
LOCAL ENTROPY THEORY

ELI GLASNER AND XIANGDONG YE

Abstract. In this survey we offer an overview of the so called local entropy the-
ory, developed since the early 1990s. While doing so we emphasize the connections
between the topological dynamics and the ergodic theory view points.
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2 Local entropy theory

1. Introduction

Dynamical system theory is the study of qualitative properties of group actions on
spaces with certain structures. In this survey we are mainly interested in actions by
homeomorphims on compact metric spaces with an additional structure of a Borel
probability measure invariant under the action. We will mostly consider Z-actions,
and only briefly mention more general group actions.

Thus by a topological dynamical system (TDS for short) we mean a pair (X,T ),
where X is a compact metric space and T : X −→ X is a self homeomorphism.
This defines an action (X,Z) of the group of integers Z on X via the map n 7→ T n.

By a measure-theoretical dynamical system (for short MDS) we mean a quadruple
(X,B, µ, T ), where X is a set, B is a σ-algebra on X, µ is a probability measure
on X and T : X −→ X is invertible measurable and measure-preserving, that is:
µ(B) = µ(T−1(B)) for each B ∈ B. For a TDS (X, T ), there are always invariant
probability measures on X and thus for each such measure µ (X,B(X), µ, T ), with
B(X) the Borel σ-algebra on X, is a MDS.

Ergodic theory and topological dynamics exhibit a remarkable parallelism. For
example the notions of transitivity, weak mixing and strong mixing in TDS have
their counterpart in ergodic theory and we speak about topological entropy in topo-
logical dynamics and about measure-theoretical entropy in ergodic theory. However,
although the notions and results in both theories are similar, the methods one uses
to prove them are very different.

In ergodic theory there exists a rich and powerful entropy theory. To mention
a few famous results: entropy is a complete invariant for Bernoulli systems [84];
a MDS is a Kolmogorov-system (K-system) if and only if each finite non-trivial
partition has positive entropy, if and only if each non-trivial partition with two
elements has positive entropy, if and only if it has completely positive entropy (i.e.
each of its non-trivial factors has positive entropy [86]), if and only if it is disjoint
from every zero entropy system [25]. A K-system is strongly mixing. Each MDS
admits a maximal factor with zero entropy, namely the Pinsker factor, as well as
a maximal Kronecker factor (i.e. a maximal factor with discrete spectrum). For
sequence entropy it is known that an ergodic MDS is null (sequence entropy is zero,
for every infinite sequence) if and only if it has discrete spectrum [79]; and that the
supremum over all sequence entropies is log n for some positive integer n ∈ N or
∞. Moreover, when this number is log n then it is a finite to one extension of its
Kronecker factor [65]. The classical variational principle states that the topological
entropy of a TDS is equal to the supremum of metric entropy taken over all Borel
probability invariant measures.

As we have already said, the analogous notion of topological entropy was intro-
duced soon after the measure theoretical one, and was widely studied and applied.
Notwithstanding, the level of development of topological entropy theory lagged be-
hind. In recent years however this situation is rapidly changing. A turning point
occurred with F. Blanchard pioneering papers [5], [6] in the 1990’s.

In [5] Blanchard introduced the notions of completely positive entropy (c.p.e.)
and uniformly positive entropy (u.p.e.) as topological analogues of the K-property
in ergodic theory. In [6] he defines the notion of entropy pairs and uses it to show
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that a u.p.e. system is disjoint from all minimal zero entropy systems. The notion
of entropy pairs can also be used to show the existence of the maximal zero entropy
factor for any TDS, namely the topological Pinsker factor [8]. Later on, it was shown
by Glasner and Weiss [39] that a topological system carrying a K-measure is a u.p.e.
system. This was generalized in the work of Blanchard, Host, Maass, Martinez and
Rudolph [9], where the authors define entropy pairs for an invariant measure and
show that for each invariant measure the set of entropy pairs for this measure is
contained in the set of entropy pairs. Blanchard, Glasner and Host [11] proved that
the converse of this statement holds, namely, there is always an invariant measure
such that the set of topological entropy pairs coincides with the set of entropy pairs
for this measure. The main tool used in [11] was a new local variational inequality.

A characterization of the set of entropy pairs for an invariant measure as the
support of a certain measure on X ×X (which is defined by means of the measure
theoretical Pinsker factor of the system) was obtained in Glasner [30]. Finally a proof
of the other direction of the local variational principle was obtained by Glasner and
Weiss in [43].

In order to facilitate the reading of the survey we divided it into four parts,
preceded by a brief survey of classical entropy theory in Section 2.

The early developments of the local theory are described in Part 1. In Section
3 we define entropy pairs and u.p.e. systems. In Section 4 the properties of being
u.p.e. and K are compared. Finally in Section 5 measure entropy pairs are defined
and the local variational principle is described. For these topics see also the relevant
chapters in Glasner’s book [31] and the survey article [43] by Glasner and Weiss.

Finer properties of the theory ensued and these are described in Part 2. In order
to gain a better understanding of the topological version of a K-system, Huang and
Ye [59] introduced the notion of entropy n-tuples (n ≥ 2) both in topological and
measure-theoretical setting. For a TDS they define the corresponding notions of
u.p.e. of order n, for all n ≥ 2. The property of having u.p.e. of all orders is then
called topological K. They show that u.p.e. of order 2 does not, in general, imply
topological K.

A local variational relation was proved, and the relation between the set of topo-
logical entropy n-tuples and the set of entropy n-tuples for an invariant measure was
established. Moreover, a characterization of positive entropy using the dynamical
behavior in any neighborhood of an entropy n-tuple is obtained [59]. Recently, the
notion of entropy set was introduced in Dou-Ye-Zhang [23] and Blanchard-Huang [7]
in order to find where the entropy is concentrated. Particularly it was shown that
any TDS with positive entropy has an entropy set with uncountably many points.
By studying entropy points Ye and Zhang [103] show that for any TDS there is a
compact countable subset such that its Bowen’s entropy is equal to the entropy of
the original system. Entropy points and entropy sets are defined and discussed in
Section 6.

The complexity of a TDS is an important topic in topological dynamics. Building
on the idea of entropy pairs, Blanchard, Host and Maass in [13] introduced com-
plexity pairs in TDS and showed that for any TDS the maximal equicontinuous
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factor is induced by the smallest closed invariant equivalence relation containing the
complexity pairs. Moreover, the complexity of a TDS along sequences of N can be
used to describe dynamical properties such as mild mixing, scattering and strong
scattering, Huang and Ye [57]. Together with results from Huang-Shao-Ye [54] and
Huang-Ye [57], one can show that a minimal topological K-system is strongly mix-
ing. For a related work see Huang-Maass-Ye [50]. Complexity is discussed in Section
7.

The ideas of the local theory of entropy can be used to study sequence entropy.
In [48] Huang, Li, Shao and Ye defined sequence entropy pairs and null topological
systems. They showed that a null minimal system is an almost 1-1 extension of its
maximal equicontinuous factor (topological Kronecker factor), and moreover, that if
the topological entropy of an open cover is positive then the sequence entropy along
any sequence for the open cover is positive, Huang-Shao-Ye [54]. Recently, Huang
and Ye showed [60] that for any TDS the supremum over all sequence entropies is
log n for some n ∈ N or ∞. Maass and Shao [81] have shown that if, for a minimal
TDS (X, T ), this number is log n with n ∈ N, then there are proximal extensions
(X ′, T ′) and (Y ′, T ′) of (X, T ) and (Y, S) (the maximal equicontinuous factor of
(X,T )) such that there is a finite to one equicontinuous extension from (X ′, T ′) to
(Y ′, S ′), . For related research see [50], [57] and [54]. The works on sequence entropy
are described in Sections 8 and 9.

Given a compact metric space X, a sequence {fn}n∈N ⊂ C(X) is an `1-sequence
if there are positive constants a and b such that

a

n∑

k=1

|ck| ≤
∥∥∥∥∥

n∑

k=1

ckfk

∥∥∥∥∥ ≤ b

n∑

k=1

|ck|

for all n ∈ N and c1, . . . , cn ∈ R. In a classical work of Rosenthal [89] a notion of
independence was introduced which gave rise to a dichotomy for bounded sequences
{fn}n∈N in C(X); they contain either a pointwise convergent sub-sequence, or a
`1 sub-sequence. This dichotomy was later sharpened by Bourgain, Fremlin and
Talagrand in [15]. Ideas of independence and `1 structure were introduced into
dynamics in 1995 by Glasner and Weiss in [40]. First by using the local theory of
Banach spaces in proving that if a compact topological Z-system (X,T ) has zero
topological entropy then so does the induced system (M(X), T∗) on the compact
space of probability measures on X; and more directly in providing characterizations
of positive entropy and of K-systems in terms of interpolation sets (which are the
same as independence sets, see Section 11 below), [40] Theorems 3.1 and 3.2.

In the same year Köhler introduced the notion of regularity of a dynamical system,
meaning that no sequence of the form {f ◦ T ni : i ∈ N} is an `1 sequence [76].
We remind the reader that the enveloping semigroup E(X,T ) of a TDS (X, T ) is
defined as the closure of {T, T 2, T 3, . . .} in the compact space XX . In a recent
work of Glasner and Megrelishvili [37], following Köhler [76], a dynamical version of
the Bourgain-Fremlin-Talagrand dichotomy was demonstrated. It asserts that the
enveloping semigroup E(X, T ) of a compact metric dynamical system is either very
large and contains a topological copy of βN, or the topology of E(X,T ) is determined
by the convergence of sequences. In the latter case we say that the dynamical system
is tame [33]. In [37] hereditarily non-sensitive systems (HNS) were shown to be tame
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and in [38] Glasner, Megrelishvili and Uspenskij show that metric HNS systems are
exactly those metric systems whose enveloping semigroup is metrizable. We refer
the interested reader to the recent survey of enveloping semigroups in dynamics [35].

Combinatorics, of course, plays a major role in all aspects of entropy theory. It
is mainly manifested in various interpolation or independence properties. These
subjects are treated in Part 3. In Sections 10 and 11 we survey some of the re-
sults obtained by Glasner [33], [34], Huang [47], and Kerr-Li [74], concerning tame
dynamical systems and various independence notions, including the basic combi-
natorial lemma of Sauer-Pereles-Shelah, several generalizations of this lemma, and
their applications to local entropy.

Following ideas of Kamae and Zamboni [67], Huang and Ye develop in [55] a
theory of maximal pattern entropy, which we describe in 12.

The local theory of entropy for a TDS, interesting in its own right, has also
many applications. As mentioned above, it can be used to show the existence of
a topological Pinsker factor, to prove disjointness theorems, to obtain character-
izations of positive entropy, and so on. Part 4 is dedicated to further applica-
tions of the local theory. In Section 13 we discuss Li-Yorke chaos after Blanchard-
Glasner-Kolyada-Maass [12], the relation of asymptotic pairs after Blanchard-Host-
Ruette [10], and the notions of µ-Pinsker factor and extreme relations according to
Kaminski-Siemaszko-Szymanski [70]. A new application to interval maps is proved
in Theorem 13.9.

