), by Lemma 4.42, either
Supp N or Supp M f-contains an infinite set. Thus, N and M of finite
type implies N ⊕M is of finite type. The converse is obvious since
N ∪M ⊂ N ⊕M.

Now define the disjoint sets L0 = (
⋃
Supp N) \ (

⋃
Supp M), L1 =

(
⋃
Supp M) \ (

⋃
Supp N) and L01 = (

⋃
Supp N) ∩ (

⋃
Supp M). If

supp m ⊂ (
⋃
Supp N) ∪ (

⋃
Supp M) then we can decompose m =

m0 + m1 + m01 with mε = m ∧ Lε for ε = 0, 1 or 01.
Assume N and M are simple and N ∩ M = 0 and so L01 = ∅. We

have w ∈ (N⊕M)−r for r ∈ N⊕M, iff w0 ∈ N−r0 and w1 ∈M−r1.
Thus, if {(N⊕M)− ri} is convergent with a nonempty limit then the
limit is (LIM {N − ri0}) ⊕ (LIM {N − ri1}). Because N and M are
simple this is (N−n)⊕ (M−m) = (N⊕M)− (n + m). Hence, N⊕M

is simple. The empty limit is (N ⊕M)− r with r 6∈ (N ⊕M).
Now assume M is finitary and N is finite so that L0 ∪ L01 is finite.

Let {ri} be a sequence in N ⊕ M with
⋃
i{supp ri} infinite. Then⋃

i{supp ri1} is infinite since
⋃
Supp N = L0 ∪ L01 is finite. If m0 +

m1 + m01 + ri ∈ N ⊕M then m1 + ri1 ∈ (N ⊕M) ∧ L1 ⊂M. Because
M is finitary, there are only finitely many m1 such that eventually
m1 + ri1 ∈ M. Since there are only finitely many m0’s and m01’s
it follows that LIMINF{N ⊕M − ri1} is finite. Since this contains
LIMINF{N ⊕M− ri} it follows that N ⊕M is finitary.

(b) Let a 6= b. If ρ(Ma)` > ρ(Mb)` then ρ(Mb)`χ(`) ∈Ma ∩ Mb ⊂ N.
Thus, for each ` there is at most one index a with ρ(Ma)` > ρ(N)`.
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Hence, ρ(M)` = maxa ρ(Ma)` < ∞ for all ` and so the Bound
Condition is satisfied if all the Ma’s and N are bounded.

If ma ∈ Ma, mb ∈ Mb with ma ≥ mb then mb ∈ Ma ∩ Mb ⊂ N.
Thus, an increasing sequence in M which is not contained in N is
contained in some Ma. Thus, the Finite Chain Condition for M follows
from the condition for each Ma.

Let LM	N = (
⋃

Supp M) \ (
⋃

Supp N) =
⋃
a {La} and LN =⋃

Supp N. For m ∈M let mN = m∧LN and mM	N = m∧LM	N. If
mM	N > 0 then m ∈Ma for a unique a.

Assume that N = 0 and the Ma’s are simple. We have M = M −
0, 0 = M− r with r ∈ max M and ∅ = M− r with r 6∈ M. Now note
that Ma 3 r > 0 implies Mb − r = ∅ if b 6= a and so M− r = Ma − r.
Thus, if {M− ri} is convergent with limit not equal to M, 0 or ∅, there
is then a unique a such that eventually ri ∈ Ma and {Ma − ri} is
convergent and with the same limit. Since Ma is simple, this limit is
Ma − r for some r ∈Ma and r > 0. It follows that M− r = Ma − r is
the limit. Hence, M is simple.

Now assume that N is finite and that the Ma’s are finitary. Let
{ri ∈M} with

⋃
i{supp ri} infinite. Again

⋃
i{supp riM	N} is infinite. If

riM	N > 0 then it is contained in a unique Ma(i) and so if m+riM	N ∈M

then m + riM	N ∈Ma(i) and so m ∈Ma(i).

Case (i) - There exists a such that eventually riM	N > 0 implies
a(i) = a. In that case, if m+riM	N ∈M eventually then m+riM	N ∈Ma

eventually and so LIMINF{M−riM	N} = LIMINF{Ma−riM	N} and
the latter is finite because Ma is finitary.

Case (ii) - For every I there exist i1, i2 ≥ I with ri1M	N, r
i2
M	N > 0

and a(i1) 6= a(i2). In that case, if m + riM	N ∈ M eventually then
m ∈ Ma(i1) ∩ Ma(i2) with a(i1) 6= a(i2) and so m ∈ N. Hence,
LIMINF{M− riM	N} ⊂ N which is finite.

Thus, in either case LIMINF{M − riM	N} is finite. As before this
contains LIMINF{M− ri} and so M is finitary.
2

Remark 4.44. (a) Since any label M is the union of the finite labels
M∩NN it follows that some condition like that in (b) above is needed
to get the finite type or finitary conditions.

(b) If N⊕M is finitary and M is infinite then N must be finite since
if {ri} is an infinite sequence of distinct positive vectors in M then
N ⊂ LIMINF {(N ⊕M)− ri}.
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2

Example 4.45. (a) If M is defined by M = 〈{χ(1) + χ(`) : ` >
1} ∪ {χ(`) + χ(`+ 1) : ` > 1}〉, then M is size bounded and finitary,
but not simple.

M− χ(1) = {0} ∪ {χ(`) : ` > 1},
M− χ(`) = {0} ∪ {χ(1), χ(`− 1), χ(`+ 1)}, for ` > 1,

F = {0, χ(1)} = LIM`→∞{M− χ(`)}.
(4.20)

Notice that F 6= M− r for any r ∈M.
(b) If M be defined by M = 〈{χ(2a − 1) + χ(2b) : a, b ≥ 1}〉,

then M is size bounded and is simple but is not finitary. In general, if
M = M1 ⊕M2 with M1,M2 infinite simple labels with M1 ∩ M2 = 0
then M is simple but not finitary.

2

Summarizing we have the following inclusions:

simple labels� v

SSSS
SSSS

SSSS
SS

SSSS
SSSS

SSSS
SS

finite labels� u

QQQ
QQQ

QQQ
QQQ

QQ

QQQ
QQQ

QQQ
QQQ

QQ
) 	
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finite type labels

finitary labels
( �
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5. Labeled subshifts

5.1. Expanding functions.

Call h a function on Z when h : Z → Z. A function h on Z is odd
when h(−j) = −h(j) for all j ∈ Z and so, in particular, h(0) = 0.
We call h increasing when h(j + 1) > h(j) for all j ∈ Z. When h
is odd, then it is increasing when its restriction to Z+ is increasing.
Then, of course, h is positive on N. For an odd increasing function
|h(j)| = h(|j|) for all j ∈ Z.
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On Z let ε be the signum function so that

(5.1) ε(N) =


+1 N > 0,

0 N = 0

−1 N < 0.

For integers a, b we will denote by [ a ± b ] the interval [ a−|b|, a+|b| ]
in Z. When a = 0 we will write [ ±b ] for the interval [ −|b|,+|b| ].

Let b be a positive integer. Call a function k : Z→ Z a b-expanding
function when it satisfies

• k(−n) = −k(n) for all n ∈ Z.
• k(n + 1) > b · Σn

i=0 k(i) and, in particular, k(n) > 0, for all
n ≥ 0.

Thus, k is an odd, increasing function and so k(|n|) = |k(n)| for all
n ∈ Z.

Define k0(n) = ε(n)(1 + b)|n|−1.
Define for k the function k+ by

(5.2) k+(n) = ε(n)k(|n|+ 1).

When k is b-expanding, k+(n) > bk(n) for all n > 0.
Define for k the function sk : N→ N by

(5.3) sk(n) =

{
1 for n = 1,

Σn−1
i=1 k(i) for n > 1.

Lemma 5.1. (i) If k is b-expanding and C is a positive integer
then C · k is b-expanding. If h, k are b-expanding then h+ k is
b-expanding.

(ii) k0 is b-expanding and if k is b-expanding then k(n) ≥ k(1)k0(n)
for all n ≥ 0.

(iii) Assume that h : Z → Z is an increasing, odd function. If k is
b-expanding then k ◦ h is b-expanding, and so, if h, k are both
b-expanding then k ◦ h is b-expanding.

(iv) If k is b-expanding, then k+ is b-expanding.
(v) If k is b-expanding, then n ≥ 0 implies

(5.4) k(n+ 2)− k(n+ 1) > (b− 1)(k(n+ 1)− k(n))

and so the sequence of successive differences { k(n+ 1)− k(n) :
n ∈ Z+} is a strictly increasing sequence of positive integers
with k(n+ 1)− k(n) ≥ k(1)(b− 1)n.

(vi) If k is b-expanding and k(1) ≥ b + 1 then k(n) > bsk(n) ≥ bn
for all n ∈ N and { [ k(n) ± b

2
sk(|n|) ] : n ∈ Z } is a pairwise
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disjoint sequence of intervals in Z (for n = 0 the empty sum is
zero and the interval is [0]).

Proof: (i) Obvious.
(ii) By summing the geometric series we see that for n ≥ 0, k0(n +

1) = 1 + bΣn
i=0 k0(i). So k0 is b-expanding. If k is b-expanding

then k(1) = k(1)k0(1) and so by induction k(n + 1) > bΣn+1
j=0 k(j) ≥

k(1)bΣn−1
j=0 k0(j) = k(1)(k0(n)− 1) > k(1)k0(n).

(iii) Assume n ≥ 0. Since h is a strictly increasing function,

{h(0), h(1), . . . , h(n)} ⊂ {0, 1, . . . , h(n+ 1)− 1}.
Hence,

(5.5) k(h(n+ 1)) > bΣ
h(n+1)−1
i=0 k(i) ≥ bΣn

j=0 k(h(j)).

Thus, k ◦ h is b-expanding.
(iv) Define h(n) = ε(n)(|n|+ 1). From (iii) it follows that k+ = k ◦h

is b-expanding.
(v) k(n+2) > bk(n+1) and so k(n+2)−k(n+1) > (b−1)k(n+1) ≥

(b − 1)(k(n + 1) − k(n)). So the sequence of differences is increasing
and, by induction, k(n+ 1)− k(n) ≥ (b− 1)nk(1).

(vi) For n = 1, k(1) ≥ 1 + b > b = bsk(1) = b · 1. For n > 1,
k(n) > bsk(n) is the definition of a k expanding function. sk(2) =
k(1) ≥ 1 + b > 2. Then sk(n+ 1) > sk(n) implies sk(n) ≥ n. Finally,
we observe that

k(|n+ 1|)− b

2
sk(n+ 1) >

b

2
sk(n+ 1)

=
b

2
(k(|n|) + sk(n)) > k(|n|) +

b

2
sk(n).

(5.6)

Since b ≥ 3, b
2
> 1.

2

With b ≥ 3 we now fix a b-expanding function k with k(1) > b + 1
so that k(n) ≥ (1 + b)n for all n ∈ N, e.g. k(n) = ε(n)4|n|.

Let IP (k) denote the set of sums of finite subsets of the image set
k(Z) ⊂ Z and let IP+(k) denote the set of sums of finite subsets of the
image set k(Z+) ⊂ Z+.

Definition 5.2. (a) An expansion of length r ≥ 0 for t ∈ Z is a finite
sequence j1, . . . , jr ∈ Z such that |ji| > |ji+1|) for i = 1, . . . , r − 1 and
with

t = k(j1) + k(j2) + · · ·+ k(jr).

0 ∈ Z has the empty expansion with length 0.
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(b) For 0 ≤ r̃ ≤ r the r̃ truncation is the element t̃ ∈ Z with
expansion j1, . . . , jr̃ so that

t̃ = k(j1) + k(j2) + · · ·+ k(jr̃).

The sequence jr̃+1, . . . , jr is an expansion for the r̃ residual t− t̃ with
length r− r̃. We call t̃ a truncation of t and t an extension of t̃. When
r̃ = 0 the truncation t̃ = 0 with the empty expansion.

When there is an expansion for t we will say that t is expanding or
that t is an expanding time. When there is an expansion for t with
j1 > · · · > jr > 0 we will say that t is positive expanding or a positive
expanding time.

Using properties of b-expanding functions we obtain various useful
estimates for expansions and their truncations. The key idea is that
the expanding functions grow so rapidly that the expansion of t is
dominated by its leading term k(j1).

Lemma 5.3. If t has an expansion j1, . . . , jr with r ≥ 1 then t 6= 0
and t has the same sign as k(j1). Furthermore,

|t| ≥ (b− 1) · Σr
i=2 |k(ji)|,

b+ 1

b
|k(j1)| ≥ |t| ≥ b− 1

b
|k(j1)|,

(5.7)

If t̃ is the r̃ truncation of t then

(5.8)
b+ 1

b
k(|jr̃+1|) > |t− t̃| > b− 1

b
k(|jr̃+1|).

Proof: Clearly,

(5.9) |t − k(j1)| ≤ Σr
i=2 |k(ji)| ≤ sk(|j1|).

The sequence { |ji| : i = 2, . . . , r } consists of distinct positive integers
all less than |j1|. So we obtain

(5.10) |k(j1)| ≥ b · sk(|j1|) ≥ b · Σr
i=2 |k(ji)|.

From(5.9) and (5.10) we see that

(5.11) |t − k(j1)| ≤ 1

b
k(|j1|).

It follows that t 6= 0 and t has the same sign as k(j1). The estimates
of (5.7) follow as well.

Now we apply (5.10) to the expansion of t− t̃ to get

(5.12)
1

b
k(|jr̃+1|) ≥ Σr̃+1<i≤r |k(ji)|.
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Thus, (5.8) follows from

(5.13) k(|jr̃+1|) + Σ ≥ |t− t̃| ≥ k(|jr̃+1|)− Σ

where Σ = Σr̃+1<i≤r |k(ji)|.
2

Now suppose that j1(t), . . . , jr(t)(t) for t and j1(s), . . . , jr(s)(s) for s
are different expansions. By convention, let jr(t)+1(t) = jr(s)+1(s) =
0. Let r̃ be the smallest positive integer such that jr̃(t) 6= jr̃(s) so that
1 ≤ r̃ ≤ min(r(s), r(t)) + 1.

Lemma 5.4.

|t− s| > b− 2

b
·max( |k(jr̃(t))|, |k(jr̃(s))| ).

Proof: Let u be the common r̃ − 1 truncation of t and s. If r̃ = 1,
then u = 0.

We replace t and s by their r̃ − 1 residuals t − u and s − u, and
observe that |t− s| = |(t− u)− (s− u)|.

Thus, we reduce to the case that r̃ = 1 and prove that |t − s| >
b−2
b
· max( |k(j1(t))|, |k(j1(s))|). Note that we include the case when

r(t) = 0 and so t = j1(t) = 0 or the similar possibility for s. Since the
j1(t) 6= j1(s) these two cannot both happen.

Case 1 - j1(t) = −j1(s): By Lemma 5.3 t and s are nonzero and have
opposite signs. Hence, |t−s| = |t|+|s| > b−1

b
·max( k(|j1(t)|, k(|j1(s)|) )

by (5.7).

Case 2 - |j1(t)| 6= |j1(s)|: By symmetry we can assume that |j1(t)| >
|j1(s)|. Then |t| ≥ k(|j1(t)|)−sk(|j1(t)|) and |s| ≤ sk(|j1(t)|). Further-
more, sk(|j1(t)|) < 1

b
k(|j1(t)|). Hence,

(5.14) |t− s| ≥ k(|j1(t)|)− 2sk(|j1(t)|) >
b− 2

b
k(|j1(t)|).

In this case, k(|j1(t)|) = max( k(|j1(t)|), k(|j1(s)|) ).
2

Proposition 5.5. An integer t ∈ Z is expanding iff t ∈ IP (k), in
which case its expansion is unique. An integer t ∈ Z+ is in IP+(k) iff
it is expanding with j1 > · · · > jr > 0.

If t is expanding with expansion length r and s is expanding then s
is an extension of t iff |s− t| ≤ b−2

b
k(|jr(t)|).

Proof: It is clear that t admits an expansion iff t ∈ IP (k) and is in
IP+(k) iff the terms of the expansion are positive.



62 ETHAN AKIN AND ELI GLASNER

Lemma 5.4 implies that if expansions of s and t differ then |s−t| > 0.
Hence, the expansion of each t ∈ IP (k) is unique.

If t = s̃ then r = r̃(s) and so by (5.8) applied to s

(5.15) |s− t| ≤ b+ 1

b
k(|jr+1(s)|).

Because k is b-expanding, 1
b
k(|jr(t)|) = 1

b
k(|jr(s)|) ≥ k(|jr+1(s)|).

Since b > 4, b+1
b2

< b−2
b

.
If s is not an extension of t then in Lemma 5.4 r̃ ≤ r. Hence, the

lemma implies that |s− t| > b−2
b
k(|jr(t)|).

2

Corollary 5.6. If t ∈ IP (k) has expansion j1, . . . , jr with r > 0 and
1 ≥ i∗ ≥ r then t∗ = t − k(ji∗) is the unique member of IP (k) with
|t− t∗| = |k(ji∗)|, i.e. t+ k(ji∗) 6∈ IP (k).

Proof: Clearly, t∗ has expansion of length r−1 obtained by omitting
ji∗ and so t∗ ∈ IP (k) with |t − t∗| = |k(ji∗)|. Now let s = t + k(ji∗).
We assume that s ∈ IP (k) and so has an expansion j1(s), . . . , jr(s)(s)
which differs from that of t since s 6= t. As above let r̃ be the smallest
positive integer at which the expansions of t and s disagree. By Lemma
5.4 if r̃ > i∗ then |t − s| > b−2

b
· |k(jr̃(t))| > (b − 2)|k(ji∗)| would

contradict |t−s| = |k(ji∗)|. So t and s have a common i∗−1 truncation
u. By subtracting u and replacing t and s by t−u and s−u we reduce
to the case with i∗ = 1. Thus, we derive the contradiction by showing
that with t 6= 0, s = t+ j1(t) 6∈ IP (k).

By Lemma 5.1 (vi) the intervals {[ k(j) ± sk(|j|) ] : j ∈ Z} are
disjoint and by (5.9) t ∈ [ k(j) ± sk(|j|) ]. On the other hand, s ∈
[ 2k(j)± sk(|j|) ] with j = j1(t) 6= 0.

If n > |j| then |s| < 2sk(|j| + 1) ≤ 2sk(n) < k(n) − sk(n) because
k is b-expanding with b ≥ 3 (and k(1) ≥ 1 + b). If n ≤ |j| then
|s| ≥ 2k(|j|) − sk(|j|) > k(|j|) + sk(|j|) ≥ k(n) + sk(n). Hence, s 6∈⋃
{[ k(j)± sk(|j|) ] : j ∈ Z} and so is not in IP (k).
2

For a subset A of Z the upper Banach density of A is

(5.16) lim sup
#I→∞

#(I ∩ A)

#I

as I varies over finite intervals in Z. When the limsup is zero, or,
equivalently, when the limit exists and equals zero, we say that A has
Banach density zero.
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Thanks to a helpful discussion with Benjamin Weiss, we obtain the
following

Theorem 5.7. The subset IP (k) of Z has Banach density zero.

Proof: Given an interval I ⊂ Z in with N = #I, if t, s are distinct
points in I then 0 < |t− s| < N . Now suppose that t, s ∈ IP (k) with
expansions j1(t), . . . , jr(t)(t) for t and j1(s), . . . , jr(s)(s) for s. Since
t 6= s the expansions differ. Let r̃ be the smallest positive integer such
that jr̃(t) 6= jr̃(s). Since b ≥ 3, b−2

b
≥ 1

3
and so Lemma 5.4 implies that

3N > max( k(|jr̃(t)|), k(|jr̃(s)|)). Thus, the terms in the expansions of
t and s agree except for terms k(j) with |k(j)| < 3N .

