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ENVELOPING SEMIGROUPS IN TOPOLOGICAL DYNAMICS

ELI GLASNER

ABSTRACT. This is a survey of the theory of enveloping semigroups in topological
dynamics. We review the, already classical, theory of enveloping semigroups, due
mainly to Robert Ellis, and then proceed to describe some new connections which
were discovered in the last few years between three seemingly unrelated theories:
of enveloping semigroups, of chaotic behavior, and of representation of dynamical
systems on Banach spaces.
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INTRODUCTION

The enveloping semigroup of a dynamical system was introduced by R. Ellis in [24].
It proved to be a fundamental tool in the abstract theory of topological dynamical
systems. However, explicit computations of enveloping semigroups are quite rare.
Some examples are to be found in Furstenberg [31] (1963), Glasner [35] (1976) and [38]
(1993), Namioka [73] (1984), Milnes [70] (1986) and [71] (1989), Ellis [26] (1993), Berg,
Gove & Hadad [9] (1998), Akin [3] (1998), Budak, Isik, Milnes & Pym [14] (2001), and
Glasner & Megrelishvili [44] (2004). One reason for the scarcity of concrete examples

Date: January 11, 2009.
2000 Mathematical Subject Classification 54H20, 54H15, 37B05, 43A60, 46B22.
Research supported by ISF grant # 1333/04.

1



2 ELI GLASNER

of enveloping semigroups is that these objects are usually non-metrizable (a notable
exception is the case of weakly almost periodic metric systems; see Downarowicz [20)]
(1998) and Glasner [41] (2003), Theorem 1.48).

In the last half a dozen years or so, new fascinating connections were discovered
between three seemingly unrelated topics: the theory of enveloping semigroups, the
theory of chaotic behavior, and the theory of representation of dynamical systems on
Banach spaces.

In an interesting paper [67], Koéhler pointed out the relevance of a theorem of
Bourgain, Fremlin & Talagrand [11] to the study of enveloping semigroups. She calls
a dynamical system, (X, ¢), where X is a compact Hausdorff space and ¢ : X — X a
continuous map, reqular if for every function f € C'(X) the sequence {fo¢™ : n € N}
does not contain an ¢, sub-sequence (the sequence { f, }nen is an €1 sequence if there
are strictly positive constants a and b such that

n
DNIE
k=1

n
Z i fr
k=1

n
<0 led
k=1

for all n € N and ¢q,...,¢, € R). Since the word “regular” is already overused in
topological dynamics I call such systems tame.

It turns out that, for a general topological group G, a metric dynamical system
(X, G) has this property if and only if E(X,G), the enveloping semigroup of (X, G),
is Rosenthal compact (see [44] and Section 6 below). Following a pioneering paper of
Megralishvili [69], Glasner and Megrelishvili in [44] established a Bourgain-Fremlin-
Talagrand dynamical dichotomy. In this work we develop a comprehensive study of
the interconnections between various (non) chaotic properties of dynamical systems
on the one hand and their linear representations on Banach spaces on the other.
In [42] T introduced the notion of tame dynamical systems and studied their basic
properties. Next came the determinative work of Glasner, Megrelishvili and Uspen-
skij [47] where, for metrizable systems, we show that metrizability of the enveloping
semigroup is equivalent to the HNS (hereditary non-sensitivity) property. The most
recent development along this line is to be found in the recent work [46] of Glasner
and Megrelishvili where the authors characterize tame dynamical systems as those
which can be represented on Banach spaces which do not contain isomorphic copies
of I; (Rosenthal spaces). Finally in three recent works Huang [59], Kerr and Li [66],
and Glasner [43], improve the results of [42] to show that, for Abelian acting group,
a metrizable minimal tame system is an almost 1-1 extension of its maximal Kro-
necker factor. Moreover such a system is uniquely ergodic and measure theoretically
isomorphic to its Kronecker factor.

In the following notes I will briefly review the, already classical, theory of enveloping
semigroups, due mainly to Robert Ellis, and will then proceed to describe some of
the new developments sketched above.

In the first section we recall the necessary background from topological dynamics.
In the second we define the enveloping semigroup and review some of the well known
results concerning its structure. We describe the close connections which exist be-
tween the algebraic and topological properties of the enveloping semigroup and various
dynamical properties of the system. In section 3 we discuss the class of WAP (weakly
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almost periodic) systems. Section 4 presents some concrete computations of envelop-
ing semigroups, and section 5 deals with the special case of nil-systems of class 2. In
section 6 we first state the enveloping semigroups version of the Bourgain-Fremlin-
Talagrand dichotomy, and then investigate the tame side of this dichotomy. Section 7
deals with operator enveloping semigroups and the corresponding notion of injective
systems. Section 8 introduces the basic definitions concerning linear representations
of dynamical systems on Banach spaces. We also describe here the aforementioned
connections between non-chaotic systems and Banach space representations. Section
9 presents the Glasner-Megrelishvili-Uspenskij characterization of HNS (hereditarily
non sensitive) metric systems as those having metrizable enveloping semigroup. Some
corollaries of this characterization are discussed in section 10. Section 11 describes
the characterization of tame systems as those which can be represented on Rosen-
thal spaces. Section 12 comprise a short table summarizing the hierarchy of Banach
representations. Section 13 is a review of recent results on the structure of minimal
tame dynamical systems. In the final section I discuss briefly two related topics: uni-
versal point-transitive and minimal systems, and the interplay between topological
dynamics and combinatorial number theory.

Acknowledgement: 1 would like to thank my friends and co-authors, Benjy Weiss,
Misha Megrelishvili and Vladimir Uspenskij, whose cooperation and advise made
this work possible and pleasant. I also thank Jan van Mill for the invitation to write
this survey and Ethan Akin for a careful reading of the paper and for providing
helpful suggestions. Finally thanks are due to the referee for correcting misprints and
clarifying some obscure points.

1. TOPOLOGICAL DYNAMICS BACKGROUND

A topological dynamical system or briefly a system is a pair (X,G), where X is
a compact Hausdorff space and G a topological group which acts on X as a group
of homeomorphisms. Thus the action is given by a continuous map G x X — X,
(g, x) — gz, such that, with e the neutral element of G, ex = = and (hg)x = h(gx) for
all g,h € G and x € X. Thus the G-action is given by a continuous homomorphism
i : G — Homeo (X), i(g) = g equipped with the uniform topology. Usually, we
identify g with ¢ and write gx for gz. In the special case of a cascade; i.e. a G-
dynamical system with G = Z, the group of integers, we usually write (X, T") instead
of (X,Z), where T' = i(1).

A subsystem of (X,G) is a nonempty closed invariant subset Y C X with the
restricted action. For a point # € X, we let Og(x) = {gr : g € G}, and Og(x) =
cls{gz : g € G}. These subsets of X are called the orbit and orbit closure of x
respectively. We say that (X, G) is point transitive if there exists a point x € X with
a dense orbit. In that case x is called a transitive point. If every point is transitive we
say that (X, G) is a minimal system. Clearly a dynamical system (X, &) is minimal
if and only if its only subsystem is (X, ) itself. For a general system (X, G) a point
x € X is a minimal (or an almost periodic) point if Og(z) is a minimal subsystem of
(X,Q) .

The dynamical system (X, G) is topologically transitive if for any two nonempty
open subsets U and V of X there exists some g € G with gUNV # (). Clearly a point
transitive system is topologically transitive and when X is metrizable the converse
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holds as well: in a metrizable topologically transitive system the set of transitive
points is a dense G5 subset of X. The system (X, G) is weakly mizing if the product
system (X x X,G) (where g(z,2') = (gz,g2'), x, 2’ € X, g € G) is topologically
transitive.

If (Y,G) is another system then a continuous onto map 7 : X — Y satisfying
gom = mog for every g € G is called a homomorphism of dynamical systems. In this
case we say that (Y, T) is a factor of (X, ) and also that (X, G) is an extension of
(Y, G).

