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Abstract. Each topological group G admits a unique universal minimal dy-
namical system (M(G), G). For a locally compact non-compact group this
is a nonmetrizable system with a very rich structure, on which G acts effec-
tively. However there are topological groups for which M(G) is the trivial one
point system (extremely amenable groups), as well as topological groups G for
which M(G) is a metrizable space and for which one has an explicit descrip-
tion. One such group is the topological group S of all the permutations of the
integers Z, with the topology of pointwise convergence. In this paper we show
that (M(S), S) is a symbolic dynamical system (hence in particular M(S) is a
Cantor set), and we give a full description of all its symbolic factors.

0. Introduction

Let G be a topological group, X a compact Hausdorff space. A dynamical
system (X, G) is given by a jointly continuous action of G on X. If (Y, G) is a
second dynamical system then a continuous onto map π : (X,G) → (Y,G) which
intertwines the G actions is called a homomorphism. The dynamical system (X,G)
is minimal if every orbit is dense. The following fact is well known (see e.g. [4]).

There exists a unique universal minimal dynamical system, (M(G), G); i.e. for
every minimal dynamical system (X,G) there exists π : (M,G) → (X, G), and
any two such universal systems are isomorphic. Moreover the dynamical system
(M(G), G) is coalescent; i.e. every endomorphism φ : (M(G), G) → (M(G), G)
(which is necessarily onto) is an isomorphism onto.

The existence of a vast collection of non-isomorphic minimal Z-systems means
that M(Z) is a huge space; for example one can show that it has the structure of a
semigroup and with respect to this structure it has 22ℵ0 distinct idempotents. This
fact reflects the extremely complex nature of the proximal relation in some minimal
dynamical systems.

Nonetheless the universal minimal system M(Z) is restricted in the following
strong sense. We say that a function f ∈ `∞(Z) comes from the dynamical system
(X,Z) if there exists a point x0 ∈ X and a continuous function F : X → R such
that f(n) = F (Tnx0), where T : X → X generates the Z-action. The map F 7→ f
defines an isometric isomorphism of the Banach algebra C(X) onto its image Ax0 ,
a closed sub-algebra of `∞(Z). If we choose another “base” point x1 ∈ X we
get another sub-algebra Ax1 and in general sums and products of functions in
Ax0 and Ax1 are no longer elements of either sub-algebra and, in fact, need not
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come from (X,Z). Thus usually the closed algebra A(X,Z) which is generated by⋃{Ax : x ∈ X} — that is by all the functions coming from (X,Z) — is very large.
If A is a translation invariant closed subalgebra of `∞(Z) we say that a subset

A of Z is an A-interpolation set if every bounded real valued function on A can be
extended to a function in A. A subset A of Z is called small if for every k > 0 there
exists Nk > 0 such that every interval of length Nk in Z contains an interval of
length k which does not meet A. The following theorem is proved in [9]. The last
assertion of the theorem provides a negative answer to questions of H. Furstenberg
and R. Ellis (see [8]).

0.1. Theorem. Let A be the closed algebra of `∞(Z) generated by functions com-
ing from the dynamical system M(Z). A subset A of Z is small iff it is an A-
interpolation set. In particular A $ `∞(Z).

The topological group G has the fixed point on compacta property (f.p.c.) (or
is extremely amenable) if whenever it acts continuously on a compact space, it has
a fixed point. Thus the group G has the f.p.c. property iff its universal minimal
dynamical system is the trivial one point system.

Let (X, d, µ) be a metric space with probability measure (such a triple is called
an mm-space). For A ⊆ X, and ε > 0 let Aε be the set of all points whose distance
from A is at most ε.

The concentration function:

α(ε) = 1− inf{µ(Aε) : A ⊆ X, µ(A) ≥ 1/2},
is the least upper bound of measures of all the ‘caps’ X \Aε for A ⊆ X, µ(A) ≥ 1/2.

