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Abstract. A new class of dynamical systems is defined, the class of “locally equicon-
tinuous systems” (LE). We show that the property LE is inherited by factors as well
as subsystems, and is closed under the operations of pointed products and inverse
limits. In other words, the locally equicontinuous functions in l∞(Z) form a uni-
formly closed translation invariant subalgebra. We show that WAP ⊂ LE ⊂ AE,
where WAP is the class of weakly almost periodic systems and AE the class of al-
most equicontinuous systems. Both of these inclusions are proper. The main result
of the paper is to produce a family of examples of LE dynamical systems which are
not WAP.

§0. Introduction

A dynamical system is a pair (X, T ) where X is a compact Hausdorff space and
T a self homeomorphism. Unless stated otherwise we assume that X is metrizable
and equipped with a metric d(·, ·) bounded by 1. We also assume usually that the
system (X, T ) is topologically transitive and has a recurrent transitive point. The
dynamical system is equicontinuous when the homeomorphisms {Tn : n ∈ Z} act
on X as an equicontinuous family of maps. This class of dynamical systems is well
understood. The classical theory of equicontinuous dynamical systems characterizes
those systems completely. In particular we know that a topologically transitive
equicontinuous system is isomorphic to a rotation of a compact monothetic group
by a generator. Recently the theory of almost equicontinuous dynamical systems
has been treated by several authors (see [AAB1,2],[GW]). A dynamical system
(X,T ) is called almost equicontinuous (AE), if there is a point x0 ∈ X which (i)
has a dense orbit, (ii) is a recurrent point and (iii) is Lyapunov stable. The latter
means that x0 is an equicontinuity point (i.e. for every ε > 0 there exists a δ > 0
such that d(x, x0) < δ implies d(Tnx, Tnx0) < ε, ∀n ∈ Z). It turns out that
AE systems which are not equicontinuous are not at all rare. Every AE system is
uniformly rigid and every uniformly rigid system has an AE cover (see definitions
in the next section). However the class of AE systems in not well behaved in several
ways. A subsystem as well as a factor of an AE system may fail to be AE.

There is however a natural subclass of the AE systems which is well behaved. It
is the class of weakly almost periodic systems (WAP) (see e.g. [EN]). Every factor
as well as every subsystem of a WAP system is WAP. One way to see that the class
of WAP systems is closed under these operations, as well as many others such as
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pointed products and inverse limits, is to see that the class of weakly almost periodic
functions on Z forms a uniformly closed translation invariant subalgebra of l∞(Z).

Since every WAP system is AE, the fact that the WAP property is inherited by
subsystems, implies that every WAP system (X,T) has the property:

• For every x ∈ X, the orbit closure Y = ŌT (x) is an AE subsystem.

We take this to be the definition of a new class of dynamical systems. A dy-
namical system (X, T ) is called locally equicontinuous ( LE for short) if each point
x ∈ X is a point of equicontinuity of the subsystem Y = ŌT (x) ⊂ X. In other
words (X,T ) is LE if every transitive sub-system of X is AE. As we will show, the
class of LE functions; i.e. those functions f(n) ∈ l∞(Z) that arise as the restriction
of continuous functions F ∈ C(X) to the orbit of a transitive point of a LE system:

f(n) = F (Tnx0),

also forms a a uniformly closed translation invariant subalgebra of l∞(Z). The main
result of the paper is to produce a family of examples of LE dynamical systems
which are not WAP.

In the last section we review and augment some of the results of [GW]. Specif-
ically, we show that every uniformly rigid system has an AE cover, and we inves-
tigate the question: when the product of two topologically transitive systems is
topologically transitive?

We would like to thank the referee for a careful reading of the paper and for
suggesting several corrections.

§1. Local equicontinuity

For an AE system the (dense Gδ) subset Xtr, of transitive points, coincides with
the set of equicontinuity points. Moreover such a system is uniformly rigid; i.e.
there exists a sequence {nk}∞k=1 with |nk| → ∞ such that Tnk tends to the identity
uniformly (see [GM] for the theory of rigid systems). For any dynamical system
(X,T ) the closure of the subgroup {Tn : n ∈ Z} in the group H(X), equipped with
the metric

D(g, h) = sup
x∈X

d(gx, hx) + sup
x∈X

d(g−1x, h−1x)

=: D+(g, h) + D−(g, h),

forms a Polish topological group G. When (X,T ) is uniformly rigid this Polish
group is non-discrete.

Lemma 1.1. In an almost equicontinuous system (X,T ) , for each point x0 ∈ Xtr,
the map g 7→ gx0 from G into X, is a homeomorphism. Conversely, if G is a non-
discrete Polish monothetic group and (X, T ) a topologically transitive system on
which G acts, extending the action of Z = {Tn : n ∈ Z}, in such a way that for
some transitive point x0 ∈ Xtr, the map g 7→ gx0 from G to X is a homeomorphism,
then (X, T ) is an AE system.