For a collection of systems {(Xa, G)}aca we define the product system (X,G) on
the product space [],. 4 Xo by the diagonal action of G on X i.e., (g97)a = gZa-

It is sometimes convenient to work with pointed dynamical systems, where one picks
a distinguished point xy € X. We assume that the system (X, G) is point transitive
and the distinguished point is assumed to be transitive: Og(x9) = X. (Such a
pointed system is also called an ambit). A homomorphism 7 : (X, 29, G) — (Y, 0, G)
sends xg onto yo. The joint or pointed product of a collection of pointed systems
{(Xa, Ta, G) }aca is the subsystem

()(7 Zo, G) = \/ (Xa, Lo,y G)

a€cA

of the product space [], .4 Xq, defined as the orbit closure Oa(r9) = X of the point
To € HaGA Xa, with (mo)a = Tq-
We say that a pointed dynamical system (X, zo, G) is point-universal if it has the
property that for every x € X there is a homomorphism 7, : (X, z0) — (Og(z), 7).
A pair of points (z,2') € X x X for a system (X, G) is called prozimal if there
exists a net ¢g; € G and a point z € X such that lim g;x = lim g;2’ = z. We denote by
P the set of proximal pairs in X x X. We have

P = ﬂ {GV : V a neighborhood of the diagonal in X x X}.

A system (X, G) is called prozimal when P = X x X and distal when P = A, the
diagonal in X x X.
The regionally proximal relation on X is defined by

Q= ﬂ {GV : V a neighborhood of A in X x X}.

It is easy to verify that @ is trivial — i.e. equals A — if and only if the system
is equicontinuous. A minimal equicontinuous system is called a Kronecker system.
Every minimal system admits a maximal Kronecker factor. Furthermore when, in
addition, G is Abelian the relation () is a closed G-invariant equivalence relation and
the quotient map X — X/Q realizes the maximal Kronecker factor of (X,G) . The
latter is trivial when and only when the minimal system is weakly mixing.

An extension (X,G) 5 (Y, G) of minimal systems is called a prozimal extension
if the relation R, = {(x,2') : w(x) = w(a')} satisfies R, C P and a distal extension
when R, NP = A. One can show that every distal extension is open. An extension 7
is an almost 1-1 extension if there is a point y € Y with 7~!(y) = {x} a single point
of X. It is easy to see that an almost 1-1 extension is proximal. A metric minimal
system (X, G) such that canonical map 7 : (X,G) — (Y, G), where (Y,G) is the
maximal Kronecker factor of (X, G) , is almost 1-1, is called an almost automorphic
system.
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Recall that a function f € C(X) is almost periodic (AP) if its G-orbit {9f : g € G}
lies in a norm compact subset of the Banach space C'(X). It is weakly almost periodic
(WAP) if its G-orbit is contained in a weakly compact subset of C'(X). Here C'(X) is
the algebra of continuous real valued functions on X and for g € G, 9f(z) = f(gx).
The dynamical system (X, G) is called almost periodic (AP) if every f € C(X) is AP.
As is well known this is the case if and only if (X, G) is equicontinuous. The system
(X, Q) is called weakly almost periodic (WAP) if every f € C(X) is WAP.

Suppose now that X is metrizable and let d be a compatible metric on X. We
say that (X, @) is non-sensitive if for every € > 0 there exists a non-empty open set
O C X such that for every g € G the set gO has d-diameter < e. (This property does
not depend on the choice of a compatible metric d.) A system (X, G) is hereditarily
non-sensitive (HNS) if all closed G-subsystems are non-sensitive.

A system (X, G) is equicontinuous at x € X if for every € > 0 there exists a
neighborhood O of z such that for every 2’ € O and every g € G we have d(gz’, gz) <
e. A system is almost equicontinuous (AE) if it is equicontinuous at a dense set of
points, and hereditarily almost equicontinuous (HAE) if every closed subsystem is AE.

Denote by Eq. the union of all open sets O C X such that for every g € G the
set gO has diameter < e. Then Fq. is open and G-invariant. Let Eq = (.., Eq..
Note that a system (X, G) is non-sensitive if and only if Eq. # () for every ¢ > 0,
and (X, @) is equicontinuous at = € X if and only if x € Eq. Suppose now that Fq.
is dense for every € > 0. Then FEjq is dense, in virtue of the Baire category theorem,
and it follows that (X, G) is AE.

If (X,G) is non-sensitive and = € X is a transitive point — that is, Gz is dense
— then for every € > 0 the open invariant set Eq. meets Gx and hence contains Gz.
Thus z € Eq and we have shown that in a metric transitive non-sensitive system
(X, Q) every transitive point is an equicontinuity point and in particular (X, Q) is
AFE. If, in addition, (X, ) is minimal then Eq = X. Thus minimal non-sensitive
systems are equicontinuous (see [7], [48, Theorem 1.3], [4], and [44, Corollary 5.15]).

For the general theory of abstract topological dynamics we refer the reader to the
books [54], [25], [34], [33], [13], (6], [86], [1] and [2]

2. THE ENVELOPING SEMIGROUP OF A DYNAMICAL SYSTEM

The enveloping semigroup E = E(X,G) = E(X) of a dynamical system (X, G) is
defined as the closure in XX (with its compact, usually non-metrizable, pointwise
convergence topology) of the set G = {§: X — X} e considered as a subset of X,
With the operation of composition of maps this is a right topological semigroup (i.e.
for every p € E(X) the map R, : ¢ — ¢p, R, : E(X) — E(X) is continuous). More-
over, the map i : G — E(X), g +— ¢ is a right topological semigroup compactification
of G (see the definition in Section 10 below).

Proposition 2.1. The enveloping semigroup of a dynamical system (X,G) is iso-
morphic (as a dynamical system) to the pointed product

(E'wo) = \/{(Oc(x),7) : v € X} C X¥,

where wy is the point in XX defined by wo(z) = x for every v € X.
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Proof. 1t is easy to see that the map p — pwy, (F,i(e),G) — (E',wy,G) is an
isomorphism of pointed systems. O

Proposition 2.2. The following conditions on the pointed dynamical system (X, xy, G)
are equivalent:
1. (X, z0) is point-universal.
2. (X, 0, Q) is isomorphic, as a dynamical system, to its enveloping semigroup
(E(X),i(e),G) via the map p — pxy, £ — X.

The elements of F(X,G) may behave very badly as maps of X into itself; usually
they are not even Borel measurable. However our main interest in the enveloping
semigroup lies in its algebraic structure and its dynamical significance. A key lemma
in the study of this algebraic structure is the following:

Lemma 2.3 (Ellis-Numakura). Let L be a compact Hausdorff semigroup in which
all maps p — pq are continuous. Then L contains an idempotent; i.e., an element v
with v? = v.

Proof. By Zorn’s lemma, there exists a minimal compact subsemigroup K C L. For
any v € K, Kv is a compact subsemigroup of K whence Kv = K and in particular
for some k € K, kv = v. Now the set M = {l € K : lv = v} is a non-empty closed
subsemigroup of K, and again we deduce that M = K. In particular vv = v. O

In the next series of propositions we state some of the basic properties of the
enveloping semigroup E = E(X, G). Most of these are easy consequences of the defi-
nitions and Lemma 2.3, but some require deeper arguments, like Ellis’ joint continuity
theorem [21].

Proposition 2.4. 1. A subset M of E is a minimal left ideal of the semigroup E
if and only if it is a minimal subsystem of (E,G). In particular a minimal left
1deal is closed. We will refer to it sstmply as a minimal ideal. Minimal ideals
M in E exist and for each such ideal the set of idempotents in M, denoted by
J = J(M), is non-empty.

2. Let M be a minimal ideal and J its set of idempotents then:

(a) Forve J andp € M, pv = p.

(b) For eachv € J, vM ={vp:p e M} ={p € M : vp = p} is a subgroup of
M with identity element v. For every w € J the map p — wp s a group
1somorphism of vM onto wM .

(¢) {vM : v € J} is a partition of M. Thus if p € M then there exists a
unique v € J such that p € vM.

3. Let K, L, and M be minimal ideals of EE. Let v be an idempotent in M, then
there exists a unique idempotent v' in L such that vv' =o' and v'v =v. (We
write v ~ V" and say that v' is equivalent to v.) If v" € K is equivalent to v/,
then v" ~wv. The map p +— pv' of M to L is an isomorphism of G-systems.