A family of mm spaces (Xn, dn, µn) is called a Lévy family if for every ε, αn(ε) →
0. When G is a topological group having compact subgroups G1 ⊆ G2 ⊆ · · · ⊆ Gn ⊆
· · · ⊆ G, such that, with respect to a global metric on G and with the sequence of
Haar measures µn, it is a Lévy family and moreover ∪∞i=1Gn is everywhere dense,
then G is called a Lévy group. We refer to [16] and [10] as good references to
this theory. The classical example for a Lévy family is the family of unit spheres
{Sn}n∈N with rotation-invariant probability measures and Euclidean (or geodesic)
distances.

The following theorem of Gromov and Milman, [11], is the source of many ex-
amples of topological groups with the f.p.c. property.

0.2. Theorem (Gromov–Milman). A Lévy group G has the f.p.c. property.

The following list contains most of the known examples of extremely amenable
groups.
• The unitary group U(∞) = ∪∞n=1U(n) with the uniform operator topology

(Gromov–Milman, [11]).
• The monothetic Polish group Lm(I, S1), consisting of all (classes) of mea-

surable maps from the unit interval I into the circle group S1 with the topology
of convergence in measure induced by, say, Lebesgue measure on I (Glasner, [8];
Furstenberg–Weiss). More generally, Lm(I, G), where G is any locally compact
amenable group (Pestov, [21]).
• The group of measurable automorphisms Aut (X, µ) of a standard sigma-finite

measure space (X,µ), with respect to the weak topology (Giordano–Pestov [6]).
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• Using Ramsey’s theorem (rather than a concentration phenomenon) Pestov has
shown that the group Aut (Q, <), of order automorphism of the rational numbers
with pointwise convergence topology, is extremely amenable, [19].

The latter result was used by Pestov to demonstrate that the universal mini-
mal dynamical system (M(G), G) for the group G =Homeo+(S1), of orientation-
preserving homeomorphisms of the circle with the compact open topology, coincides
with the natural action of G on S1. This provided the first non-trivial example of
a metrizable universal minimal system, [19]. In [22] V. Uspenskij shows that the
action of a topological group G on its universal minimal system M(G) is never
3-transitive (in fact, can not satisfy the following property: for every three points
x, y, z ∈ M(G) there is g ∈ G such that gx = x, gy = z and gz = y). It thus follows
that, e.g., for manifolds X of dimension > 1 as well as for X = Q, the Hilbert cube,
with G =Homeo+(X), (M(G), G) does not coincide with the natural action of G
on X.

Let S = S(Z) be the group of all permutations of the integers Z. With respect
to the topology of pointwise convergence S is a Polish topological group. The
subgroup S0 ⊂ S consisting of the permutations which fix all but a finite set in Z
is an amenable dense subgroup (being the union of an increasing sequence of finite
groups) and therefore S is amenable as well.

In [11] Gromov and Milman conjectured, in view of the concentration of measure
on Sn with Hamming distance, that S0 has the f.p.c? In [19] and [20] V. Pestov
has shown that, on the contrary, S acts effectively on M(S) and that, in fact, there
is no Hausdorff topology making S0 a topological group with the f.p.c. property.
He as well as A. Kechris (in private communication) asked for explicit examples of
S-minimal systems.

The main purpose of the present work is to provide an explicit description of the
universal minimal system (M(S), S), which turns out to be the Cantor set. In fact
we shall show that it is a ‘symbolic’ dynamical system, and we shall also provide
concrete formulas for all of its symbolic factors.

For every integer k ≥ 2 let

Zk
∗ = {(i1, i2, . . . , ik) ∈ Zk : i1, i2, . . . , ik are distinct elements of Z},

and set Ωk = {1,−1}Zk
∗ . Consider the dynamical system (Ωk, S), where for α ∈ S

and ω ∈ Ωk we let

(αω)(i1, i2, . . . , ik) = ω(α−1i1, α
−1i2, . . . , α

−1ik).

Let Ωk
alt ⊂ Ωk consist of all the alternating configurations, that is those elements

ω ∈ Ωk satisfying

ω(σ(i1), σ(i2), . . . , σ(ik)) = sgn (σ)ω(i1, i2, . . . , ik),

for all σ ∈ Sk and (i1, i2, . . . , ik) ∈ Zk
∗. Clearly Ωk

altis a closed and S-invariant
subset of Ωk.
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A configuration ω ∈ Ω2 determines a linear order on Z if it is alternating, and
satisfies the conditions:

ω(m,n) = 1 ∧ ω(n, l) = 1 ⇒ ω(m, l) = 1.