Proof. Fix x0 ∈ Xtr and let x1 ∈ Xtr. Then there exists a sequence {mj} with
Tmj x0 → x1. Given ε > 0 we have by equicontinuity of the point x1, a δ > 0
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with the property: x ∈ Bδ(x1) implies d(Tnx1, T
nx) < ε for all n ∈ Z. Let J be a

positive integer such that for l, k > J , Tmlx0 and Tmkx0 are in Bδ(x1). Then for
all n d(Tml+nx0, T

mk+nx0) < 2ε, hence for all z ∈ X d(Tmlz, Tmkz) < 2ε. Thus
Tmj is a Cauchy sequence with respect to the metric D+(g, h) = supx∈X d(gx, hx).

Now let η > 0 be such that x ∈ Bη(x1) implies d(Tnx, Tnx1) < δ/2 for all n ∈ Z.
Then for sufficiently large j, Tmj x0 ∈ Bη(x1) hence d(T−mj (Tmj x0), T−mj x1) =
d(x0, T

−mj x1) < δ/2. Thus we have also T−mj x1 → x0 and as above we con-
clude that Tmj is also a Cauchy sequence with respect to the metric D−(g, h) =
supx∈X d(g−1x, h−1x), whence a Cauchy sequence with respect to D.

Since H(X) is a Polish group with respect to D, we have lim Tmj = g for some
g ∈ G and clearly gx0 = x1. Our proof also shows that the map g 7→ gx0 is a
homeomorphism of G onto Xtr.

Conversely, assume that g 7→ gx0, G → OT (x0) is a homeomorphism. Given
ε > 0 there exists a neighborhood V of e ∈ G such that

(1) sup{d(gx, x) < ε : x ∈ X}, ∀g ∈ V.

And there exists δ > 0 such that

(2) d(x0, gx0) < δ ⇒ g ∈ V.

We will show that x1 ∈ Bδ(x0) implies sup{d(hx0, hx1) : h ∈ G} ≤ ε.
Fix h ∈ G and chose a sequence {ni} with Tnix0 → x1. Eventually Tnix0 ∈

Bδ(x0), hence (by (2)) Tni ∈ V and by (1)

(3) sup{d(x, Tnix) : x ∈ X} < ε.

Now

d(hx0, hx1) ≤ d(hx0, hTnix0) + d(hTnix0, hx1)

= d(hx0, T
nihx0) + d(hTnix0, hx1).

The first summand is < ε (by (3)) and, by the continuity of h, d(hTnix0, hx1) → 0.
Thus d(hx0, hx1) < ε. This proves the almost equicontinuity and the proof is
complete. ¤

Theorem 1.2.

(1) WAP ⊂ LE ⊂ AE.
(2) LE is closed under factors and pointed products. Thus the collection of

functions in l∞(Z) coming from continuous functions on pointed systems
in LE, forms a closed translation invariant algebra, the algebra of locally
equicontinuous functions.

Proof. (1) The inclusion LE ⊂ AE is clear. In [AAB2] it is shown that a system
(X,T ) is in AE iff each element of the enveloping semigroup E = E(X) is continuous
on Xtr. Since by [EN] (X,T ) is in WAP iff each element of E is continuous on X,
the inclusion WAP ⊂ LE follows.

(2) Let π : X → Y be a homomorphism of dynamical systems where (X,T )
is LE. Let y1 be any point of Y and set Y1 = Ō(y1); it suffices to show that the
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system Y1 is AE. By Zorn’s lemma there exists a minimal subset X1 of X which
is closed invariant with π(X1) = Y1. If x1 ∈ X1 satisfies π(x1) = y1 then clearly
X1 = Ō(x1); thus X1 is transitive and by LE of X, the system X1 is AE. With
no loss of generality we therefore assume that X = X1, Y = Y1 and we now have
the property that π−1(Ytr) = Xtr. Our goal now is to show that there is an
equicontinuity point y0 ∈ Y .

The map π−1 : Y → 2X is an upper-semicontinuous map; therefore there exists
a dense Gδ invariant subset Y0 of Y where π−1 is continuous.

Clearly X0 = π−1(Y0) is a Gδ subset of X. Since Y0 ∩ Ytr 6= ∅ it follows that
X0 contains transitive points for the system X, so that the set X0 is a dense Gδ

subset of X. Let x0 ∈ Xtr ∩X0. Given ε > 0 there exists δ > 0 such that for every
x ∈ Bδ(x0) and for every n, d(Tnx0, T

nx) ≤ ε. Since y0 = π(x0) is a continuity
point for π−1, y0 is in the interior of the set π(Bδ(x0)). Thus there exists a θ > 0
with Bθ(y0) ⊂ intπ(Bδ(x0)). If y ∈ Bθ(y0) then there exists x ∈ Bδ(x0) with
π(x) = y whence, for every n, d(Tnx0, T

nx) ≤ ε and finally, if we choose the metric
properly, also d(Tny0, T

ny) ≤ ε .
The fact that LE is closed under pointed products follows directly from the

definition. Finally the conclusion that the LE functions in l∞(Z) form a uniformly
closed and invariant subalgebra is a straightforward consequence of the fact that
the collection of LE systems is closed under these operations. ¤

In the next two sections we show that both inclusions in theorem 1.2.(1) are
proper.