Proposition 2.5. We have the following connections between dynamical properties
of the system (X, Q) and algebraic properties of E = E(X,G). Here M denotes an
arbitrary but fized minimal ideal in E, J denotes the collection of idempotents in M,
and J is the collection of all minimal idempotents in E (i.e. those idempotents which
belong to minimal ideals).
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1. Ogx = Ex

2. Ogx is minimal iff for every minimal ideal M in E, Ogx = Mx iff in every
minimal ideal there is an idempotent v such that ve = x. Thus JX = {vx :v €
J, x € X} is the set of minimal points of the system (X, G). Applying this to
the product system we see that J(X x X) = {(vx,vz’) 1 v € J, (z,2") € X x X}
1s the set of minimal points in X x X.

3. The pair (x,2') is proximal iff px = px’ for some p € E iff there exists a
manimal ideal M in E with pr = px’ for everyp € M.

4. If (X, G) is minimal, then

Pl ={s' € X : (z,2/) € P} ={vz:v e J}.

In particular x € X is a distal point iff ve = x for every v € J.

ForveJ every pair of distinct points in vX is distal (i.e. not proximal).

The relation P is transitive iff E contains a unique minimal ideal.

(X, G) is distal iff E is a group.

A distal system is pointwise minimal (i.e. every point belongs to a minimal

set).

9. (X, Q) is distal iff X x X is pointwise minimal.

10. A factor of a distal system is distal.

11. (X, G) is equicontinuous iff E is a group of homeomorphisms of X and the
topologies of pointwise and uniform convergence coincide on E.

12. (X, G) is equicontinuous iff E is a group of continuous maps. (This requires
Ellis’ joint continuity theorem [21].)

Sl SRR

3. WAP DYNAMICAL SYSTEMS

The following characterization of WAP dynamical systems is due to Ellis and
Nerurkar [27] (see also Ellis [23]) and is based on a result of Grothendieck [57] (namely:
pointwise compact bounded subsets in C'(X) are weakly compact for every compact
X).

Theorem 3.1 (Ellis-Nerurkar). Let (X, G) be a dynamical system. The following
conditions are equivalent.
1. (X,G) is WAP.

2. The enveloping semigroup E(X,G) consists of continuous maps.

In their paper [5] Akin, Auslander and Berg obtain the following characterization
of AE systems.

Theorem 3.2 (Akin-Auslander-Berg). Let (X, G) be a compact metrizable system.
The following conditions are equivalent.

1. (X, G) is almost equicontinuous.
2. There exists a dense Gs subset Xo C X such that every member of the envelop-
ing semigroup E(X,G) is continuous on Xj.

From this result they deduce that every compact metric WAP system is AE, [5].
Since every subsystem of a WAP system is WAP it follows from Theorems 3.1 and
3.2 that every metrizable WAP system is both AE and HAE.
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Finally we have the following result of Downarowicz [20] (see also [41, Theorem
1.48]). When the acting group G is Abelian, a point transitive WAP system is al-
ways isomorphic to its enveloping semigroup, which in this case is a commutative
semitopological semigroup. Thus for such G the class of all metric, point transitive,
WAP systems coincides with the class of all metrizable, commutative, semitopological
semigroup compactifications of G. In [20] one can find many interesting examples of
WAP but not equicontinuous Z-systems.

4. SOME CONCRETE EXAMPLES OF ENVELOPING SEMIGROUPS

Ezxample 4.1. (See e.g. [41]) Let (X, G) be a point transitive system. Then the action
of G on X is equicontinuous if and only if K = E(X,G) is a compact topological
group whose action on X is jointly continuous and transitive. It then follows that
the system (X, G) is isomorphic to the homogeneous system (K/H,G), where H is a
closed subgroup of K and G embeds in K as a dense subgroup. When G is Abelian
H = {e} is trivial, and F(X,G) = K. In particular, for G = Z the collection
of Kronecker (= minimal equicontinuous) systems coincides with the collection of
compact Hausdorff monothetic topological groups.

Ezxample 4.2. (See [85] and [45] for an enhanced version.) Let G' be a semisimple
analytic group with finite center and without compact factors. For simplicity suppose
further that G is a direct product of simple groups. In his paper [85] Veech shows that
the algebra W AP(G), of bounded, right uniformly continuous, weakly almost periodic
real valued functions on G, coincides with the algebra W* of continuous functions on
G which extend continuously to the product of the one-point compactification of the
simple components of G' ([85, Theorem 1.2]). In particular we have:

Theorem. For a simple Lie group G with finite center (e.g., SL,(R)) WAP(G)
= W*. The corresponding universal WAP compactification is equivalent to the one
point compactification X = G* of G. Thus F(X,G) = X.

A similar but a bit more interesting situation occurs in the following example.

Ezxample 4.3. (See [45]) Let G = S(N) be the Polish topological group of all per-
mutations of the set N of natural numbers (equipped with the topology of pointwise
convergence). Consider the one point compactification X* = NU {oco} and the asso-
ciated natural G action (G, X*). For any subset A C N and an injection v : A — N
let p, be the map in (X*)X" defined by

palz) = {a(m) reA

00 otherwise

We have the following simple claim.

Claim. The enveloping semigroup F = E(X*, G) of the G-system (X*, G) consists of
the maps {p, : @ : A — Z} as above. Every element of E is a continuous function so
that by the Grothendieck-Ellis-Nerurkar theorem [27], the system (X*, G) is WAP.

Proof. Let m, be a net of elements of S(N) with p =lim, 7, in E. Let A={n € N:
p(n) # oo} and a(n) = p(n) for n € A. Clearly @ : A — N is an injection and p = p,.



ENVELOPING SEMIGROUPS 9

Conversely given A C N and an injection o : A — N we construct a sequence ,, of
elements of S(N) as follows. Let A, = AN|[l,n] and M,, = max{a(i) : i € A,}. Next
define an injection (3, : [1,n] — N by

Buls) = {O‘(j) Jea

Jj+ M, +n otherwise.

Extending the injection (3, to a permutation 7, of N, in an arbitrary way, we now
observe that p, = lim, ., 7, in E. The last assertion is easily verified. ]

In fact, it is shown in [45] that £ = E(X*, Q) is isomorphic to the universal WAP
compactification GWAP of G; which, in turn, is also the universal UC(G) compacti-
fication GUY of G (where UC(G) = RUC(G) N LUC(Q) is the algebra of bounded
right and left uniformly continuous functions on G).

Ezample 4.4. (See [47]) The following is an example of a dynamical system (X,Z)
which is distal, HNS, and its enveloping semigroup F(X) is a compact topological
group isomorphic to the 2-adic integers. However, (X, Z) is not WAP and a fortiori
not equicontinuous.

Let S = R/Z (reals mod 1) be the circle. Let X =S x (NU{oc}), where NU {0}
is the one point compactification of the natural numbers. Let T': X — X be defined
by:

T(s,n)=(s+2",n), T(s,00)=(s,00).
It is not hard to see that E(X) is isomorphic to the compact topological group Zs
of 2-adic integers. The fact that X is not WAP can be verified directly by observing
that E(X) contains discontinuous maps. Indeed, the map f, € F(X) corresponding
to the 2-adic integer

a=...10101=1+4+16+ ...

can be described as follows: f,(s,n) = (s + a,,n), where
2k 1 1 22 ] 9
@S g T3 S ggm T

Geometrically this means that half of the circles are turned by approximately 2 /3,
while the other half are turned by approximately the same angle in the opposite
direction. The map f, is discontinuous at the points of the limit circle.

Ezxample 4.5. (See [44]) Let T = R/Z be the one-dimensional torus, and let & € R be
a fixed irrational number and R,, : T — T is the rotation by o, R, = S+« (mod 1).
We define a topological space X and a continuous map 7 : X — T as follows. For
B € T\ {na:n € Z} the preimage 7~ () will be a singleton xg. On the other
hand for each n € Z, 7~ '(na) will consist of exactly two points z,,, and . For
convenience we will use the notation 5%, (3 € T) for points of X, where (na)~ =z,

no’

(na)t =a}t, and B~ =T =xgfor € T\ {na:n € Z}. A neighborhood basis for
the topology at a point of the form x5, 5 € T\ {na : n € Z}, is the collection of sets
7B —e,8+¢), e > 0. For (na)~ a neighborhood basis will be the collection of sets
of the form {(na)~}Ur ! (na—e, na), where ¢ > 0. Finally for (na)™ a neighborhood
basis will be the collection of sets of the form {(na)*}Un =1 (na, na+e¢). It is not hard
to check that this defines a compact metrizable zero dimensional perfect topology on

X (hence X is homeomorphic to the Cantor set) with respect to which 7 is continuous.