Since |k(j)| ≥ (1+ b)|j| and b ≥ 3, we have 4|j| < 3N . So the number
of possible |j|’s is bounded by log4 (3N). For each such j, k(|j|) can
occur with coefficient −1, 0 or +1. Consequently, #(I ∩ IP (k)) is
bounded by 3log4 (3N) = (3N)log4(3). Since 0 < log4 (3) < 1, it follows

that (3N)log4(3)

N
→ 0 as N → ∞.

Hence,

lim
#I→∞

#(I ∩ IP (k))

#I
= 0.

2

Remark 5.8. The above proof works for any b-expanding function
k with b ≥ 3. On the other hand, if k(n) = ε(n)3|n|−1, which is b-
expanding with b = 2, then every integer has a unique expansion.
That is, IP (k) = Z.

A similar proof works for IP+(k) with b ≥ 2. In that case, we have
that the number of j’s is bounded by log3 (3N) and for each such j,
k(j) can occur with coefficient 0 or +1. Thus, #(I∩IP+(k)) is bounded
by (3N)log3(2).

5.2. Labeled integers.

We now fix a partition of N by an infinite sequence

D = {D` : ` ∈ N}
with #D` =∞ for every ` ∈ N, numbered so that minD` < minD`+1.
Hence, minD1 = 1 and minD` ≥ `. We then let Q(`, i) be the ith

smallest member of D`. Thus, Q : N× N→ N is a bijection such that
` 7→ Q(`, 1) is increasing and for each ` ∈ N, i 7→ Q(`, i) is increasing
with image D`.
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The support map n 7→ `(n) associates to each n ∈ N the member of
D which contains it, so that n ∈ D`(n). The map is the composition of
Q−1 with the projection onto the first coordinate.

Definition 5.9. (a) If j1, . . . , jr ∈ Z is an expansion for t ∈ IP (k),

t = k(j1) + k(j2) + · · ·+ k(jr),

then the length vector for the expansion is the N-vector

r = r(t) = χ(`(|j1|)) + χ(`(|j2|)) + · · ·+ χ(`(|jr|))

so that |r| is the length r(t).
0 ∈ IP+(k) ⊂ IP (k) has the empty expansion with length 0 and

length vector 0.

Thus, r(t)` = #{i : ji ∈ D`} in the expansion j1, . . . , jr for t.
If 0 ≤ r̃ ≤ r, then the r̃ truncation, t̃, has length vector r̃ = r(t̃) =

χ(`(j1)) + χ(`(j2)) + · · · + χ(`(jr̃)), so that |r̃| = r̃. The residual t− t̃
has length vector r− r̃ ≥ 0.

Definition 5.10. For a label M define A[M] ⊂ Z to consist of those
t ∈ IP (k) which have length vector r(t) ∈M. Define A+[M] = A[M]∩
IP+(k).

If M = ∅ then A+[M] = A[M] = ∅. Otherwise 0 ∈ A+[M] ⊂ A[M]
since 0 ∈M.

Proposition 5.11. Assume t ∈ A[M] with expansion length r. For
any positive integer N ,
(5.17)
2N ≤ |jr(t)| =⇒ [ t ± N ] ∩ A[M] = t + ([ ± N ] ∩ A[M−r(t)]),

and the elements of [ t ± N ] ∩ A[M] are extensions of t in A[M].
If, in addition, t ∈ A+[M] then

(5.18) [ t ± N ] ∩ A+[M] = t + ([ ± N ] ∩ A+[M− r(t)])

Proof: If s ∈ [ t ± b−2
b
k(|jr(t)|) ] ∩ A[M] then by Proposition 5.5

s is an extension of t and r(s) ∈M. Because t is a truncation of s with
residual s− t we have r(s) = r(t) + r(s− t) so s− t ∈ A[M− r(t)]. If
N ≤ |jr(t)| then N ≤ (b− 2)|jr(t)| < b−2

b
k(|jr(t)|), since k(n) > bn for

n ∈ N.
On the other hand, if u = k(j1(u)) + · · · + k(jp(u)) ∈ A[M − r(t)]

with length p then r(u) + r(t) ∈M.
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By (5.7) applied to u, |u| ≤ N implies |k(j1(u))| ≤ 2|u| ≤ 2N ≤
|jr(t)|. Hence, |j1(u)| < k(|j1(u)|) ≤ |jr(t)|. It follows that

(j1(t), . . . , jr(t), j1(u), . . . , jp(u))

is an expansion for t+u with length r+p and length vector r(t)+r(u).
Hence, t+ u ∈ [ t ± N ] ∩ A[M].

The proof of (5.18) is exactly the same when t ∈ A+[M].
2

Lemma 5.12. If t is expanding and |t| ≤ (b−1)minD` then r(t)` = 0.

Proof: We may assume t 6= 0. If for some i = 2, . . . , r, `(|ji|)(t) = `
then by (5.7) |t| > (b − 1)|k(ji(t))| ≥ (b − 1)minD`. If `(|j1(t)|) = `
then |t| ≥ b−1

b
|k(j1(t))| > (b − 1)|j1(t)|. Since `(|j1(t)|) = ` we have

|j1(t)| > minD`.
2

Proposition 5.13. For any label M and N ∈ N
[ ± N ] ∩ A[M] = [ ± N ] ∩ A[M ∩BN ],

[ ± N ] ∩ A+[M] = [ ± N ] ∩ A+[M ∩BN ]
(5.19)

Proof: If N ≤ ` then N ≤ minD`. Hence, |t| ≤ N implies r(t)` = 0
by Lemma 5.12. Thus, supp r(t) ⊂ [1, N ].

If r = |r(t)| > N . Then |j1| > |j2| > · · · > |jr| implies |j1| > N
and so |t| ≥ b−1

b
k(|j1|) > (b− 1)N since k(N) ≥ bN . Contrapositively,

|t| ≤ N implies |r(t)| ≤ N .
It follows that |t| ≤ N implies r(t) ∈ BN .
2

If m = 0 then t = 0 is the unique time with length vector m. For a
nonzero N-vector m there are infinitely many such times.

Lemma 5.14. (a) If m is a nonzero N-vector so that |m| = r > 0 then
for any positive integer N there exist t ∈ IP+(k) such that r(t) = m.
and jr(t) > N .

(b) For labels M1,M2 if m ∈M1 \M2 and t is expanding with r(t) =
m then t ∈ A[M1]\A[M2] and if In particular, M1 = M2 iff A[M1] =
A[M2] and iff A+[M1] = A+[M2].

(c) For any N ∈ N there exists M ∈ N such that for all labels M1,M2

[ ± M ] ∩ A[M1] = [ ± M ] ∩ A[M2] =⇒
[ ± M ] ∩ A+[M1] = [ ± M ] ∩ A+[M2]

=⇒ M1 ∩BN = M2 ∩BN .

(5.20)
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Proof: (a) We use the fact that each D` is an infinite subset of N.
Write m = χ(`1) + · · · + χ(`r) where r = |m|. Choose jr ∈ D`r

with jr > N . For i = 1, ..., r − 1 inductively choose jr+i ∈ D`r+i

with jr+i > jr+i−1. Then j1, . . . , jr is an expansion for t ∈ IP (k) with
r(t) = m.

(b) If m ∈M1 \M2 then any t with r(t) = m then by definition t is
in A[M1]\A[M2]. If t is positive expanding then t is in A+[M1]\A[M2].
Hence, if M1 6= M2, then A[M1] 6= A[M2] and A+[M1] 6= A+[M2]. The
reverse implications are obvious.

(c) The first implication follows by intersecting with IP+(k).
For each m ∈ BN choose t = t(m) ∈ IP+(k) with r(t) = m and

let M = max{t(m) : m ∈ BN}. Now assume [ ± M ] ∩ A+[M1] =
[ ± M ] ∩ A+[M2].

If m ∈ M1 ∩ BN then 0 ≤ t(m) ≤ M . Hence t(m) ∈ [ ± M ] ∩
A[M1] = [ ± M ] ∩ A[M2]. Hence, t(m) ∈ A[M2] and so m ∈ M2.
That is, M1∩BN ⊂ M2∩BN . Symmetrically for the reverse inclusion.

2

5.3. Subshifts.

On {0, 1}Z define the ultrametric d by

(5.21) d(x, y) = inf { 2−N : N ∈ Z+ and xt = yt for all |t| < N}.

We denote by S the shift homeomorphism on {0, 1}Z. That is, S(x)t =
xt+1. Hence, for any k ∈ Z Sk(x)t = xt+k.

For A ⊂ Z we defined χ(A) ∈ {0, 1}Z by χ(A)t = 1 iff t ∈ A, so that
χ(A) is the characteristic function A. Thus, χ(∅) = e with et = 0 for
all t. If z ∈ {0, 1}Z then z = χ(A) for A = {t ∈ Z : zt = 1}.

Definition 5.15. Let X(A) be the orbit closure of χ(A), i.e. the
smallest closed invariant subspace which contains χ(A).

We will say that x = χ(A) dominates z = χ(A1) when A ⊃ A1.
Clearly, the set of pairs {(x, z)} such that x dominates z is closed.

For x = χ(A) we will say that x has positive or zero upper Banach
density when the subset A has positive or zero upper Banach density,
as defined in (5.16) above. The point x has positive upper Banach
density iff there exists an invariant probability measure µ on its orbit
closure such that the cylinder set C0 = {z ∈ {0, 1}Z : z0 = 1} has
positive µ measure, see [12, Lemma 3.17]. Observe that the union of
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the translates Sk(C0) is the complement of {e}. So for an invariant
probability measure µ the set C0 has positive measure iff µ is not the
point measure δe where e is the fixed point χ(∅). Thus, for example, if
X(A) contains a minimal subset other than the fixed point e then A
has positive upper Banach density.

Definition 5.16. Define Z(A) to be the smallest closed invariant sub-
set of {0, 1}Z which contains χ(A1) for every A1 ⊂ A.

Theorem 5.17. If A has Banach density zero then every point x ∈
Z(A) has Banach density zero. The dynamical system (Z(A), S) is
uniquely ergodic with δe, the point mass at e, as the unique invariant
probability measure and so {e} is the unique minimal subset of Z(A).

Proof: First observe that any block of a point x ∈ X(A) is also a
block in χ(A). Thus every such x has Banach density zero. Moreover,
every point y ∈ Z(A) is dominated by a point x ∈ X(A) and therefore
has also Banach density zero. Since, by Birkhoff ergodic theorem, every
ergodic measure admits a generic point we can apply Furstenberg char-
acterization [12, Lemma 3.17] to deduce that the only ergodic measure
on Z(A) is δe. The ergodic decomposition theorem implies that indeed
δe is the only invariant probability measure on Z(A). The topological
entropy of Z(A) is zero by the Variational Principle since the entropy
of the unique invariant measure is zero. Finally, as any minimal subset
carries an invariant probability measure and distinct minimal subsets
are disjoint, it follows that {e} is the only minimal subset of Z(A).

2

Definition 5.18. For a label M let x[M] = χ(A[M]), x+[M] = χ(A+[M]).
LetX(M) andX+(M) denote the orbit closuresX(A[M]) andX(A+[M]),
respectively.

For example, x+[∅] = x[∅] = e and x+[0] = x[0] = (. . . , 0, 0, 1̇, 0, 0, . . . ).
In general, the points x[M] are symmetric in that x[M]−t = x[M]t. On
the other hand, x+[M]t = 0 if t < 0. Hence, x[M] 6= x+[M] if M is a
positive label.

Corollary 5.19. For the subshifts (Z(IP (k)), S) and (X(M), S), (X+(M),
S) for labels M, the point measure δe is the unique invariant probability
measure and so {e} is the unique minimal subset. In particular, the
systems are minCT and all have entropy zero.
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Proof: By Theorem 5.7 IP (k) has Banach density zero. So Theorem
5.17 δe is the unique invariant probability measure for (Z(IP (k)), S)
and so the same is true for each subsystem (X(M), S).

2

Theorem 5.20. The maps x[·], x+[·] defined by M 7→ x[M] and M 7→
x+[M] are homeomorphisms from LAB onto their images in {0, 1}Z.

Proof: Let M1,M2 be labels and N be an arbitrary positive integer.
By Lemma 5.14 (b) M1 ∩ BN = M2 ∩ BN iff A(M1 ∩ BN) =

A(M2 ∩ BN). By Proposition 5.13 this implies [ ± N ] ∩ A(M1) =
[ ± N ] ∩ A(M2) and so, by intersecting with IP+(k), that [ ± N ] ∩
A+(M1) = [±N ] ∩ A+(M2) these are equivalent to x[M1]t = x[M2]t
and x+[M1]t = x+[M2]t for all t ∈ [ ± N ]. Since d(∅, 0) = 1 =
d(x[∅], x[0]), it follows that x[·] has Lipschitz constant 1.

The map M 7→ A+(M) is injective by Lemma 5.14 (b). Clearly,
A 7→ χ(A) is injective. So compactness implies that x[·] and x+[·] are
homeomorphisms onto their respective images.

2

Corollary 5.21. Let {Mi} be a sequence of labels:
(a) If M is a nonempty label and k ∈ Z then the following are equiv-

alent

(i) k = 0 and {Mi} converges to M.
(ii) {Sk(x[Mi])} converges to x[M].

(iii) {Sk(x+[Mi])} converges to x+[M].

(b) The sequence {Mi} is convergent iff {x[Mi]} is convergent and
iff {x+[Mi]} is convergent

Proof: (a) When k = 0 the equivalence follows from Theorem 5.20.
Since M is nonempty x[M]0 = 1 and so we can assume Mi is nonempty

for all i.
Now assume k 6= 0. The points x[M] are symmetric about 0 and

for every t, {(Skx[Mi])t = x[Mi]t+k} → x[M]t. Hence, {x[Mi]−t−k =
x[Mi]t+k} tends to x[M]t and to x[M]−t−2k = x[M]t+2k. This implies
that x[M] is a periodic point with period 2k. Since M 6= ∅, x[M] 6= 0̄.
Since it has arbitrarily long runs of zeroes it is not periodic. Thus, (ii)
implies k = 0.

Now assume (iii).
If k ≥ 0 then (Skx+[Mi])−k = x+[Mi]0 = 1 and so in the limit

x+[M]−k = 1 implies −k ≥ 0 and so k = 0.
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If k < 0 then (Skx+[Mi])0 = x+[Mi]k = 0 and so in the limit
x+[M]0 = 0 which contradicts the assumption that M is nonempty.

(b) Obvious from the fact that x[·] and x+[·] are homeomorphisms
between compact sets.

2

Lemma 5.22. Let {ti} be a sequence of expanding times with ri the
length of ti. If {|jri(ti)|} → ∞ then

Limi→∞ supM∈LAB d(St
i

(x[M]) , x[M− r(ti)] ) = 0.

Limi→∞ supM∈LAB d(St
i

(x+[M]) , x+[M− r(ti)] ) = 0.
(5.22)

That is, the pairs of sequences

({Sti(x[M])}, {x[M− r(ti)]}) and ({Sti(x+[M])}, {x+[M− r(ti)]})

are uniformly asymptotic in Z(IP (k)).

Proof: For any positive integer N , there exists iN so that i > iN
implies |jri(ti)| > 2N . Then Proposition 5.11 implies for any label M
[ ti ± N ] ∩ A[M] = ti + ([ ± N ] ∩ A[M− r(ti)]) This says that
for all t with |t| ≤ N , x[M− r(ti)]t = x[M]ti+t. Thus, if i > iN , then

x[M − r(ti)]t = (St
i
(x[M]))t for all t with |t| ≤ N . So (5.22) follows

from the definition (5.21) of the metric on {0, 1}Z.
The proof for x+ is the same.
2

Remark 5.23. For later semigroup applications we note that the
proofs of Corollary 5.21 and Lemma 5.22 work just the same for nets
instead of sequences.

Lemma 5.24. For a label M assume that I is a directed set and {ti :
i ∈ I} is a net in A[M] with ri the length of ti. Assume that {|ti|} → ∞
but {|jri(ti)|} is bounded.

(a) There exists an integer j∗ 6= 0 and a subnet {ti′}, defined by
restricting to i′ ∈ I ′ a cofinal subset of I, such that jri′ (t

i′) = j∗.
(b) If M is a label of finite type then there exists t̄ ∈ A[M] with length

r̄ > 0 (and so t̄ 6= 0) and a subnet {ti′}, defined by restricting to i′ ∈ I ′
a cofinal subset of I, such that ti

′ − t̃i′ = t̄ for all i′, where t̃i
′

is the
r̃i
′

= ri
′ − r̄ truncation of ti

′
and, in addition, {|jr̃i′ (t̃i

′
) = jr̃i′ (t

i′)|} →
∞.
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Proof: The bounded set {|jri(ti)|} is finite. It follows that there
exists j−1 ∈ Z \ {0} such that jri(t

i) = j−1 for i in a cofinal subset
SEQ−1 of I. Let t̄−1 = k(j−1) and let t̃i−1 be the r̃i−1 = ri−1 truncation
of ti for all i in SEQ−1. Since the truncation is proper, t̄−1 6= 0.
Furthermore, r(ti) = r(t̃i−1) + χ(`(j−1)) ∈M for all i ∈ SEQ−1.

For (a) we let j∗ = j−1 and I ′ = SEQ−1. Now assume that M is of
finite type and continue.

If {|jr̃i−1
(t̃i−1)|} → ∞ as i → ∞ in SEQ−1 then let I ′ = SEQ−1 use

this as the required subnet. Otherwise, it is bounded on some cofinal
subset and we can choose j−2 ∈ Z \ {0} such that jr̃i−1

(t̃i−1) = j−2, `−2

for i in a cofinal subset SEQ−2 of SEQ−1. Let t̄−2 = k(j−2) + k(j−1)
and let t̃i−2 be the r̃i−2 = ri − 2 truncation of ti for all i in SEQ−2.
Since the truncation is proper, t̄−2 6= 0. Furthermore, r(ti) = r(t̃i−2) +
χ(`(j−1)) + χ(`(j−2)) ∈M for all i ∈ SEQ−2.

Because M is of finite type, the Finite Chain Condition implies that
this procedure must halt after finitely many steps. That is, for some
k ≥ 1, {|jr̃i′−k(t̃

i′

−k)|} → ∞ as i′ →∞ in SEQ−k. The subnet is obtained

by restricting to I ′ = SEQ−k and t̄ = t̄−k with length r̄ = k.
Since t̃i

′
is the truncation of ti

′
to r̃i

′
, we have |jr̃i′ (t̃i

′
) = jr̃i′ (t

i′)| →
∞.

2

Remark 5.25. In (b) if ti ∈ A+[M] for all i then t̄ ∈ A+[M] and the
truncations are positive expanding times.

Corollary 5.26. Assume for a label M, I is a directed set, and the net
{Sti(x[M]) : i ∈ I} converges to x[N] (or, alternatively, {Sti(x+[M]) :
i ∈ I} converges to x+[N] ) with N 6= ∅. If eventually ti = 0 then N =
M. Otherwise, eventually ti ∈ A[M] ( and ti ∈ A+[M] in the x+ case)
with length ri and length vector r(ti) > 0. Furthermore, { |jri(ti)|} →
∞, { M − r(ti) } is convergent and LIM { M − r(ti) } = N. In
particular, N ∈ Θ′(M).

Proof: Since 0 ∈ A(N) it follows that eventually x[M]ti = 1 and so
eventually ti ∈ A[M]. So we may assume ti ∈ A[M] for all i. Similarly,
in the x+ case we can assume ti ∈ A+[M] for all i.