Let <ω be the corresponding linear order on Z, where m <ω n iff ω(m,n) = 1. Let
X = Ω2

lo be the subset of Ω2 consisting of all the configurations which determine a
linear order. The correspondence ω ←→ <ω is a surjective bijection between Ω2

lo

and the collection of linear orders on Z. Clearly X is a closed S-invariant set and
using Ramsey’s theorem we shall show that (X, S) is a minimal system.

Say that a configuration ω ∈ Ω3 is determined by a circular order if there exists
a sequence {zm : m ∈ Z} ⊂ S1 with m 6= n ⇒ zm 6= zn such that: ω(l,m, n) = 1
for (l, m, n) ∈ Z3

∗ iff the directed arc in S1 defined by the ordered triple (zl, zm, zn)
is oriented in the positive direction. Let Y = Ω3

c denote the collection of all the
configurations in Ω3 which are determined by a circular order. It follows that the
set Y = Ω3

c is closed and invariant and using Ramsey’s theorem one can show that
it is minimal.

If we go now to Ω4
alt, can one find a sequence of points {zn} on the sphere S2

in general position such that the tetrahedron defined by any four points zn1 , zn2 ,
zn3 , zn4 has positive orientation when n1 < n2 < n3 < n4?

Starting with any sequence {zn} ⊂ S2 in general position one can use Ramsey’s
theorem to find a subsequence with the required property. Another way to see this
is to use the ‘moment curve’

t 7→ (t, t2, t3).

Again it turns out that the orbit closure in Ω4
alt which is determined by such a

sequence forms a minimal dynamical system.

It now seems as if going up to Ωk
alt with larger and larger k’s we encounter more

and more complicated minimal systems. However, as we shall see this is not the
case and the entire story is already encoded in the simplest symbolic dynamical
system Ω2

lo.

0.3. Theorem. Ω2
lo is the universal minimal S-system.

The key result needed for the proof of the universality theorem is the following:

0.4. Theorem. Every minimal subsystem Σ of the system (Ωk,S) is a factor of the
minimal system (Ω2

lo, S).

Once this is proven the rest follows from some general results about topological
groups, and by running along various commutative diagrams of homomorphisms of
dynamical systems.

In Section 8 we show that the dynamical system (Ω2
lo,S) is in fact uniquely

ergodic; thus showing that every minimal S system is uniquely ergodic. In the
last section we consider a natural minimal action of the discrete group S (in fact
S/S0) and, using Uspenskij’s ‘maximal chains’ construction, show that it is not the
universal minimal action of S/S0.
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1. The topological group S

Let S = S(Z) be the group of all permutations of the integers Z. With respect
to the topology of pointwise convergence on Z, S is a Polish topological group. The
subgroup S0 ⊂ S consisting of permutations which fix all but a finite set in Z is
an amenable dense subgroup (being the union of an increasing sequence of finite
groups) and therefore S is amenable as well. The simplest minimal actions of a group
are the equicontinuous ones. The existence of non-trivial such actions is equivalent
to the existence of non-trivial continuous finite dimensional representations. When
a group admits none it is called minimally almost periodic (MAP). These were first
studied by von Neumann and Wigner [17] who showed that PSL(2,Q) has this
property. H. Dye [3] gave examples of countable amenable groups that are MAP.
The next theorem shows that the topological group S is MAP.

1.1. Theorem. The topological group S admits no non-trivial finite dimensional
unitary representations; i.e. it is minimally almost periodic.

Proof. By a theorem of Jordan (see e.g. [2], page 98) to every n ≥ 1 corresponds
a natural number N = N(n) such that for every finite linear group H ⊂ GL(n,C)
there exists a normal abelian subgroup A C H with [H : A] ≤ N . Assume now that
ψ : S → U(n) is a continuous homomorphism where U(n) is the unitary group in
dimension n. For any k ≥ 1 we let Hk = ψ(S2k+1), where S2k+1 is the symmetric
group of order 2k+1, identified with the subgroup of elements σ ∈ S0 with σ(j) = j
for |j| > k. Now Jordan’s theorem shows that for all sufficiently large k, ψ ¹ S2k+1

can not be injective. Since A2k+1 C S2k+1 — the corresponding alternating group
— is the only normal subgroup of S2k+1 and since A2k+1 is simple, we conclude
that A2k+1 ⊂ kerψ and that the image of ψ ¹ S2k+1 consists of at most two points.