Theorem 1.3. Let (X, T ) be a LE dynamical system, then
(1) Every minimal subsystem of (X,T ) is equicontinuous, hence isomorphic to

a group rotation.
(2) Every invariant ergodic probability measure on X is supported on a minimal

subsystem and is therefore isomorphic to Haar measure on a group rotation.
Every invariant probability measure on X is supported by the union of the
minimal subsystems of X; in particular if X has a unique minimal subset
then (X, T ) is uniquely ergodic.

Proof. (1) This is a direct consequence of the definition of a LE system and theorem
1.3 in [GW].

(2) Let µ be an invariant ergodic probability measure on X and let x be a
generic point for µ. Then by LE the subsystem Y = Ō(x) is an AE system and
again theorem 1.3. in [GW] implies that Y is a minimal equicontinuous subsystem
and therefore that µ is isomorphic to Haar measure on a group rotation. Finally
if µ is any invariant probability measure on X then we obtain the last assertion of
the theorem by decomposing µ into its ergodic components. ¤

§2 Examples

Example 1. We will show that the Katznelson-Weiss example shown to be an
AE system in theorem 4.2. of [AAB1] is a WAP system. We do this by computing
its enveloping semigroup E and showing that it is commutative. The latter property
is easily seen to be equivalent to the continuity of all elements of E, which in turn is
a necessary and sufficient condition for a system to be WAP.(see for example [D]).
Using the notation of [AAB1] theorem 4.2 we set for x ∈ X, N(x) = infn∈Zx(n).

4



For 0 ≤ s ≤ 1 we let Xs = {x ∈ X : N(x) ≥ s}. Clearly Xs is a subsystem
of X. Let hs be the affine map of the unit interval I = [0, 1] into itself defined
by hs(t) = s + t(1 − s). The function hs defines a continuous map (also denoted
by hs) from X to IZ given by hs(x)(n) = hs(x(n)) and it is easy to see that
for every 0 ≤ s ≤ 1, the function αs =: hs(α) is in X, that Xs = Ō(αs) and
that hs : X → Xs is a homomorphism of dynamical systems (an isomorphism for
s < 1). Since hsht = ht+s(1−t) we have hsht = hths, and as we shall see soon
this commutation relation is the key to our proof. Observe that (say by lemma 4.3
of [AAB1]) if x ∈ X satisfies x(0) = α(0) then x = α and similarly for x ∈ Xs,
x(0) = αs(0) implies that x = αs.

Now we claim that for x ∈ X, N(x) = s iff there exists g ∈ G with gαs = x.
Here G is the Polish group which is the closure of {Tn : n ∈ Z} in the group H(X)
with respect to the metric D. To see this observe that N(x) = s clearly implies
the existence of a sequence {mj} with x(mj) → s, whence (for a subsequence)
Tmj x → y for some y ∈ X with y(0) = s and by the above remark y = αs. Since
αs is a transitive point of the subsystem Xs it follows that also x is a transitive
point of Xs. Now apply lemma 1.1 to get an element g ∈ G with gαs = x. We
conclude that every element x ∈ X has a unique representation x = ghsα with
g ∈ G and s = N(x). We also see that (Xs)tr = Gαs.

Now let lim Tmj α = x, for some sequence mj in Z and some x ∈ X, and let x′

be an arbitrary point in X. Then we have x = ghsα, x′ = g′hs′α and

limTmj x′ = lim Tmj g′hs′α = g′hs′ lim Tmj α

= g′hs′x = g′hs′ghsα = ghsg
′hs′α = ghsx

′.

Thus the sequence Tmj x′ converges for every x′ ∈ X and therefore defines an
element p ∈ E, the enveloping semigroup of X, which by the above calculation
coincides with the map ghs. In this way we identified E algebraically as the direct
product G × A, where A is the “affine” (commutative) semigroup A = {hs : 0 ≤
s ≤ 1}. This completes our proof. ¤

Example 2. (LE $ AE) Start with a minimal weakly mixing uniformly rigid
system (Y, T ) (the existence of such systems is shown in [GM], proposition 6.5).
In proposition 1.5 of [GW] we show how, given a uniformly rigid transitive system
(Y, T ) , one can always construct a transitive AE system (X,T ) and a homomor-
phism π : X → Y . Since a minimal AE system is equicontinuous, and a system
which is both weakly mixing and equicontinuous is trivial, we conclude that (Y, T )
is not AE. Finally since (X, T ) has (Y, T ) as a factor it follows from theorem 1.(2)
that (X,T ) is not LE; thus LE $ AE. ¤

§3 The main example: WAP $ LE

Our purpose in this section is to construct a LE system (X,T ) which is not WAP.
Let Ω be the space of continuous maps x : R → 2I , where I = [0, 1] and 2I is the
compact metric space of closed subsets of I equipped with the Hausdorff metric.
The topology we put on Ω is that of uniform convergence on compact sets: xn → x
if for every ε > 0 and every M > 0 there exists N > 0 such that for all n > N ,
sup|t|≤M d(xn(t), x(t)) < ε. This topology makes Ω a compact metrizable space.
On Ω there is a natural R-action defined by translations: (T tx)(s) = x(s + t). We
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will construct an element ω ∈ Ω and let X = closure {Tnω : n ∈ Z}. Our task then
will be to show that (X, T ) is LE but not WAP.