If {ti} is bounded on some cofinal subset of I then there is cofinal
subset on which ti

′
= k for some k ∈ Z. By Corollary 5.21 (b), k = 0

and so the limit is x[M]. Hence, N = M.
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When {|ti|} → ∞ we apply Lemma 5.24 to prove that if {Sti(x[M]) :

i ∈ I} converges to z (or {Sti(x+[M]) : i ∈ I} converges to z ) then
z = x[N] (resp. z = x+[N]) implies { |jri(ti)|} → ∞ after which the
remaining results follow from Lemma 5.22.

If { |jri(ti)|} does not tend to infinity then it remains bounded on
some cofinal set and by Lemma 5.24(a) we can restrict further to as-
sume that for some j∗ 6= 0, jri(ti) = j∗.

For the x[M] case we apply Corollary 5.6. If si = ti − k(j∗) then
si has length vector r(ti) − χ(j∗) ∈ M and so si ∈ A[M]. But ui =
ti + k(j∗) 6∈ IP (k) and so a fortiori is not in A[M]. Hence, for all i we
have

St
i

(x[M])−k(j∗) = 1, and St
i

(x[M])k(j∗) = 0.

In the limit, this implies z−k(j∗) = 1 and z−k(j∗) = 0. Since every x[N]
is symmetric about 0 it follows that z 6= x[N].

Now assume {Sti(x+[M]) : i ∈ I} converges to x+[N] so that j∗ > 0

and t̃i = ti − k(j∗) ∈ A+[M]. Hence, for each i, St
i
(x+[M])−k(j∗) =

x+[M]t̃i = 1. So in the limit, z−k(j∗) = 1. Since every x+[N]t = 0 for
t < 0, it follows that z 6= x+[N].

2

Remark 5.27. Notice that we can sharpen the first result by merely
assuming that the limit z is symmetric and the second by assuming
that zt = 0 for all t < 0. We still obtain { |jri(ti)|} → ∞, {M− r(ti) }
is convergent and LIM { M− r(ti) } = N with z = x[N] or = x+[N].

N.B. From now on we will omit the proofs of theA+(M), x+[M], X+(M)
results when they are exactly the same as those of theA(M), x[M], X(M)
results.

Theorem 5.28. Let M be a label. Assume {ti} is a sequence of ex-
panding times with |ti| → ∞ and {ui} is a sequence in Z with {ui− ti}
bounded. Let r(ti) be the length vector of the expansion for ti with sum
ri.

(i) Assume |jri(ti)| → ∞.

(a) {Sti(x[M])} is convergent iff {Sti(x+[M])} is convergent
iff {M− r(ti)} is convergent in which case

Limi→∞ St
i

(x[M]) = x[LIM{M− r(ti)}],

Limi→∞ St
i

(x+[M]) = x+[LIM{M− r(ti)}].
(5.23)
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(b) Limi→∞ Su
i
(x[M]) = e iff Limi→∞ Su

i
(x+[M]) = e iff

LIM{M− r(ti)} = ∅.
(c) {Sui(x[M])} is convergent with Limi→∞ Su

i
(x[M]) 6= e

iff {Sui(x+[M])} is convergent with Limi→∞ Su
i
(x+[M]) 6= e iff

{M−r(ti)} is convergent with a nonempty limit and there exists
an integer k such that eventually ui = ti + k. In that case,

Limi→∞ Sui(x[M]) = Sk(x[LIM {M− r(ti)}]),
Limi→∞ Sui(x[M]) = Sk(x[LIM {M− r(ti)}]).

(5.24)

(ii) If {vi} is a sequence in Z such that |vi| → ∞ and Limi→∞
Sv

i
(x[M]) = z 6= e (or Limi→∞ Sv

i
(x+[M]) = z 6= e) then there

exists k ∈ Z and a sequence si ∈ A[M] (resp.si ∈ A+[M]) such
that eventually vi = si + k and |si| → ∞.

(iii) If {vi} is a sequence in Z such that |vi| → ∞ and Limi→∞
Sv

i
(x[M]) = e (or Limi→∞ Sv

i
(x+[M]) = e) then Limi→∞ Su

i
(x[M1]) =

e (resp. Limi→∞ Su
i
(x+[M1]) = e)whenever M1 is a label with

M1 ⊂M and {|ui − vi|} is bounded.
(iv) Assume that M is of finite type and eventually ti ∈ A[M]. If

{Sti(x[M])} converges to z (or if {Sti(x[M])} converges to z
and eventually ti ∈ A+[M]) then z 6= e and there exist r̃i ≤ ri
and t̄ such that with t̃i the r̃i truncation of ti we have |jr̃i(ti)| =
|jr̃i(t̃i)| → ∞ and eventually ti− t̃i = t̄. So if r(t̃i) is the length
vector of t̃i then {M− r(t̃i)} is convergent and

z = S t̄(x[LIM {M− r(t̃i)}]),
(resp. z = S t̄(x+[LIM {M− r(t̃i)}]).

(5.25)

Proof: (i): By Lemma 5.22 {Sti(x[M])} is asymptotic to {x[M −
r(ti)]} and by Corollary 5.21 (b) the latter converges iff {M − r(ti)}
converges in which case the common limit is x[LIM{M− r(ti)}].

If {M − r(ti)} is not convergent. Then then by compactness there
exist two convergent subsequences with limits LIM1 6= LIM2 such
that m ∈ LIM1 \ LIM2. Because LIM1 6= LIM2 it follows that

x[LIM1] 6= x[LIM2] by Theorem 5.20. Hence, {Stii(x[M])} has subse-
quences converging to different limits and so is not convergent.

It is clear that if {Sti(x[M])} is convergent and eventually ui =

ti + k then {Sui(x[M])} converges to Sk(x[LIM ]). If LIM = ∅ or,
equivalently, LIMSUP = ∅ then {ui} can be partitioned into finitely
many subsequences on each of which ui − ti is constant and so each of
these {Sui(x[M])} subsequences converges to e.
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Finally, if {Sui(x[M])} converges to z 6= e then the now familiar sub-
sequence argument implies that {M− r(ti)} is convergent and eventu-
ally ui − ti is constant.

(ii) Since z 6= 0 there exists k ∈ Z such that z−k = 1. Hence,

S−k(z)0 = 1. Let si = vi − k. Since Ss
i
(x[M]) converges to S−k(z),

x[M]ti is eventually 1 and so eventually ti ∈ A[M]. Since |vi| → ∞,
|ti| → ∞.

(iii) To say that Sv
i
(x[M]) = e says that for all positive integers N ,

eventually [vi±N ] ∩ A[M] = ∅ Since A[M1] ⊂ A[M] when M1 ⊂M,
it follows that [vi ±N ] ∩ A[M1] = ∅.

(iv) If {|jri(ti)|} → ∞ then by (i), we can choose r̃i = ri, t̄ = 0.
Otherwise, there is a bounded subsequence to which we apply Lemma

5.24 (b). Because t̄ 6= 0 it follows that there is no subsequence on which
|jri(ti)| → ∞. Hence, {|jri(ti)|} is bounded. All of the convergent
subsequences have the same limit and so t̄ is defined independent of
the choice of subsequence by Corollary 5.21 (a). Because the length
r̄ of the expansion of t̄ is uniquely determined by t̄ it follows that the
r̃i = ri − r̄ is the truncation used in every subsequence.
2

Definition 5.29. If Y is an invariant subset of Z(IP (k)) we let Φ(Y ) =
{N ⊂M : x[N] ∈ Y } and Φ+(Y ) = {N ⊂M : x+[N] ∈ Y }

That is, Φ(Y ) and Φ+(Y ) are the preimages of Y by the maps x[·]
and x+[·] respectively. By Theorem 5.20 N is uniquely determined by
x[N] and by x+[N].

Proposition 5.30. (a) If Y is a closed, shift invariant subset of Z(IP (k))
then Φ(Y ),Φ+(Y ) are closed, FIN(N) invariant subsets of LAB.

(b) If N ∈ Θ(M), then x[N] ∈ X(M) and x+[N] ∈ X+(M)
(c) If x[N] ∈ X(M) or x+[N] ∈ X+(M) with N nonempty then

N ∈ Θ(M). If M 6= FIN(N) then ∅ ∈ Θ(M).
(d) ∅ ∈ Φ(X(M)) ∩ Φ+(X+(M)) and

Θ(M) \ {∅} = Φ(X(M)) \ {∅} = Φ+(X+(M)) \ {∅}.

Proof: (a): Because the map x[·] is continuous, Φ(Y ) is closed when
Y is.

If x[N] ∈ Y and r is a nonzero N-vector then we an choose {ti}
with length vector r and with |jr(ti)| → ∞. By Theorem 5.28(i)(a)
Stix[N]→ x[N − r] and since Y is closed, N − r ∈ Φ.
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(b): M ∈ Φ(X(M)) and (a) implies that Φ(X(M)) is closed and
invariant. Hence, it contains Θ(M), the smallest closed, invariant set
containing M.

(c): If x[N] ∈ X(M) with N 6= ∅ then Corollary 5.26 implies that
N ∈ Θ(M). If M 6= FIN(N), then there exists r ∈ FIN(N) \M and
so M− r = ∅.

(d): By Corollary 5.19 e = x[∅] ∈ X(M). For nonempty N, N ∈
Φ(X(M)) iff N ∈ Θ(M) by (b) and (c).
2

Corollary 5.31. If M 6= FIN(M), then

Θ(M) = Φ(X(M)) = Φ+(X+(M)).

Example 5.32. If M = FIN(N), the maximum label, then M−r = M

for all r ∈ FIN(N) and so Θ(M) = {M}. Thus, ∅ ∈ Φ(X(M))\Θ(M).
Notice that if t ∈ IP (k) and n ∈ N there exists s ∈ IP (k) such that
|t − s| = k(n). If |ji(t)| = n for some ji in the expansion of t then let
s = t− k(ji(t)), i.e. remove the ith term of the expansion so that s has
length r− 1. If |ji(t)| 6= n for any i, e.g. if t = 0, let s = t± k(n) both
with length r + 1. It follows that if z ∈ X(M) and zt = 1 then zs = 1
for s = t+ k(n) or s = t− k(n). Hence, {t : zt = 1} is not bounded in
Z. In particular, x[0] 6∈ X(M). More generally, we see that X(M) has
no nontrivial but semitrivial subsystem.

Corollary 5.33. Let M be a label of finite type with (X(M), S) and
(X+(M), S) the associated subshifts, so that X(M) (resp. X+(M)) is
the S orbit closure of x[M] (resp. x+[M]), and Θ(M) is the FIN(N)
orbit closure of M.

(a) X(M) = {Sk(x[N]) : k ∈ Z, N ∈ Θ(M)} and X+(M) =
{Sk(x+[N]) : k ∈ Z, N ∈ Θ(M)}. Thus, Θ(M) = Φ(X(M)) =
Φ+(X+(M)).

(b) If Φ ⊂ Θ(M) then Φ = Φ(Y ) for some closed, invariant subset
Y of X(M) iff Φ = Φ+(Y+) for some closed, invariant subset
Y+ of X+(M) iff Φ is closed and FIN(N) invariant. In that
case,

Y = {Skx[N] : k ∈ Z,N ∈ Φ}, Y+ = {Skx+[N] : k ∈ Z,N ∈ Φ}.

Proof: From Theorem 5.28 (iv) it follows that when M is of finite
type every element of the orbit closure of x[M] is on the orbit of some
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x[N] for N a unique element of Θ(M). Hence, Φ(X(M)) = Θ(M). If
Y is an invariant subset of X(M) then Y consists of the orbits of some
of these x[N]. That is, Φ(Y ) ⊂ Θ(M) and Y consists of the orbits of
the points x[N] for N ∈ Φ(Y ). Conversely, if Φ ⊂ Θ(M) then together
the orbits of {x[N] : N ∈ Φ} form an invariant set with Φ(Y ) = Φ.
Proposition 5.30 implies that Φ(Y ) is closed when Y is. To complete
the proof of (b) we must show that Y is closed if Φ(Y ) is closed and
FIN(N) invariant.

A sequence in Y is of the form St
i
x[Ni] with Ni ∈ Φ(Y ). Shifting by

a finite amount if necessary we can assume the limit point is x[N] for
some N ∈ Θ(M). If there is some subsequence of {ti} which is bounded
then by going to a further subsequence we obtain a subsequence with
ti
′
= k and Skx[Ni]→ x[N]. Then Corollary 5.21(a) implies that k = 0

and {Ni′} → N. Since Φ(Y ) is closed, N ∈ Φ(Y ) and so x[N] ∈ Y , by
Lemma 5.14(b).

There remains the case with {|ti|} → ∞. Since x[N]0 = 1 we can
assume that Stix[Ni]0 = 1 for all i and so ti ∈ A[Ni] for all i. By
Corollary 5.26 {|jr(ti)|} → ∞ and {Mi − r(ti)} converges to N. Since
{Mi} is a sequence in Φ(Y ) and Φ(Y ) is closed and invariant, N ∈ Φ(Y )
and so x[N] ∈ Y .
2

Theorem 5.34. For a label M the following are equivalent:

(i) M is a recurrent label.
(ii) x[M] is a recurrent point in ({0, 1}Z, S).

(iii) x+[M] is a recurrent point in ({0, 1}Z, S).

Proof: (i) ⇔ (ii): Let {ri > 0} be a sequence in M with M =
LIM {M−ri}. Choose ti with r(ti) = ri and with {|jri(ti)|} → ∞. By

Lemma 5.22 {Sti(x[M])} is asymptotic to {x[M− ri]} which converges
to x[M] by Corollary 5.21(b).

On the other hand, if {Sti(x[M])} converges to x[M] then eventually
r(ti) ∈ M and by Corollary 5.26 {M − r(ti)} converges to M. Hence,
M is recurrent.

2

Corollary 5.35. If a label M is not of finite type then X(M) and
X+(M) each contain non-periodic recurrent points.

If a label M is of finite type then e is the only recurrent point of X(M)
or X+(M) and so (X(M), S) and (X+(M), S) are CT systems. In that
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case, (X(M), S) and (X+(M), S) are LE and topologically transitive
but not weak mixing.

Proof: If M is not of finite type then Proposition 4.23 implies
that there is a positive recurrent label N with N ∈ Θ(M). Hence,
x[N] ∈ X(M) by Proposition 5.30(b). Theorem 5.34 implies that x[N]
is recurrent. By Corollary 5.19 e = x[∅] is the only periodic point in
Z(IP (k)).

If M is of finite type then by Corollary 5.33 every point of X(M) is
on the orbit of some x[M1] with M1 ⊂M. These are all labels of finite
type and so none are recurrent except for M1 = ∅.

Since x[M] is always a transitive point forX(M), (X(M), S) is always
topologically transitive. In the finite type case, it is CT and so is LE
and not weak mixing (see Remarks 1.11 and 2.4).

2

Example 5.36. With M as in Example 4.29 the subshift X = X(M)
is uncountable, CT and LE. In fact, each point of X is an isolated point
in its orbit closure, and e is the unique recurrent point.

Let SYM = { x ∈ {0, 1}Z : x−t = xt for all t ∈ Z }, and let
ZER = { x ∈ {0, 1}Z : x0 = 1 and xt = 0 for all t < 0 }.

Lemma 5.37. SYM is a closed subset of {0, 1}Z which contains x[LAB].
ZER is a closed subset of {0, 1}Z which contains x+[LAB] \ {e =
x+[∅]}. Each non-periodic S orbit in {0, 1}Z meets SYM at most once.
Each S orbit in {0, 1}Z meets ZER at most once

Proof: EveryA[M] is symmetric about 0 and so x[LAB] is contained
in SYM . SYM is clearly a closed set. Since LAB is complete and x[·]
is a homeomorphism onto its image, x[LAB] is a Gδ subset although
it is not closed.

If Sk1x, Sk2x ∈ SYM with k2 6= k1 then for all t ∈ Z,

(5.26) xt+k1 = x−t+k1 = x(−t+k1−k2)+k2 = x(t−k1+k2)+k2

Letting s = t + k1 we have that xs = xs+2(k2−k1) for all s ∈ Z. Since
k2 6= k1 it follows that x is periodic.

The results for ZER are obvious.
2

Remark 5.38. It follows that if µ is any non-atomic, shift-invariant
probability measure on {0, 1}Z then µ(ZER) = µ(SYM) = 0. Observe
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first that the countable set PER of periodic points in {0, 1}Z has mea-
sure zero because µ is non-atomic. Since {Sk(SYM \ PER) : k ∈ Z}
and {Sk(ZER) : k ∈ Z} are pairwise disjoint sequences of sets with
identical measure the common value must be zero.

Proposition 5.39. Let x∗ be a non-periodic recurrent point of {0, 1}Z
and let X be its orbit closure, so that (X,S) is the closed subshift
generated by x∗. If K is a closed subset of X such that every non-
periodic orbit in X meets K at most once, then K is nowhere dense.
The set X \

⋃
k∈Z {S−k(K)} is a dense Gδ subset of X.

In particular, SYM ∩ X is nowhere dense in X and the set of
points of X whose orbit does not meet SYM is a dense Gδ subset of
X. Similarly, ZER ∩ X is nowhere dense in X and the set of points
of X whose orbit does not meet ZER is a dense Gδ subset of X.

Proof: Since the orbit of x∗ is dense in X, it meets any nonempty
open subset of X. If the interior of K contained more than one point
then there would be two disjoint open sets U1, U2 contained in K and
so there would exist k1, k2 ∈ Z such that Skax∗ ∈ Ua ⊂ K for a = 1, 2.
Since U1 and U2 are disjoint k2 6= k1. This contradicts the assumption
on K. Hence, if K has nonempty interior then the interior consists of
a single point which is on the orbit of x∗. This implies that x∗ is an
isolated point and so cannot be recurrent unless it is periodic. Hence,
the interior of K is empty.

Since K is nowhere dense, the Gδ set X \
⋃
k∈Z {S−k(K)} is dense

by the Baire Category Theorem. A point lies in this set exactly when
its orbit does not meet K.

The result applies to K = SYM ∩ X by Lemma 5.37.
In the case of ZER the result is clear because the S−1 transitive

points in the orbit closure of x∗ form a dense Gδ set disjoint from
ZER.

2

Corollary 5.40. For any label M, the set X(M) ∩ SYM = x[Θ(M)]
is a compact subset of X(M) which meets each orbit in at most one
point. The set {e} ∪X+(M) ∩ ZER = x+[Θ(M)] is a compact subset
of X+(M) which meets each orbit in at most one point.

If M is of finite type then x[Θ(M)] meets each orbit in X(M) and
x+[Θ(M)] meets each orbit in X+(M).

If M is not of finite type then X(M) \
⋃
{Si(SYM)} is non-empty

and so {Skx[N] : k ∈ Z, N ∈ Φ(X(M))} is a proper subset of X(M).
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Furthermore, X+(M) \ [{e} ∪
⋃
{Si(ZER)]} is non-empty and so

{Sk(x+[N]) : k ∈ Z, N ∈ Φ+(X+(M))} is a proper subset of X+(M).

Proof: By Lemma 5.37 a non-periodic orbit meets SYM in at most
one point. X(M) is compact and SYM is closed and so the intersection
is compact. x[Θ(M)] ⊂ X(M) and x[LAB] ⊂ SYM . On the other
hand, by Corollary 5.26 and the Remark thereafter, if z ∈ X(M)∩SYM
then z = x[N] for some N ∈ Θ(M).