In Section 14 we show how to apply the local theory to the study of sensitivity in
dynamical systems. The relevant works here are [49, 94, 104].

The study of local relative entropy in TDS was started in the work of Glasner
and Weiss [42]. For related works see Lemanczyk and Siemaszko [80], Park and
Siemaszko [83], and the recent papers by Huang, Ye and Zhang [62], [105], [106] and
[63]. The relative case is treated in Section 15.

To end the survey we mention in Section 16 some open questions.
We thank Francois Blanchard and Hanfeng Li for a careful reading of the paper

and for their helpful suggestions.

2. Preliminaries

A topological dynamical system (X, T ) is transitive if for every pair of open
nonempty subsets U and V , N(U, V ) = {n ∈ Z+ : T−nV ∩ U 6= ∅} is infinite.
(X,T ) is weakly mixing if (X × X,T × T ) is transitive. A point x ∈ X is a tran-
sitive point if {Tx, T 2x, . . .} is dense in X. It is well known that when (X, T ) is
transitive the set of transitive points is a dense Gδ set (denoted by TranT ) and
when TranT = X we say that (X, T ) is minimal. The orbit of x, orb(x, T ), is the

set {x, Tx, . . .}. The ω-limit set of x, ω(x, T ), is the set
⋂

n≥0 ({T ix : i ≥ n}). A
point x ∈ X is called a minimal point if its orbit closure cls-orb(x, T ) is a minimal
sub-system.

A MDS (X,B, µ, T ) it is ergodic if every set B ∈ B with T−1B = B has measure
0 or 1. It is weakly mixing if (X ×X,B × B, µ× µ, T × T ) is ergodic. It is strongly
mixing if for every A,B ∈ B one has limn→∞ µ(A ∩ T−nB) = µ(A)µ(B).
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As in many other fields of mathematics, the classification problem is a main goal
in the study of dynamical systems. Entropy is a conjugacy invariant both for TDS
and MDS. Associated with every TDS (X, T ) there is a non-empty collection of
invariant probability measures MT (X) and with each µ ∈ MT (X) one associates the
MDS (X,BX , µ, T ), where BX is the Borel σ-algebra generated by the topology of X.
The relationship between these two kinds of entropy has gained a lot of attention.

Measure-theoretical entropy

In order to distinguish two MDS which are spectrally isomorphic Kolmogorov
introduced in 1958 an isomorphism invariant called entropy [77]. Let (X,BX , µ, T )
be a measure theoretical dynamical system. A measurable cover (or just a cover) of
X is a finite family of BX-measurable sets whose union is X. A partition of X is a
cover of X by pairwise disjoint sets. Let PX denote the collection of finite partitions
of X.

For α ∈ PX define

Hµ(α) = −
∑
A∈α

µ(A) log µ(A).

The µ-measure theoretical entropy of α with respect to T is

hµ(α, T ) = lim
N→∞

1

N
Hµ(αN−1

0 ) = inf
N∈N

1

N
Hµ(αN−1

0 ).

The measure theoretical entropy of T with respect to µ is hµ(T ) = sup
α∈PX

hµ(α, T ).

Topological entropy

In 1965 Adler, Konheim and McAndrew [1] defined topological entropy for TDS.
A cover is said to be an open cover if it consists of open sets. Let CX be the set of
finite covers and Co

X the set of finite open covers of X. Given two covers U ,V ∈ CX ,
U is said to be finer than V (U º V) if for every U ∈ U there is V ∈ V such that
U ⊆ V . Let

U ∨ V = {U ∩ V : U ∈ U , V ∈ V}
It is clear that U ∨ V º U and U ∨ V º V .

Given integers M ≤ N and U ∈ CX we denote UN
M =

N∨
n=M

T−nU . Given U ∈ CX ,

define N(U) as the minimum cardinality of a subcovers of U . The combinatorial
entropy of U with respect to T is

hc(U , T ) = lim
N→∞

1

N
log N(UN−1

0 ).

When U is an open cover this number is called the topological entropy of U with
respect to T and is denoted by htop(U , T ). If (X,T ) is a TDS, the topological entropy
of T is

htop(T ) = sup
U∈Co

X

htop(U , T ).

In his 1971 paper [17] Bowen introduced his definition of topological entropy (see
also Dinaburg [21]): Let (X, T ) be a (not necessarily compact) metric TDS and
K ⊂ X a subset. For n ∈ N and ε > 0 let sn(K, ε) be the maximal cardinality
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among all (n, ε)-separating sets taken from K (with respect to the metric d on X).
Bowen’s entropy of the set K is then defined as

s(K, ε) = lim sup
n→∞

1

n
log sn(K, ε),

and
hd(K) = lim

ε→0
s(K.ε).

Finally the d-entropy of (X,T ) is defined as

hd(T ) = sup{hd(K) : K is a compact subset of X}.
When X is compact we have hd(T ) = htop(T ).

The Shannon-McMillan-Breiman and Brin-Katok theorems

Let (X,B, µ, T ) be a MDS. The Shannon-McMillan-Breiman theorem asserts,
given a finite measurable partition α, the convergence almost everywhere of the
limit

hµ(α, x) =: lim
N→∞

− 1

N
log µ(αN−1

0 (x))

with
∫

hµ(α, x) dµ = hµ(α). When µ is T -ergodic we have hµ(α, x) = hµ(α) almost
everywhere (see e.g. [97]).

Brin and Katok provided a useful topological version of this famous theorem in
[16].

Let (X, T ) be a TDS and µ ∈ MT (X). Fix a metric d on X and set, for x ∈ X,
ε > 0 and n ≥ 0,

Bn(x, ε) = {y ∈ X : d(T ix, T iy) ≤ ε, 0 ≤ i ≤ n− 1},
h+

µ (x, ε) = − lim sup
n→∞

1

n
log µ(Bn(x, ε)),

h−µ (x, ε) = − lim inf
n→∞

1

n
log µ(Bn(x, ε)).

Suppose that hµ(T ) is finite, then for µ-almost every x, (i) limε→0 h+
µ (x, ε) =

limε→0 h−µ (x, ε) =: hµ(x), (ii) hµ(x) = hµ(Tx), and (iii)
∫

hµ(x) dµ = hµ(T ). If
moreover µ is ergodic then hµ(x) = hµ(T ) almost everywhere.

K-systems

Once measure entropy is defined for MDS, two sub-classes immediately stand
out: the class of zero entropy systems and the class of systems all of whose non-
trivial factors have positive entropy. Members of the latter class are said to have
completely positive entropy and it is well known that this property is equivalent to
the Kolmogorov property. In fact for a MDS (X,B, µ, T ) the following properties
are equivalent:

1. For each non-trivial partition P consisting of two elements hµ(T,P) > 0.
2. For each non-trivial finite partition P, hµ(T,P) > 0.
3. Each non-trivial factor has positive entropy.
4. The MDS (X,B, µ, T ) is K; i.e. there exists a measurable partition ξ satisfying

the following conditions:

(i) T−1ξ ≤ ξ.
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(ii)
∨∞

n=0 T nξ = ε.
(iii)

∧∞
n=0 T−nξ = η.

Here ε is the point partition and η is the trivial partition {X}.
The variational principle

For a TDS (X,T ) let MT (X) be the set of all Borel invariant probability mea-
sures. In 1969 Goodwyn [46] showed that hµ(T ) ≤ htop(T ) for each µ ∈ MT (X).
In 1971 Goodman [44] proved supµ∈MT (X) hµ(T ) ≥ htop(T ), completing the classic
variational principle. For more details see e.g. [19].

Part 1. Entropy pairs, u.p.e. systems and the local variational principle

3. u.p.e. systems and entropy pairs

In the classical theory of topological dynamics one defines proximal pairs and
regionally proximal pairs. These local notions can be used to describe global dy-
namical behavior such as equicontinuity and distality. At the beginning of the 1990th
Blanchard began a search for a topological analogue of K-systems. First he tried
to define topological K-systems by means of global notions; then he realized that a
local viewpoint may become very useful.

We say that an open cover is non-trivial if the closure of each element of the cover
is not equal to X. Let (X, T ) and (Y, S) be TDS. A continuous surjective map
π : X −→ Y is a factor map if π ◦ T = S ◦ π. A TDS is non-trivial if it is not a
singleton.

Definition 3.1. [5] Let (X, T ) be a TDS. We say (X,T ) has uniformly posi-
tive entropy (u.p.e.) if for each non-trivial open cover consisting of two elements
htop(T,U) > 0. We say that (X,T ) has completely positive entropy (c.p.e.) if each
non-trivial factor of (X,T ) has positive entropy.

Although in the case of a MDS the two notions are equivalent, in the topological
setup we only have the implication u.p.e. ⇒ c.p.e. Examples of c.p,e. but not u.p.e.
systems were already given by Blanchard in [5]. The long standing problem [5], [31]
whether there exists a minimal c.p.e. system which is not u.p.e. was solved recently.
In [95] the authors answer the question by constructing a minimal c.p.e. non u.p.e.
system.

Moreover, whereas for a MDS — since c.p.e. is equivalent to the system being
K — we have the implication c.p.e ⇒ strong mixing, this is no longer the case for
TDS. In this category we only have:

Theorem 3.2. [5] Let (X, T ) be a TDS.

1. If (X,T ) has u.p.e. then it is weakly mixing.
2. If (X,T ) has c.p.e. then there is an invariant measure µ with full support.

The notion of disjointness of two TDS (MDS) was introduced by Furstenberg in
[25]. If (X, T ) and (Y, S) are two TDS we say that J ⊂ X × Y is a joining of X
and Y if J is a non-empty closed invariant set which is projected onto X and Y .
If each joining is equal to X × Y we then say that (X, T ) and (Y, S) are disjoint
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and write (X, T ) ⊥ (Y, S) or X ⊥ Y . It was proved in [25] that if two TDS are
disjoint then one of them, say X, is minimal, and in [58] that if moreover (X,T )
is non-trivial then the set of recurrent points is dense in Y (for a related paper see
[52]). Recall that x is a recurrent point if there is an increasing sequence {ni} in N
with limi→∞ T nix = x. For two MDS (X,B, µ, T ) and (Y, C, ν, S), we say that they
are disjoint if every invariant probability measure on X × Y projecting to µ and ν
is equal to µ× ν. It is known that a MDS is a K-system if and only if it is disjoint
from all zero entropy systems [25]. Now the question arises: is a u.p.e TDS disjoint
from all minimal systems with zero entropy? As a tool for treating this question
Blanchard introduced the notion of topological entropy pairs.

Definition 3.3. Let (X,T ) be a TDS. A pair (x1, x2) ∈ X2 is an entropy pair if
x1 6= x2 and for every disjoint closed neighborhoods U1, U2 of x1 and x2 respectively,
htop(T, {U c

1 , U
c
2}) > 0.