Let α0 be the periodic function in Ω of period 1 whose graph is given in figure
1 bellow.

0.1
0

1

1

Figure 1

Explicitly, the upper envelope of α0 is given on [0, 1] by the function:

u0(t) =
{

1− t, 0 ≤ t ≤ 9/10
9t− 8, 9/10 ≤ t ≤ 1,

and the lower envelope by:

l0(t) =
{

9t, 0 ≤ t ≤ 1/10
1− t, 1/10 ≤ t ≤ 1,

(the values α0(t) are either intervals or points).

For a sequence of positive integers pn, let

αn = α0(
t

pn
).

We assume p0 = 1 and pn+1 = 10knpn for a sequence of integers kn ↗∞ such that

∞∑
n=1

pn

pn+1
=

∞∑
n=1

1
10kn

< ∞.

The upper envelope of the periodic function αn (of period pn) is given on the
interval [0, pn] by the function:

un(t) =
{

1− t/pn, 0 ≤ t ≤ 9pn/10
9t/pn − 8, 9pn/10 ≤ t ≤ pn,

and the lower envelope by:

ln(t) =
{

9t/pn, 0 ≤ t ≤ pn/10
1− t/pn, pn/10 ≤ t ≤ pn,

Next construct a sequence of affine maps an+1(t, ·). Roughly speaking, the map
an+1(t, ·) “squeezes” αn into αn+1. Then we set β0 = α0 and define inductively
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βn+1(t) as the image of βn(t) under an+1(t, ·). Finally the element ω will be the
limit in Ω of the sequence βn. Here is the precise construction.

Put β0 = α0, and assume that βn, periodic of period pn, is already constructed.
We next describe the construction of βn+1. For an integer j with 0 ≤ jpn ≤ pn+1/10
and s ∈ [0, 1], denote v = jpn and set

an+1(v, s) = (1− 10v

pn+1
)s +

9v

pn+1

= λn+1(v)s + µn+1(v).

For 9pn+1
10 ≤ v = jpn = pn+1 − u ≤ pn+1, put

an+1(v, s) = (
10v

pn+1
− 9)s + (1− v

pn+1
)

= (1− 10u

pn+1
)s +

u

pn+1

= λn+1(v)s + µn+1(v),

where u = pn+1 − v. Define an+1(t, s) for 0 ≤ t ≤ pn+1 as follows: For t ∈
[jpn − pn/10, jpn + pn/10], set jn(t) = j and v(t) = jn(t)pn. Now define

an+1(t, s) = an+1(v(t), s) = λn+1(t)s + µn+1(t).

These maps define an embedding of the parallelograms of αn (around the points
0 ≤ jpn ≤ pn+1/10 and pn+1 − pn+1/10 ≤ jpn ≤ pn+1), inside the two triangles of
αn+1 defined on the intervals [0, pn+1/10], and [pn − pn+1/10, pn+1]. Now connect
these embedded parallelograms by line segments and for values of t in the rest of
[0, pn+1], let an+1(s, t) be the point on the line segment corresponding to t (this is
a constant value independent of s).

Finally define

βn+1(t) = an+1(t, βn(t)), t ∈ [0, pn+1],

and extend it periodically, with period pn+1, over all of R. Note that for every n, j
and t

(1) βn(jpn) = [0, 1],
(2) |βn+1(t)| = λn+1(t)|βn(t)|,
(3) λn+1(t) = 1∓ 10jn(t)pn

pn+1
where v(t) = ipn+1±jn(t)pn and ipn+1 is the integer

multiple of pn+1 closest to t.
(4) βn+1(t) ⊂ αn+1(t).

For t ∈ R and 1 ≤ m < n ≤ ∞, denote

qk(t) =
10jk(t)pk

pk+1
,

Λn
m(t) =

n∏

k=m

λk(t) =
n∏

k=m

(1∓ qk(t)) =
n∏

k=m

(1∓ 10jk(t)pk

pk+1
)

and Λ(t) = Λ∞1 (t). Thus, |ω(t)| = Λ(t), for all t ∈ R, with |ω(t)| > 0.
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Define the affine map Am as the composition of the maps ak(t, ·):
Am(t, s) =am(t, ·) ◦ am−1(t, ·) ◦ · · · ◦ a1(t, s)

:=Λm
1 (t)s + Mm

1 (t)

=λm(t)λm−1(t) · · ·λ1(t)s + λm(t)λm−1(t) · · ·λ2(t)µ1(t)+

λm(t)λm−1(t) · · ·λ3(t)µ2(t) + · · ·+ λm(t)µm−1(t) + µm(t).

Since µk(t) ≤ 10qk(t), it follows that

Mm
1 (t) < 10

m∑

k=1

qk(t).