If M is of finite type then each orbit of X(M) meets x[Θ(M)].
If M is not of finite type then by Corollary 5.35there exists a non-

periodic recurrent point x∗ ∈ X(M). If X∗ is the orbit closure of
x∗ then X∗ ⊂ X(M) and by Proposition 5.39 X∗ \

⋃
{Si(SYM)} is

nonempty.
2

Remark 5.41. Corollaries 5.33 (a) and 5.40 show that for any label
M of finite type the dynamical system (X(M), S) admits x[Θ(M)] as
a closed cross-section; i.e. the orbit of any point x ∈ X(M) meets
x[Θ(M)] exactly at one point. This is in accordance with the following
general theorem (see [22, Section 1.2]).

Theorem 5.42. For a system (X,T ), with X a completely metrizable
separable space, there exists a Borel cross-section if and only if the only
recurrent points are the periodic ones.

2

Notice, too, that if µ is an invariant probability measure on (X,T )
such that the measure of the set of periodic points is zero, then any
cross-section is a non-measurable set. The special case of translation
by rationals on R/Z is used in the usual proof of the existence of a
subset of R which is not Lebesgue measurable.

On the other hand, when M is recurrent, x[Θ(M)] is a Cantor subset
of X(M) which meets each orbit at most once. This just says that
the Cantor set x[Θ(M)] is wandering in X(M), i.e. Si(x[Θ(M)]) ∩
Sj(x[Θ(M)]) = ∅ whenever i 6= j in Z. While this explicit construction
may be of interest, in fact any system (X,T ) admits wandering Cantor
sets when X is perfect and the set of periodic points has empty interior,
see [3] Theorem 1.4.
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5.4. The elements of X(M) and X+(M).

Any point z ∈ {0, 1}Z is the characteristic function χ(A) where A =
{t ∈ Z : zt = 1}. Our purpose in this second is to provide an explicit
description of the subsets associated with the points in X(M) and
X+(M) for an arbitrary label M.

Let SZx[Θ(M)] = {St(x[N]) : t ∈ Z and N ∈ Θ(M)} and similarly
SZx+[Θ(M)] = {St(x+[N])}. By Proposition 5.30 and Corollary 5.33
these are always subsets ofX(M) andX+(M) respectively with equality
when M is of finite type.

An arbitrary point z ofX(M) is the limit of some sequence {Sti(x[M])}.
We know that e = x[∅] is in both X(M) and X+(M) and so, after a
finite translation by S, we may restrict attention to points z = χ(A)
with z0 = 1, so with 0 ∈ A, and then assume that ti ∈ A[M] for all
i ∈ N.

If {ti} has a bounded subsequence, or if the procedure given in the
proof of Lemma 5.24 (b) terminates after a finite number of steps, then
the limit z lies in SZx[Θ(M)]. The procedure always terminates if M is
of finite type. This is the reason that X(M) = SZx[Θ(M)] in the finite
type case. Now assume the procedure does not terminate. We obtain
a decreasing sequence of infinite subsets {SEQ−n} of N. We restrict
to a subsequence obtained by diagonalizing so that the nth term lies
in SEQ−n. We can thus restrict to the following situation where the
sequence {ti} is a special sequence built as follows

Definition 5.43. (a) Call S = {a1, a2, ...} an absolute increasing se-
quence in Z when |a1| > 0 and for all i ∈ N |ai+1| > |ai|. Call it a
positive increasing sequence when, in addition, ai > 0 for all i ∈ N. For
an absolute increasing sequence {ui = Σi

p=1 k(ap)} is the associated
sequence of expanding times. Observe that the sequence of lengths,
{r(ui) = Σi

p=1 χ(`(ap))}, is an increasing sequence in FIN(N)

(b) Call {ti ∈ IP (k)} a special sequence of times with associated
absolute increasing sequence S = {a1, a2, ...} when for each i ∈ N there
is an ri truncation t̃i of ti so that the residual ti − t̃i is ui. Thus, the
expansion of ti is j1(t̃i), . . . , jri(t̃

i), ai, . . . , a1 and
|jri(t̃i)| → ∞. The sequence is a positive special sequence of times
when ti ∈ IP+(k) for all i and so S is a positive increasing sequence.

Define ρ(S) ∈ ZN
+∞ by ρ(S) = Σ∞i=1 χ(`(ai)). Since ti ∈ A(M) for all

i it follows that 〈ρ(S)〉 ⊂M. As ρ(S) is not a finite vector we see that
M is not of finite type.
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Notice that if ip is an increasing function of p ∈ N then we can
identify the subsequence {tip} with the special sequence {si} associated
with the same S. Let si = tip for all i ∈ (ip−1, ip] (by convention i0 = 0).
Then s̃i has expansion j1(t̃np), . . . , jrnp (t̃np), anp , . . . , ai+1.

Definition 5.44. Let S = {a1, a2, ...} be an absolute increasing se-
quence.

(a) s ∈ Z has an S adjusted expansion if s = s′ + Σ∞i=1εik(ai) with
s′ ∈ IP (k) with an expansion which includes none of the members of
S and with εi ∈ {0,−1,−2} for all i but with εi = 0 for all but finitely
many i. Thus, s has an S adjusted expansion iff s+ ui ∈ IP (k) for all
i ∈ N sufficiently large. For an absolute increasing sequence S we let
IP (k, S) be the set of s ∈ Z with an S adjusted expansion.

For such a time s we define ρ(S, s) = r(s′) + Σ {χ(`(ai)) : εi 6= −1}.
(b) If S is a positive increasing sequence then a positive S adjusted

expansion is an S adjusted expansion with s′ ∈ IP+(k) and εi ∈ {0,−1}
for all i ∈ N. Thus, s has a positive S adjusted expansion iff s + ui ∈
IP+(k) for all i ∈ N sufficiently large. For a positive increasing sequence
S we let IP+(k, S) be the set of s ∈ Z with a positive S adjusted
expansion.

Remark 5.45. For B ⊂ Z define the restriction k|B : Z→ Z by

(k|B)(t) =

{
k(t) for t ∈ B
0 for t 6∈ B

.

For a sequence S we let k|S be the restriction to the set of terms of the
sequence. For example, IP+(k) = IP (k|N). It is easy to check that

IP (k, S) = IP (k − k|S) − IP (k|S),

IP+(k, S) = IP (k|(N \ S)) − IP (k|S) = IP (k|N − 2k|S).

(5.27)

For example, 0 has an S adjusted expansion with s′ = 0 and εi = 0
for all i. If S is positive then this is a positive adjusted expansion.

Lemma 5.46. Let {ti} be a special sequence of times associated with
S and let s ∈ Z.

(a) If 3|s| < |ai| then s+ui ∈ IP (k) iff s+ ti ∈ IP (k). In that case,
t̃i is the common ri truncation of ti and s+ ti and the expansions of ui

and s+ ui each begin with ai. If, in addition, {ti} is a positive special
sequence of times then s+ ui ∈ IP+(k) iff s+ ti ∈ IP+(k)

(b) The following are equivalent:
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(i) s ∈ IP (k, S).
(ii) For all i ∈ N if 3|s| < |ai| then s+ ui ∈ IP (k).
(iii) There exists i with 3|s| < |ai| and s+ ui ∈ IP (k).
(iv) For sufficiently large i, ti + s ∈ IP (k).
(v) There exists i with 3|s| < |ai| and s+ ti ∈ IP (k).

(c) If {ti} is a positive special sequence of times then the following
are equivalent:

(i) s ∈ IP+(k, S).
(ii) For all i ∈ N if 3|s| < |ai| then s+ ui ∈ IP+(k).
(iii) There exists i with 3|s| < |ai| and s+ ui ∈ IP+(k).
(iv) For sufficiently large i, ti + s ∈ IP+(k).
(v) There exists i with 3|s| < |ai| and s+ ti ∈ IP+(k).

Proof: (a) Given s let i be such that 3|s| < |ai|.
If ui + s ∈ IP (k) with 3|s| < |ai|, then by Lemma 5.4 the first term

k(ai) in the expansion of ui must be the first term in the expansion of
ui + s as well. As |jri(t̃i)| > |ai| it follows that ti + s = (ui + s) + t̃i ∈
IP (k).

Conversely, if ti + s ∈ IP (k) then

|ti − (ti + s)| = |s| < 1

3
|ai| <

b− 2

b
|jri(ti)|

and Lemma 5.4 again imply that the expansions for ti and s+ ti agree
through the ri term. That is, t̃i is a common ri truncation for ti and
s+ ti. Hence, the residual (ti + s)− t̃i = ui + s is in IP (k).

(b) (ii)⇒ (i)⇒ (iii) are obvious and (i)⇔ (iv) and (iii)⇔ (v) follow
from (a). We are left with showing (iii) ⇒ (ii).

Let i0 be the smallest positive integer i such that 3|s| < |ai|. If
s + ui ∈ IP (k) for some i ≥ i0 then Lemma 5.4 implies that the
expansions of s + ui and ui agree through ai0 and so have a common
truncation with residuals s+ui0 and ui0 . Hence, s+ui0 is an expanding
time and the first term in its expansion is ai0 . It follows that s+ up =
(s+ ui0) + (up − ui0) ∈ IP (k) for all p > i0, proving (ii).

2

In particular, for χ(IP (k)) = A[FIN(N)] and χ(IP+(k)) = A+[FIN(N)]
we immediately have

Corollary 5.47. If z0 = 1 for z ∈ {0, 1}Z, we have

z ∈ X(χ(IP (k))) ⇐⇒ z = χ(IP (k − k|B)− IP (k|B)) for some B ⊂ Z,
z ∈ X(χ(IP+(k))) ⇐⇒ z = χ(IP (k|N− 2k|B)) for some B ⊂ N.

(5.28)
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Proof: Let {ti} be a special sequence of times associated with S.

(5.29) lim { Sti(χ(IP (k))) } = χ(IP (S, k)).

If {ti} is a positive special sequence of times then

(5.30) lim { Sti(χ(IP+(k))) } = χ(IP+(S, k)).

Apply (5.27) with B the set of terms of the sequence S.
The remaining cases are z = St(χ(IP (k)) with t ∈ IP (k) and z =

St(χ(IP+(k))) with t ∈ IP+(k). If ar, . . . , a1 is the expansion for t then
we let B = {a1, . . . , ar}. If t+s ∈ IP (k) then s = s′+Σr

i=1εik(ai) with
s′ ∈ IP (k) with an expansion which includes none of the members of
B and with εi ∈ {0,−1,−2}. Proceed similarly for IP+.

2

Proposition 5.48. Let M be a label and z ∈ {0, 1}Z with z0 = 1.

(a) Assume z = χ(A) = lim{Sti(x[M])} with {ti} a special sequence
associated with S and lengths {ri}. Let si = r(t̃i) with length ri.

(i) A ⊂ IP (k, S).
(ii) For s ∈ IP (k, S)

zs = 1 ⇐⇒ eventually r(ui + s) + si ∈M,

zs = 0 ⇐⇒ eventually r(ui + s) + si 6∈M.
(5.31)

(iii) If zs = 1 then eventually r(ui + s) ∈ LIMINFp{M − sp}. If
zs = 0 then eventually r(ui + s) 6∈ LIMSUPp{M− sp}.

(iv) z ∈ X(M) \ SZx[Θ(M)].

(b)Assume z = χ(A) = lim{Sti(x+[M])} with {ti} a positive special
sequence associated with S and lengths {ri}. Let si = r(t̃i) with length
ri.

(i) A ⊂ IP+(k, S).
(ii) For s ∈ IP+(k, S)

zs = 1 ⇐⇒ eventually r(ui + s) + si ∈M,

zs = 0 ⇐⇒ eventually r(ui + s) + si 6∈M.
(5.32)

(iii) If zs = 1 then eventually r(ui + s) ∈ LIMINFp{M − sp}. If
zs = 0 then eventually r(ui + s) 6∈ LIMSUPp{M− sp}.

(iv) z ∈ X+(M) \ SZx+[Θ(M)].

Proof: (i): By going to a subsequence we can assume that St
i
(x[FIN(N)])

converges as well and so with limit χ(IP (S, k)). Since M ⊂ FIN [N] it
follows that A ⊂ IP (S, k). In particular, if s 6∈ IP (S, k) then zs = 0.
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(ii): Now fix N ∈ N. We can choose iN ∈ N so that 3N < |aiN | and
for all s ∈ Z with |s| ≤ N and i ≥ iN

zs = 1 ⇐⇒ ti + s = ui + s+ t̃i ∈ A[M],

zs = 0 ⇐⇒ ti + s = ui + s+ t̃i 6∈ A[M].
(5.33)

If s ∈ IP (S, k) with |s| ≤ N then Lemma 5.46 implies that ui + s ∈
IP (k) and r(ui + s) + si = r(ti + s) for all i ≥ iN . So if zs = 1 then
r(ui + s) + si ∈M while if zs = 0 then r(ui + s) + si 6∈M.

(iii): As in the proof above, if |s| ≤ N and zs = 1 and if iN ≤ i ≤ p
then r(ui + s) ≤ r(up + s) ∈M− sp.

(iv): For i ≤ p, the expansion of tp−2ui agrees with that of tp except
that a1, . . . , ai are replaced by −a1, . . . ,−ai. So tp − 2ui ∈ IP (k) with
r(tp− 2ui) = r(tp) ∈M. It follows that −2ui ∈ A for all i ∈ N. On the
other hand, for any fixed t ∈ Z we have eventually −t − 2ui 6∈ IP (k).
It follows that z = x[χ(A)] 6∈ SZ(X(M)).

For the positive case in (b) we observe that tp − ui has expansion
agreeing with that of tp except that a1, . . . , ai do not appear. Hence,
−ui ∈ A for all i but for any fixed t ∈ Z we have eventually −t− ui 6∈
IP+(k).

2

Conversely, if we are given an absolute increasing sequence S and a
sequence {si ∈ FIN(N)} and a subset A ⊂ IP (S, k) such that

s ∈ A ⇐⇒ eventually r(ui + s) + si ∈M,

s ∈ IP (S, k) \ A ⇐⇒ eventually r(ui + s) + si 6∈M.

(5.34)

then we can choose t̃i ∈ IP+(k) with r(t̃i) = si and jri(t̃
i) > |ai| where

ri is the length of si. Then {ti = ui + t̃i} is a special sequence of times

and x[χ(A)] = Lim{Sti(x[M])}. If S is a positive increasing sequence

then x+[χ(A)] = Lim{Sti(x+[M])}.
By going to a subsequence we can assume that {M − si} converges

to N ∈ Θ(M). In that case, (iv) becomes, for s ∈ IP (S, k), zs = 1 (or
zs = 0) iff eventually r(ui + s) ∈ N (resp. eventually r(ui + s) 6∈ N.

We can use this to extend - slightly - Corollary 5.47. Recall from
Proposition 4.23 (i) that M is a sublattice of FIN(N) iff M = 〈ρ(M)〉.
Proposition 5.49. Assume that the infinite label M is a sublattice.

(a) z = χ(A) ∈ X(M) \ SZx[Θ(M)] iff there exists N ∈ Θ(M)
and S an absolute increasing sequence and a sequence {si ∈ FIN(N)}
such that r(ui) + si ∈ M for all i ∈ N, N = LIM{M − si} and
A = {s ∈ IP (S, k) : 〈ρ(S, s)〉 ⊂ N}.
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(b) z = χ(A) ∈ X+(M) \ SZx+[Θ(M)] iff there exists N ∈ Θ(M)
and S a positive increasing sequence and a sequence {si ∈ FIN(N)}
such that r(ui) + si ∈ M for all i ∈ N, N = LIM{M − si} and
A = {s ∈ IP+(S, k) : 〈ρ(S, s)〉 ⊂ N}.

Proof: Notice that 〈ρ(S)〉 ⊂ N and so 0 ∈ A. For s ∈ IP (S, k), {ui+
s} is increasing in FIN(N) once i is large enough that 3|s| < |ai|. So
if p ≥ i, r(ui + s) ≤ r(up + s) and so r(up + s) + sp ∈ M eventually
implies that eventually r(ui + s) ∈ N and so 〈ρ(S, s)〉 ⊂ N.

If 〈ρ(S, s)〉 ⊂ N then ui + s ∈ N for sufficiently large i.
Now assume for some i with 3|s| < |ai| we have ui + s ∈ M. There

exists a pi > i such that ui + s+ sp ∈M for all p ≥ pi. By assumption
up + sp ∈ M. Because M is a sublattice, up + s + sp = max(ui + s +
sp, up + sp) ∈M for p ≥ pi.

The remaining possibility is that eventually ui + s+ si 6∈M.
As we saw above this implies that we can choose t̃i so that {τ i = t̃i+

ui} is a special sequence of times associated with S and Lim{Sti(x[M])} =
χ(A).

2

5.5. WAP Subshifts.

Theorem 5.50. Let M be a label of finite type. Let {ti} be a sequence
of expanding times with ri the length of ti. If |jri(ti)| → ∞ and {M−
r(ti)} is eventually constant at M− r, then {Sti} on X(M) converges
pointwise to pr ∈ E(X(M), S) such that prx[M] = x[M−r] = x[Pr(M)]

and pr is continuous on X(M). Similarly, {Sti} on X+(M) converges
pointwise to pr ∈ E(X+(M), S) such that prx+[M] = x+[M − r] =
x+[Pr(M)] and pr is continuous on X+(M).

Proof: Discarding the initial values we can assume M−r(ti) = M−r
for all i.

Let p be any pointwise limit point of {Sti} in E(X(M), S), i.e. the
limit of a convergent subnet. By Theorem 5.28 (i)(a) we have that
px[M] = x[M − r]. It suffices to prove that p is continuous because it
is then determined by its value on the transitive point x[M] and so the

same p is the limit of every convergent subnet of {Sti}. By compactness

this implies that the sequence {Sti} converges to p.
To prove continuity of p it suffices by Proposition 1.4 to show that

pqx[M] = qpx[M] for any q ∈ E(X(M), S). We assume that q is a limit

of a subnet of the sequence {Ssj}.
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By Theorem 5.28 (iii), if {Ssj(x[M])} → e then {Ssj(x[M−r])} → e
and so pqx[M] = e = qpx[M]. We now consider the case when qx[M] =
z 6= e.

By Theorem 5.28 again we are reduced to the case when {sj} is a
sequence in A[M], |jrsj | → ∞ and {M−r(sj)} converges to LIMs. We

show that the two double limits of {Sti+sj(x[M])} exist and have the
same value.

(5.35)

LimjLimi{St
i+sj(x[M])} = Limj{Ss

j

(x[M−r])} = Limjx[M−r−r(sj)]

By Proposition 4.15 applied with Mj = M − r(sj) {M − r − r(sj)}
converges to LIMs − r and so this limit is x[LIMs − r].
(5.36)

LimiLimj{St
i+sj(x[M])} = St

i

(x[LIMs]) = Limix[LIMs − r(ti)].

By Lemma 4.30(c), LIMs − r(ti) = LIMs − r for all i. So this limit is
also x[LIMs − r].

So the common value of the double limits of {Sti+sj(x[M])} is x[LIMs−
r]. That is pqx[M] = qpx[M] = x[LIMs − r].

2

In particular, for any ` ∈ N there is a continuous elements p` of the
semigroups with p`x[M] = x[M − χ(`)] and p`x+[M] = x+[M − χ(`)].
For r ∈ M, pr = Π` p

r`
` since these agree on x[M] and x+[M]. The

set of labels N in Θ(M) such that prx[N] = x[PrN] and prx+[N] =
x+[PrN] is closed and invariant since the elements of each set {ps}
and {Ps} commute with one another. Hence, the equations hold for
all N ∈ Θ(M). The relations on these elements of the semigroups are
given by pr1 = pr2 iff M − r1 = M − r2. Compare the remark after
Lemma 4.30.