The set of entropy pairs is denoted by E(X,T ). Entropy pairs enjoy the following
properties.

Theorem 3.4. [6] For a TDS (X, T ),

1. htop(T ) > 0 if and only if E(X, T ) 6= ∅.
2. If π : (X, T ) −→ (Y, S) is a factor map then (π(x), π(x′)) ∈ E(Y, S) if (x, x′) ∈

E(X,T ) and π(x) 6= π(x′).
3. If π : (X, T ) −→ (Y, S) is a factor map and (y, y′) ∈ E(Y, S) then there is

(x, x′) ∈ E(X, T ) with π(x) = y and π(x′) = y′.
4. If (W,T ) is a subsystem of (X,T ) then E(W,T ) ⊂ E(X, T ).

As we can see in the following theorem, the answer to the above question is
affirmative; moreover the theory of entropy pairs leads to the existence of a naturally
defined maximal factor of zero entropy, a topological analogue of the Pinsker factor
of a MDS.

Theorem 3.5. The following statements hold.

1. [6] A u.p.e. system is disjoint from every minimal system with zero entropy.
2. [8] Let (X,T ) be a TDS. The factor map π : (X, T ) → (X/Π, T ), where Π ⊂

X ×X is the smallest closed T × T -invariant equivalence relation containing
E(X,T ), is the maximal zero entropy factor.

Definition 3.6. The corresponding TDS (X/Π, T ) is called the topological Pinsker
factor of (X,T ).

In [8] the authors constructed TDS (X, T ) with zero entropy and a u.p.e. (Y, S)
such that the maximal zero entropy factor of (X × Y, T × S) is not equal to
(X,T ). We note that the existence an almost equicontinuous scattering system
(X,T ) established in [3] (see also [55]), allows us to construct similar transitive
examples. For instance, if (X,T ) is such a system and (Y, S) is any minimal
u.p.e. system then the maximal Pinsker factor of the transitive product system
(X × Y, T × S) is not equal to (X,T ). To see this fact note that (X,T ) has zero

topological entropy and that supp (X,T ) =: cls
(⋃

µ∈MT (X) supp (µ)
)
6= X [3]. By

[30] E(X × Y, T × S) = {((x, y), (x, y′)) : y 6= y′ ∈ Y, x ∈ supp (X, T )}, and clearly
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its closure R = {((x, y), (x, y′)) : y, y′ ∈ Y, x ∈ supp (X, T )} is a closed invariant
equivalence relation. Thus X × Y/R is the Pinsker factor of X × Y .

4. u.p.e. versus K

The new theory launched by Blanchard had then two candidates for topological
K-systems, the c.p.e and the u.p.e. systems. However, except for the canonical
Bernoulli systems and a few variations, there were very few examples. In particular
in [6] Blanchard asked whether there are minimal u.p.e. systems.

In [39] Glasner and Weiss provided an affirmative answer:

Theorem 4.1. Let (X, T ) be a TDS. Suppose that there exists a T -invariant prob-
ability measure µ on X with supp (µ) = X, such that the corresponding MDS
(X,BX , µ, T ) is a K-system; then (X,T ) is u.p.e.

Combining this result with the representation theorem of Jewett and Krieger, we
immediately get a wealth of examples of minimal uniquely ergodic u.p.e. dynam-
ical systems. Another corollary of Theorem 4.1, is obtained when one recalls the
construction in [98], of a universal minimal TDS (X, T ) with the property that for
every measure theoretical ergodic MDS (Ω,m, T ), there exists an invariant proba-
bility measure µ on X such that (X,µ, T ) is measure theoretically isomorphic to
(Ω,m, T ). By Theorem 4.1, (X,T ) is u.p.e. and it therefore serves as a minimal
u.p.e. model for every ergodic MDS.

On the other hand, as one would expect, the topological property u.p.e. has very
little to say about the measure theoretical behavior of invariant measures. Using
theorems of Weiss [99] and Furstenberg and Weiss [27], the authors of [39] prove the
following:

Theorem 4.2. Given an arbitrary ergodic MDS (Ω,m, T ) of positive entropy, there
exists a minimal, uniquely ergodic, uniform positive entropy TDS (X,T ) with invari-
ant measure µ, such that the MDS (Ω,m, T ) and (X,µ, T ) are measure theoretically
isomorphic.

Corollary 4.3. An ergodic dynamical system has a strictly ergodic, u.p.e. model iff
it has positive entropy.

The main difficulty in proving Theorem 4.1 lies in the way covers differ com-
binatorially from partitions. In fact, as we shall see, these kind of combinatorial
differences will, from now on, dominate the whole subject.

Finally we have the following characterizations of positive entropy and completely
positive entropy (namely the K property) of a dynamical system in [40].

For a ≥ 2 let Ωa = {0, 1, . . . , a − 1}Z and Y ⊂ Ωa. A subset I ⊂ Z is called
an interpolating set for Y if Y |I = Ωa|I. More concretely, for each choice {bi :
i ∈ I, bi ∈ {0, 1, . . . , a − 1}} there is some ω ∈ Y such that ωi = bi for all i ∈ I.
Now suppose that (X,B, µ, T ) is a MDS and that P = {P0, P1, . . . , Pa−1} is a finite
measurable partition of X. Construct a set YP ⊂ Ωa as follows:

YP = {ω ∈ Ωa : for all finite subsets J ⊂ Z, µ(
⋂
j∈J

T−jPωj
) > 0}.



E. Glasner and X. Ye 11

If µP is the image of µ under the mapping θ : X → Ωa defined by (θx)n = that
index b such that T nx ∈ Pb, i.e. the distribution of the stochastic process defined
by (T, µ,P), then YP is simply the closed support of µP . Recall that a set I ⊂ Z
has positive density if

lim
n→∞

|I ∩ {−n, . . . , n}|
2n + 1

> 0.

Theorem 4.4. [40] If P has two elements and h(T,P) > 0 then YP has interpolating
sets of positive density.

Theorem 4.5. [40] The MDS (X,B, µ, T ) is K if and only if for every non trivial
partition P, the set YP has interpolating sets of positive density.

As a corollary we get:

Corollary 4.6. The MDS (X,B, µ, T ) is K if and only if for every non trivial
measurable partition P of X, the TDS YP is u.p.e.

5. Measure entropy pairs and local variational principles

Measure entropy pairs

Let (X, T ) be a TDS and µ ∈ MT (X). May one define entropy pairs with respect
to µ? This was done by Blanchard, Host, Maass, Martinez and Rudolph in [9]. A
partition is non-trivial if no element of the partition has measure 0 or 1.

Definition 5.1. Let (X, T ) be a TDS and µ ∈ MT (X). A pair (x1, x2) ∈ X2 with
x1 6= x2 is a µ-entropy pair if for each non-trivial partition P with two elements P1, P2

such that x1, x2 are interior points of P1, P2 respectively, the entropy hµ(T,P) > 0.

The set of entropy pairs with respect to µ is denoted by Eµ(X,T ). The sets
E(X, T ) and Eµ(X, T ) are related by:

Theorem 5.2. Let (X,T ) be a TDS. Then

1. [9] Eµ(X, T ) ⊂ E(X,T ) for each µ ∈ MT (X).
2. [11] There is µ ∈ MT (X) with Eµ(X,T ) = E(X,T ).

We remark that Eµ(X,T ) has properties similar to Theorem 3.4. One can now
define the topological µ-Pinsker factor as follows:

Definition 5.3. Let (X,T ) be a TDS and µ ∈ MT (X). The factor map π : (X, T ) →
(X/Πµ, T ), where Πµ ⊂ X×X is the smallest closed T×T -invariant equivalence rela-
tion containing Eµ(X, T ), is the maximal zero µ-entropy factor. The corresponding
TDS (X/Πµ, T ) is called the topological µ-Pinsker factor of (X, T ).

Note that Theorem 4.1 is a direct corollary of part 1 of Theorem 5.2. In fact this
result from [39] was the motivation for the definition of measure entropy pairs in [9].

Local variational principles

A key point in the proof of the second part of Theorem 5.2 is the following, so
called, local variational principles.
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Theorem 5.4. For a given TDS (X,T ) and an open cover U
1. (Blanchard, Glasner and Host [11])

sup
µ∈MT (X)

inf
PºU

hµ(T,P) ≥ htop(T,U)

2. (Glasner and Weiss [43])

sup
µ∈MT (X)

inf
PºU

hµ(T,P) = htop(T,U)

3. (Huang and Ye [59]) If U is given, then for any µ ∈ MT (X),

hµ(T,P) > 0 for each P º U implies inf
PºU

hµ(T,P) > 0,

where P is a finite Borel partition. In turn this implies htop(T,U) > 0,

Remark 5.5. In [88] Romangnoli introduced two kinds of measure theoretical entropy
for covers, namely

h+
µ (T,U) = inf

αºU
hµ(T, α) and h−µ (T,U) = lim

n→∞
1

n
inf

αºWn−1
i=0 T−iU

Hµ(α),

where α is a finite Borel partition. He showed that for a TDS (X, T ) there is µ ∈
MT (X) with h−µ (T,U) = htop(T,U). As h−µ (T,U) ≤ htop(T,U) for each µ ∈ MT (X)
we have

max
µ

h−µ (T,U) = htop(T,U).(5.1)

The result proved by Glasner and Weiss [43] can be stated as

max
µ

h+
µ (T,U) = htop(T,U).(5.2)

In [51] the authors showed that if there are a TDS (X, T ) and a µ ∈ MT (X) with
h+

µ (T,U) > h−µ (T,U) then there is a uniquely ergodic TDS with the same property.
Thus, combining (5.1) and (5.2) we conclude that

h+
µ (T,U) = h−µ (T,U).

Remark 5.6. In a recent work Shapira [92] shows that for a TDS (X, T ) and a
measure µ ∈ MT (X), given a finite open cover U and ε > 0,

h+
µ (U) = lim

1

n
logN (Un−1

0 , ε).

Here N (U , ε) is the minimal number of elements of U needed to cover X up to
µ-measure 1− ε. This effective way of computing h+

µ enables him to provide elegant
new proofs to most of the results mentioned above.

We mention here two related recent works. A local variational principle for pres-
sure and applications to equilibrium states are provided by Huang and Yi [61]; and
a local variational principle for general countable amenable group actions is to be
found in a forthcoming work by Huang, Ye and Zhang [64].

A characterization of µ-entropy pairs
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Let π : (X,µ, T ) −→ (Z, ν, S) be the measure theoretical Pinsker factor of
(X,µ, T ) and let µ =

∫
Z

µzdν(z) be the disintegration of µ over (Z, ν). Set

λ =

∫

Z

µz × µzdν(z)

the independent product of µ with itself over ν. Finally, let Λµ = supp (λ) be
the topological support of λ. In [30] Glasner provides a simple characterization of
Eµ(X, T ):

Theorem 5.7. Let (X,T ) be a TDS.