Finally it is easy to see that for t1, t2 ∈ R and n ∈ N we have: jn(t2 − t1) =
|jn(t2)− jn(t1)| up to ±1.

Given 0 ≤ t ∈ R, let n0 be the least n such that t ≤ pn/10. For every n > n0, the
v corresponding to t in the definition of an is v = 0, so that an(t, s) = an(0, s) ≡
s, s ∈ [0, 1], and a similar assertion holds for t ≤ 0. It is now clear that for every
M > 0, the restrictions of βn to the interval [−M, M ] stabilize after a finite number
of steps. Therefore the sequence βn converges uniformly on compact sets, and the
limit, ω = lim βn, is a well defined element of Ω. As asserted above we now let
X = Ō(ω), where our dynamical system is translation by 1 on Ω, which we denote
by T = T 1. Given x ∈ X and t ∈ R the set x(t) ⊂ I is an interval; call such an
interval a rod. Given x ∈ X and an interval of length M > 0, there exists a t in
that interval such that the rod x(t) has maximal length.

Lemma 3.1. Suppose ω(r) = [a, b], n ≥ 1, and that ω(r) is a rod of maximal
length in an interval of length pn:

|ω(r)| = b− a = max{|ω(t)| : t ∈ [q, q + pn]},
for some q ∈ R. Then there exists j ∈ Z with r = jpn and ω(t) ⊆ [a, b] = ω(r) for
every t ∈ [r − 0.1pn, r + 0.1pn].

Proof. As we have seen above, if m0 is the least integer such that r ≤ pm0/10, then
for |t| ≤ pm0/10 and l ≥ 1,

am0+l(t, s) = am0+l(0, s) ≡ s,

hence
ω(t) = βm0(t).

There exists a unique j ∈ Z with |jpn − r| ≤ pn/10. If jpn 6= r then βn(r) $
[0, 1] = βn(jpn). Since for m ≥ n the affine contractions am(t, ·) are the same for
all t ∈ [jpn − pn/10, jpn + pn/10], this implies also

ω(r) = βm0(r) $ βm0(jpn) = ω(jpn),

contradicting our assumption. Thus r = jpn and therefore:

ω(t) = βm0(t) ⊆ ω(r) = βm0(r)

for every t ∈ [(j − 0.1)pn, (j + 0.1)pn]. ¤
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Lemma 3.2. Let x be an element of X and η > 0. Suppose x(0) = [a, b] and

|x(0)| = b− a > sup{|x(t)| : t ∈ R} − η,

then
x(t) ⊆ [a− 2η, b + 2η]

for every t ∈ R.

Proof. Suppose that for some t0 we have x(t0) " [a − 2η, b + 2η], we may assume
x(t0) = [c, d] and d − b − 2η = δ > 0. Choose n so that |t0| < pn/2 and choose m
with

sup{d(x(t), ω(t + m)) : |t| ≤ pn} < δ/3.

Let r ∈ [m− pn/2,m + pn/2], with ω(r) = [e, f ] satisfy

|ω(r)| = f − e = max{|ω(t)| : t ∈ [m− pn/2, m + pn/2]}.

By the previous Lemma, ω(t) ⊂ [e, f ] for all t ∈ [m−pn,m+pn], and in particular:

ω(m) ⊂ ω(r) = [e, f ] and ω(t0 + m) ⊂ ω(r) = [e, f ].

We also have

d(x(0), ω(m)) < δ/3 and d(x(t0), ω(t0 + m)) < δ/3,

and it follows that

x(0) = [a, b]
δ/3⊂ [e, f ] and x(t0) = [c, d]

δ/3⊂ [e, f ].

Thus d < f +δ/3 and since x(0) = [a, b] is, up to η, a maximal rod for x, we deduce
that f < b + δ/3 + η. We now have

d < f + δ/3 < b + 2δ/3 + η < b + δ + η < d

and this contradiction completes the proof. ¤

Lemma 3.3. For every x ∈ X there is a unique interval [a, b] ⊆ [0, 1] such that:
(1)

x(t) ⊆ [a, b], ∀t ∈ R,

(2) there exists a sequence tl ∈ R with

lim x(tl) = [a, b].

We denote
N(x) = [a, b].

Proof. Let d = sup{|x(t)| : t ∈ R}, and choose a sequence tl ∈ R satisfying
lim |x(tl)| = d. Passing to a subsequence, we can assume that lim x(tl) = [a, b]
(with b− a = d) exists. Our assertions now follow from the previous Lemma. ¤
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Lemma 3.4. For a sequence qk ∈ R, k = 1, 2, . . . , n, with 0 ≤ qk < 1/10, denoting
Q =

∑n
k=1 qk we have for small Q:

1−Q/2 ≥ exp(−Q) ≥
n∏

k=1

(1− qk) ≥ exp(−2Q) ≥ 1− 2Q.

For a compact interval J ⊂ R and x ∈ Ω we let N(x, J) denote a rod of maximal
length of x restricted to J .