Corollary 5.51. If M is a label of finite type, then FIN(N)×X(M)→
X(M) and FIN(N)×X+(M)→ X+(M) given by (r, x) 7→ prx are con-
tinuous monoid actions and x[·] : Θ(M) → X(M), x+[·] : Θ(M) →
X+(M) are injective, continuous action maps. They induce homo-
morphism JM : E(Θ(M)) → E(X(M), S) and J+M : E(Θ(M)) →
E(X+(M), S) each of which is a homeomorphism onto its image. Ex-
cept for the retraction to e, every q ∈ E(X(M), S) can be expressed
as q = SkJM(Q) = JM(Q) with k ∈ Z and Q ∈ E(Θ(M)) uniquely
determined by q. In particular, q ∈ JM(E(Θ)) iff qx[M] ∈ x[Θ(M)].
Similarly, except for the retraction to e, every q ∈ E(X+(M), S) can be
expressed as q = SkJ+M(Q) = J+M(Q) with k ∈ Z and Q ∈ E(Θ(M))
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uniquely determined by q. In particular, q ∈ J+M(E(Θ)) iff qx+[M] ∈
x+[Θ(M)].

Proof: For r, s ∈ FIN(N) we see that pr ◦ ps = pr+s on x[M].
As these are continuous action maps of the S actions and x[M] is a
transitive point for X(M) it follows that equality holds on all of X(M).
Similarly, p0 = idX(M). Thus, the map (r, x) 7→ prx is a continuous
monoid action.

Because the continuous maps x[·] ◦ Pr = pr ◦ x[·] on every Ps(M)
and these points are dense in Θ(M), it follows by continuity that the
equation holds on all of Θ(M). Hence, x[·] is an action map.

If a net {Pri} converges pointwise to Q ∈ E(Θ(M)), then for any limit
point q of the net {pri} in E(X(M), S), we have q(x[N]) = x[Q(N)]
for all N ∈ Θ(M). By Corollary 5.33 every point x of X(M) can
be expressed uniquely as x = Sk(x[N]) for some N ∈ Θ(M). Hence,
qx = Sk(qx[N]) = Skx[Q(N)]. That is, Q on x[Θ(M)] has a unique
extension q to an element of E(X(M), S). Since x[·] is an action map,
JM is a homomorphism and since q is determined by its restriction to
x[Θ(M)], JM is injective. If {Qi} is a net converging to Q in E(Θ(M))
then the net {JM(Qi)} converges to JM(Q) pointwise on x[Θ(M)]. Since
X(M) =

⋃
k {Sk(x[Θ(M)])} it follows that {JM(Qi)} converges to

JM(Q) pointwise on all of X(M). Hence, JM is an injective, contin-
uous map. Because E(Θ(M)) is compact, JM is a homeomorphism
onto its image.

Now suppose that {Ssi : i ∈ I} is a net converging to q1 ∈ E(X(M), S).
By Corollary 5.33 every point x of X(M) can be expressed uniquely
as q1X(M) = Sk(x[N]) for some N ∈ Θ(M) and k ∈ Z. Hence,

{Sti(x[M]) : i ∈ I} converges to x[N] with ti = si − k. By Corollary
5.26 we may have eventually ti = 0 in which case q1 = Sk. If not then
eventually ti ∈ A[M] with length ri and length vector r(ti) > 0 and
{ |jri(ti)|} → ∞, {M−r(ti) } convergent and LIM {M−r(ti) } = N.

By Lemma 5.22 for any M1 ∈ Θ(M), {Sti(x[M1]) : i ∈ I}, which con-
verges to S−kq1x[M1], is asymptotic to {x[M1 − r(ti)] : i ∈ I} and
so the latter is convergent to S−kq1x[M1] ∈ X(M) which is of the
form Sk1x[N1] for some N1 ∈ Θ(M) and k1 ∈ Z. By Corollary 5.21,
k1 = 0 and {M1 − r(ti) : i ∈ I} converges to N1. That is, the net
{Pr(ti) : i ∈ I} converges pointwise in E(Θ(M)) to Q ∈ E(Θ(M)) with

Q(M1) = LIM/{M1 − r(ti) : i ∈ I}. Thus, S−kq1 is the image of
Q via the injection JM : E(Θ(M)) → E(X(M), S). This shows that
q1 = SkJM(Q). Lemma 5.37 implies that k and hence Q are uniquely
determined except when q1 is the retraction to e in which case Q = Pr



WAP SYSTEMS AND LABELED SUBSHIFTS 87

with r 6∈ M but k can be anything in Z. Hence, if q1x[M] ∈ x[Θ(M)]
and q1x[M] 6= e then k = 0 and so q1 = JM(Q).

2

If M is a finitary label then Θ(M) consists of {M−r : r ∈ FIN(N) }
together with the finite external labels for M. As M is of finite type,
X(M) consists of the orbits of the points of the compact set x[Θ(M)]
and except for the fixed point e each orbit intersects x[Θ(M)] in a single
point.

Theorem 5.52. If M is a finitary label, then (X(M), S) and (X+(M), S)
are countable, WAP subshifts. For F an external limit set there are
unique elements qF ∈ E(X(M), S) with qFx[M] = x[F] and qF ∈
E(X+(M), S) with qFx+[M] = x+[F]. There is a unique QF ∈ E(Θ(M))
such that QF(M) = F and qF in E(X(M), S) is JM(QF) and qF in
E(X+(M), S) is J+M(QF). The semigroups E(Θ(M)), E(X(M), S) and
E(X+(M), S) are abelian and act continuously on the spaces Θ(M), X(M)
and X+(M), respectively.

Proof: Since the external labels are finite, Θ(M) is countable. Since
a finitary label is of finite type, every point of X(M) lies on the orbit
of an x[N] with N ∈ Θ(M). It follows that X(M) itself is countable.

To show that the shift is WAP it suffices by Corollary 1.5 to show
that pqx[M] = qpx[M] for any p, q ∈ E(X(M), S).

By Theorem 5.28 (iii), if Stix[M] → e then Stix[M1] = e for all
M1 ⊂ M. Hence px[M] = e implies pqx[M] = e = qpx[M] for all
q ∈ E(X(M), S).

We need to show that for sequences, {ti}, {sj} in N, if LimiS
ti(x[M])

and LimjS
sj(x[M]) exist then the two double limits of {Sti+sj(x[M])}

exist and have the same value. By Theorem 5.28(iv) we are reduced to
the case when |jri(ti)|, |jrj(sj)| → ∞ and {M− r(ti)} and {M− r(sj)}
converge in which case St

i
(x[M]) → x[LIM {M − r(ti)}] = x[LIMt]

and Ss
j
(x[M])→ x[LIM {M− r(sj)}] = x[LIMs].

If {M− r(ti)} is eventually constant at M− r then by Lemma 4.32
implies that the two double limits of {M − r(ti) − r(sj)} both exist
and equal LIMs− r. Applying the continuous map x[·] we see that the
double limits of {Sti+sj(x[M])} both exist and equal x[LIMs − r].

By Corollary 4.31 when neither sequence is eventually constant both⋃
i supp r(ti) and

⋃
j supp r(sj) are infinite. Since M is finitary both

LIMr and LIMs are finite by Proposition 4.34(a). Lemma 4.35 then
implies that each double limit of {M−r(ti)−r(sj)} is ∅ and so, applying
x[·] again, each double limit of {Sti+sj(x[M])} is e.
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Hence, (X(M), S) is WAP and so each element of E(X(M), S) is
determined by its value on x[M]. Hence, there is a unique qF ∈
E(X(M), S) such that qFx[M] = x[F]. By Corollary 5.51 there is a
unique QF ∈ E(Θ(M)) such that JM(QF) = qF. Since qF is continuous
and x[·] is a homeomorphism, QF is continuous.

2

Remark 5.53. In (b) the additional relations are qF1pr1 = qF1pr2 if
F1 − r1 = F2 − r2. Also, qF1qF2 = u, the retraction to e for any pair of
external limit sets F1,F2.

Corollary 5.54. If F = LIM {M − ri} is an external label for a
finitary label M, then {pri} converges to qF in E(X(M), S) and in
E(X+(M), S) and {Pri} converges to QF in E(Θ(M))

Proof: {pri(x[M] = x[M − ri]} converges to x[F] = qF(x[M]). It
follows from Proposition 1.6 that {pri} → qF pointwise. Since JM is a
homeomorphism onto its image, {Pri} → QF pointwise.

2

Corollary 5.55. For a finitary label M, the abelian enveloping semi-
group E(Θ(M)) = { Pr : r ∈ FIN(N) } ∪ { QF : F an external
label }. The relations are given by Pr1 = Pr2 iff M− r1 = M− r2 and
Pr1QF = Pr2QF iff F − r1 = F − r2. If F1 and F2 are external labels
then QF1QF2 is the constant map to ∅.

Proof: By continuity there is a unique member of the enveloping
semigroup which maps M to N ∈ Θ(M). The relations follow from this
uniqueness.

2

The simple case is easier:

Theorem 5.56. If M is a simple label, then (X(M), S) and (X+(M), S)
are countable, WAP subshifts. The semigroups E(Θ(M)), E(X(M), S)
and E(X+(M), S) are abelian and act continuously on the spaces Θ(M),
X(M) and X+(M), respectively. Using the continuous, injective, homo-
morphism JM : E(Θ(M))→ E(X(M), S) every element of E(X(M), S)
can be expressed in the form Skpr = SkJM(Pr) with k ∈ Z and r ∈
FIN(N). Similarly, every element of E(X+(M), S) can be expressed
in the form Skpr = SkJ+M(Pr) with k ∈ Z and r ∈ FIN(N).
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Proof: By Corollary 5.51 JM : E(Θ(M)) → E(X(M), S) is a con-
tinuous injective homomorphism and every element of E(X(M), S) is
of the form SkJM(Q) for some Q ∈ E(Θ(M)). Because M is simple
E(Θ(M)) = { Pr : r ∈ FIN(N) } by Proposition 4.38 (d). It follows
that E(X(M), S) is abelian and so (X(M), S) is WAP and consists of
the orbits of the points x[M− r] for r ∈ FIN(N).

2

Example 5.57. (a) If M is neither finitary nor simple then X(M)
need not be WAP even with M of finite type and X(M) countable.
Let M be defined by M = 〈{χ(3) + χ(2a + 1) + χ(2b) : a ≥ b ≥
1} ∪ {χ(1) + χ(3) + χ(2b) : b ≥ 1}〉.

M− χ(1) = 〈{χ(3) + χ(2b) : b ≥ 1}〉,
M− χ(3) = 〈{χ(2a+ 1) + χ(2b) : a ≥ b ≥ 1} ∪ {χ(1) + χ(2b) : b ≥ 1}〉

M− χ(2`+ 1) = 〈{χ(1) + χ(2b) : ` ≥ b ≥ 1}〉
M− χ(2`) = 〈{χ(1) + χ(2a+ 1) : a ≥ ` ≥ 1} ∪ {χ(1) + χ(3)}〉.

(5.37)

It follows that

LIMa→∞ {M− χ(2a+ 1)} = 〈{χ(3) + χ(2b) : b ≥ 1}〉,
LIMb→∞ {M− χ(2b)} = 〈{χ(1) + χ(3)}〉,
LIMb→∞LIMa→∞{M− χ(2a+ 1)− χ(2b)} = {χ(3), 0},

LIMa→∞LIMb→∞{M− χ(2a+ 1)− χ(2b)} = ∅.

(5.38)

So the enveloping semigroup E(X(M), S) is not abelian and (X(M), S)
is not WAP. Notice that if N ⊂M is infinite then M−N is finite. Thus,
this condition does not suffice to yield M finitary.

In addition, notice that with ri = χ(2i+ 1), r = χ(1), sj = χ(2j), we
have that LIMM− sj is finite, and LIMM− ri = M− r, but the two
double limits disagree. This shows that the conditions given in Lemma
4.32 are needed to get the resulting commutativity.

(b) Let M be defined by M = 〈{χ(3a) + χ(3b+ 1) + χ(3(5a7b) + 2) :
a, b ≥ 1}〉. It can be shown that the subshift (X(M), S) is WAP even
though M is not finitary or simple. Notice that if `1 6= `2 then

(M− χ(3`1)) ∩ (M− χ(3`2)) = {χ(3b+ 1) : b ≥ 1}
(M− χ(3`1 + 1)) ∩ (M− χ(3`2 + 1)) = {χ(3a) : a ≥ 1}.

(5.39)

2
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6. Dynamical properties of X(M)

6.1. Translation finite subsets of Z.

We recall the following combinatorial characterization of WAP sub-
sets of Z ([32]).

Theorem 6.1 (Ruppert). For a subset A ⊂ Z the following conditions
are equivalent:

(1) The subshift O(χ(A)) ⊂ {0, 1}Z is WAP.
(2) For every infinite subset B ⊂ Z either:

(i) there exists N ≥ 1 such that

(6.1)
⋂

b∈B∩[−N,N ]

A− b is finite,

or:
(ii) there exists N ≥ 1 and n ∈ Z such that

(6.2) A− n ⊃ B ∩
(
Z \ [−N,N ]

)
.

Definition 6.2 (Ruppert). We say that a subset A ⊂ Z is translation
finite (TF hereafter) if for every infinite subset B ⊂ Z there exists an
N ≥ 1 such that

(6.3)
⋂

b∈B∩[−N,N ]

A−b = { n ∈ N : A−n ⊃ B∩ [−N,N ] } is finite.

Example 6.3. It is easy to check that the set A = 2N∪−(2N+1) (with
c = χ(A) = (. . . , 1, 0, 1, 0, 1, 1̇, 0, 1, 0, . . . )) does not satisfy Ruppert’s
condition (and a fortiori is not translation finite), hence O(χ(A)) is not
WAP.

(See Example 1.14.(b).)

2

Proposition 6.4. Let A be a subset of Z. The following conditions
are equivalent.

(1) The subset A is TF.
(2) Every point in RS(χ(A)) = (ωS ∪ αS)(χ(A)) has finite support.
(3) The subshift O(χ(A)) is CT of height at most 2.

Proof: (1) =⇒ (2): Suppose first that A is TF and suppose that
for some sequence {ni}∞i=1, with |ni| → ∞, we have Sniχ(A) = x with
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supp x an infinite set. Let B = supp x and observe that for every
N ≥ 1, eventually,

(6.4) Sniχ(A) ∧ [−N,N ] = (x−N , . . . , xN),

whence A − ni ⊃ B ∩ [−N,N ]. But this contradicts our assumption
that A is TF.

(2) ⇒ (1): Conversely, suppose A is not TF. Then there exists an
infinite B ⊂ Z such that for every N ≥ 1 the intersection

(6.5) {n ∈ Z : A− n ⊃ B ∩ [−N,N ]} is infinite.

We can construct a strictly increasing sequence {ni}∞i=1 with A−ni ⊃
B ∧ [−i, i] and so for any limit point x ∈ {0, 1}Z of the sequence
{Sniχ(A) = χ(A− ni)} the support supp x ⊃ B and so is infinite.

(2)⇒ (3): is obvious.
(3) ⇒ (2): Suppose finally that that O(χ(A)) is CT of height at

most 2. Suppose to the contrary that x ∈ (ωT ∪ αT )(χ(A)) has in-
finite support, say supp x = B. By compactness there exists a se-
quence {ni}∞i=1 ⊂ B such that the sequence Snix converges. Let
y = limi→∞ S

nix. Then y ∈ RT (x) and y0 = 1. Thus y 6= 0 and
this contradicts our assumption that O(χ(A)) is of height at most 2.
2

We next address the question ‘when is A[M] TF ?’. This turns out
to be a rather restrictive condition, because ∅ and 0 are the only labels
N such that A[N] has finite support. For M = ∅ or 0, RS(A[M]) = {e}
where e is the fixed point 0̄ = A[∅]. Thus, in these cases x[M] is TF.

Proposition 6.5. For a positive label M the following conditions are
equivalent.

(i) Θ(M) = {M, 0, ∅}.
(ii) For all r > 0 ∈M, M− r = 0.
(iii) There exists L a nonempty subset of N such that M = 〈{χ(`) :

` ∈ L}〉.
(iv) A[M] is TF.
(v) (X(M), S) has height 2.

(vi) (X+(M), S) has height 2.

When these conditions hold, M is finitary and simple.

Proof: (iii) ⇒ (ii) : Obvious.
(ii)⇒ (i) : From (ii) it is clear that consists of Pr(M) = ∅ for r 6∈M

and Pr(M) = 0 for r > 0 ∈ M and finally, P0(M) = M. Hence, the
only limit labels possible in Θ(M) are ∅, 0 and M. In passing, we see
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that A(Θ(M)) contains one nontrivial element which maps M to 0 and
maps 0 and ∅ to ∅.

(i) ⇒ (iii) : If r ∈M with |r| ≥ 2 then there exists ` ∈ N such that
r − χ(`) > 0. Hence, M − χ(`) ∈ Θ(M) is neither 0 nor ∅. Hence,
M− χ(`) = M. That is, r + χ(`) ∈M for all r ∈M. So r ∈M implies
χ(`) ∈ M − r and thus, M − r = M for all r ∈ M. This implies that
0 6∈ Θ(M). Contrapositively, (i) implies that |r| = 1 for any nonzero r
in M. That is, each nonzero r in M is some χ(`).

(iii)⇒ (v) : M is bounded and size-bounded and so is of finite type.
By Corollary 5.33 the limit points of x[M] lie on the orbits of x[N] for
some N ∈ Θ(M). Since, M is not recurrent, the set RS(x[M]) of limit
points consists of the orbits of x[0] and x[∅]. These in turn map to the
fixed point x[∅] and so (X(M), S) has height 2.

(v) ⇒ (iv) : This follows from Proposition 6.4.
(iv) ⇒ (iii) : We prove the contrapositive, assuming, as above, that

there exist If r ∈ M and ` ∈ N such that r − χ(`) > 0. Choose an
increasing sequence {ti} of expanding times with length r(ti) = χ(`)

and with |jr(ti)| → ∞. By {Sti(x[M])} converges to x[M−χ(`)] which
does not have finite support since r−χ(`) ∈M−χ(`). By Proposition
6.4 again A[M] is not TF.

Finally, it is clear that the labels described in (iii) are finitary and
simple.

2

6.2. Non-null and non-tame labels.

Definition 6.6. (a) For a subshift (X,S) a subset K ⊂ Z is called an
independent set if the restriction to X of the projection πK : {0, 1}Z →
{0, 1}K is surjective. The subshift is called null if there is a finite bound
on the size of the independent sets for (X,S). It is called tame if there
is no infinite independent set for (X,S).

(b) For a label M a subset L ⊂M is called an independent set if for
every L1 ⊂ L there exists N ∈ Θ(M) such that L ∩ N = L1.

(c) A label M is called non-null if for every n ∈ N there is a finite
independent subset F ⊂M with #F ≥ n. It is non-tame if there is an
infinite set L ⊂M such that every finite F ⊂ L is an independent set.

Notice that an independent set L for a label M is certainly not a
label. In fact, if m1 < m and m ∈ L then m1 6∈ L because if m ∈ N
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for a label N then m1 ∈ N. Since there exists a label N such that
N ∩ L = {m} it follows that m1 6∈ L.

Remark 6.7. The concepts ‘null’ and ‘tame’ are defined for any dy-
namical system. The first is defined in terms of sequential topological
entropy (see e.g. [24] and the review [23]) and the latter in terms of
the dynamical Bourgain-Fremlin-Talagrand dichotomy for enveloping
semigroups ([14]). The convenient criteria which we use here for sub-
shifts to be non-null and non-tame, are due basically to Kerr and Li
[30] (see [17, Theorem 6.1.(3)]).