10 ELI GLASNER

Next define T': X — X by the formula T3% = (3 + a)*. Again it is not hard to see
that 7 : (X,T) — (T, R,) is a homomorphism of dynamical systems and that (X, T)
is minimal and not equicontinuous.

We now define for each £ € T two distinct maps pgjE : X — X by the formulas

pf(B)=B+%, p (B =B+
None of the following claims is hard to verify.

1. For every ¢ € T and every sequence, n; / oo with lim; . n;a = &, and Vi, n;a <
&, we have lim; o, 7™ = p; in B (T, X). An analogous statement holds for pg.

2. E(X,T) :{T”:nEZ}U{pf:feT}

3. The subspace {T™ : n € Z} inherits from E the discrete topology.

4. The subspace E(X,T)\ {T" : n € Z} = {pgt : £ € T} is homeomorphic to
the “two arrows” space of Alexandroff and Urysohn (see [28, page 212], and
also Ellis’ example [25, Example 5.29]). It thus follows that E is a separable
Rosenthal compact of cardinality 2%,

5. For each £ € T the complement of the set C’(pgi) of continuity points of pgi
is the countable set {3F : 8+ & = na, for some n € Z}. In particular each
element of FE is of Baire class 1.

Ezample 4.6. (See [37, Lemma 4.1]) Let G be a discrete group. We form the product
space = {0,1}¢ and let G act on € by translations: (gw)(h) = w(g~'h), w €
Q, g,h € G. The corresponding G-dynamical system (2, G) is called the Bernoulli
G-system. The enveloping semigroup of the Bernoulli system (€2, G) is isomorphic to
the Stone-Cech compactification SG (as a G-system but also as a semigroup, when
the semigroup structure on G is as defined e.g. in [25]). To see this recall that the
collection {A : A C G} is a basis for the topology of 3G consisting of clopen sets.
Next identify Q = {0,1}¢ with the collection of subsets of G' in the obvious way:
A «— 14. Now define an “action” of G on 2 by:

pxA={geG:g'pec A1}

It is easy to check that this action extends the action of G on () and defines an
isomorphism of G onto E(£2, G).

5. NIL-SYSTEMS OF CLASS 2

For the theory of nil-flows we refer the reader to the book by Auslander, Green and
Hahn “Flows on homogeneous spaces” [8], where incidentally a use of Ellis’ semigroup
theory plays an important role. As we have seen above the enveloping semigroup of
a distal system is, in fact, a group. For a special kind of distal systems, namely those
that arise from class 2 nil-flows, one can provide an explicit description of the group
E(X,G). The first example of such computation was given by Furstenberg in his
seminal paper [31].

Ezample 5.1. Let T = R/Z be the one-torus and let T : T?> — T? be defined by
T(z,y) = (2+a,y+z), where a € R is irrational, and addition is mod 1. Furstenberg
shows that (T?,T) is a minimal distal but not equicontinuous dynamical system, and
exhibits F(T?,T) as the collection of all maps p : T? — T? of the form:

p(z,y) = (2 + B,y + 6(2)),
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where f € T and ¢ : T — T is a (not necessarily continuous) group endomorphism.
Now let

1ny
N={ géi)mez, 2y €T,
so that
1 ny 1 n v I n4+n y+y +n
01 z 01 2Z|=10 1 z+ 2
0 0 1 0 0 1 0 0 1

N is a nilpotent group with center K = {<é§§> :y € T} and [N,N] C K. Set

110 D
a= (8 ! c1v>, where o € T is irrational and let

Fz{(é%%) :n € Z}.

Then I' is a cocompact discrete subgroup of N and the nil-system (N/I',a), with
a- gl = (ag)T, g € G, is isomorphic to the minimal system (T2, T), T(z,y) =
(z+ a,y + z), described above.

Furstenberg’s example and subsequently Namioka’s work [72] motivated my work
on nil-systems of class 2 [38], where the following theorem is proved. Let X be
a compact metric space and a : X — X a fixed homeomorphism such that the
system (X, a) is minimal. Suppose K C Homeo (X) is a compact subgroup in the
centralizer of a which is topologically isomorphic to a (finite or infinite dimensional)
torus. Suppose further that the quotient map = : X — Z = X/K realizes the
maximal Kronecker factor of (X, a). Note that under these conditions the system
(X, a) is minimal and distal, hence its enveloping semigroup F = E(X,a) is a group.

Theorem 5.2. The following conditions on the system (X, a) as above are equivalent.

1. The enveloping semigroup E is (algebraically) a nilpotent group.

2. There ezists a nilpotent class 2 subgroup N C Homeo (X) and a closed cocom-
pact subgroup I' C N such that: (i) a € N, (ii) K C N and K is central in N,
(i1i) [N, N] C K, and the nil-system (N/I',a) is isomorphic to (X, a).

3. For every xg,x1 € X the subsystem ) = 6axa(9&0,$1) of the product X x X is
invariant under the action of the group Ak = {(k,k) : k € K} and the quotient
map m : Q — Q/Ag = Zy realizes the largest Kronecker factor of the system
(Q,a x a).

When these equivalent conditions hold then I' is isomorphic to a subgroup of the group
Hom .(Z, K) of continuous homomorphisms of the compact group Z into K. If, in
addition, K , the dual group of K, is finitely generated, then N is locally compact and
o-compact and I" is a countable discrete subgroup of N.

Remark 5.3. The assumption that K is a torus (rather than any central compact
subgroup of V) can be removed for a price: The presentation of (X, a) one obtains is
now of the form (W \ N/I',a), where W is a compact Abelian subgroup of N which
commutes with a and satisfies W N K = {e} ([38, Theorem 2.1%]).

The easy part of the proof of the theorem consists of yet another concrete compu-
tation of an enveloping semigroup:
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Ezxample 5.4. Consider the nil-system (X, a) as described in condition 2 of Theorem
5.2. Thus X = N/T" and we let xy = ' be the distinguished point of the system
(X,a). Let ¢9 : N — K be the group homomorphism defined by ¢o(g) = [a, g]. Let
Hom (N, K') be the group of all (not necessarily continuous) homomorphisms from N
to K. We endow Hom (N, K') with the (compact) topology of pointwise convergence.
Now set
O = cls{¢; : n € Z},
and
E =cls{(a"zo,d}) € X x ®:n € Z}.

Proposition 5.5. The formulas
(9T, ) (AT, ¥) = (¢(h)hgT’, ¢1))
(9T, 0)~" = (¢(9)g~'T,¢7"),

define a group structure on E. The resulting group 1s nilpotent of class 2. Multiplica-
tion on the left by a = (al', ¢o) is continuous and (E, a) is isomorphic, as a dynamical
system and as a group, to (F,a).

6. A DYNAMICAL VERSION OF THE BOURGAIN-FREMLIN-TALAGRAND
DICHOTOMY AND TAME DYNAMICAL SYSTEMS

The following theorem of Rosenthal [78], reformulated by Todorcevic [82], was the
starting point of the Bourgain-Fremlin-Talagrand theorem.

Let X be a Polish space. Let C,(X) be the space of real valued continuous functions
on X equipped with the pointwise convergence topology.

Theorem 6.1. Let {f,}nen be a sequence of functions in Cy(X) which is pointwise
bounded (i.e., for each x € X the sequence {f,(x)}nen is bounded). Then, either the
sequence { fn fnen contains a pointwise convergent subsequence, or it contains a subse-
quence whose closure in RX is homeomorphic to BN, the Stone-Cech compactification
of N.