Lemma 3.5. Given ε > 0 choose n ∈ N such that

∞∑

k=n

10
pk

pk+1
< ε/2,

if m ∈ Z and t1, t2, r ∈ R are such that r, t1, t2 ∈ J = [m− pn,m + pn], and

(1) N(ω, J) = ω(r) = [a, b]
(2)

|ω(ti)|
b− a

> 1− ε/10, i = 1, 2,

then for a function ε′ = ε′(ε, b− a) with limε→0 ε′ = 0,
(3)

|βn(ti)| > 1− ε′, i = 1, 2

(4)
∞∑

k=1

10
jk(s0)pk

pk+1
< 4ε′,

where s0 = t2 − t1.

Proof. By Lemma 3.1 there exists an integer j such that r = jpn, hence βn(r) =
[0, 1], and ω(t) ⊂ [a, b], ∀t ∈ [r − pn, r + pn]. By Lemma 3.4,

∞∑

k=n

10
pk

pk+1
< ε/2

implies

1−
∞∏

k=n

(1− 10
pk

pk+1
) < ε.

It follows that on an interval of radius pn around r, the numbers Λ∞n (t) can’t vary
by more than ε. Thus, for i = 1, 2

Λ∞n (ti)|βn(ti)|
Λ∞n (r)|βn(r)| =

Λ∞n (ti)|βn(ti)|
Λ∞n (r)

=
Λ∞n (ti)|βn(ti)|

b− a
=
|ω(ti)|
|ω(r)| > 1− ε/10.

10



Hence

n∏

k=1

(1− qk(ti)) = |βn(ti)| > (1− ε/10)
(

b− a

(b− a)± ε

)
> 1− ε′, i = 1, 2.

Use Lemma 3.4 again to deduce,

n∑

k=1

qk(ti) < 2ε′.

Now for k ≥ n + 1 we have jk(ti) = jk(r), i = 1, 2, hence for s0 = t2 − t1

∞∑

k=1

10
jk(s0)pk

pk+1
∼

∞∑

k=1

10
|jk(t2)− jk(t1)|pk

pk+1

=
n∑

k=1

10
|jk(t2)− jk(t1)|pk

pk+1

=
n∑

k=1

|qk(t2)− qk(t1)| < 4ε′.

¤

Lemma 3.6. If s0 ∈ R satisfies

∞∑

k=1

10
jk(s0)pk

pk+1
< ε,

then
sup{d(ω(t + s0), ω(t)) : t ∈ R} < 3ε.

Proof. Fix t0 ∈ R and choose m,n ∈ N with
(1) t0, t0 + s0 ∈ J = [−pn, pn]
(2) d(βm(t), ω(t)) < ε/2, ∀t ∈ J .

Now for every k and t, |βk+1(t)| = λk+1(t)|βk(t)|, hence |βm(t)| =
∏m

k=1 λk(t).
Thus denoting t1 = t0 and t2 = t0 + s0, we have

||βm(t2)| − |βm(t1)|| = |
m∏

k=1

λk(t2)−
m∏

k=1

λk(t1)|

≤
m∑

k=1

|λk(t2)− λk(t1)|

=
m∑

k=1

10
jk(s0)pk

pk+1
< ε.

A similar argument shows that

|Mm(t2)−Mm(t1)| < ε,
11



and since
βm(ti) = Am(ti, [0, 1]) = Λm(ti)[0, 1] + Mm(ti),

we get
d(βm(t2), βm(t1)) < 2ε,

hence
d(ω(t0 + s0), ω(t0)) < 3ε.

¤

Theorem 3.7. The dynamical system (X, T ) is LE but not WAP. It contains 2ℵ0

minimal sets, namely the constant functions x(t) ≡ a, a ∈ [1/10, 9/10].

Proof. (1) It is enough to show that given x ∈ X and ε > 0, there exists δ > 0 such
that if

d(x(t0),N(x)) < δ, and d(x(t0 + s0),N(x)) < δ,

then
sup
t∈R

d(x(t + s0), x(t)) < 4ε.

Choose n ∈ N such that
(1)

∞∑

k=n

10
pk

pk+1
< ε/10,

(2) for the interval J = [−pn, pn], N(x, J) ε= N(x) = [a, b].
Choose m ∈ Z with

max{d(x(t), ω(t + m)) : t ∈ J} < δ,

where δ is small enough so that the assumptions of Lemma 3.5 are satisfied with
t1 = t0 + m and t2 = t0 + s0 + m. We conclude that

(1)
|βn(ti)| > 1− ε′, i = 1, 2

(2)
∞∑

k=1

10
jk(s0)pk

pk+1
< 4ε′.

Now Lemma 3.6 yields

sup{d(ω(t + s0), ω(t)) : t ∈ R} < 4ε′.

This concludes the proof that x is an equicontinuity point.

(2) The claim that each constant function a for a ∈ [1/10, 9/10] is an element of
X is easy to see. Thus for each such a the singleton {a} is a minimal subset of X.
Since a WAP system has a unique minimal set, it follows that (X,T) is not WAP.