1. For a µ ∈ MT (X) of positive entropy Eµ(X,T ) = Λµ \∆.
2. When moreover µ is ergodic cls (Eµ(X,T )) = Λµ.
3. If htop(T ) > 0, there is µ ∈ MT (X) with E(X,T ) = Λµ \∆.
4. cls (E(X,T )) = cls (∪{Λµ : µ ∈ M e

T (X)}), where M e
T (X) is the collection of

ergodic T -invariant ergodic probability measures on X.

An important corollary of this result is the following:

Theorem 5.8. [30] The product of two u.p.e. TDS is u.p.e.

Entropy n-tuples

Once entropy pairs are defined it is natural to inquire what should be a successful
definition of entropy n-tuples? Now whereas the Definition 3.3 of topological entropy
pairs is easily extended to n-tuples, one finds that the corresponding generalization of
the definition of measure entropy pairs (Definition 5.1) is troublesome. To overcome
this difficulty one can use Theorem 5.7 and define Eµ

n(X, T ) as the support of

λn =

∫

Z

µz × . . .× µzdν(z).

In fact this was the way entropy tuples were defined in a preliminary version of [59].
After awhile though the authors realized that a more direct definition is available.

Definition 5.9. Let (X, T ) be a TDS.

1. A cover {U1, . . . , Uk} of X is admissible with respect to (xi)
n
1 if for each 1 ≤

j ≤ k there is ij such that xij 6∈ Uj.

2. An n-tuple (xi)
n
1 ∈ X(n) is a topological entropy n-tuple if at least two of the

points {xi}n
i=1 are distinct and for any admissible open cover U with respect

to (xi)
n
1 ∈ X(n) one has htop(T,U) > 0.

3. (xi)
n
1 is an entropy n-tuple for µ, if at least two of the points {xi}n

i=1 are distinct
and for any admissible partition P with respect to (xi)

n
1 we have hµ(T,P) > 0.

The set of entropy n-tuples is denoted by En(X, T ), and the set of all entropy n-
tuples for µ is denoted by Eµ

n(X, T ). Note that E2(X, T ) = E(X,T ) and Eµ
2 (X, T ) =

Eµ(X, T ). Two TDS are weakly disjoint if the product system is transitive. A TDS
is mildly mixing if the product with any transitive system is transitive (see [57] and
[35]). By using Theorem 5.4 one can show [59]:

Theorem 5.10. Let (X, T ) be a TDS. Then

1. Eµ
n(X,T ) ⊂ En(X, T ) for each µ and each n ≥ 2.
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2. There is µ with Eµ
n(X,T ) = En(X,T ) for each n ≥ 2.

3. A u.p.e. system is mildly mixing.

Definition 5.11 ([59]). We say that a TDS is u.p.e. of order n (n ≥ 2) if En(X, T )∪
∆n = Xn, and that it is topologically K if it is u.p.e. of order n for every n ≥ 2.

It now follows that when a TDS (X, T ) admits an invariant probability measure
µ of full support such that the corresponding MDS (X, µ, T ) is K, then it is topo-
logically K. Another case where one can deduce the topological K property is when
the TDS is leo. A non-invertible TDS (X, T ) is locally eventually onto (leo) if for
every non-empty open subset there is n ∈ N with T nU = X (see [20] and [29]).

Theorem 5.12. A leo TDS is topologically K; i.e. it is u.p.e. of all orders.

Proof. Note that for subsets U and V of X there is n ∈ N such that U ∩T−nV 6= ∅ if
and only if T nU ∩V 6= ∅. By the leo assumption for every l-tuple of non-empty open
subsets U1, . . . , Ul of X, there is n ∈ N with T n(Ui) = X for each i = 1, 2, . . . , l.
Thus for each k ∈ N and each s ∈ {1, 2, . . . , n}k,

T−nUs(1) ∩ T−2nUs(2) ∩ . . . ∩ T−knUs(k) 6= ∅.
This implies that (X, T ) is u.p.e. of all orders by Theorem 5.13. ¤

Note that the property of having u.p.e. of order n is preserved under finite prod-
ucts (see [30] and [59]). Also note that there exists a TDS which is u.p.e. of order
2 but is not u.p.e. of order 3 [59].

To end this section we state a characterization of entropy tuples obtained in [59]
which also yields a nice interpretation of positive entropy.

Theorem 5.13. Let (X, T ) be a TDS and n ≥ 2. Then (x1, . . . , xn) ∈ En(X,T )
if and only if for every choice of neighborhoods Ui of xi there is a subset D =
{d1, d2, . . .} of N with positive density such that

⋂∞
i=1 T−diUs(i) 6= ∅ for each s =

(s(1), s(2), . . .) ∈ {1, . . . , n}D.

Note that Theorem 5.13 is also valid for non-invertible TDS.

Part 2. Finer structures

6. Entropy sets and entropy points

In this section we investigate the question: where is the entropy concentrated?
There are two ways to approach this question. The first is by use of entropy tuples;
the second is via Bowen’s definition of entropy (see Section 2 above).

Along the first way the notion of entropy set was introduced in [23] by Dou, Ye
and Zhang. A subset K with card(K) ≥ 2 is an entropy set if for each n ≥ 2, every
n-tuple of pairwise distinct points from the set K is an entropy n-tuple. Then we
can talk about maximal entropy set (under inclusion). It is easy to show that a
maximal entropy set is closed since the closure of an entropy set is again an entropy
set. Moreover, we have:

Theorem 6.1. [23] Let (X, T ) be a TDS.



E. Glasner and X. Ye 15

1. If htop(T ) > 0 then there is a maximal entropy set with uncountably many
points.

2. The topological entropy of T is the supremum of the Bowen entropies over all
maximal entropy sets.

We remark that there is an example for which there is a maximal entropy set with
just two points.

Via the second way, namely by using Bowen’s definition of entropy, the notion of
entropy points was introduced in [103] by Ye and Zhang. For x ∈ X let

h(x) = lim
ε→0+

inf{s(K, ε) : K is a closed neighborhood of x}.
It can be shown by using a theorem of Katok [72] that if x ∈ supp (µ), for an ergodic
measure µ then

h(x) ≥ hµ(T )

which, in turn, implies
sup
x∈X

h(x) = htop(T ).

Using this fact we have:

Theorem 6.2. Let (X, T ) be a TDS. There is a countable closed subset whose Bowen
entropy is equal to the entropy of T . Moreover, this subset can be chosen so that its
limit set has at most one limit point.

Almost at the same time Blanchard and Huang [7] also defined and studied entropy
sets. Their definition of entropy set is the same as in [23] except that they require
an entropy set to be closed. Denote by Es(X, T ) the collection of all entropy sets
and by Eµ

s (X, T ) the collection of all µ-entropy sets of (X, T ). Let (2X , dH) be
the hyperspace of (X, d), i.e., the collection of all nonempty closed subsets of X

equipped with the Hausdorff metric dH . T induces a homeomorphism T̂ of 2X ,

where T̂ (A) = T (A) = {Ta : a ∈ A} for A ∈ 2X . The sets Es(X, T ) and Eµ
s (X,T )

are T̂ -invariant, possibly empty, subsets of 2X . Define

H(X, T ) = Es(X,T ) and Hµ(X,T ) = Eµ
s (X, T ).

An entropy point is a point x ∈ X such {x} ∈ H(X, T ); it is a µ-entropy point
if {x} ∈ Hµ(X, T ). The sets of entropy points and of µ-entropy points of (X,T )
are denoted by E1(X, T ) and Eµ

1 (X, T ) respectively. The authors of [7] prove the
following results:

Theorem 6.3. Let (X,T ) be a TDS.

1. If µ ∈ M(X, T ), then Eµ
s (X,T ) ⊆ Es(X, T ), Hµ(X,T ) ⊆ H(X, T ) and

Eµ
1 (X,T ) ⊆ E1(X, T ).

2. There is µ ∈M(X,T ) such that Eµ
s (X, T ) = Es(X,T ), Hµ(X, T ) = H(X,T )

and Eµ
1 (X,T ) = E1(X, T ).

Theorem 6.4. Let (X,T ) be a TDS.

1. If µ ∈ M(X, T ) with hµ(T ) > 0, then (Hµ(X,T ), T̂ ) has infinite topological
entropy and admits an invariant measure with full support.
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2. If htop(T ) > 0, then (H(X, T ), T̂ ) has infinite topological entropy and admits
an invariant measure with full support.

7. Complexity pairs and complexity pairs along a sequence

From the definition of the topological entropy of a finite open cover as the limit

htop(U , T ) = lim
N→∞

1

N
log N(UN−1

0 )

it follows immediately that this entropy is zero if and only if the growth of the
sequence pn(U) = N(U)n−1

0 is sub-exponential. Can the study of the complexity
function n 7→ pn(U) be helpful in the study of zero-entropy systems? This question
was raised by Blanchard, Host and Maass in [13], where the following notion was
introduced.

Definition 7.1. [13] A TDS (X,T ) is scattering if for each non-trivial open cover
U ,

N(
n−1∨
i=0

T−i(U)) −→∞.

It is 2-scattering if for each non-trivial open cover U consisting of 2-elements,
N(

∨n−1
i=0 T−i(U)) −→∞.

The corresponding notion of complexity pairs is defined and the collection of com-
plexity pairs is denoted by Com(X,T ). The question, left open in [13], whether
2-scattering implies scattering, was later answered in the affirmative in [57].

Theorem 7.2. 2-scattering implies scattering.

We say that two TDS are weakly disjoint if the product system is transitive. The
following results are obtained in [13].

Theorem 7.3. 1. A TDS is scattering if and only if it is weakly disjoint from
all minimal systems.

2. A TDS is equicontinuous if and only if for any given U , there is a constant
C such that N(

∨n−1
i=0 T−i(U)) < C for any n.

3. Let (X, T ) be a TDS. Then the factor defined by the smallest closed invari-
ant equivalence relation containing Com(X, T ) is the maximal equicontinuous
factor.

The first part of Theorem 7.3 suggests the following question. Can one character-
ize weak disjointness from various sub-classes of the class of all transitive systems in
terms of complexity properties? These classes were defined and studied in [41], [100],
[3] and [55]. We refer the reader to the review article [35] for further information.
Now in [57] the authors show that some such characterizations can be achieved by
introducing complexity functions along a give sequence.
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Definition 7.4. Let A = {a1, a2, . . .} be a sequence. A TDS is A-scattering if for
each non-trivial open cover U , N(

∨n−1
i=0 T−ai(U)) −→∞. Let

CA(U) = lim
n→∞

N(
n−1∨
i=0

T−ai(U)).

As usual, for a TDS and a pair of non-empty open sets U ,V let

N(U, V ) = {n ∈ Z+ : U ∩ T−nV } 6= ∅.
Theorem 7.5. Let (X, T ) be a TDS. Then the following statements are equivalent:

1. (X, T ) is mildly mixing, i.e. (X, T ) is weakly disjoint from all transitive sys-
tems.