A sequence {(A,, 0, An1) fnen of disjoint pairs of subsets of X is said to be indepen-
dent if for every finite ¥ C I and o : F' — {0,1} we have (), .y Anom) # 0. It is said
to be convergent if for every x € X, either z € A, for all but finitely many n, or
x ¢ A, for all but finitely many n.

For example, if { f,, }nen is a pointwise convergent sequence in C,(X') then for every
two real numbers s < ¢ the sequence {(f,'(—00,s], f,/![t,00))}nen is convergent.
On the other hand, for X = {0,1}" the sequence of pairs {(A, o, An1)}nen, With
A, ={xr € X :2(n) =i}, is an independent sequence.

The following claim is the combinatorial essence of Rosenthal’s theorem: A sequence
of disjoint pairs {(An0, An1) }nen always contains either a convergent subsequence or
an independent subsequence.

Ideas of independence and /¢; structure were introduced into dynamics by Glasner
and Weiss in [49]. First by using the local theory of Banach spaces in proving that
if a compact topological Z-system (X,T') has zero topological entropy then so does
the induced system (9M(X),T.) on the compact space of probability measures on X;
and also in providing a characterization of K-systems in terms of interpolation sets
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which are the same as independence sets in this situation (we refer the reader to [49]
and [66] for these important notions; see also Remark 11.3 below).

A topological space K is Rosenthal compact [53] if it is homeomorphic to a pointwise
compact subset of the space B;(X) of functions of the first Baire class on a Polish
space X. All metric compact spaces are Rosenthal. An example of a separable
non-metrizable Rosenthal compactum is the Helly compact of all (not only strictly)
increasing selfmaps of [0,1] in the pointwise topology. Another is the two arrows
space of Alexandroff and Urysohn (see Engelking [28]).

A topological space K is a Fréchet space if for every A C K and every x € A there
exists a sequence z,, € A with lim,,_., z, = = (see Engelking [28]). Clearly, SN, the
Stone-Cech compactification of the natural numbers N, cannot be embedded into a
Fréchet space (in fact, any convergent sequence in N is eventually constant).

The following theorem is due to Bourgain, Fremlin and Talagrand [11, Theorem
3F]. As mentioned above it was motivated by results of Rosenthal [78] (see also [19]
and [82]). The second assertion (BFT dichotomy) is presented as in the book of
Todorcevié¢ [82] (see Proposition 1, section 13).

Theorem 6.2. 1. Every Rosenthal compact space K is Fréchet.

2. (BFT dichotomy) Let X be a Polish space and let {f,}nen C C(X) be a se-
quence of real valued functions which is pointwise bounded. Let K be the
pointwise closure of {fn}nen in RX. Then either K C By(X) (so that K is
Rosenthal compact) or K contains a homeomorphic copy of ON.

In [44, Theorem 3.2] the following dynamical Bourgain-Fremlin-Talagrand dichotomy
was established.

Theorem 6.3 (A dynamical BFT dichotomy). Let (X, G) be a metric dynamical sys-
tem and let E(X, Q) be its enveloping semigroup. We have the following dichotomy.
FEither

1. E(X,G) is separable Rosenthal compact, hence with cardinality card E(X) <
2“; or
2. the compact space E(X,G) contains a homeomorphic copy of BN, hence

card B(X,G) = 2%,

In [42] a dynamical system is called tame if the first alternative occurs, i.e. E(X, Q)
is Rosenthal compact. In these terms Theorem 6.3 can be rephrased as saying that
a metric dynamical system (X, G) is either tame or E(X,G) contains a topological
copy of FN. When (X, ) is a metrizable system the group G is embedded in the
Polish group Homeo (X) of homeomorphisms of X equipped with the topology of
uniform convergence. From this fact it is easy to deduce that the enveloping semigroup
E(X, Q) is separable. If moreover (X, G) is tame then £ = E(X,G) is Fréchet and
every element p € E is a limit of a sequence of elements of G, p = lim,, . gy.

Examples of tame dynamical systems include metric minimal equicontinuous sys-
tems, weakly almost periodic (WAP) systems (Akin, Auslander, and Berg [5]), and
hereditarily non-sensitive (HNS) systems (Glasner and Megrelishvili [44]).

The cardinality distinction between the two cases entails the first part of the fol-
lowing proposition [42].
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Proposition 6.4. 1. For metric dynamical systems tameness is preserved by tak-
mg
(a) subsystems,
(b) countable products, and
(c) factors.
2. Every metric dynamical system (X, G) admits a unique mazimal tame factor.

Proof. As pointed out, the first statement follows from cardinality arguments (note
that E(][ X;,G) C [[ E(Xi,G) for every countable family {(X;, G)} of dynamical
systems; moreover E(X,G) = E(X",G) for any system (X,G) and any cardinal
number k). To prove the second use Zorn’s lemma, the first part of the theorem, and
the fact that a chain of factors of a metric system is necessarily countable, to find
a maximal tame factor. Then use the first part again to deduce that such maximal
factor is unique. O

The next result is stated explicitly first in [47, Theorem 6.2].

Theorem 6.5. A compact metric dynamical system (X,G) is tame if and only if
every element of E(X,G) is a Baire class 1 function from X to itself.

Proof. If Y is a separable metric space and Bi(X,Y) C Y¥ is the space of Baire 1
functions from X to Y, then every compact subset of B;(X,Y") is Rosenthal. Indeed,
Y embeds in RN, hence B;(X,Y) embeds in B;(X,RY) = B;(X x N). In particular,
if B(X,G) C Bi(X,X), then E(X,G) is Rosenthal, which means that (X,G) is
tame. Conversely, if E(X,G) is Rosenthal, then by the Bourgain-Fremlin-Talagrand
theorem it is Fréchet [11]. In particular, every p € E(X,G) = G (we may assume
that G C Homeo (X)) is the limit of a sequence of elements of G and therefore of
Baire class 1 (see e.g. [64]). O

Combining this result with Theorems 8.1 and 8.2 we deduce the following:
Theorem 6.6. Fvery metric HAFE system is tame.

From the results in Section 3 we deduce the following:
Theorem 6.7. Every metric WAP system is tame.

Reexamining the examples presented in Section 4 we see that:

1. A metrizable minimal and equicontinuous system, as in Example 4.1, is tame.

2. The WAP systems in examples 4.2 and 4.3 are tame.

3. This is also the case with the distal HNS but not WAP Z-system in Example
4.4.

4. The almost automorphic Example 4.5 is again tame, although this one is not
HNS.

5. Evidently, the Bernoulli system Q = {0,1} in Example 4.6 is not tame.

6. As we will see in Section 7 below, a distal minimal system is tame if and only
if it is already equicontinuous. Thus the nil-systems presented in Section 5 are
tame only when they are equicontinuous.

7. In his paper [26] Ellis, following Furstenberg’s classical work [30], investigates
the projective action of GL(n,R) on the projective space P*~1. It follows from
his results that the corresponding enveloping semigroup is not first countable.
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In a later work [3], Akin studies the action of G = GL(n,R) on the sphere
S"~1 and shows that here the enveloping semigroup is first countable (but not
metrizable). The dynamical systems D; = (G,P"!) and Dy = (G,S"!) are
tame but not HNS. Note that F(D;) is Fréchet, being a continuous image of a
first countable space, namely E(Ds).

7. INJECTIVE DYNAMICAL SYSTEMS

In her paper [67], mentioned in the introduction, Kéhler also considers another
useful notion, that of the enveloping operator semigroup. For a Banach space K and
a bounded linear operator T': K — K this is defined as

E(T) =clsy«{T*" : n € N},

where the closure is taken in the space £(K™*) of bounded linear operators on the
dual space K*, with respect to the weak™ operator topology. Kohler shows that when
(X, ¢) is a Z-dynamical system, K = C(X), and T : C(X)* — C(X)* is the operator
induced by ¢ on the dual space C'(X)*, there is a natural surjective homomorphism
of dynamical systems
O:E(T) — E(X, ).