Lemma 6.8. (a) If M is a label and F is a finite subset of M then
for any N ∈ Θ(M) there exists an N-vector r such that N ∩ F =
M − r ∩ F . In particular, if F is a finite independent subset of M

then for every A ⊂ F there exists r such that F ∩ M− r = A.
(b) If every finite subset F ⊂ L is an independent set for a label M

then L is an independent set for M.
(c) If L is an independent set for a label M, and if for every m ∈

L, t(m) is a positive expanding time such that r(t(m)) = m then
{ t(m) : m ∈ L} is an independent set for the subshifts (X(M), S)
and (X+(M), S).

Proof: (a) If BN contains all the supports of elements of F then
m ∈ F is in M1 ∈ LAB iff it is in M1∩BN . Hence, for any A ⊂ F the
set { M1 : M1 ∩ F = A } is clopen in LAB. Since {M− r} is dense
in Θ(M), the result follows.

(b) Let L1 ⊂ L. Let {F i} be an increasing sequence of finite subsets
of L with union L. Because F i is an independent set, part (a) implies
there exists ri such that F i ∩ M− ri = L1 ∩ F i ∩ M− ri. It follows
that if m ∈ L1 then eventually m ∈M− ri. If m 6∈ L1 then eventually
m 6∈M− ri. By going to a subsequence, we can assume that {M− ri}
converges to some N ∈ Θ(M). Clearly, L ∩ N = L1.

(c) For any label N ∈ Θ(M), t ∈ A[N] iff t is expanding with
r(t) ∈ N and so x[N]t = 1 iff r(t) ∈ N.

2

From this we obviously have

Proposition 6.9. (a) A label M is non-null iff for every n ∈ N there
is a finite subset F ⊂M with #F ≥ n such that for every A ⊂ F there
exists r such that F ∩ M− r = A.

(b) A label M is non-tame if there is an infinite set L ⊂M such that
for any finite A ⊂ F ⊂ L there exists r such that F ∩ M − r = A.
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In that case if L1 is any subset of L then there exists N ∈ Θ(M) such
that L ∩ N = L1. In particular, Θ(M) is uncountable.

2

Remark 6.10. It follows that if M is a non-tame label then X(M) and
X+(M) are uncountable and so neither (X(M), S) nor (X+(M), S) can
be WAP.

Corollary 6.11. Given a label M, if any label N ∈ Θ(M) is non-null
(or non-tame) then the subshifts (X(M), S), (X+(M), S) are not null
(resp. not tame).

Proof: If N ∈ Θ(M) then X(N) ⊂ X(M) and so if X(N) projects
onto {0, 1}L then X(M) does.

2

There are some simple conditions which allow us to find non-tame
labels.

Definition 6.12. A label M with roof ρ(M) is called flat over a set
L ⊂ N if for all F ∈ Supp(M) with F ⊂ L, ρ(M)|F ∈M. In particular,
ρ(M)` <∞ for ` ∈ L. Equivalently, if m ∈ M with supp m ⊂ L then
ρ(M)|(supp m) ∈M. The label is called flat when it is flat over N. So
a flat label is bounded.

Lemma 6.13. Let L ⊂ N.
(a) If the label M is flat over L and r is an N-vector with supp r ⊂ L

then M− r is flat over L.
(b) If {Mi} is a collection of labels each flat over L then

⋂
{Mi} is

a label which is flat over L.
(c) If {Mi} is a bounded, increasing sequence of labels flat over L

then
⋃
{Mi} is a label flat over L.

(d) If {Mi} is a bounded sequence of labels flat over L then LIMINF
{Mi} is a label flat over L.

(e) The set of labels which are flat is a closed in the subset of bounded
labels.

(f) If M is a flat label then the elements of Θ(M) are all flat labels.

Proof: (a) If m ∈ M − r with supp m ⊂ L and F = supp(m + r)
then F ⊂ L and so ρ(M)|F ∈ M. Hence, ρ(M)|F − r ∈ M − r and
ρ(M)|F − r = (ρ(M)− r)|F . Clearly, ρ(M)− r ≥ ρ(M− r).
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(b) If M is the intersection then ρ(M) = min{ρ(Mi)}. If m ∈ M

with supp m ⊂ L then ρ(M)|(supp m) ∈Mi for all i and so is in M.
(c) If M is the union then ρ(M) = max{ρ(Mi)} and this is a non-

decreasing sequence of functions. On any finite set F , eventually
ρ(M) = ρ(Mi). If m ∈ M then eventually m ∈ Mi and so eventu-
ally ρ(Mi)|(supp m) ∈M and eventually these equal ρ(M)|(supp m).

(d) Obvious from (b) and (c).
(e) A convergent sequence of bounded labels is a bounded sequence.

By (d) the limit of a bounded sequence of flat labels is flat.
(f) If M is flat then it is bounded and bounds the set Θ(M). The

result then follows from (a) with L = N and (e).
2

Recall that Supp M f-contains L when PfL ⊂ Supp M.

Lemma 6.14. Let L ⊂ N. A label M is flat over L and Supp M f-
contains L exactly when for any finite subset F of L, ρ(M)|F ∈M. In
that case, { χ(`) : ` ∈ L } is an independent set in M.

Proof: The first sentence is clear from the definitions. If F is a finite
subset of L and A ⊂ F , then ρ(M)|F = ρ(M)|A + ρ(M)|(F \ A) ∈
M. So ρ(M)|A ∈ M − ρ(M)|(F \ A) and so { χ(`) : ` ∈ A } ⊂
M − ρ(M)|(F \ A). But if ` ∈ F \ A then χ(`) 6∈ M − ρ(M)|(F \ A).
This means that { χ(`) : ` ∈ L } is an independent set.

2

Proposition 6.15. Let M be a bounded label with L = supp ρ(M).
(a) If M is flat and f-contains L, then M is a strongly recurrent label.
(b) If M is a strongly recurrent label, then there exists an infinite set

L1 ⊂ L such that M is flat over L1 and Supp M f-contains L1.

Proof: (a) In this case, M is a sublattice of FIN(N) and so it is a
strongly recurrent label by Proposition 4.23 (i).

(b) Assume that inductively that we have defined Fk = {`1, . . . , `k}
of distinct points of supp ρ(M) such that ρ(M)|Fk ∈ M. Because
M is strongly recurrent we can add, in M any element with support
outside of the finite set F (ρ(M)|Fk). So for sufficiently large `k+1 we
have that ρ(M)|Fk+1 = ρ(M)|Fk + r(M)`k+1

χ(`k+1) ∈ M with
Fk+1 = Fk ∪ {`k+1}. Let L1 =

⋃
k{Fk}.

2

Corollary 6.16. Assume that M is a bounded label not of finite type.
If M is flat or strongly recurrent then it is non-tame.



96 ETHAN AKIN AND ELI GLASNER

Proof: If M is strongly recurrent then by Proposition 6.15 there
exists an infinite subset L1 of supp ρ(M) such that M is flat over L1

and SuppM f-contains L1. By Proposition 4.7(b) any label not of finite
type f-contains some infinite set L1 and if M is flat then it is flat over
L1. By Lemma 6.14 { χ(`) : ` ∈ L1 } is an independent set in M.

2

If we define for a bounded label M
(6.6)
F(M, L) = { F : F is a finite subset of L and ρ(M)|F ∈M },

then M is flat over L and SuppM f-contains L exactly when F(M, L) =
PfL.

We conjecture that for every bounded M not of finite type there
exists N ∈ Θ(M) which is non-tame and so that (X(M), S) is not
tame. Beyond the above corollary the best we can do is the following.

Proposition 6.17. Let M be a label not of finite type. If there exists
N ∈ N such that ρ(M) ≤ N then there exists N ∈ Θ(M) which is
non-tame.

Proof: If K ∈ N and ρ(M) ≤ K then ρ(N) ≤ K for all N ∈ [[M]].
By Proposition 4.23 (d) there is a positive recurrent label in Θ(M) and
so we can assume that M itself is recurrent. By Proposition 4.23 (h)
we can choose an infinite set L ⊂ supp ρ(M) such that { χ(F ) : F ∈
Pf (L) } is a strongly recurrent set for M. Consider F(M, L).

Case (i): If there exists {F i} a strictly increasing sequence of ele-
ments of F(M, L) with L1 =

⋃
{F i} then F(M, L1) = PfL1 and so M

itself is non-tame by Lemma 6.14.
Case (ii): If F is a maximal element of F(M, L) then ρ(M−ρ(M)|F )` =

0 for ` ∈ F and for ` ∈ L with

(6.7) ρ(M)` > 0 =⇒ ρ(M)` > ρ(M− ρ(M)|F )`

because for ` ∈ L \F, ρ(M)` 6∈M− ρ(M)|F by maximality of F . Let
M1 = M−ρ(M)|F and L1 = L\F (ρ(M)|F ). We see that M1 is a recur-
rent element of Θ(M) with { χ(F ) : F ∈ Pf (L1) } a strongly recurrent
set for M1. Furthermore, ρ(M1) ≤ K − 1 by (6.7). In particular, this
cannot happen if K = 1.

If Case (ii) occurs then we repeat the procedure with M and L re-
placed by M1 and L1. Eventually, we must terminate in a Case i
situation and so at some Mk ∈ Θ(M) which is non-tame.

2
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Remark 6.18. Notice that Case (i) did not require that ρ(M) is
bounded by a constant. Furthermore, once we have the set L asso-
ciated with the strongly recurrent subset of M we can replace it by
any infinite subset. In particular, if there is any infinite subset of L
on which ρ(M) is bounded by a constant then the above argument will
apply. Thus, the obstruction to proving the conjecture in general arises
when Limρ(M)` =∞ as `→∞ in L and every element of F(M, L) is
contained in a maximal element of F(M, L) and these conditions con-
tinue to hold as we replace M and L by M − ρ(M)|F,L1 for F any
maximal element of F(M, L). Finally, we notice that if F(M, L) con-
tains sets of arbitrarily large cardinality then M is at least non-null by
Lemma 6.14.

Corollary 6.19. Let M be a bounded label not of finite type.

(1) There is a label N ∈ [[M]] (i.e. N ⊂ M) which is not of finite
type and with ρ(N) bounded by a constant. In particular, N is
not tame.

(2) There is a label N ⊃M which is flat, hence not tame.

Proof: (1). As M is not of finite type there is a strictly increas-
ing sequence {mi}∞i=1 of elements of M. Let N = 〈{supp mi : i =
1, 2, . . . }〉. Then clearly N is not of finite type and ρ(N) ≤ 1. The
non-tameness follows from 6.17.

(2). Let N = 〈{ρ(M)|(supp m) : m ∈ M}〉. Clearly N ⊃ M and is
flat, hence not tame by 6.16.

2

Questions 6.20.

(1) Is it true that for every label M not of finite type there exists
N ∈ Θ(M) which is non-tame (hence also so that (X(M), S) is
not tame) ?

(2) Is there a label M not of finite type such that X(M) is tame or
even null ?

(3) Is there a recurrent such label ?

A positive answer to the second question (in the null case) will yield an
example of a null dynamical system with a recurrent transitive point
which is not minimal. The question whether such a system exists is a
long standing open question.
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In a private conversation Tomasz Downarowicz asked us whether it
is the case that every WAP system is null. Our next example shows
that there are (a) non-null simple labels, hence topologically transitive
WAP subshifts which are non-null; (b) non-tame labels of finite type,
hence subshifts arising from finite type labels which are not tame.

Example 6.21. There are simple, finitary labels which are non-null.
Accordingly, by Corollary 6.11, the corresponding subshifts are topo-
logically transitive WAP subshifts which are non-null. Also, there are
labels of finite type which are non-tame. Again the corresponding sub-
shifts are topologically transitive and non-tame. Note that by Remark
6.10 these latter subshifts are not WAP.

(a) Partition N into disjoints sets {An : n ∈ N} ∪ {Bn : n ∈ N} with
#An = n and #Bn = 2n for all n. Define a bijection A 7→ `A from the
power set of An onto Bn. Now define Mn by Mn = 〈{ χ(`A) + χ(i) :
i ∈ A,A ⊂ An }〉. Mn is a finite label and since Mn−χ(`A) = {χ(i) :
i ∈ A} ∪ {∅} it follows that {χ(i) : i ∈ An} is an independent set
for Mn. Since {Mn} is a pairwise disjoint sequence of finite labels,
M =

⋃
n{Mn} is a simple, finitary label which is clearly non-null.

Instead we can define Nn by Nn = 〈 χ(An)〉. Again N =
⋃
n{Nn} is

a simple, finitary label which is non-null by Lemma 6.14.
(b) Partition N into two disjoint infinite sets L,B and define a bi-

jection A 7→ `A from the set of finite subsets of L onto B. Define
M = { χ(`A) +χ(i) : i ∈ A,A a finite subset of L }. Because it is size
bounded, the label M is of finite type. Just as in (a), {χ(i) : i ∈ L} is
an independent set for M.

2

Remark 6.22. By Proposition 6.9 the label M of example (b) has
Θ(M) uncountable. So this and Example 4.29 are labels M of finite
type with Θ(M) uncountable. It follows that (X(M), S) are subshifts
which are LE but not HAE (see Remark 2.4).

2

6.3. Gamow transformations.

For L ⊂ N we let FIN(L) = { m ∈ FIN(N) : supp m ⊂ L } and
LAB(L) = { M ∈ LAB :

⋃
Supp M ⊂ L }. Clearly, M ∈ LAB(L)

implies [[M]] ⊂ LAB(L). If M 6∈ LAB(L) then for some N ∈ N
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M ∩ BN 6∈ LAB(L) and so d(M,M1) < 2−N implies M1 6∈ LAB(L).
Thus, LAB(L) is a closed subset of LAB. For example, LAB(∅) =
{0, ∅}.
FIN(L) is a submonoid of FIN(N) and it acts on LAB(L). Fur-

thermore, if r 6∈ FIN(L) then Pr(M) = ∅ for all M ∈ LAB(L). Hence,
we can restrict attention to this action and for Φ a closed, invariant
subset of LAB(L), the enveloping semigroup E(Φ) is the closure of
FIN(L) in ΦΦ.

Let τ : L1 → L2 be a bijection with L1, L2 ⊂ N. In honor of
the book One, Two, Three,. . . Infinity we will refer to the following
as the Gamow transformation induced by τ . For an N-vector m with
supp m ⊂ L2 we let τ ∗m = m◦τ so that supp τ ∗m = τ−1supp m ⊂ L1.
Thus, τ ∗ : FIN(L2)→ FIN(L1) is a monoid isomorphism which also
preserves the lattice properties.

For M ∈ LAB(L2) we let τ ∗M = { τ ∗m : m ∈ M} and for Φ ⊂
LAB(L2) we will let τ ∗Φ = {τ ∗N : N ∈ Φ}. Thus, τ ∗ is a bijection
from LAB(L2) to LAB(L1) with inverse (τ−1)∗.

Given ` ∈ N, let `′ = max τ([1, `] ∩ L1). It follows from the
definition (4.5) of the metric on LAB that d(M1,M2) ≤ 2−`

′
implies

d(τ ∗(M1), τ ∗(M2)) ≤ 2−`. Thus, the τ ∗ is uniformly continuous on
LAB(L2) and so is a homeomorphism from LAB(L2) onto LAB(L1).

Clearly, τ ∗ preserves all label operations, e.g. τ ∗(M−r) = τ ∗M−τ ∗r
for M ∈ LAB(L2) and supp r ⊂ L2. Thus, τ ∗ is an action isomorphism
relating the FIN(L2) action on LAB(L2) to the FIN(L1) action on
LAB(L1). Hence, it induces an Ellis semigroup isomorphism from E(Φ)
to E(τ ∗(Φ)) where Φ is a compact, invariant subset of LAB(L2). Also
Θ(τ ∗M) = τ ∗Θ(M) for M ∈ LAB(L2).

Finally, τ ∗M is of bounded, finite type, finitary, simple, recurrent or
strongly recurrent iff M satisfies the corresponding property. In the
finitary case, F is an external element for M iff τ ∗F is an external
element for τ ∗M.

On the other hand, the sets A(τ ∗m) and A(m) are only analogous.
Now define ←−τ Skx[M] = Skx[τ ∗M] and ←−τ Skx+[M] = Skx+[τ ∗M].

These are well-defined maps defined on the (not closed) subshifts gen-
erated by x[LAB] and by x+[LAB]. They each commute with the
shift map S. The maps are not at all continuous. However, they have
some very nice dynamical properties. If M is of finite type Corollary
5.33 implies that the map ←−τ restricts to a bijection from X(M) to
X(τ ∗M) and from X+(M) to X+(τ ∗M) each of which commutes with
the shift. Furthermore, Y is a closed, invariant subset of X(M) (or
of X+(M)) iff ←−τ (Y ) is a closed invariant subset of X(τ ∗M) (resp. of
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X+(τ ∗M)). This again follows from Corollary 5.33 because Φ(←−τ (Y )) =
τ ∗Φ(Y ) and Φ+(←−τ (Y )) = τ ∗Φ+(Y ) Recall that r induces continuous
element pr ∈ E(X(M), S) (and pr ∈ E(X+(M), S)) uniquely defined
by prx[M] = x[PrM] and which satisfies prx[N] = x[N−r] = x[PrN] for
every N ∈ Θ(M) ( resp. prx[M] = x[PrM] and prx+[N] = x+[N− r] =
x+[PrN] for every N ∈ Θ(M) ). When M is finitary, for each exter-
nal element F there is a continuous element qF of E(X(M), S) (and
E(X+(M), S) ) characterized by qFx[M] = x[F] = x[QFM] (resp.
qFx+[M] = x+[F] = x+[QFM]). We clearly have

←−τ ◦ pr = pτ∗r ◦←−τ
and when M is finitary ←−τ ◦ qF = qτ∗F ◦←−τ .

(6.8)

Thus, in the finitary case, ←−τ induces an algebraic isomorphism from
E(X(M), S) to E(X(τ ∗M), S) which relates the actions on X(M) and
X(τ ∗M) and similarly for X+(M).

To understand the failure of continuity, observe that pr is the limit
of the sequence Sti on X(M) where r(ti) = r and |jr(ti)| → ∞. The
associated sequence Ssi on X(τ ∗M) has rsi = τ ∗r and |jr(si)| → ∞.
These are unrelated numerical sequences, except that all the expansions
have the same length, |r|.

Let S∞ denote the group of all permutations on N. On S∞ we define
an ultrametric by

(6.9) d(τ1, τ2) = inf { 2−` : ` ∈ Z+ and τ1|[1, `] = τ2|[1, `] }.
Clearly, for any γ ∈ S∞, d(γ ◦ τ1, γ ◦ τ2) = d(τ1, τ2). If γ([1, `]) ⊂

[1, `γ] then τ1|[1, `γ] = τ2|[1, `γ] implies τ1 ◦ γ|[1, `] = τ2 ◦ γ|[1, `] and
γ1|[1, `γ] = γ|[1, `γ] then γ−1

1 |[1, `] = γ−1|[1, `]. It follows that S∞ is a
topological group with left invariant ultrametric d. Furthermore, the
equivalent metric d̄ given by d̄(τ1, τ2) = max(d(τ1, τ2), d(τ−1

1 , τ−1
2 )) is

complete. Finally, the set of permutations Sfin consisting of permuta-
tions are the identity on the complement of a finite set, is a countable
dense subgroup of S∞. Thus, S∞ is a Polish group, which is clearly
perfect.