2. For any standard cover U of X and any IP-set A, CA(U) = +∞.
3. For any non-trivial finite open cover U of X and IP-set A, CA(U) = +∞.

A subset S of Z+ is an IP-set if there is a sequence {pi} such that

S = {
n∑

i=1

pi1 + . . . + pin : i1 < . . . < in, n ∈ N}

A subset is an IP ∗ set if it has a non-empty intersection with every IP-set.
Let S be a subset of Z+. The upper Banach density of S is

BD∗(S) = lim sup
|I|−→+∞

|S ∩ I|
|I| ,

where I ranges over intervals of Z+. The upper density of S is

D∗(S) = lim sup
n−→+∞

|S ∩ [1, n]|
n

.

We say that a TDS is strongly scattering if it is weakly disjoint from every E-
system, i.e. a transitive system with an invariant measure of full support. The
following results are proved in [57].

Theorem 7.6. Let (X, T ) be a TDS. Then the following statements are equivalent:

1. (X, T ) is strongly scattering.
2. For any standard cover U of X and positive upper density (or positive upper

Banach density) subset A, CA(U) = +∞.
3. For any non-trivial finite open cover U of X and positive upper density (or

positive upper Banach density) subset A, CA(U) = +∞.

A subset A of Z+ is syndetic if it has bounded gaps; a subset A of Z+ is thick
if it contains arbitrarily long intervals of natural numbers; and a subset A of Z+ is
piece-wise syndetic if it is the intersection of a syndetic set with a thick set.

Theorem 7.7. Let (X, T ) be a TDS. Then the following statements are equivalent:

1. (X, T ) is scattering.
2. For any standard cover U of X and syndetic (or piecewise syndetic) subset A,
CA(U) = +∞.

3. For any non-trivial finite open cover U of X and syndetic (or piecewise syn-
detic) subset A, CA(U) = +∞.
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For a minimal system we have:

Theorem 7.8. Let (X,T ) be a minimal TDS. Then

1. (X, T ) is weakly mixing if and only if for each pair of non-empty open sets
A,B, the lower Banach density of N(A,B) is 1.

2. (X, T ) is mildly mixing if and only if for each pair of non-empty open sets
A,B, N(A, B) is an IP ∗ set.

We remark that the corresponding results for MDS were recently obtained by
Kuang and Ye [78].

8. Sequence entropy pairs and null systems

It was shown in [5] that u.p.e. implies weak mixing, and that a weakly mixing
TDS is scattering [13]. In [13] Blanchard, Host and Maass raised the following
question: can we characterize weak mixing in terms of entropy properties?

The answer is yes. To do this we need to introduce the notion of sequence entropy.
We note that the notion of sequence entropy for a MDS was first introduced by
Kushnirenko [79] and that the corresponding definition for TDS was first introduced
by Goodman [45].

Let (X,T ) be a TDS and A = {a0 < a1 < . . .} be a sequence of integers. Given
an open cover U define

hA
top(T,U) = lim sup

n−→∞

1

n
N(

n−1∨
i=0

T−ai(U))

The topological entropy along the sequence A is then defined by

hA
top(T ) = sup

U is an open cover
hA

top(T,U).

Similarly one can define sequence entropy of a MDS. Following the idea of entropy
pairs we have in [48]:

Definition 8.1. Let (X, T ) be a TDS. A pair (x1, x2) ∈ X2 is a sequence entropy
pair if x1 6= x2 and for every pair of disjoint closed neighborhoods U1, U2 of x1 and
x2 respectively, there is a sequence A such that hA

top(T, {U c
1 , U

c
2}) > 0. The set of all

sequence pairs is denoted by SE(X, T ).

Petersen [85] has shown that a TDS is weakly mixing if and only if for every pair
of non-empty open sets U ,V , N(U × U,U × V ) 6= ∅. Motivated by this result we
introduce the following:

Definition 8.2. Let (X,T ) be a TDS. A pair (x1, x2) ∈ X2 is a weak mixing pair
if x1 6= x2 and for every pair of disjoint closed neighborhood U1, U2 of x1 and x2

respectively,
N(U c

1 × U c
1 , U

c
1 × U c

2) 6= ∅.
The set of weak mixing pairs is denoted by WM(X, T ).

It is clear that E(X,T ) ⊂ SE(X, T ) ⊂ WM(X, T ) and that SE(X, T ) ⊂ Com(X, T ).
Huang, Li, Shao and Ye [48] proved:
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Theorem 8.3. For a TDS the following statements are equivalent.

1. (X, T ) is weakly mixing.
2. SE(X, T ) = X2 \∆2, where ∆2 = {(x, x) : x ∈ X}
3. WM(X,T ) = X2 \∆2.

Following Kushnirenko [79] and motivated by Theorem 8.3 we define null systems
as follows (see also [45]):

Definition 8.4. A TDS is null if for any sequence A, hA
top(T ) = 0. That is,

SE(X,T ) = ∅.
Kushnirenko in [79] defined null MDS and has shown that an ergodic MDS is null

if and only if it has discrete spectrum. It turns out that this is not true for TDS
even under the minimality assumption, see [45]. However, we have the following:

Theorem 8.5. [48] If a minimal TDS is null then it is an almost one to one exten-
sion of an equicontinuous system.

In [54] Huang, Shao and Ye studied the question how to characterize mixing
properties via sequence entropy, and the question under which entropy conditions
a minimal system is strongly mixing. One motivation for asking these questions is
the fact that for MDS, a K-system is strongly mixing.

We say that a TDS is topological K if it is u.p.e. of order n for each n ≥ 2. There
exists an example which is topological K but not strongly mixing [5]. However, for
minimal systems we have:

Theorem 8.6. [54] A minimal topological K system is strongly mixing.

The key point in the proof of the above theorem is:

Theorem 8.7. Assume that htop(T,U) > 0. Then then the sequence entropy of U
with respect to any infinite sequence A is positive.

Though the same result holds for MDS and the proof is easy, the proof of Theorem
8.7 is rather involved.

9. Sequence entropy and complexity pairs for a measure

In [50] Huang, Maass and Ye considered the question: how to define the notion
of sequence entropy and complexity pairs with respect to a measure on a TDS. The
definition is similar to that of entropy pairs for a measure.

Definition 9.1. Let (X,T ) be a TDS and µ ∈ MT (X). An n-tuple (xi)
n
i=1 ∈ X(n),

n ≥ 2, is called

1. a sequence entropy n-tuple if at least two points in (xi)
n
i=1 are different and for

any admissible open cover U with respect to (xi)
n
i=1 there exists an increasing

sequence A ⊂ N such that hA
top(T,U) > 0;

2. a sequence entropy n-tuple for µ, if at least two points in (xi)
n
i=1 are different

and for any admissible Borel partition α with respect to (xi)
n
i=1 there exists

an increasing sequence A ⊂ N such that hA
µ (T, α) > 0.
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Denote the set of all entropy tuples (resp. for µ) by SEn(X, T ) (resp. SEµ
n(X, T )).

Since there is no variational principle for sequence entropy (see [45]) one can only
show [50]:

Theorem 9.2. For a TDS and n ≥ 2, SEµ
n(X,T ) ⊂ SEn(X, T ).

In a similar way one can define sequence entropy sets (see Section 6). Unlike the
situation with entropy sets it is easy to give an example, say the Morse system,
for which there is a finite sequence entropy set, but there is no sequence entropy
set with uncountably many points. For the connection between sequence entropy
and the cardinalities of sequence entropy sets see section 12. Now we turn to define
complexity pairs for a measure.

Definition 9.3. Let (X, T ) be a TDS and µ ∈ MT (X).

1. We say that (x1, x2) ∈ X2 is a weak µ-complexity pair if x1 6= x2 and for every
Borel partition α = {A1, A2} of X with xi ∈ int(Ai), i ∈ {1, 2},

lim
n→∞

Hµ(
n−1∨
i=0

T−iα) = ∞.

2. We say that (x1, x2) ∈ X2 is a strong µ-complexity pair if x1 6= x2 and if
whenever U1, U2, are closed mutually disjoint neighborhoods of the points x1

and x2, one has

lim
n→∞

inf
βº

n−1W
i=0

T−i{Uc
1 ,Uc

2}
Hµ(β) = ∞.

Denote by Com+
µ (X, T ) the set of all weak µ-complexity pairs and by Com−

µ (X,T )
the set of all strong µ-complexity pairs. It is clear that Com−

µ (X, T ) ⊆ Com+
µ (X,T ).

Theorem 9.4. [50] Let (X, T ) be a TDS and µ ∈ MT (X). Then

SEµ
2 (X, T ) ⊆ Com−

µ (X, T ) ⊆ Com(X, T ).

Part 3. Independence properties and combinatorics

10. Tame systems

As explained in the introduction the enveloping semigroup E(X, T ) of a TDS
(X,T ) is the closure of {T, T 2, T 3, . . .} in XX with the product topology. A dynam-
ical version of the famous Bourgain-Fremlin-Talagrand dichotomy asserts that the
enveloping semigroup E(X,T ) is either very large and contains a topological copy of
βN, or the topology of E(X,T ) is determined by the convergence of sequences [37].

More precisely, a topological space is Fréchet if for any A ⊂ X and any x ∈ A,
there is a sequence {xn} with A 3 xn −→ x.

Definition 10.1. A metric TDS (X, T ) is tame if its enveloping semigroup is
Fréchet.
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Tame systems were introduced by Köhler [76] and Glasner in [33]. At a first
glance one might wander what has tameness to do with combinatorics and entropy
theory. In order to see these connections let us have a brief look at the theorem of
Rosenthal which is at the base of the Bourgain-Fremlin-Talagrand dichotomy. For
more details we refer the reader to [24], [96].

Definition 10.2. Let X be a set. A sequence (An
0 , A

n
1 ) of disjoint pairs of subsets of

X is called independent if for every finite F ⊂ N and every function ε : F → {0, 1},⋂
n∈F An

ε(n) 6= ∅. The sequence (An
0 , A

n
1 ) is called convergent if for every x ∈ X,

either x 6∈ An
0 for almost all n (i.e. for all but finitely many n ∈ N) or x 6∈ An

1 for
almost all n.

Definition 10.3. Let X be a set. A sequence of functions fn : X → R is independent
if there exists a pair r0 < r1 of real numbers such that the sequence (An

0 , A
n
1 ) =

({fn ≤ r0}, {fn ≥ r1}) is independent.

The proof of the following lemma is straightforward.

Lemma 10.4. Let fn : X → R be a sequence of real valued functions on a set X.
Then fn is pointwise convergent iff for any pair r0 < r1 of rational numbers the
sequence of disjoint pairs (An

0 , A
n
1 ) = ({fn ≤ r0}, {fn ≥ r1}) is convergent.