¤
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Remark. If (Y, T ) is any LE system with transitive point y0, then the system
Z = Ō(ω, y0) ⊂ X × Y is a LE system. In particular if we take for (Y, T ) a
Kronecker (i.e. a minimal equicontinuous) system, then for each fixed point a ∈ X
the subsystem {a} × Y ⊂ Z is a minimal subsystem of Z.

Thus the minimal sets in an LE system that is not WAP can be any Kronecker
system, and not only points as in the construction above. Moreover if we let
(Y, T ) = (T, Rα), with T = R/Z and Rαy = y + α ( mod 1) for α ∈ R an
irrational number such that pnα → 0 fast enough, then the LE systems X and Z
have the same Polish group G(X) = G(Z).

§4 Appendix

In this appendix we would like to clarify and augment some points from our
paper [GW]. We first restate Proposition 1.5 of [GW] as Theorem 4.1 below. and
provide it with a modified version of the original “constructive” proof using more
precise notation:

Theorem 4.1. Any infinite topologically transitive uniformly rigid system (X,T )
has an extension (Y, S) that is AE.

Proof. We assume that Tni tends uniformly to the identity map and that x0 has a
dense orbit. Define for x, x′ ∈ X, ρ(x, x′) = supn∈N d(Tnx, Tnx′) and notice that by
uniform rigidity, the sequence ρ(Tnix, x) tends to 0 with i. Let now Ω = (X×R)N.
For ω̄ ∈ Ω we denote by ω̄ = (ξ, ω) the decomposition into ξ ∈ XN and ω ∈ RN.
For ω̄, ω̄′ ∈ Ω let

d̂(ω̄, ω̄′) =
∞∑

k=0

2−k{d(ξ(k), ξ′(k)) + |ω(k)− ω′(k)|}.

Let ω̄0 be the point of Ω whose n-th coordinate is (Tnx0, ρ(Tnx0, x0)) and let Y
be the orbit closure of ω̄0 under the shift map S of Ω.

The points ω̄ ∈ Y have the form ω̄(k) = (T kx, ω(k)) for some x ∈ X, and

(Sω̄)(n) = (Tn+1x, ω(n + 1)).

It turns out, as is always the case for a transitive system, that in checking the
non-sensitivity we will be dealing with only one point ω̄0. Given ε > 0, let U be
the neighborhood of ω̄0 defined by

U = {ω̄ ∈ Y : ω(0) < ε/2}.
Since ω̄0 has a dense orbit, in order to verify that for all ω̄ ∈ U and all n

d̂(Snω̄0, S
nω̄) ≤ ε,

it suffices to do so for points ω̄ of the form Sjω̄0. Suppose then that Sj0 ω̄0 ∈ U .
Since ρ(T j0x0, x0) < ε/2 we have d(T i+j0x0, T

ix0) < ε/2 for all i ≥ 0, hence
also ρ(T i+j0x0, T

ix0) < ε/2 for all i ≥ 0. By the triangle inequality we find that
|ρ(T ix0, x0)− ρ(T i+j0x0, x0)| ≤ ε/2 for all i ≥ 0. For any n we therefore have

d̂(Snω̄0, S
n(Sj0 ω̄0)) = d̂(Snω̄0, S

n+j0 ω̄0)

=
∞∑

k=0

2−k{d(T k+nx0, T
k+n+j0x0) + |ρ(T k+nx0, x0)− ρ(T k+n+j0x0, x0)|}

≤
∞∑

k=0

2−k{ε/2 + ε/2} = 2ε.

13



We observe that the only reason for requiring (X, T ) to be rigid, is to make sure
that the point ω̄0, is not an isolated point. ¤

A more abstract proof of Theorem 4.1 can be given using in an explicit way the
Polish group that is associated with an AE system. First we prove:

Theorem 4.2. Every infinite Polish monothetic group G, admits an almost equi-
continuous action, where each dense orbit is homeomorphic to G.

Proof. Let G be a Polish monothetic group generated by T . Let UCb(G) be the
Banach algebra of uniformly continuous bounded real-valued functions on G with
the sup norm. We choose a countable collection of elements of UCb(G) which
separate between points and closed sets in G (see e.g. [HR, page 68]), and let A be
the smallest closed, T (hence G) invariant algebra which contains this collection and
the constant functions. If we denote by Z the Gelfand space corresponding to A we
see that G acts on Z and that (Z, G) is a topologically transitive system. Since the
natural embedding of G into Z is a homeomorphism we conclude, by Lemma 1.1,
that the restricted system (Z, T ) is almost equicontinuous with G(Z, T ) = G. ¤

The construction of the system (Z, T ) above provides us with the following:

Alternative proof for Theorem 4.1. Let G(X, T ) = G be the non-discrete Polish
group corresponding to the uniformly rigid system (X, T ) . As in the proof of
Theorem 4.2, construct an algebra A ⊂ UCb(G) and let Z be the Gelfand space
corresponding to A. We now set Y = closure {g(x0, z0) : g ∈ G} ⊂ X × Z, where
x0 ∈ X and z0 ∈ Z are transitive points. Since the natural embedding of G into
Z is a homeomorphism, a fortiori this is true also for the embedding of G into Y
and we conclude that the system (Y, T ), which is by construction an extension of
(X,T ) , is almost equicontinuous (Lemma 1.1). ¤

The second subject from [GW] that we would like to treat here is the question:
when two topologically transitive dynamical systems have the property that their
product is also topologically transitive?