Furthermore, if M and M1 are labels with M∩N`γ = M1 ∩N`γ and
γ1|[1, `γ] = γ|[1, `γ] then γ∗M∩N` = γ∗1M1 ∩N`. This implies that the
action S∞×LAB→ LAB given by (τ,M)→ (τ−1)∗M is a continuous
action. The empty label ∅ is an isolated fixed point for the action. Let
LAB+ denote the perfect set of nonempty labels. We show that this
action is topologically transitive on LAB+ by constructing explicitly a
transitive point.
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Example 6.23. Let Ξ be the countable set of all pairs (Nξ, `ξ) with
Nξ a finite label such that

⋃
Supp Nξ ⊂ [1, `ξ]. Partition N by disjoint

intervals indexed by Ξ such that Iξ has length `ξ. Let τξ : Iξ →
[1, `ξ] be the increasing linear bijection and let Mξ = τ ∗ξNξ so that⋃

Supp Mξ ⊂ Iξ. Let Mtrans =
⋃
ξ Mξ. By Theorem 4.43(b) Mtrans

is finitary and simple and so is of finite type. On the other hand, given
any nonempty label M and any ` ∈ N there exists ξ ∈ Ξ such that
(Nξ, `ξ) = (M ∧ [1, `], `). It follows that if γ ∈ Sfin with γ = τξ on
Iξ then (γ−1)∗Mtrans ∧ [1, `] = M ∧ [1, `]. Thus, Mtrans is a transitive
point for the action of S∞ on LAB+.

Because LAB+ is a Cantor set, the set TRANS of transitive points
is a dense Gδ subset of LAB+. By Proposition 4.41 the set RECUR
of recurrent labels is a dense Gδ subset of LAB. Hence,
TRANS ∩ RECUR is a dense Gδ subset of LAB+. The transitive
point Mtrans is of finite type and so is not recurrent. On the other
hand, the set of flat labels is a proper, closed S∞ invariant subset
which contains recurrent labels (see Proposition 6.15 (a)) which are
thus not transitive with respect to the S∞ action.

For background regarding our next question we refer the reader to
the works [29] and [21].

Question 6.24. Does there exist a label M such that its S∞ orbit is
residual, or are all the orbits meager? If such a residual orbit exists
then it would be unique. It is well known that the adjoint action of S∞
on itself does have a dense Gδ orbit (see e.g. [21]).

6.4. Ordinal constructions.

For a label M define the label zLAB(M) = M \ max M = { m :
m + r ∈M for some r > 0 }. If M is of finite type and nonempty then
zLAB(M) is a proper subset of M. If M is positive, then 0 ∈ zLAB(M)
and so zLAB(M) 6= ∅. Hence, zLAB(M) = ∅ iff M = 0 or ∅. In general,
zLAB(M) = M iff max M = ∅.

Define the descending transfinite sequence of labels by

zLAB,0(M) = M,

zLAB,α+1(M) = zLAB(zLAB,α(M)),

zLAB,β(M) =
⋂
α〈β

{zLAB,α(X)} for β a limit ordinal.
(6.10)
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The sequence stabilizes at β when zLAB,β(M) = zLAB,β+1(M) in which
case zLAB,α(M) = zLAB,β(M) for all α ≥ β. So ∅ stabilizes at 0 and if
M is nonempty and of finite type then the sequence stabilizes at β + 1
where β is the first ordinal for which zLAB,β = 0.

If Φ is a closed, bounded, invariant set of labels define zLAB(Φ) to
be the closure of

⋃
{ Pr(Φ) : r > 0}, a closed, invariant subset of Φ.

Thus, zLAB(Θ(M)) = Θ′(M).
Define the nonincreasing transfinite sequence of closed, bounded sub-

sets of LAB by

zLAB,0(Φ) = Φ,

zLAB,α+1(Φ) = zLAB(zLAB,α(Φ)),

zLAB,β(Φ) =
⋂
α<β

{zLAB,α(Φ)} for β a limit ordinal.
(6.11)

Theorem 6.25. If M be a label then zLAB,α(M) =
⋃
zLAB,α(Θ(M))

for every countable ordinal α. That is, m ∈ zLAB,α(M) iff there exists
N ∈ zLAB,α(Θ(M)) such that m ∈ N.

Proof: We use transfinite induction. Both procedures stabilize at a
countable ordinal and so we need only consider countable ordinals.

Since M =
⋃

Θ(M) the result is true for α = 0.
If m ∈ zLAB,α+1(M) = zLAB(zLAB,α(M)), then there exists r > 0

such that m + r ∈ zLAB,α(M). By induction hypothesis, there exists
N ∈ zLAB,α(Φ) such that m + r ∈ N and so m ∈ N− r ∈ zLAB,α+1(Φ).

Conversely, if N ∈ zLAB,α+1(Φ) = zLAB(zLAB,α(Φ)) then there exists
sequences Ni ∈ zLAB,α(Φ) and ri > 0 such that N = LIM{Ni−ri}. By
induction hypothesis

⋃
{Ni} ⊂ zLAB,α(M). If m ∈ N then eventually

m ∈ Ni − ri and so m ∈ zLAB,α+1(M).
Now let β be a limit ordinal. If m ∈ N ∈ zLAB,β(Φ) then by def-

inition N ∈ zLAB,α(Φ) for all α < β. So by induction hypothesis,
m ∈ zLAB,α(M) for all α < β and hence m ∈ zLAB,β(M).

Conversely, if m ∈ zLAB,β(M) and so in zLAB,α(M) for all α < β.
Let {αi} be an increasing sequence of ordinals converging to β. By
induction hypothesis there exists Ni ∈ zLAB,αi(Φ) such that m ∈ Ni.

Since {αi} is increasing Ni ∈ zLAB,αj(M) for all j < i. Let {Ni′}
be a convergent subsequence with limit N. Since m ∈ Ni for all i,
m ∈ N. For every α < β there exists αj > α. For i ≥ j the sequence
Ni ∈ zLAB,αj(Φ) ⊂ zLAB,α(Φ) and so the limit of the subsequence
N is in the closed set zLAB,α(Φ). Since this is true for all α < β,
N ∈ zLAB,β(Φ).
2
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It follows that the sequences stabilize at the same countable ordinal.
If M = ∅ then Θ(M) = {∅} and the sequence stabilizes at 0. If M is
nonempty and of finite type then the sequence stabilizes at β+1 where
β is the ordinal with zLAB,β(M) = 0 and zLAB,β(Θ(M)) = {0, ∅}. In
this nonempty finite type case, we call β the height of Θ(M).

Theorem 6.26. Assume that M is a label of finite type. For every
countable ordinal α, every closed, invariant Y ⊂ X(M) and every
closed, invariant Y+ ⊂ X+(M) ,

Φ(zLIM,α(Y )) = zLAB,α(Φ(Y )),

Φ+(zLIM,α(Y+)) = zLAB,α(Φ+(Y+)).
(6.12)

Proof: The equation is clear for α = 0.
Since Φ(Y ) is the preimage of Y with respect to the continuous

map x[·] it follows that Φ(zLIM(Y )) is a closed invariant set containing
PrN whenever x[N] ∈ Y and r > 0 since x[PrN] = prx[N]. That is,
zLAB(Φ(Y )) ⊂ Φ(zLIM(Y )).

On the other hand, Corollary 5.33 (b) implies that zLAB(Φ(Y )) =
Φ(Ỹ ) for a closed, invariant subspace Ỹ of X(M). If r > 0 and y ∈ Y
then y = Sk(x[N]) with k ∈ Z and N ∈ Φ(Y ). So pry = Sk(x[PrN]).
Since PrN ∈ zLAB(Φ(Y )), it follows that pry ∈ Ỹ . Hence, zLIM,α(Y ) ⊂
Ỹ and so Φ(zLIM,α(Y )) ⊂ Φ(Ỹ ) = zLAB(Φ(Y )).

This proves equation (6.12) with α = 1. Assuming the result for an
ordinal α it follows for α + 1. For a limit ordinal, β we use the fact
that Φ commutes with intersection and so by the induction hypothesis

Φ(zLIM,β(Y )) = Φ(
⋂
α<β

zLIM,α(Y )) =
⋂
α<β

Φ(zLIM,α(Y ))

=
⋂
α<β

zLAB,α(Φ(Y )) = zLAB,β(Φ(Y )).

(6.13)

This completes the induction.
2

We will say that Φ ⊂ LAB is Θ invariant when it is nonempty and
M ∈ Φ implies Θ(M) ⊂ Φ. If Φ is closed then it is invariant iff it is
Θ invariant. Θ invariance always implies invariance but is usually a
stronger condition since {Pr(M)} is usually a proper subset of Θ(M).

Let M be a label of finite type. For a Θ invariant Φ ⊂ Θ(M), we
define z∗M(Φ) = { N ∈ Θ(M) : Θ′(N) ⊂ Φ}. Equivalently, N ∈ z∗M(Φ)
iff Q(N) ∈ Φ for all Q ∈ A(Θ(M)) = E(Θ(M))\{idΘ(M)}. For example,
z∗M({∅}) = {∅, 0} = [[0]].
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Starting with a Θ invariant Φ ⊂ Θ(M), define the nondecreasing
transfinite sequence of Θ invariant subsets of Θ(M) by

z∗M,0(Φ) = Φ,

z∗M,α+1(Φ) = z∗M(z∗M,α(Φ)),

z∗M,β(Φ) =
⋃
α<β

{z∗M,α(Φ)} for β a limit ordinal.
(6.14)

Recall that for a dynamical system (X,T ), Y ⊂ X is called orbit-

closed when x ∈ Y implies OT (x) ⊂ Y . For M of finite type it is easy
to adjust the proof of Corollary 5.33 to show that Y ⊂ X(M) is orbit-
closed iff Φ(Y ) is Θ closed and Y+ ⊂ X+(M) is orbit-closed iff Φ+(Y+)
is Θ closed.

Theorem 6.27. Assume that M is a label of finite type, that Y is an
orbit closed subset of X(M) and that Y+ is an orbit closed subset of
X+(M). For every countable ordinal α,

Φ(R∗S,α(Y )) = z∗M,α(Φ(Y )),

Φ+(R∗S,α(Y+)) = z∗M,α(Φ+(Y+)),
(6.15)

Proof: This is obvious for α = 0.
A point x ∈ R∗S(Y ) iff qx ∈ Y for all q ∈ A(X(M), S). Since Y

is S-invariant, Corollary 5.51 implies that this is true iff JM(Q)x ∈ Y
for all Q ∈ A(Θ(M)). Hence, x[N] ∈ R∗S(Y ) iff x[Q(N)] ∈ Y for
all Q ∈ A(Θ(M)), i.e. iff Q(N) ∈ Φ(Y ) for all Q ∈ A(Θ(M)) and
so iff N ∈ z∗M(Φ(Y )). This proves equation (6.15) for α = 1 and so
inductively for any α + 1.

Since Φ is the preimage operator with respect to the map x[·], it
commutes with union. So the equation for a limit ordinal β follows
because it is assumed, inductively, to hold for all α < β. The equations
are analogous to those of (6.13) with intersection replaced by union.

2

The constructions of (6.10), (6.11) and (6.14) are label construc-
tions and so they commute with Gamow transformations. We can use
Gamow transformations to assure that a countable number of labels all
occur with supports on disjoint sets. Let τ0 : N→ N×N be a bijection
and let Li = τ−1

0 (N × {i}) for i ∈ N. Define τi : Li → N to be the
bijection τi = π1 ◦ τ0 where π1 : N×N→ N is the first coordinate pro-
jection. Given a sequence {Mi} of labels, the label {τ ∗i Mi} is Gamow
equivalent to Mi and

⋃
Supp Mi ⊂ Li.

For nonempty labels M1,M2 we have (
⋃
SuppM1) ∩ (

⋃
SuppM2) =

∅ iff M1 ∩ M2 = 0 = {0}. In that case we will say that M1 and M2
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are disjoint. Recall that for labels M1,M2, M1 ⊕M2 = {m1 + m2 :
m1 ∈M1,m2 ∈M2}.

Proposition 6.28. If {Ma} is a finite or infinite pairwise disjoint
collection of nonempty labels of finite type, then M =

⋃
{Ma} is a label

of finite type which is finitary (or simple) if the Ma’s are all finitary
(resp. are all simple). Moreover M has the following properties:

(1) If r > 0 then M− r = ∅ unless r ∈Ma for some a. If r ∈Ma,
then M− r = Ma − r. Furthermore,

Θ′(M) =
⋃
{Θ′(Ma)},

max M =
⋃
{max Ma}.

(6.16)

(2) For r > 0 ∈ Ma, the map sending Pr on Θ(Ma) to Pr on
Θ(M) extends to a continuous injective homomorphism ja :
A(Θ(Ma))→ A(Θ(M)). If a 6= b then:

ja(A(Θ(Ma))) ∩ jb(A(Θ(Mb))) ⊂ {q : q(A(Θ(M))) ⊂ {0, ∅}}.
Furthermore,

(6.17) A(Θ(M)) \
⋃
{ja(A(Θ(Ma)))}

contains at most one point Q∗ in which case Q∗M = 0 and
Q∗ = ∅ on Θ′(M).

(3) For every α ≥ 1

(6.18) zLAB,α(Θ(M)) =
⋃
{zLAB,α(Θ(Ma))}.

(4) If for all a, Φa is a Θ invariant subspace of Θ′(Ma) then⋃
{Φa} is a Θ invariant subset of Θ′(M). If it is a proper

subset then

(6.19) z∗M(
⋃
{Φa}) =

⋃
{z∗Ma

(Φa)}.

Proof: By Theorem 4.43 M is of finite type and is finitary or simple
if all of the Ma’s are.

If {ri > 0} is a sequence in M and m > 0 is an N-vector in M then
m ∈ Ma for some a. If {M − ri} converges with m in the limit then
eventually ri ∈Ma in which case M−ri = Ma−ri and LIM{M−ri} =
LIM{Ma−ri} ∈ Θ′(Ma). Hence, Θ′(M) ⊂

⋃
{Θ′(Ma)}. The reverse

inclusion is obvious. That max M is the union of the max Ma’s is
obvious.

Now suppose that {Pri} is a net with ri > 0 in M converging to
Q ∈ A(Θ(M)). Assume first that for some N ∈ A(Θ(M)) that m > 0 ∈
QN. Let Mb be the unique member to the sequence which contains r.
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Eventually ri ∈Mb so that eventually M1−ri = (M1 ∩ Mb)−ri for all
M1 ∈ [[M ]]. In particular, Q(M) = LIM {M− ri} = LIM {Mb− ri}.
Notice that M1 =

⋃
{M1 ∪Ma} and by (6.16) M1 ∈ Θ′(M) iff M1 =

M1 ∩ Ma ∈ Θ(Ma) for some a. Clearly Q(M1) = ∅ if a 6= b and
Q(M1) = LIM{M1 − rb} for M1 ∈ Θ(Ma). Hence, Q = jb(Q̃) where
Q̃ is the pointwise limit of {Pri} in A(Θ(Mb). On the other hand
if {Pri} in A(Θ(Mb)) converges to Q̃ with ri > 0 in Mb then Pri in
A(Θ(M)) converges pointwise to Q(N) = LIM{N ∩ Mb − ri} for all
N ∈ Θ(M). This defines the injection jb : A(Θ(Mb)) → A(Θ(M)).
Because {u} ∪ {Pr : r > 0} is dense in A(Θ(Mb)) it follows that jb is
continuous and is a homomorphism. It is obviously injective.

Now assume that Q(M) = 0. If for some cofinal set {ri′ ∈Mb} then
Q = jb(Q̃) with Q̃ = LIM{Pri′

} in A(Θ(Mb)). Otherwise, eventually

ri
′ 6∈ Mb for every b and so Q(N) = ∅ for all N ∈ Θ′(M). This is Q∗

which exists iff the sequence {Ma} is infinite. Notice that if some Mb is
infinite then Q∗ = jb(Q̃) where Q = LIM{Psi} with {si} a sequence of
distinct members of maxMb. However, if the sequence {Ma} is infinite
and each Ma is finite then Q∗ is not in

⋃
{ja(A(Θ(Ma)))}.

In general, let {Mi} be a convergent sequence of nonempty labels
with Mi ⊂Ma(i). If a(i′) has some common value a for i′ in an infinite

subset, then {M i′} is a sequence in [[Ma]] and the limit is in [[Ma]].
Otherwise, the limit is 0. It follows that if Φa is a closed subset of
Θ′(Ma) for each a, and 0, ∅ ∈

⋃
{Φa} then

⋃
{Φa} is a closed subset of

Θ′(M).
If Φ is a closed subset of A(Θ(M)) then zLAB(Φ) is the closure of

A(Θ(M))Φ. Hence, (6.18) follows by transfinite induction starting with
zLAB(Θ(M)) = Θ′(M).

Finally, the Θ invariance of
⋃
{Φa} and (6.19) follow from (6.16)

and (6.17).
2

Recall that (M1,M2) 7→M1⊕M2 is a continuous map from LAB×
LAB → LAB. So if Φ1,Φ2 ⊂ LAB are compact then Φ1 ⊕ Φ2 is
compact and is therefore closed.

Proposition 6.29. If N and M are positive disjoint labels with N finite
and M of finite type then N⊕M is a label of finite type which is finitary
(or simple) if M is finitary (resp. simple). Moreover N ⊕M has the
following properties:

(1) If r ∈ N⊕M then r = n + m with n ∈ N and m ∈M uniquely
determined by r. In that case, N⊕M−r = (N−n)⊕ (M−m).
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Furthermore,

Θ′(N ⊕M) = Θ′(N)⊕Θ(M) ∪ Θ(N)⊕Θ′(M),

max N ⊕M = (max N)⊕ (max M).
(6.20)

Θ(N) is the finite set {N − r}.
(2) The map ⊕ : Θ(N)×Θ(M)→ Θ(N⊕M) is a homeomorphism

inducing an isomorphism of compact semigroups j⊕ : E(Θ(N))×
E(Θ(M))→ E(Θ(N ⊕M)).

(3) If Ψ ⊂ [[N]] and Φ ⊂ [[M]] are closed and invariant then

(6.21) zLAB(Ψ⊕ Φ) = zLAB(Ψ)⊕ Φ ∪Ψ⊕ zLAB(Φ).

And for every limit ordinal α

(6.22) zLAB,α(Θ(N ⊕M)) = {N} ⊕ zLAB,α(Θ(M)).

For α = 0 or a limit ordinal and k ∈ N
(6.23)

zLAB,α+k(Θ(N ⊕M)) =
k⋃
r=0

zLAB,α+r(Θ(N))⊕ zLAB,α+k−r(Θ(M)).

(4) For all k ∈ N

(6.24) z∗N⊕M,k([[0]]) =
k⋃
r=0

z∗N,r([[0]])⊕ z∗M,k−r([[0]]).

For every limit ordinal α and k ∈ Z+

(6.25)

z∗N⊕M,α+k([[0]]) = {N}⊕ z∗M,α([[0]])∪ (
k⋃
r=1

z∗N,k−r([[0]])⊕ z∗M,α+r([[0]])).

Proof: Again Theorem 4.43 says that M is of finite type and is
finitary if M is.

The closed set Θ′(N)⊕Θ(M) ∪ Θ(N)⊕Θ′(M) contains N⊕M−r for
all r > 0 and so contains Θ′(N⊕M). On the other hand, if either n > 0
or m > 0 then r > 0 and so Θ′(N⊕M) contains all (N−n)⊕ (M−m)
with either n > 0 or m > 0. Since ⊕ is continuous, it follows that
Θ′(N ⊕M) contains Θ′(N)⊕Θ(M) ∪ Θ(N)⊕Θ′(M).