We can now state (a special case of) a famous dichotomy theorem of Rosenthal.

Theorem 10.5. Let X be a compact space and {fn}n∈N a pointwise bounded se-
quence of functions in C(X). Then either the sequence {fn} contains a pointwise
convergent subsequence or there exists a subsequence of {fn} which is independent.

As it can be shown that a metric TDS (X, T ) is not tame when and only when
there is a bounded continuous real valued function f on X such that the sequence
{f ◦ T n : n ∈ N} is an independence sequence, the connection of tameness and
combinatorial properties becomes apparent.

We have the following results concerning tame systems (for the definition and
properties of PI systems see e.g. [4]):

Theorem 10.6. (Glasner [33]) (1) A tame system has zero entropy; (2) A metric
minimal tame system is PI; hence a nontrivial metric minimal weakly mixing system
is never tame. (3) (Kerr and Li [73]) A null system is tame.

Thus we have the inclusions:

zero entropy ⊃ tame ⊃ null ⊃ equicontinuous

In [48] it was shown that a minimal null system is an almost 1-1 extension of an
equicontinuous system. The question whether this conclusion is valid for minimal
tame systems was answered, independently, by Huang [47], and Kerr and Li [74].
See also Glasner [34] for a different proof.

Theorem 10.7. A minimal tame system is an almost 1-1 extension π : (X, T ) −→
(Y, S) of an equicontinuous system. Moreover (X, T ) is uniquely ergodic with unique
invariant measure µ and the map π is a measure theoretical isomorphism of (X, µ, T )
with the Kronecker system (Y, ν, S), where ν = π∗(µ) is the Haar measure on Y .
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The way Huang solved the question was via the notion of scrambled pairs. (Warn-
ing: this is not the same as the notion of a “scrambled set” from Section 13).

Definition 10.8. A pair (x1, x2) ∈ X2 with x1 6= x2 is a scrambled pair if there are
closed disjoint neighborhood Ui of xi and an infinite sequence {n1, n2, . . .} with

∞⋂
i=1

T−niUs(i) 6= ∅

for any s = (s(1), s(2), . . .) ∈ {1, 2}N. Denote by S(X,T ) the set of all scrambled
pairs.

Then he proved:

Theorem 10.9. If (X, T ) is tame then S(X, T ) = ∅.
As we will see in the next section, the proof provided by Kerr and Li [74] employs

a similar notion of independence. Glasner’s proof [34], on the other hand, avoids
combinatorial machinery and uses only topological methods and the structure theory
of minimal systems.

11. Independence pairs

Recall that Theorem 5.13 characterizes an entropy tuple (x1, x2, . . . , xk) by means
of an “interpolation” or “independence” property on a set of neighborhoods (U1, U2,
. . . , Uk) along a subset of N with positive density.

Following ideas and methods developed by Rosenthal [89], Glasner-Weiss [40], and
Huang-Ye [57], Kerr and Li, in their recent work [74], introduced various notions of
independence. These notions enabled them to give a uniform and elegant treatment
of entropy pairs, sequence entropy pairs and scrambled pairs, which were discussed
in the previous sections.

In a recent preprint [75] Kerr and Li also introduce various notions of independence
for a measure and give a uniform treatment of entropy pairs and sequence entropy
pairs for a measure.

Definition 11.1. Let (X, T ) be a TDS. For a tuple Ã = (A1, . . . , Ak) of subsets of
X, we say a subset J ⊂ Z+ is an independence set for Ã if for any nonempty finite
subset I ⊂ J , we have ⋂

i∈I

T−iAs(i) 6= ∅

for any s ∈ {1, . . . , k}I .

Next they define IE-tuples, IT-tuples, and IN-tuples (standing for Entropy, Tame
and Null, respectively) as follows.

Definition 11.2. We call a tuple x̃ = (x1, . . . , xk) ∈ Xk

1. an IE-tuple if for every product neighborhood U1 × . . . × Uk of x̃ the tuple
(U1, . . . , Uk) has an independence set of positive density.

2. an IT-tuple if for every product neighborhood U1 × . . . × Uk of x̃ the tuple
(U1, . . . , Uk) has an infinite independence sets.
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3. an IN-tuple if for every product neighborhood U1 × . . . × Uk of x̃ the tuple
(U1, . . . , Uk) has arbitrarily long finite independence sets.

Then they prove:

Theorem 11.3. Let (X, T ) be a TDS.

1. A tuple is an entropy tuple iff it is a non-diagonal IE-tuple. In particular a
system (X,T ) has zero entropy if and only if every IE-pair is diagonal (i.e.
all its entries are equal).

2. A tuple is a sequence entropy tuple iff it is a non-diagonal IN-tuple. In par-
ticular a system (X, T ) is null if and only if every IN-pair is diagonal.

3. (X, T ) is tame iff it has no non-diagonal IT-pair.

The connection between the concepts of independence and the corresponding con-
cept of k-tuples can be discerned, for example, in the following:

Lemma 11.4 ([74], Lemma 3.4). Let k ≥ 2. Let U1, . . . , Uk be pairwise disjoint
subsets of X and set U = {U c

1 , . . . , U
c
k}. Then (U1, . . . , Uk) has an independence set

of positive density if and only if hc(U , T ) > 0.

We remark that Part 1 of Theorem 11.3 was proved by Glasner and Weiss [40] for
symbolic systems, and by Huang and Ye [59] for general Z-actions. Note that Kerr
and Li’s result are proven for general (discrete amenable) group actions. Also, one
direction of Part 3 of Theorem 11.3 was obtained by Huang [47].

At the heart of the proofs of Glasner-Weiss and Huang-Ye lies a combinatorial
fact known as:

The Sauer-Perles-Shelah lemma: If B ⊂ {0, 1}{1,...,n} satisfies

|B| >
k−1∑
i=0

(
n

i

)

then there is W with |W | ≥ k and B ⊃ {0, 1}W .
In Kerr and Li’s work the following combinatorial lemma plays a key role. Let

k ≥ 2 and let Z be a nonempty finite set. Let U be the cover of {0, 1, . . . , k}Z =∏
z∈Z{0, 1, . . . , k} consisting of subsets of the form

∏
z∈Z({0, 1, . . . , k}\{iz}), where

1 ≤ iz ≤ k for each z ∈ Z. For S ⊂ {0, 1 . . . , k}Z write FS to denote the minimal
number of sets in U one needs to cover S.

The Kerr-Li lemma: Let k ≥ 2 and let b > 0 be a constant. Then there
exists a constant c depending only on k and b such that for every finite set Z and
S ⊂ {0, 1, . . . , k}Z with FS ≥ kb|Z| there is a W ⊂ Z with |W | ≥ c|Z| and

S|W ⊃ {1, 2, . . . , k}W .

In order to demonstrate the use of the Kerr-Li lemma let us next describe how
one can deduce from it Lemma 11.4 (which in turn implies Theorem 11.3(1)). We
follow [74]. The “only if” part is trivial. For the “if” part, set b = hc(U , T ) > 0
and consider the map φn : X −→ {0, 1, . . . , k}{1,...,n} defined by φn(x)(j) = i if
T j(x) ∈ Ui for some 1 ≤ i ≤ k and 0 otherwise. Then N(

∨n
i=1 T−iU) = Fφn(X),

and so Fφn(X) > e
b
2
n for all large enough n. By the Kerr-Li lemma there exists a

constant c > 0 depending only on k and b such that φn(X)|W ⊃ {1, . . . , k}W for
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some W ⊂ {1, . . . , n} with |W | ≥ cn when n is sufficiently large. Thus W is an
independence set for the tuple U = (U1, . . . , Un). A simple argument (using symbolic
dynamics) shows that U has an independence set of positive density.

12. Maximal pattern entropy

In their work [67] Kamae and Zamboni introduce a variation of the complex-
ity function which they call maximal pattern complexity. For a sequence α =
(a1, a2, . . .) ∈ {1, . . . , k}Z+ and any n ∈ N this number is defined by

p∗α(n) := sup
(t1<...<tn)∈Zn

+

card {ai+t1 . . . ai+tn : i ∈ Z+}.

In a recent preprint by Huang and Ye [60] the authors introduce a notion, called
maximal pattern entropy. By extending the combinatorial lemma of Kerr and Li
[74] they show that if (X,T ) is a TDS then

sup
A

hA(T ) = log k with k ∈ N ∪ {∞}.

This should be compared with the fact that for an ergodic MDS supA hA
µ (T ) =

log k with k ∈ N ∪ {∞} [65]. The authors of [60] also show that a zero dimensional
system is null if and only if the maximal pattern entropy with respect to any open
cover is of polynomial order. We now proceed to give some more details.

For a TDS (X, T ), n ∈ N and a finite open cover U let

p∗X,U(n) = max
(t1<t2<...<tn)∈Zn

+

N(
n∨

i=1

T−tiU).

The maximal pattern entropy of T with respect to U is defined by

h∗top(T,U) = lim sup
n−→+∞

1

n
log p∗X,U(n).

It is easy to see that {log p∗X,U(n)} is a sub-additive sequence. Hence

h∗top(T,U) = lim
n−→+∞

1

n
log p∗X,U(n) = inf

n≥1

1

n
log p∗X,U(n).

The maximal pattern entropy of (X, T ) is

h∗top(T ) = sup
U

h∗top(T,U),

where supremum is taken over all finite open covers of X.
Analogously, given a MDS (Y, C, ν, T ) and a finite measurable partition α of Y

we define
p∗Y,α,ν(n) = max

(t1<t2<...<tn)∈Zn
+

∑

A∈Wn
i=1 T−tiα

−ν(A) log ν(A),

and the maximal pattern entropy of T with respect to α is defined by

h∗ν(T, α) = lim sup
n−→+∞

1

n
p∗X,α,ν(n).
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Again one checks that {p∗X,α,ν(n)} is a sub-additive sequence, hence

h∗ν(T, α) = lim
n−→+∞

1

n
p∗X,α,ν(n) = inf

n≥1

1

n
p∗X,α,ν(n).

The maximal pattern entropy of (X, T, ν) is

h∗ν(T ) = sup
α

h∗ν(T, α),

where the supremum is taken over all finite measurable partitions.
The first theorem below tells us that h∗top(T ) and h∗µ(T ) can be interpreted by

known notions. We denote by S the collection of increasing sequences in Z+ =
N ∪ {0}.
Theorem 12.1. Let (X, T ) be a TDS and (Y, C, ν, T ) be a MDS. Then

1. for each open cover U of X, h∗top(T,U) = supA hA
top(T,U) and there is A ∈ S

with h∗top(T,U) = hA
top(T,U). Moreover, h∗top(T ) = supA hA

top(T ).

2. for each finite partition α of Y , h∗ν(T, α) = supA hA
ν (T, α) and there is A ∈ S

with h∗ν(T, α) = hA
ν (T, α). Moreover, h∗ν(T ) = supA hA

ν (T ).

The next theorem states some properties of maximal pattern entropy.