If we view (X ), the compact space of probability measures on X equipped with the
weak® topology, as a subset of C'(X)* with span(M(X)) = C(X)*, we see that this
map  is nothing but the restriction of an element of £(T') to the subspace of Dirac
measures {J, : ¢ € X}. Theorem 5.3 of [67] says that for a tame metric dynamical
system (X, ¢), the map ® is an isomorphism of the enveloping operator semigroup
onto the enveloping semigroup. (We will re-prove this theorem below.) In [42] as
well as in this section, I call a dynamical system (X, G) for which the corresponding
map ¢ : £(G) — E(X,G) is an isomorphism, an injective system. In [67] there are
several other cases where systems are shown to be injective and the author raises the
question whether this is always the case. As she points out this question was posed
earlier by J. S. Pym (see [77]).

As was mentioned above, the following theorem is due to Kohler [67]; our proof
though is different ([42, Theorem 1.5], see also [41, Lemma 1.49]).

Theorem 7.1. Let (X, G) be a metric tame dynamical system. Let (X)) denote the
compact convez set of probability measures on X (with the weak* topology). Then each
element p € E(X,G) defines an element p, € E(I(X),G) and the map p — p, is
both a dynamical system and a semigroup isomorphism of E(X, G) onto E(M(X), G).

Proof. Since E(X, G) is Fréchet we have for every p € E a sequence g; — p of elements
of G converging to p. Now for every f € C(X) and every probability measure
v € IM(X) we get by the Riesz representation theorem and Lebesgue’s dominated
convergence theorem

giv(f) = v(fog) = v(fop):=pv(f).
Since the Baire class 1 function f o p is well defined and does not depend upon the
choice of the convergent sequence g; — p, this defines the map p — p, uniquely.
It is easy to see that this map is an isomorphism of dynamical systems, whence a
semigroup isomorphism. Finally as G is dense in both enveloping semigroups, it
follows that this isomorphism is onto. O
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Definition 7.2. We will say that the dynamical system (X, G) is injective if the
natural map F(M(X),G) — E(X,G) is an isomorphism.

Since the map p +— p, described in Theorem 7.1 is the inverse of the map ® it
follows that in these terms the theorem can be restated as follows. A tame dynamical
system is injective. Our next theorem, which relies on [36], answers the question of
J. S. Pym and A. Kohler (see also S. Immervoll [62]).

Theorem 7.3 (Glasner, [42]). A minimal distal metric dynamical system is injective
if and only if it is equicontinuous.

Proof. Tt is well known that when (X, G) is equicontinuous, £ = E(X, G) is a compact
topological group and in that case it is easy to see that (X, ) is injective. By a
theorem of Ellis (see e.g. [25]), a system (X, G) is distal if and only if F(X,G) is a
group. Thus, if (X, G) is distal metric and injective then E(X,G) = E(O(X),G)
is a group and it follows that the dynamical system (9(X),G) is also distal. By
Theorem 1.1 of [36], the system (X, G) is equicontinuous. O

Corollary 7.4. A munimal distal metric system is tame if and only if it is equicon-
tinuous.

Proof. For a metric minimal equicontinuous system the enveloping semigroup is a
compact group of homeomorphisms of X. For the other direction observe that if
(X, @) is tame then by Theorem 7.1 it is injective hence, by Theorem 7.3, it is
equicontinuous. 0

By way of illustration consider, given an irrational number a € R, the minimal
distal dynamical Z-system on the two torus (T?,T) given by:

T(x,y) = (x+ o,y + ) (mod 1).

Since this system is not equicontinuous Theorem 7.3 and Corollary 7.4 show that it
is neither tame nor injective.

FExercise 7.5. Show that, for every discrete countable group G, the Bernoulli G-system
({0,1}¢, @), described in Section 4, Example 4.4, is injective.

The fact that tame systems are injective also yields the result that metric tame min-
imal Z-systems have zero topological entropy [42, Corollary 1.8]. But, see Theorem
13.1.2 below for a much stronger statement.

8. BANACH SPACE REPRESENTATIONS OF A DYNAMICAL SYSTEM

With every Banach space V' one can associate a dynamical system Sy = (Y, H) as
follows: H = Iso (V) is the group of all linear isometries of V" onto itself, equipped with
pointwise convergence topology (or the compact-open topology, the two topologies
coincide on H), and Y is the unit ball of the dual space V*, equipped with the weak*-
topology. The action of H on 'Y is defined by gé(v) = ¢(g ' (v)), g€ H,p € Y, v € V.
The continuity of this action can be easily verified. A representation of a dynamical
system (X,G) on a Banach space V' is a homomorphism of (X, G) to Sy = (Y, H),
that is, a pair of continuous maps (h,«a), h : G — Iso(V) and a : X — Y, such
that h is a group homomorphism and a(gx) = h(g)a(x) for all g € G and z € X. A
representation is proper if « is a topological embedding.
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An old observation of Teleman [81] is that every dynamical system (X, G) has a
proper representation on C'(X). Namely

a(z) = oy,

where 0, is the point mass at x viewed as an element of C'(X)*. Finding represen-
tations on geometrically “nicer” Banach spaces (Hilbert, reflexive, etc.) is a more
difficult task.

A theorem of Megrelishvili asserts that a metric dynamical system (X, G) is WAP
if and only if it admits a proper representation on a reflexive Banach space [69,
Corollary 6.10], [44, Theorem 7.6(1)]. A dynamical system is Radon—Nikodgm (RN)
if it admits a proper representation on an Asplund Banach space [69, Definition 3.10],
[44, Definition 7.5.2]. (When G = {e} one retrieves the class of Radon-Nikodym
compact spaces in the sense of Namioka [72].) Recall that a Banach space V is
Asplund if for every separable subspace & C V the dual E* is separable. Reflexive
spaces and spaces of the form ¢y(I") are Asplund. Regarding the history and the
relevance of Asplund spaces see for example [12, 18, 29]. In [69] Megrelishvili also
shows that every metric RN system is LE (locally equicontinuous, see [50]).

The next two theorems are among the main results of [44].

Theorem 8.1 ([44, Theorem 9.14]). For a compact metric G-space X the following
conditions are equivalent:

1. X is RN.

2. X is HNS.

3. X is HAFE.

4. Every nonempty closed G-subspace Y of X has a point of equicontinuity;

5. For any compatible metric d on X the metric dg(z,y) = supyeq d(gz, gy)

defines a separable topology on X.

Theorem 8.2 ([44, Corollary 14.7]). Let (X, G) be a compact metric HNS system.
Then p : X — X is of Baire class 1 for every p € E(X,G).

9. WHEN IS THE ENVELOPING SEMIGROUP METRIZABLE?

It was proved in [44] that the equivalent conditions of Theorem 8.1 imply that the
enveloping semigroup E(X) must be of cardinality < 2¢. In fact, it was established
in [44, Theorem 14.8] that E(X) is Rosenthal compact and the question was posed
whether this conclusion can be strengthened to “E(X) is metrizable”. We now know
that the answer to this question is positive. Moreover, strikingly, it turns out that
metrizability of F(X), in fact, is equivalent to the conditions of Theorem 8.1, ([47,
Theorem 1.2]).

Theorem 9.1 (Glasner, Megrelishvili and Uspenskij). Let X be a compact metric
G-space. The following conditions are equivalent:

1. The dynamical system (X, Q) is hereditarily almost equicontinuous (HAE).

2. The dynamical system (X, G) is RN, that is, admits a proper representation on
an Asplund Banach space.

3. The enveloping semigroup E(X) is metrizable.
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The proof of this theorem relies on results from [44] and, beyond that, mainly on
some Banach space tools and Namioka joint-continuity-type results. Here are some
signposts for the proof. We begin with the following special case:

Theorem 9.2. Let V' be a Banach space with a separable dual, H = Iso(V), Y
the compact unit ball of V* with the weak® topology. Then the enveloping semigroup
E(Y, H) is metrizable.

Sketch of proof. 1. Let K be the set of all linear operators of norm < 1 on the Banach
space V*. It is easy to see that the closure of H, with respect to the weak* operator
topology on the space of bounded linear operators on V*, is contained in K.

2. Since the weak® operator topology is the one inherited from the product space
(V*)V" (where each factor V* is endowed with the weak* topology), and as K is
identified with a closed subset of the product [,y [|f[|Y', it follows that w*-cls H C
K coincides with the enveloping semigroup E(Y, H) C Y.