That Θ(N) = {N − r} follows from Corollary 4.31.
Because of the disjoint support assumption, the continuous map ⊕ :

[[N]] × [[M]] → [[N ⊕M]] is injective and so, by (6.19), it restricts to
a homeomorphism from Θ(N) × Θ(M) onto Θ(N ⊕M). Notice that
labels such as N ∪M do not lie in Θ(N ⊕M). Furthermore, if {Ni}
and {Mi} are nets in [[N ]] and [[M ]] then {Ni⊕Mi} converges iff both
{Ni} and {Mi} do, in which case the limit is LIM {Ni}⊕LIM {Mi}.
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In particular, Pri converges in E(Θ(N⊕M)) iff (Pni , Pmi) converges in
E(Θ(N))×E(Θ(M)). This implies that j⊕ is continuous and surjective.
Hence, it is a homeomorphism. It is a homomorphism by continuity
since it is clearly a homomorphism on the dense submonoid {(Pn,Pm)}.

It therefore follows that for Φ1 ⊂ Θ(N) and Φ2 ⊂ Θ(M) closed
invariant subspaces, zLAB(Φ1⊕Φ2) = zLAB(Ψ)⊕Φ∪Ψ⊕zLAB(Φ). Then
(6.23) follows by induction on k since the operator zLAB commutes with
union. For (6.22) we use induction on the limit ordinals together with
0 starting with α = 0. Assume the result for all β < α. From (6.23)
we have

{N} ⊕ zLAB,β+k(Θ(M)) ⊂ zLAB,β+k(Θ(N ⊕M))

⊂ {N} ⊕ zLAB,β+k−r0(Θ(M))
(6.26)

where zLAB,r0(Θ(N)) = [[0]]. Intersecting we obtain (6.22) for α =
β + ω. Otherwise, α is an increasing limit of limit ordinals and the
result follow from the induction hypothesis by intersecting.

For (6.24) and (6.25) we proceed by transfinite induction. First,
starting from 0 or a limit ordinal α we use induction on k ≥ 1. Observe
that if n > 0 and m ∈ z∗M,α+r+1([[0]]) \ z∗M,α+r([[0]]) then n + r 6∈
z∗N⊕M,α+r+1([[0]]). This yields for β a limit ordinal less than α and
k ∈ N that

{N} ⊕ z∗M,β+k−r0([[0]]) ⊂ z∗N⊕M,β+k([[0]])

⊂ {N} ⊕ z∗M,β+k([[0]])
(6.27)

where z∗N,r0([[0]]) = Θ(N). So by taking the unions we obtain the result
for a limit ordinal α and k = 0.
2

Definition 6.30. For M a nonzero finitary or simple label, the height
of Θ(M) is α + 1 where α is the ordinal with zLAB,α(Θ(M)) = [[0]].
The height∗ is α + 1 where α is the ordinal where z∗M,α({∅}) = Θ′(M).
Notice that z∗M,α({∅}) = z∗M,1+α([[0]]) and so if α ≥ ω then z∗M,α({∅}) =
z∗M,α([[0]]).

Theorem 6.31. For any countable ordinal α there exists a label M

which is both simple and finitary with height = height∗ = α+1. Hence,
(X(M), S) and (X+(M), S) are topologically transitive WAP subshifts
with height = height∗ = α + 1.

Proof: First, let Nn = {kχ(`1) : 0 ≤ k ≤ n}. It is easy to see that
Θ(Nn) = {Nk : k ≤ n} ∪ {∅} has height and height∗ equal to n + 1.
These are finite labels and so are both simple and finitary.
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Now suppose that α is a countable limit ordinal, the limit of an
increasing sequence βi. By inductive hypothesis, we can choose for each
i a finitary and simple label Mi so that Θ(Mi) has height βi + 1, and
height∗ βi + 1. By using a Gamow transformation we can assume that
{Mi} is a sequence with disjoint supports. By Proposition 6.28 M =⋃
{Mi} is finitary and simple and by (6.18) ζLAB,α(Θ(M)) = {[[0]]}

and so Θ(M) has height α + 1. By (6.19) it follows that ζ∗M,α({∅}) =
ζ∗M,α([[0]]) = Θ′(M) and so Θ(M) has height∗ equal to α + 1.

Now for a countable limit ordinal α assume that M is a finitary and
simple label with height and height∗ equal to α+1. By using a Gamow
transformation, we can assume that `1 is not in the support of M. For
n ≥ 1, Nn is a positive, finite label disjoint from M. By Proposition
6.28 Nn⊕M is finitary and simple and by (6.22) zLAB,α(Θ(Nn⊕M)) =
Θ(Nn ⊕ 0). Hence, Θ(Nn ⊕M) has height α + n + 1. From (6.25) it
follows that Θ(Nn ⊕M) has height∗ α + n+ 1.

The results for (X(M), S) follow from Theorem 6.26 and Theorem
6.27.

2

7. Scrambled sets

Following Li and Yorke [31] a subset S ⊂ X is called scrambled for
a dynamical system (X,T ) when every pair of distinct points of S is
proximal but not asymptotic.

Recall that A(X,T ) is the ideal of the enveloping semigroup E(X,T )
consisting of the limit points of {T n} as |n| → ∞. Let A+(X,T ) be
the set of limit points of {T n} as n→∞, that is, we move only in the
positive direction. Thus, ωT (x) = A+(X,T )x for every x ∈ X.

Definition 7.1. For a compact, metric dynamical system (X,T ) let
(x, y) be a pair in X ×X.

(a) We call the pair (x, y) proximal when it satisfies the following
equivalent conditions:

(i) lim infn>0 d(T n(x), T n(y)) = 0.
(ii) There exists a sequence ni →∞ such that lim d(T ni(x), T ni(y)) =

0.
(iii) There exists p ∈ A+(X,T ) such that px = py.
(iv) There exists u a minimal idempotent in A+(X,T ) such that

ux = uy.
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We denote by PROX(X,T ) (or just PROX when the system is
clear) the set of all proximal pairs.

(b) We call the pair (x, y) asymptotic when it satisfies the following
equivalent conditions:

(i) lim supn>0 d(T n(x), T n(y)) = 0.
(ii) limn>0 d(T n(x), T n(y)) = 0.
(iii) For all p ∈ A+(X,T ) px = py .

We denote by ASYMP (X,T ) (or just ASYMP when the system is
clear) the set of all asymptotic pairs.

(c) We call the pair (x, y) a Li-Yorke pair when it is proximal but
not asymptotic.

(d) The system (X,T ) is called proximal when all pairs are proximal,
i.e. PROX = X × X. It is called completely scrambled when all
non diagonal pairs are Li-Yorke. That is, the system is proximal, but
ASYMP = ∆X .

Observe that the set {p ∈ A+(X,T ) : px = py} is a closed left ideal
if it is nonempty and so it then contains minimal idempotents. This
shows that (iii)⇔ (iv) in (a). The remaining equivalences are obvious.

Remark 7.2. This notion of proximality actually refers to the action
of the semigroup {T n : n ∈ Z+}. The usual definition of proximality
would be: x and y are proximal if there exists a sequence ni ∈ Z with
|ni| → ∞ such that lim d(T ni(x), T ni(y)) = 0.

Lemma 7.3. For x ∈ X and n ∈ N the pair (x, T n(x)) is proximal iff
T n(y) = y for some y ∈ ωT (x). The pair (x, T n(x)) is asymptotic iff
T n(y) = y for every y ∈ ωT (x).

Proof: pT n(x) = T n(px) and so px = pT n(x) iff px = T n(px). The
pair is proximal (or asymptotic) iff px = T n(px) for some p ∈ A+(X,T )
(resp. for all p ∈ A+(X,T )).

2

We recall the following, see, e.g. [7] Proposition 2.2.

Proposition 7.4. A compact, metric dynamical system (X,T ) is prox-
imal iff there exists a fixed point e ∈ X which is the unique minimal
subset of X, i.e. (X,T ) is a minCT system. Consequently, (X,T−1)
is proximal if (X,T ) is.

Proof: If u is a minimal idempotent then ux is a minimal point for
every x ∈ X. So if e is the unique minimal point of X, then ux = e
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for every x ∈ X and every minimal idempotent u. Hence, every pair is
proximal.

Assume now that (X,T ) is proximal. For any x ∈ X, the pair
(x, T (x)) is proximal and so there exists p ∈ A+(X,T ) such that px =
pT (x) = T (px) and so e = px is a fixed point. A pair of distinct fixed
points is not proximal and so e is the unique fixed point. Hence, e is
in the orbit closure of every point and so {e} is the only minimal set.

Since the minimal subsets for T and T−1 are the same, it follows
that (X,T−1) is proximal.
2

Thus, we obtain the following obvious corollary. Compare Proposi-
tion 1.16

Corollary 7.5. A compact, metric dynamical system (X,T ) is com-
pletely scrambled iff it is a minCT system and A+(X,T ) distinguishes
points of X.

2

Completely scrambled systems were introduced by Huang and Ye
[27] who provided a rich supply of examples, but all appear to be of
height the first countable ordinal.

In contrast with proximal systems there exist completely scrambled
systems (X,T ) whose inverse (X,T−1) is not completely scrambled.

Example 7.6. Begin with (Y, F ) a completely scrambled system with
fixed point e. Let (X,T ) be the quotient space of the product system
(Y × {0, 1}, F × id{0,1}) obtained by identifying (e, 0) with (e, 1) to
obtain the fixed point denoted e in X. Let X0 and X1 be the images
of Y × {0} and Y × {1} in X. Since (X,T ) has a unique fixed point e
we can construct a sequence {xn : n ∈ Z+} so that

• x0 = e.
• {d(xn, T (xn))} → 0 as n→∞.
• For every N ∈ N the set {xi : i ≥ N} is dense in X.

Now for n ∈ Z let zn ∈ X × [0, 1] be defined by

zn =

{
(xn, 1/(n+ 1)) for n ≥ 0,

(e, 1/(−n+ 1)) for n < 0.

Let

X̂ = X × {0} ∪ { zn : n ∈ Z }.
Let T̂ (x, 0) = (T (x), 0) and T̂ (zn) = zn+1.
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The system (X̂, T̂ ) is topologically transitive with fixed point (e, 0)
the unique minimal set. Hence, the system is proximal. Since every
orbit in X is confined to either X0 or X1 it follows that no point zn is
asymptotic to a point in X×{0}. By Lemma 7.3 no two distinct points

on the zn orbit are asymptotic. Hence, (X̂, T̂ ) is completely scrambled.

However, the inverse (X̂, T̂−1) is not since {zn} → (e, 0) as n→ −∞.

2

By a result of Schwartzman (see Gottschalk and Hedlund [25, Theo-
rem 10.36]) an expansive system admits non-diagonal asymptotic pairs.
We can sharpen this result a bit.

If e is a fixed point of an expansive system (X,T ) then {e} is an
isolated invariant set. That is, there exists a neighborhood U of e
which contains no nonempty, invariant set other than {e}.

Proposition 7.7. If (X,T ) is a nontrivial minCT system with fixed
point e an isolated invariant set then there exists x ∈ X with x 6= e
and with limn→∞ T

n(x) = e, i.e. the pair (x, e) is asymptotic.

Proof: By Theorem 3.6 (b.3) of [1], if A is a closed, isolated invariant
set such that ωT (x) ⊂ A implies x ∈ A then A is a repellor for (X,T ).
In particular, if {e} is an isolated invariant set and the pair (x, e) is
asymptotic only when x = e then {e} is a repellor. A minCT system
is chain transitive and so contains no proper attractors or repellors.

2

It follows that no nontrivial subshift can be completely scrambled.
However, we note that the subshifts which arise from labels of finite
type are pretty close.

Proposition 7.8. If M1,M2 are two different labels then the following
are equivalent.

(i) For some n1, n2 ∈ Z the pair (Sn1x[M1], Sn2x[M2]) is asymp-
totic for S or S−1.

(i+) For some n1, n2 ∈ Z the pair (Sn1x+[M1], Sn2x+[M2]) is asymp-
totic for S or S−1.

(ii) For all n1, n2 ∈ Z the pairs (Sn1x[M1], Sn2x[M2]) are asymp-
totic for both S and S−1.

(ii+) For all n1, n2 ∈ Z the pairs (Sn1x+[M1], Sn2x+[M2]) are asymp-
totic for both S and S−1.

(iii) {M1,M2} = {∅, 0}.
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Proof: Since RS(x[0]) = e = x[∅], it is clear that (iii) implies (ii),
(ii+). That (ii) implies (i) and (ii+) implies (i+) are obvious.

Now assume that {M1,M2} 6= {∅, 0}. By renumbering we can
assume that there exists r > 0 such that r ∈ M1 \M2. Let {ti} be
a sequence of positive expanding times with length vector r and such
that {jr(ti)→∞. Then by Theorem 5.28 LimSt

i
(x[M1]) = x[M1−r]

and LimSt
i
(x+[M1]) = x+[M1 − r]. Neither limit point is the fixed

point e since r ∈ M1. Hence, for any n1 ∈ Z, LimSt
i
(Sn1(x[M1])) =

Sn1(x[M1 − r]) 6= e. On the other hand, since, r 6∈M2,

LimSt
i

(Sn2(x[M2])) = Sn2(x[M2 − r]) = e

and
LimSt

i

(Sn2(x+[M2])) = Sn2(x+[M2 − r]) = e.

Thus, the pairs (Sn1x[M1], Sn2x[M2]) (Sn1x+[M1], Sn2x+[M2]) are not
asymptotic for S or for S−1. This prove the contrapositive of (i), (i+)⇒
(iii).

2

Corollary 7.9. For any positive label M the set { Sn(x[N]) : N 6=
0 ∈ Θ(M), n ∈ Z } is a scrambled subset for (X(M), S) and for
(X(M), S−1). The set { Sn(x+[N]) : N 6= 0 ∈ Θ(M), n ∈ Z } is
a scrambled subset for (X+(M), S) and for (X+(M), S−1). If M is a
label of finite type then these sets are the complement of the orbit of
x[0] in X(M) and X+(M), respectively.

Proof: That the set is scrambled is clear from Proposition 7.8. In
the finite type case, Corollary 5.33 (a) implies that we are excluding
only the orbit of x[0] from the set.

2

Definition 7.10. An inverse sequence in LAB is a sequence {Mi, ri :
i ∈ Z+} with ri > 0 in Mi and such that Mi = Mi+1 − ri+1 for i > 0.
For the associated inverse sequences pri+1 : (X(Mi+1), S)→ (X(Mi), S)
and pri+1 : (X+(Mi+1), S) → (X+(Mi), S) we let (X({Mi, ri}), S) and
(X+({Mi, ri}), S) denote the respective inverse limits.

Theorem 7.11. Let {Mi, ri} be an inverse sequence in LAB. The
inverse limit system (X({Mi, ri}), S) and (X+({Mi, ri}), S) are topo-
logically transitive, compact metrizable systems. If each Mi is of finite
type then the limit systems their inverses are completely scrambled. If
each Mi is either finitary or simple then the limit systems are WAP.
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Proof: Topologically transitive and WAP systems are closed un-
der inverse limits. In this case, each map pri+1 is surjective as required
because it maps the transitive point x[Mi+1] of X(Mi+1) onto the tran-
sitive point x[Mi] of X(Mi) since Mi = Mi+1− ri+1. In particular, the
sequence x∗ = {x[Mi]} is a transitive point for the inverse limit.

The point e associated with the sequence {x[∅]} is a fixed point in
X({Mi, ri}). A minimal subset of the limit space projects to a minimal
subset of X(Mi) for each i. If Mi is of finite type then this minimal
subset is {e} ⊂ X(Mi). Thus, if all are of finite type, the fixed point is
the only minimal subset of the limit and so (X({Mi, ri}), S) is proximal
by Proposition 7.4.

Notice that if x ∈ X(Mi) is not equal to the fixed point e then x[0] 6∈
p−1
ri+1(x). If x, y are distinct points of X({Mi, ri}) then for sufficiently

large i they project to distinct points of X(Mi) with neither projecting
to x[0] in X(Mi). In the finite type case it then follows from Corollary
7.9 that for sufficiently large i, x and y project to a non-asymptotic
pair. Consequently, the pair (x, y) is not asymptotic in X({Mi, ri}).

2

Remark 7.12. Since a transitive point for X({Mi, ri}) projects to a
transitive point on each X(Mi) it follows that the transitive points for
X({Mi, ri}) are all on the orbit of x∗ described above and so x∗ is iso-
lated when the labels Mi are of finite type. Similarly, for X+({Mi, ri}).

For the construction of our examples, we need the following. Recall
that (6.20) implies that if M1 is a finite label and M2 is a label with
supports disjoint from those of M1, then

Θ′(M1 ⊕M2) = Θ′(M1)⊕Θ(M2) ∪Θ(M1)⊕Θ′(M2).

Lemma 7.13. Let r be a positive finite vector with support disjoint
from those in Supp M for some nonempty label M. Then Pr(Θ

′(〈r〉)⊕
Θ(M)) = {∅} and on {〈r〉} ⊕Θ(M) Pr is a bijection onto Θ(M).

Proof: Since r is not an element of any label in Θ′(〈r〉) ⊕ Θ(M) it
follows that all of these labels are mapped to ∅.

By (6.20) every label of Θ(〈r〉 ⊕M) is of the form N1 ⊕ N2 with
N1 ∈ Θ(〈r〉) and N2 ∈ Θ(M). If N1 6= 〈r〉 then Pr maps N1 ⊕N2 to ∅.
If N1 = 〈r〉 then Pr maps N1⊕N2 to N2. Hence, for any N2 ∈ Θ(M) the
unique label of the form 〈r〉 ⊕N which is mapped to N2 has N = N2.
2
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Example 7.14. Let {ri} a sequence of positive N-vectors all with
disjoint supports and let M be a finitary label with the sets in Supp M
disjoint from the supports of the sequence.

Let N0 = {0} and Ni+1 = 〈ri+1〉⊕Ni define an increasing sequence of
finite labels. Define {Mi = Ni⊕M, ri}, an inverse sequence of finitary
labels. For each i Lemma 7.13 implies that the preimage of ∅ by Pri+1 :
Θ(Mi+1)→ Θ(Mi) is countable and the preimage of every other point
is a singleton. It follows that the limit system (X({Mi, ri}), S) and
its inverse (X({Mi, ri}), S−1) are completely scrambled, topologically
transitive, countable WAPs.

Notice thatX(M) andX+(M) are factor ofX({Mi, ri}) andX+({Mi, ri})
respectively. Hence, if we choose M with height greater than some
countable ordinal α then X({Mi, ri}) and X+({Mi, ri}) have height
greater than α.

2

Following Huang and Ye we can take countable products of copies
of these examples to get completely scrambled WAP systems on the
Cantor set with arbitrarily large heights. However, these examples will
not be topologically transitive.
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Birkhoff center 8
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completely scrambled 110
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positive expanding time 59
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strongly recurrent 42
strongly recurrent set 42
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external limit set 50
external 50
simple 51
flat 94
non-null 92
non-tame 92
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Li-Yorke pair 110
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proximal (system) 110
recurrent point 8
rigid 19
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uniformly rigid 19
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scrambled set 109
(positive) special sequence of times

79
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strongly recurrent set 42
subshift 3
(positive) S adjusted expansion 80
tame 92
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transitive point 6

translation finite (TF) 90
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[[M]] 38
max M 33
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RT 6
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pr 84, 85
Pr 38
Pf (L) 32
PROX 109
RECUR 53
r(t) (length vector) 64
ρ(M) (roof function) 31
ρ(S, s) 80
S (shift) 3
〈S〉 (label generated by S) 31
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supp m 30
supp x 30
Supp M 33
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X(A) 66
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zCAN 11
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