Theorem 12.2. Let (X, T ) be a TDS and (Y, C, ν, T ) be a MDS.

1. h∗top(T ) and h∗µ(T ) are conjugacy and isomorphism invariants.

2. For every open cover U , h∗top(T
k,U) = h∗top(T,U) for each k ∈ Z \ {0} and

thus
h∗top(T

k) = h∗top(T )

for every k ∈ Z \ {0}.
3. For every finite partition α of Y , h∗ν(T

k, α) = h∗ν(T, α) for each k ∈ Z \ {0}
and thus

h∗ν(T
k) = h∗ν(T )

for every k ∈ Z \ {0}.
4. If htop(T ) > 0, then h∗top(T ) = ∞; if hν(T ) > 0, then h∗ν(T ) = ∞.

It was shown by Goodman [45] that when X has a finite covering dimension,
then hA

µ (T ) ≤ hA
top(T ) for any µ ∈ MT (X) and any sequence A of Z+. In fact, the

assumption of finite dimension is not necessary, as the following theorem shows.

Theorem 12.3. Let (X, T ) be a TDS. Then

sup
µ∈MT (X)

hA
µ (T ) ≤ hA

top(T )

for any sequence A of Z+. Consequently, supµ∈MT (X) h∗µ(T ) ≤ h∗top(T ).

The following lemma obtained in [60] is an extension of the Kerr-Li lemma in [74].
We use the notation introduced at the end of Section 11.

Lemma 12.4. Let k, ` ≥ 2. Then there are Ck, Dk depending on k such that for
every finite set Z with |Z| ≥ max{`Ck, Dk} and S ⊆ {0, 1, 2, · · · , k}Z with FS ≥
N(k, |Z|, `) there exists a W ⊆ Z with |W | ≥ ` and S|W ⊇ {1, 2, · · · , k}W , where
N(·, ·, ·) is a map from N3 to N.
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In a similar way to entropy tuples one defines maximal pattern entropy tuples. A
maximal pattern entropy tuple (x1, . . . , xn) is intrinsic if xi 6= xj if i 6= j. By using
Lemma 12.4 and other arguments Huang and Ye prove:

Theorem 12.5. Let (X,T ) be a TDS. Then h∗top(T ) = supA hA
top(T ) is the logarithm

of the maximal length of an intrinsic maximal pattern entropy tuple. Consequently
it is log n with n ∈ N ∪ {∞}.

We remark that there is a recent result by Maass and Shao [81] which gives the
structure of a minimal TDS with h∗top(T ) < ∞. Roughly speaking, such a system
is a bounded finite to one extension of its maximal equicontinuous factor up to a
proximal extension.

Using the Sauer-Perles-Shelah lemma and some other arguments one can prove
[60]:

Theorem 12.6. Let (X,T ) be zero dimensional. Then it is null if and only if p∗X,U
is of polynomial order for each open cover U .

Part 4. Applications and open problems

13. Li-Yorke chaos, asymptotic pairs, extreme relations and
interval maps

Li-Yorke chaos

Positive entropy can be interpreted as a manifestation of chaotic behavior and
an extensive work has been done along these lines (see for example [41]). In the
present section we examine the notion of Li-Yorke chaos and the related concept of
asymptotic pairs.

Definition 13.1. Let (X, T ) be a TDS. A pair of points {x, y} ⊆ X is said to be a
Li-Yorke pair (with modulus δ) if one has simultaneously

lim sup
n→∞

d(T nx, T ny) = δ > 0 and lim inf
n→∞

d(T nx, T ny) = 0.

A set S ⊆ X is called scrambled if any pair of distinct points {x, y} ⊆ S is a Li–
Yorke pair. Finally, a system (X, T ) is called chaotic in the sense of Li and Yorke
if there is an uncountable scrambled set.

It turns out that the existence of uncountable scrambled sets actually follows from
relative weak mixing rather than positive entropy. The following theorem is proved
in Blanchard-Glasner-Kolyada-Maass [12]. A set K of a compact space X is called
a Mycielski set if it has the form K =

⋃∞
j=1 Cj with Cj a Cantor set for every j [12].

Theorem 13.2. Let (X, T ) be a TDS and assume that for some T -ergodic probability
measure µ the corresponding measure preserving system (X,BX , µ, T ) is not measure
distal. Denote Z = supp (µ); then there exists a closed invariant set W ⊆ Z × Z
such that the subsystem (W,T × T ) is topologically transitive and for every open
set U ⊆ X with U ∩ Z 6= ∅ there exists a Mycielski set K ⊆ U which satisfies
(K ×K) \∆Z ⊆ Wtrans. Finally, every such set K is a scrambled set of the system
(X,T ).
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The proof of Theorem 13.2 relies on the Furstenberg-Zimmer structure theorem
for ergodic MDS which represents every such system as a weakly mixing extension
of a measure-distal system. Using Glasner’s characterization of entropy pairs [30],
the authors of [12] obtain the following corollary, the second part of which solved a
long standing open problem.

Theorem 13.3. Let (X, T ) be a TDS.

1. If (X, T ) admits a T -invariant ergodic measure µ with respect to which the
measure preserving system (X,BX , µ, T ) is not measure distal then (X, T ) is
Li-Yorke chaotic.

2. If (X,T ) has positive topological entropy then it is Li-Yorke chaotic.

For related results see Huang-Ye [56] and Kerr-Li [74].

Asymptotic pairs

Similar questions are treated in the work [10] of Blanchard, Host and Ruette.
Before describing their results let us recall the following classical results (see [87]
and [82])).

In a MDS (X,B, µ, T ) a measurable partition ξ is called extreme if it satisfies the
following conditions:

1. T−1ξ ≤ ξ.
2.

∨∞
n=0 T nξ = ε.

3.
∧∞

n=0 T−nξ = πµ.

Here ε is the point partition and πµ is the Pinsker measurable partition. If in addition
one has:

(4) hµ(T ) = Hµ(ξ|T−1ξ),

then ξ is called perfect. It was shown by Rokhlin and Sinai in [87] that every MDS
admits a perfect measurable partition.

Definition 13.4. Let (X,T ) be a TDS. A pair of points {x, y} ⊆ X is asymptotic
if

lim
n→∞

d(T nx, T ny) = 0.

We let A denote the set of asymptotic pairs in X ×X.

Given a TDS (X, T ) of positive entropy, the authors of [10] fix an invariant mea-
sure µ ∈ MT (X). Then using, on the one hand, the measure theoretical Pinsker
factor πµ and the related perfect partition, and on the other hand the relative prod-
uct measure λ = µ ×

πµ

µ, they prove the following results.

Theorem 13.5. [10] Let (X,T ) be a TDS with positive topological entropy.

1. The set {x ∈ X : ∃ x′ 6= x, (x, x′) ∈ A} has measure 1 for every ν ∈ MT (X).
2. The set of entropy pairs is contained in the closure of the set of asymptotic

pairs:
E(X, T ) ⊂ A.

3. Let R ⊂ X × X be the smallest closed T -invariant equivalence relation con-
taining A. Then the quotient TDS (X/R, T ) has zero topological entropy.
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Using these methods they also obtain results concerning Li-Yorke pairs similar to
those in [12].

Extreme relations

Building on results from [10] and [31] and from their earlier work [69] Kaminski,
Seimaszko and Szymanski, in [70], tie up local entropy theory with classical results
of Rohlin and Sinai [87].

Definition 13.6. Let (X,T ) be a TDS and µ ∈ MT (X). A closed equivalence
relation R ⊂ X × X is called extreme (respectively µ-extreme) if it satisfies the
following conditions:

1. (T × T )R ⊂ R.
2.

⋂∞
n=0(T × T )nR = ∆.

3.
∨∞

n=0(T × T )−nR = Π (resp. Πµ).

Here ∆ is the diagonal in X × X, Π is the closed T -invariant equivalence relation
corresponding to the topological Pinsker factor of (X,T ), and Πµ is the closed
T -invariant equivalence relation corresponding to the µ-Pinsker factor of (X,T ).
(Note that

∨
in condition 3 means: the T × T -invariant closed equivalence relation

generated by the corresponding union).

The main result of [70] is the following:

Theorem 13.7. Let (X, T ) be a TDS and µ ∈ MT (X) an ergodic measure. Then
here exits a µ-extreme closed equivalence relation Rµ ⊂ X×X. If (X, T ) is uniquely
ergodic it is also extreme.

In [69] the authors consider TDS (X,T ) for which there is a closed equivalence
relation R satisfying the following properties:

1. (T × T )R ⊂ R.
2.

⋂∞
n=0(T × T )nR = ∆.

3. cls
⋃∞

n=0(T × T )−nR = X ×X.

They call such TDS a Kolmogorov flow (or a K-flow); however, as they show in this
same paper, such a TDS can be nontrivial and yet have zero entropy. This fact
makes the name K-flow seems incongruous. We will therefore refer to this property
as KSS. It is shown in [70] that a uniquely ergodic u.p.e. system is KSS. We make
the following observations.

Theorem 13.8. The following statements hold.

1. If (X, T ) is KSS then the asymptotic relation A is dense in X ×X. Thus a
minimal KSS system is weakly mixing.

2. There is a c.p.e. KSS system which is not u.p.e.

Proof. 1. Assume that (X, T ) is KSS. Then for each pair of non-empty open subsets
U and V of X, there is n ∈ N such that U × V ∩ (T × T )−nR 6= ∅. So there are
x ∈ U and y ∈ V with (T nx, T ny) ∈ R. This implies that (x, y) ∈ A.

2. Let Σ = {0, 1}Z be the full shift. Take two copies of Σ, namely Σ × {0} and
Σ × {1}, and identify 0 × {0} with 0 × {1}, where 0 = (. . . , 0, 0, 0, . . .). The new
space is denoted by X. Define a relation R on X as follows: (x, y) ∈ R if and only
if x = y or x = (. . . , x1, x0, 0, . . .) × {i} and y = (. . . , y1, y0, 0, . . .) × {i} for some
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i ∈ {0, 1}. It is easy to verify that X is KSS (evidenced by R) and c.p.e. It is clear
that X is not u.p.e. ¤

An application to interval maps

We end this section with the following observation (we thank W. Huang for sug-
gesting this question). In [28] the authors have shown that if T : [0, 1] −→ [0, 1] is a
continuous map then T is null if and only if T is not chaotic in the sense of Li and
Yorke; and in [18] the author has shown that h∗top(T ) ∈ {0, log 2,∞}. In fact we can
prove the following:

Theorem 13.9. Let X = [0, 1] and T : X −→ X be continuous. Then (X, T ) is
tame if and only if (X,T ) is null.

To prove this theorem we need (Proposition 25 from [14]):

Lemma 13.10. Let X = [0, 1] and suppose T : X −→ X is continuous. If htop(T ) =
0 and T is not null then there exist points y < z and an increasing sequence {ki}
in N such that for any α = (a1, a2, . . .) ∈ {0, 1}N there is w = wα ∈ X for which
T kiw < y if ai = 0 and T kiw > z if ai = 1.