3. By assumption V* is separable and it follows that V' is separable as well. In turn
this fact implies that Y, the unit ball of V*, is metrizable.

4. Now choose a norm-dense countable set F' C V*, and observe that K is homeo-
morphic to the corresponding subset of the countable product [] ., [| f[|Y". The latter
is clearly metrizable and therefore so is K = E(Y, H). O

e With a few more technical arguments this takes care of the implication
RN = E(X,G) is metrizable.
e The implication
HAFE = RN
uses the well known Davis-Figiel-Johnson-Pelczynski Banach space construc-
tion [16].
e The remaining implications involve Baire 1 class arguments and a Namioka
type theorem.
e Finally it should be pointed out that the equivalence
HAE < E(X,G) is metrizable
can be proved directly without the use of Banach representations.

For more details see [44] and [47].

10. SOME APPLICATIONS OF THE GMU THEOREM

Minimal systems with metrizable enveloping semigroup are equicontinu-
ous. Under the additional assumption that (X, G) is minimal Theorem 9.1 now leads
to the following definitive result in the spirit of Ellis’ joint continuity theorem [21].

Theorem 10.1. [47, Theorem 6.2] A metric minimal system (X, G) is equicontinuous
if and only if its enveloping semigroup E(X) is metrizable.

Proof. 1t is well known that the enveloping semigroup of a metric equicontinuous
system is a metrizable compact topological group. Conversely, if F(X) is metrizable
then, by Theorem 9.1, (X, G) is HAE and being also minimal it is equicontinuous. [

Remark 10.2. Theorem 10.1 answers negatively Problem 3.3 in [42].

Distality and equicontinuity. One version of Ellis’ joint continuity theorem says
that a compact dynamical system (X, G) whose enveloping semigroup is a group of
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continuous maps is necessarily equicontinuous (see [21] and [6, page 60]). Using Ellis’s
characterizations of distality and WAP:

e A dynamical system (X,G) is distal if and only if its enveloping semigroup
E(X) is (algebraically) a group, and

e A dynamical system (X,G) is WAP if and only if every element of E(X) is
continuous,

we can reformulate the joint continuity theorem as follows:
Theorem 10.3. A distal WAP system is equicontinuous

Example 4.4 in Section 4 above shows that the WAP condition can not be much
relaxed. Recall that this dynamical system (X,Z) is distal, HAE, with enveloping
semigroup E(X) which is a compact topological group isomorphic to the 2-adic inte-
gers, but is not WAP hence not equicontinuous.

However, for a point transitive HAE system distality is equivalent to equicontinuity
because, as we have seen, a distal point transitive system must be minimal and a
minimal HAE system is equicontinuous.

Semigroup compactifications of groups. A semigroup S is right topological if
it is equipped with such a topology that for every y € S the map z — xy from S
to itself is continuous. If for every y € S the self-maps x — zy and = — yx of §
both are continuous, S is a semitopological semigroup. A right topological semigroup
compactification of a topological group G is a compact right topological semigroup S
together with a continuous semigroup morphism G — S with a dense range such that
the induced action G x § — S is continuous. A typical example is the enveloping
semigroup E(X) of a dynamical system (X, G) together with the natural map G —
E(X). Semitopological semigroup compactifications are defined analogously.
We have the following direct corollaries of Theorem 9.1.

Corollary 10.4. For a metric HAE system (X, G) its enveloping semigroup E(X)
1s again a metrizable HAE system.

Proof. This follows from Theorem 9.1 because the enveloping semigroup of the flow
(G, E(X,G)) is isomorphic to E(X, G). O
Corollary 10.5. The following three classes of semigroups coincide:

1. Metrizable enveloping semigroups of G-systems.
2. Enveloping semigroups of HAE metrizable G-systems.
3. Metrizable right topological semigroup compactifications of G.

Proof. A dynamical system has the structure of a right topological semigroup com-
pactification of G if and only if it is the enveloping semigroup of some dynamical
system (see e.g. [41, Section 1.4] and [44, Section 2]). O

For WAP systems we have an analogous statement:

Corollary 10.6. The following classes of semigroups coincide:

1. Enveloping semigroups of WAP metrizable G-systems.
2. Metrizable semitopological semigroup compactifications of G.
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Moreover, when the acting group G is commutative, a point transitive WAP system
18 1somorphic to its enveloping semigroup, which in this case is a commutative semi-
topological semigroup. Thus for such G the class of all metric, point transitive, WAP
systems coincides with that of all metrizable, commutative, semitopological semigroup
compactifications of G.

Proof. The enveloping semigroup of a WAP dynamical system is a semitopological
semigroup compactification of G (see e.g. [41, Section 1.4] or [44, Section 2]). On
the other hand such a compactification yields a point-universal WAP G-system. The
second part of the theorem follows from [20] or [41, Theorem 1.48]. O

11. TAME DYNAMICAL SYSTEMS AND REPRESENTATIONS ON ROSENTHAL
BANACH SPACES

In this section I review the main results of [46] which examines representability of
dynamical systems on Rosenthal spaces.

Rosenthal’s celebrated dichotomy theorem asserts that every bounded sequence in
a Banach space either has a weak Cauchy subsequence or a subsequence equivalent to
the unit vector basis of I; (an l;-sequence). Consequently a Banach space V' does not
contain an [-sequence if and only if every bounded sequence in V' has a weak-Cauchy
subsequence [78]. In [46] the authors call a Banach space satisfying these equivalent
conditions a Rosenthal space. There are several other important characterizations
of Rosenthal spaces of which we will cite the following two. Rosenthal spaces are
exactly those Banach spaces whose dual has the weak Radon-Nikodym property [80,
Corollary 7-3-8]. Finally, for a Banach space V' with dual V* and second dual V**
one can consider the elements of V** as functions on the weak star compact unit
ball B* := By~ C V*. While the elements of V' are clearly continuous on B* this
is not true in general for elements of V**. By a result of Odell and Rosenthal [74],
a separable Banach space V' is Rosenthal iff every element v** from V** is a Baire 1
function on B*. More generally E. Saab and P. Saab [79] show that V' is Rosenthal
iff every element of V** has the point of continuity property when restricted to B*;
i.e., every restriction of v** to a closed subset of B* has a point of continuity.

The main result of [46] is that, for metrizable systems, the property of being tame
is a necessary and sufficient condition for Rosenthal representability.

Theorem 11.1. Let X be a compact metric G-space. The following conditions are
equivalent:

1. (G,X) is a tame G-system.

2. (G, X) is representable on a separable Rosenthal Banach space.

An analogous statement is proven for general (not necessarily metrizable) G-systems.

One of the important questions in Banach space theory until the mid 70’s was to
construct a separable Rosenthal space which is not Asplund. The first counterex-
amples were constructed independently by James [63] and Lindenstrauss and Stegall
[68]. In view of Theorem 11.1 we now see that a fruitful way of producing such dis-
tinguishing examples comes from dynamical systems. Just consider a compact metric
tame G-system which is not HNS (see e.g. Example 4.5 and remarks (4) and (7)
following Theorem 6.7, above) and then apply Theorem 11.1.
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12. THE HIERARCHY OF BANACH REPRESENTATIONS

In the following table (borrowed from [46]) we encapsulate some features of the
trinity: dynamical systems, enveloping semigroups, and Banach representations. Let
X be a compact metrizable G-space and E(X) denote the corresponding enveloping
semigroup. The symbol f stands for an arbitrary function in C(X) and fG = {fog:
g € G} denotes its orbit. Finally, cls(fG) is the pointwise closure of fG in R¥.