In [F1] H. Furstenberg has shown that for a weakly mixing system (X,T ) and
two nonempty open subsets U, V of X, the set

N(U, V ) = {n ∈ Z : TnU ∩ V 6= ∅},

is a thick subset of Z, i.e. it contains arbitrarily long intervals. Since for any
minimal system (Y, T ) and nonempty open subsets A,B of Y the set N(A,B) is
a syndetic subset of Z, i.e. a set with bounded gaps, it follows that for all such
(X,T ), (Y, T ) , U, V, A,B, the set

N(U ×A, V ×B) = N(U, V ) ∩N(A,B),

is nonempty. In other words the product system is topologically transitive.
We say that a dynamical system (Y, T ) is syndetically transitive if for any two

nonempty open subsets U, V of X, the set

N(A,B) = {n ∈ Z : TnA ∩B 6= ∅},

is a syndetic subset of Z. The argument above immediately implies:
14



Theorem 4.3. Let (X, T ) be a weakly mixing system and (Y, T ) a syndetically
transitive one, then the product system (X × Y, T × T ) is topologically transitive.

In Proposition 2.2.(2) of [GW] we claimed, without proof, that the product of
a weakly mixing system and an E-system, i.e. one which carries a T -invariant
probability measure which is positive on every nonempty open set, is topologically
transitive.

Theorem 4.4. Let (X, T ) be a weakly mixing system and (Y, T ) an E-system, then
the product system (X × Y, T × T ) is topologically transitive.

Proof. Again we describe two proofs. The first consists of showing that every E-
system is syndetically transitive. Once we have this, Theorem 4.3 completes the
proof. As was explained in [GW], in an E-system with invariant measure µ with full
support, the generic points for ergodic measures are dense (take the set of generic
points for the ergodic components of µ in its ergodic decomposition). Now given
two nonempty open sets U, V in X, we choose k ∈ Z with V0 = T kU ∩V 6= ∅. Next
set U0 = T−kV0∩U , and observe that k +N(U0, U0) ⊂ N(U, V ). Thus it is enough
to show that N(U,U) is syndetic for every nonempty open U . Let x0 be a generic
point for an ergodic measure ν with ν(U) > 0. Then the set

A = {n ∈ Z : Tnx0 ∈ U},

has positive upper density and it follows that the set A − A is syndetic (see for
example [F2]. p.75). Since clearly A−A ⊂ N(U,U), this completes the proof.

For a second proof let A,B ⊂ X, U, V ⊂ Y be nonempty open sets. We have to
show that for some l ∈ Z, T lA∩B 6= ∅ and also T lU ∩V 6= ∅. Let W = ∪n∈ZTnU ,
then W is a nonempty T -invariant open subset of Y . By assumption there exists
a T -invariant probability measure µ on Y which assigns positive measure to every
nonempty open set, and in particular µ(W ) = a > 0. Since Y is transitive the set
O = W ∩ V is a nonempty open subset and we have µ(O) = b > 0. We now choose
a positive integer N such that

µ(
⋃

|n|≤N

TnU) > a− b/2.

Now the system (X,T ) is topologically weakly mixing, hence by [F1] the set
N(A,B) = {k ∈ Z : T kA ∩ B 6= ∅} contains arbitrarily long intervals. We can
therefore find some j ∈ Z with

T j+kA ∩B 6= ∅, ∀|k| ≤ N.

By T -invariance of µ we have

µ(T j(
⋃

|n|≤N

TnU)) = µ(
⋃

|n|≤N

TnU) > a− b/2.

This implies T j(
⋃
|n|≤N TnU) ∩ V 6= ∅, and there exists n0 with |n0| ≤ N and

T j+n0U ∩ V 6= ∅ as well as T j+n0A ∩B 6= ∅. This completes the proof. ¤
15



Example: Taking (Y, S) to be the one point compactification of the translation on
Z it is easy to see that the assumption of topological transitivity of Y is not enough
for this result to hold. A more interesting example is obtained as follows. Take
(X,T ) to be a weakly mixing rigid minimal system (see [GM]), and (Y, S) the AE
system constructed from it in Theorem 4.1. Although the system (Y, S) is transitive
and pointwise recurrent, the product system (X × Y, T × S) is not transitive. To
see this, suppose on the contrary that there exists a point (x0, y0) whose orbit is
dense in X × Y . Let x be an arbitrary point of X and choose a sequence nk with

limTnk(x0, y0) = (x,y0).

Then, since Y is an AE system, we deduce from limTnky0 = y0 that lim Tnk = id in
the corresponding Polish group G (Lemma 1.1). Since the T action on X extends
to a G action, we conclude that also lim Tnkx0 = x0 = x. Thus X = {x0}, a
contradiction. ¤
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