Proof of Theorem 13.9. It remains to show that if T is not null then T is not tame.
Thus we may assume that T has zero entropy, is tame and is not null. Then we
have y < z and {pi} as in Lemma 13.10. Since the enveloping semigroup E(X,T )
is sequentially compact we can assume, with no loss in generality, that T ki −→ p ∈
E(X,T ). Choose a sequence α = (a1, a2, . . .) ∈ {0, 1}N with aki

= 0 when i is odd
and aki

= 1 when i is even. Let w = wα be the point provided in the lemma. Then
T kiw < y if i is odd and T kiw > z when i is even. Since limi→∞ T kiw = pw exists,
this is a contradiction. ¤

14. Sensitive sets

In this section we shall review some further applications of local entropy theory.
Sensitivity is an important notion in describing the complexity of a TDS. It is

known that a transitive system is either almost equicontunous or sensitive, [41] and
[2]. If it is almost equicontinuous then it is uniformly rigid. Recently, using ideas
and results from local entropy theory, Shao, Ye and Zhang [94], Ye and Zhang [104]
and Huang, Lu and Ye [49] developed a theory of sensitive sets, which measures the
“degree” of sensitivity both in the topological and the measure-theoretical setting.
See [102] for the motivation of the research.

Definition 14.1. Let (X,T ) be a TDS and K be a subset of X with card (K) ≥ 2.
We say that (X, T ) is sensitive relative to K if for every (x1, . . . , xn) ∈ Kn \∆n and
neighborhoods Ui of xi and a neighborhood U of x ∈ X, there are k ∈ N and x′i ∈ U
with T kx′i ∈ Ui for each 1 ≤ i ≤ n. Such a K is called a sensitive set or a S-set.

It is not hard to show that a transitive TDS is sensitive if and only if there is a
sensitive set in X. Using results from [23], [60] and a simple combinatorial lemma
one can prove the following:



30 Local entropy theory

Theorem 14.2. [104] For a transitive TDS, every entropy set is a sensitive set.
Consequently, a transitive TDS having no uncountable sensitive set has zero topo-
logical entropy.

A notion of sensitive set can also be defined for a measure µ ∈ MT (X).

Definition 14.3. Let (X,T ) be a TDS, µ ∈ MT (X) and n ≥ 2. Then

1. (xi)
n
1 ∈ Xn is a sensitive n-tuple for µ, if (xi)

n
1 is not on the diagonal ∆n(X),

and for any open neighborhood Ui of xi and any Borel subset A of positive
measure there is k ≥ 0 such that A ∩ T−kUi 6= ∅ for i = 1, 2, · · · , n.

2. A subset K of X with card (K) ≥ 2 is a sensitive set for µ (µ-S-set) if each
n-tuple from K is a sensitive n-tuple for µ.

It is easy to see that if (X, T ) is an E-system, then each sensitive set for µ is an
sensitive set. Recall that a TDS is an E-system if it is transitive and there exists a
µ ∈ MT (X) with full support; and it is an M-system if it is transitive and the set
of minimal points is dense (see [41] or [31]).

Theorem 14.4. [49] For an E-system, each sequence entropy set is a sensitive
set for µ, and for a non-minimal M-system there is an infinite sequence entropy
set. Thus, a non-minimal M-system has infinite sequence entropy. In particular, a
Devaeny chaotic system has infinite sequence entropy.

Recall that a TDS (X,T ) is chaotic in the sense of Devaney if it is infinite,
transitive, and the set of periodic points is dense in X. It is clear that such a system
is an M -system.

Let ∆n(ε) = {(x1, . . . , xn) ∈ Xn : d(xi, xj) < ε for all 1 ≤ i ≤ j ≤ n} and let

Qn(X, T ) =
∞⋂

k=1

∞⋃
j=1

T−j∆n(1/k).

A subset K ⊂ X is a Q-set if card (K) ≥ 2 and each n-tuple from K is in
Qn(X, T ).

Theorem 14.5. [94, 104, 49] Let (X, T ) be a minimal TDS and π : (X, T ) −→ (Y, S)
be the factor map onto the maximal equicontinuous factor.

1. For every y ∈ Y , π−1(y) is a Q-set.
2. For every y ∈ Y , π−1(y) is a maximal sensitive set.

15. The relative case

Soon after the introduction of the notions of c.p.e. and u.p.e. for TDS, Glasner
and Weiss [42] initiated a study of the corresponding notions in the relative case.
The following definitions were introduced.

Let π : (X,T ) −→ (Y, S) be a factor map, and let Rπ = {(x, x′) : πx = πx′}. Put
Eπ = E(X, T ) ∩ Rπ, an let Fπ be the smallest closed invariant equivalence relation
containing Eπ. The extension π is:

1. a null-entropy extension, if Eπ = ∅,
2. a u.p.e. extension, if Eπ ∪∆ = Rπ
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3. an entropy-generated extension, if Fπ = Rπ

4. a c.p.e. extension, if whenever (X,T )
σ−→ (Z, T )

ρ−→ (Y, T ), where ρ ◦ σ = π
and ρ is not an isomorphism, then h(Z, T ) > h(Y, T ).

Theorem 15.1. [42] Every extension π : (X, T ) −→ (Y, T ) can be decomposed
uniquely as follows:

(X,T )
σ−→ (Z, T )

ρ−→ (Y, T )

where ρ ◦ σ = π and ρ is a null-entropy extension and σ is an entropy-generated
extension.

In this decomposition we call σ : (X, T ) −→ (Z, T ) the relative Pinsker factor of X
over Y . The disadvantage of these definitions is that they do not involve the relative
entropy. For example, if we consider the 2 to 1 factor map π : (X,T ) → (X, T ) where
X = {0, 1}Z, T is the shift and π(x)n = xn + xn+1, then π is an isometric extension
but nonetheless, according to the above definition, it is also a u.p.e. extension.

Noticing this, Lemanczyk and Siemaszko [80] introduced another definition of
relative Pinsker factor by using relative measure-theoretical entropy. Later, Park and
Siemaszko [83] reconsidered this relative factor by introducing relative m-entropy
pairs but the question how to define this factor topologically remained open. It
was answered in Huang, Ye and Zhang [62, 63] by introducing relative topological
entropy pairs and proving local relative variational principles which we now describe
briefly.

We begin by defining the topological conditional entropy of an open cover U of X
with respect to (Y, S). Let

N(U|Y ) = sup
y∈Y

N(U|y) and H(U|Y ) = log N(U|Y ).

It is easy to see that an = H(Un−1
0 |Y ) is a non-negative sub-additive sequence.

The conditional entropy of U with respect to (Y, S) is then defined by

htop(T,U|Y ) = lim
n→∞

1

n
H(Un−1

0 |Y ) = inf
n≥1

1

n
H(Un−1

0 |Y ).

The topological conditional entropy of (X, T ) with respect to (Y, S) is defined by

htop(T, X|Y ) = sup
U∈Co

X

htop(T,U|Y ),

where Co
X is the set of all open covers.

Given a partition α, µ ∈ MT (X) and a T -invariant σ-algebra A ⊂ B(X) define

Hµ(α|A) =
∑
A∈α

∫

X

−E(1A|A) logE(1A|A)dµ

where E(1A|A) is the conditional expectation of 1A with respect to A. We define
the conditional entropy of α with respect to A by

hµ(T, α|A) = lim
n→+∞

1

n
Hµ(αn−1

0 |A) = inf
n≥1

1

n
Hµ(αn−1

0 |A),

and the measurable conditional entropy of (X, T, µ) with respect to A by

hµ(T,X|A) = sup
α∈PX

hµ(T, α|A).
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Particularly, if π : (X, T ) → (Y, S) is a factor map between TDS and α ∈ PX , we
define the conditional entropy of α with respect to (Y, S) by

hµ(T, α|Y ) = hµ(T, α|π−1(B(Y ))) = lim
n→+∞

1

n
Hµ(αn−1

0 |π−1(B(Y ))),

and the measurable conditional entropy of (X, T, µ) with respect to (Y, S) by

hµ(T, X|Y ) = sup
α∈PX

hµ(T, α|Y ).

The usual process can now be applied to define relative entropy pairs both in
the topological and in the measure-theoretical setting. The relative Pinsker factor
is now defined as the factor generated by the smallest closed invariant equivalence
relation containing the relative entropy pairs. The following theorem tells us that
the Pinsker factor defined in this way is the same as the one defined in [80] and [83].

Theorem 15.2. Let π : (X, T ) −→ (Y, S) be a factor map. Then there is µ ∈
MT (X) such that the set of relative entropy pairs for µ coincides with the set of
relative entropy pairs.

For other results concerning the relative case see the two recent papers [105, 106]
by Zhang.

16. Some open problems

In the previous sections we described the development of the local entropy theory.
However, there still are many remaining open questions. Here is a sample:

First recall a question from [31]: Does there exist a minimal c.p.e. system which
is not u.p.e.? This long standing problem was solved recently. In [95] the authors
answered the question by constructing a minimal c.p.e. non u.p.e. system. We
remind the readers that a TDS is called diagonal if for every x ∈ X, the pair
(x, T (x)) is an entropy pair. The example constructed in [95] is a diagonal system
(hence is clearly c.p.e.).

Question: Does there exist a minimal c.p.e. system which is not diagonal?

It was shown in [54] that a minimal topological K-system is strongly mixing.
Question: Is a minimal u.p.e. system strongly mixing?
We remark that it is known that u.p.e. (= u.p.e. of order 2) does not imply

topological K [59].

It is known that there exists a transitive non-minimal tame TDS [33].
Question: Does there exist a transitive non-minimal null TDS?

It is well known that for a minimal TDS the regional proximal relation is an
equivalence relation (see e.g. Auslander [4]). It was shown in Glasner-Maon [36] that
the regional proximal relation along an IP-set need not be an equivalence relation.
Still, a better understanding of this relation and the closed invariant equivalence
relation generated by it may contribute to a solution of the following:

Question: Is it true that a minimal TDS is mildly mixing if and only if the only
uniformly rigid factor it admits is the trivial one point factor?

For related papers see [36], [57] and [35].
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It is known that for a TDS (X,T ) the condition “every pair (x, x′) ∈ X × X is
positively recurrent” implies zero entropy. The next question is particularly tanta-
lizing.

Question: Suppose one only knows that every pair (x, x′) ∈ X ×X is recurrent;
does this weaker condition imply zero entropy? (See [101])

It is known that for a null TDS defined on a zero dimensional space, p∗X,U is of
polynomial order for each open cover U .

Question: Assume (X,T ) is null. Is it true that p∗X,U is of polynomial order for
each open cover U?

This may be related to our final question. It is known that a TDS with zero
entropy has a zero dimensional extension with zero entropy.

Question: Does every null system admit a zero dimensional extension which is
null?
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