Dynamical characterization | Enveloping semigroup Banach representation
WAP | cls(fG) is a subset of C'(X) | Every element is continuous | Reflexive
HNS | cls(fG) is metrizable E(X) is metrizable Asplund
Tame | cls(fG) is Fréchet Every element is Baire 1 Rosenthal

TABLE 1. The hierarchy of Banach representations

13. THE STRUCTURE OF A MINIMAL TAME SYSTEM

In [42] T have shown that a minimal metrizable tame dynamical system with a
commutative acting group is PI and has zero topological entropy. Recently Huang
[59], and independently Kerr and Li [66], improved these results to show that under
the same conditions a minimal tame system is an almost 1-1 extension of its max-
imal equicontinuous factor and is uniquely ergodic (see also Huang, Li, Shao & Ye
[60], and Huang & Ye [61]). In these works the authors make a heavy use of the
structure theory of minimal dynamical systems, as developed by Ellis, Veech, Ellis-
Glasner-Shapiro, McMahon and van der Woude (see e.g. the survey [40] and the
references thereof). However the main tool in both works (of Huang and Kerr-Li)
is the combinatorial notion of independence (see Section 6 above) and the various
related notions of independence n-tuples. In fact, Kerr and Li in their work [66], use
independence to unify the theory of these various notions and in particular they are
able to characterize tame systems as those systems that (in some precise sense) do
not admit infinite independence sets ([66, Proposition 6.4.2], see also Remark 13.3
below). In turn they use this characterization to define a notion of relative tameness
and develop the whole theory in the relative setup.

In my work [43] — a continuation of [42] — I pursue purely structure theoretical
methods and in particular some of the ideas and tools which were developed in my old
work [36], to recover the results of Huang and Kerr & Li mentioned above, avoiding
the combinatorial treatment. The following theorem is quoted from [43].

Theorem 13.1. Let G be an Abelian group and (X, G) a metric tame minimal system.
Then:

1. The system (X, G) is almost automorphic. Thus there exist:
(a) A compact topological group Y with Haar measure n, and a group homo-
morphism k : G — Y with dense image.
(b) A homomorphism 7 : (X,G) — (Y, G), where the G action on'Y is via k.
(c) The sets Xg ={x € X : n7}(w(x)) = {x}} and Yy = m(Xy) are dense G
subsets of X and 'Y respectively.
2. The system (X,G) is uniquely ergodic with unique invariant measure p such
that m,(u) =n, and 7 : (X, u,G) — (Y,n,G) is a measure theoretical isomor-
phism of the corresponding measure preserving systems.
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The key tool used in the proof is a proposition about diffused measures ([43, Propo-
sition 3.3]), an earlier version of which first appeared in [36]. Another component of
the proof is an analogue of an old theorem of Ditor and Eifler [17]. It shows that
when a continuous surjection 7 : X — Y, with X and Y compact metric spaces,
is semiopen (i.e. it has the property that the image of a nonempty open set has a
nonempty interior) then so is the induced map m, : 9 (X) — M(Y) on the spaces of
probability measures equipped with the weak* topology.

Remark 13.2. Theset Xg = {z € X : 7~ (r(x)) = {x}} is a dense G4 and G-invariant
subset of X and thus has p measure either zero or one. In [66, Section 11] Kerr and
Li construct a minimal Toeplitz system which is tame and not null. Since in this
construction the growth of the sequence {n; < ny < ---} is arbitrary it follows that
the resulting Toeplitz system can be made not regular in the sense that the densities
of the periodic parts converge to d < 1. For such nonregular systems u(X,) = 0.
This shows that the unique invariant measure of a minimal tame system need not be
supported by the set Xy where 7 is 1-1.

Remark 13.3. Huang and Kerr & Li, following the works of Rosenthal [78] and
Glasner-Weiss [49], base their works on the notion of independence (see the Sec-
tion 6 above). For example, following Kerr and Li [66], given a dynamical system
(X, @) and a pair A = (Ag, A;) of subsets of X, a set J C G is called an indepen-
dence set for A if for every nonempty finite set J C [ and function o : I — {0,1}
we have () ;97" A5(g9) # 0. A pair (zg,71) € X x X is called an IT-pair if for any
neighborhood Uy x Uy of (xg,z1) the pair (Up, U;) has an infinite independence set
I C G. The following is one of many similar characterizations given in [66].

Theorem 13.4. [66, Proposition 6.4.2] A dynamical system (X, G) is untame if and
only if there exists a non-diagonal I'T-pair in X x X.

14. BRIEF REMARKS ON SOME RELATED TOPICS

On the interplay with combinatorial number theory. In his path-breaking
article [32] on Szemerédi’s theorem, Furstenberg initiated a new branch of ergodic
theory: the interplay between dynamics and combinatorial number theory. The re-
cent spectacular achievement in this field is the Green-Tao theorem on the existence
of arbitrarily long arithmetical progressions of primes [55]. Furstenberg’s paper was
followed by the work of Furstenberg and Weiss [34], where topological dynamics fol-
lows ergodic theory with its share of related combinatorial results. About the same
time, it was realized by Glazer (see e.g. [15]) and independently by Glasner [37] that
ultrafilters — and along with them, Stone-Cech compactifications of groups, envelop-
ing semigroups, minimal left ideals, idempotents, etc. — form a convenient language
and provide a powerful tool for working in this theory. Since then great advances were
made. This short subsection is hardly the place for a detailed account of these new
and exciting developments. I refer the reader to some of the authorities on the sub-
ject. Foremost comes Furstenberg’s book [33], and then Bergelson’s comprehensive
review article [10] and its 141 items reference list. See also Akin [2], and Hindman &
Strauss [58] for related research areas.

Universal ambits and universal minimal systems. For an arbitrary topological
group G, the Gelfand space S(G) of the algebra RUC(G) of bounded real valued
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right uniformly continuous functions, is a model for the universal ambit. (When G is
discrete this is 3G, the Stone-Cech compactification of G). This dynamical system is
point universal and thus has a structure of an enveloping semigroup (for instance it is
always isomorphic to its own enveloping semigroup). It follows then that any minimal
left ideal M = M(G) of S(G) is a model for the universal minimal G-system. Usually
there are many minimal left ideals but they are all isomorphic as semigroups as well
as dynamical systems and each of them is coalescent; i.e. every endomorphism of
(M, G) is an automorphism. An old result of Veech shows that for a locally compact
G the G-action on S(G) and hence also on M, are free. Moreover, when G is locally
compact but not compact, M(G) is non-metrizable [65].

In view of these results it is surprising to discover that for many familiar and well
investigated (mostly Polish) topological groups, M(G) is the trivial one point sys-
tem; that is, every compact G-system has a fixed point. Such a group is said to have
the fized point on compacta property, or to be extremely amenable. Typical exam-
ples of such groups are U(H) the unitary group of a separable infinite dimensional
Hilbert space with the strong operator topology [56], Lo(I, S*) the group of measur-
able maps from the unit interval I to the circle S! with pointwise multiplication and
the topology of convergence in Lebesgue measure [39], and the group Aut (Q, <) of
order preserving homeomorphisms of the rational numbers Q with the topology of
pointwise convergence [75] (where Q is considered as a discrete space). These results
are often intimately connected with combinatorial Ramsey theory and also with the
phenomenon of concentration of mass. Whereas in the previous subsection we have
seen topological dynamics in the service of combinatorial number theory, here the
situation is reversed and one sees results from combinatorial Ramsey theory applied
in order to prove theorems in topological dynamics.

Perhaps even more unexpected is the fact that for many Polish groups G the
universal minimal system (M, G) is metrizable and the G-action is easy to describe
and understand. This is the case for example for the groups, G = Homeo (S*) [75],
G = S, the group of all permutations of a countable set [51], and G = Homeo (C)
where C'is the Cantor set [52].

The computations of M (G) for S, and Homeo (C') were followed by the outstanding
work of Kechris, Pestov and Todorcevic who used model theory to give a unified and
elegant theory of the M(G) spaces for many closed subgroups of S, [65].

The first result of this kind was Pestov’s who, for G = Homeo (S'), identified
(M(G),G) as the circle S* with the natural G-action. The possibility that a similar
results will hold for, say S™ the unit sphere with n > 2, the Cantor set, or the
Hilbert cube, was proved to be wrong by Uspenskij who showed that the action of a
topological group G on its universal minimal system M (G) is never 3-transitive [83].

Again, this is not the place for a detailed exposition of this quickly developing
theory. Fortunately, there is now a new book by Pestov which will give the interested
reader a panoramic overview of the theory [76].

Note: See http://www.math.umd.edu/~mmb/md02/photos/ for Joe Auslander
and an enveloping semigroup.
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