Since for every k, S2k+1 ⊂ S2k+3 and since S0 = ∪k≥1S2k+1, it follows that
on S0 the homomorphism ψ is either trivial or it is the “signum” homomorphism
ψ(π) = sgn π. However the latter does not have a continuous extension to S (e.g.
the sequence πn = (1, 2)(n, n + 1) tends to the limit π = (1, 2) whereas, sgn πn =
1 but sgn π = −1). Thus ψ restricted to the dense subgroup S0 is the trivial
homomorphism and therefore so is ψ : S→ U(k).

It is well known that a topological group G is minimally almost periodic iff
any continuous homomorphism ψ : G → U(n) is trivial, whence follows the last
assertion of the theorem. ¤

1.2. Remark. An alternative proof of this theorem that does not rely on Jordan’s
theorem may be deduced from the main result of our paper, Theorem 7.2.
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2. The minimal set Ω2
lo

Let Z2
∗ = {(m,n) ∈ Z2 : m 6= n} and set Ω2 = {1,−1}Z2

∗ . Endow Ω2

with the (compact metric) topology of pointwise convergence and consider the
dynamical system (Ω2, S), where for α ∈ S and ω ∈ Ω2 we let (αω)(m, n) =
ω(α−1(m), α−1(n)). We call the elements of Ω2 configurations. Let Ω2

alt ⊂ Ω2

consist of all the alternating configurations, that is those elements ω ∈ Ω2 satis-
fying ω(n, m) = −ω(m,n) for all (m,n) ∈ Z2

∗. Similarly let Ω2
sym = {ω ∈ Ω :

ω(n,m) = −ω(m,n)} be the set of all symmetric configurations. Clearly Ω2
alt and

Ω2
sym are closed and S-invariant subsets of Ω2. We say that a configuration ω ∈ Ω2

determines a linear order on Z if it is alternating, and satisfies the conditions:

ω(m,n) = 1 ∧ ω(n, l) = 1 ⇒ ω(m, l) = 1,

for all m,n and l distinct elements of Z. We let <ω be the corresponding linear order
on Z, where m < n iff ω(m,n) = 1. Let X = Ω2

lo be the subset of Ω2 consisting of
all the configurations which determine a linear order. Of course any linear order on
Z also defines a configuration in X and the correspondence ω ←→ <ω is a surjective
bijection between Ω2

lo and collection of linear orders on Z. Again it is easy to see
that X is a closed and S-invariant subset of Ω2

alt. Finally let 1 and −1 denote the
constant configurations with values 1 and −1 respectively.

2.1. Theorem. The subsystem (X, S) is minimal and the subsystems {1}, {−1}
and (X, S) are the only minimal subsystems of (Ω2,S).

Proof. 1. We shall show that for every ω ∈ Ω2 the orbit closure of ω, ŌS(ω) =
cls {αω : α ∈ S}, meets at least one of the closed invariant sets Ω2

sym or Ω2
alt.

In fact fixing ω ∈ Ω2 we define a coloring of the set P = {{m,n} : (m,n) ∈ Z2
∗}

of unordered pairs of distinct integers as follows. The pair {m,n} is colored black
if ω(m, n) = ω(n, m) and otherwise it is colored red. An application of Ramsey’s
theorem yields an infinite subset A of Z such that the subset PA = {{m,n} :
m,n are distinct elements of A} of P is mono-chromatic, either black or red.

Let m ↔ am be an arbitrary 1-1 correspondence of A with Z, A = {am : m ∈ Z}
and choose a sequence of permutations αn in S such that α−1

n (m) = am for m ∈
[−n, n]. We have (αnω)(k, l) = ω(ak, al) for all k, l distinct members of the interval
[−n, n], so that clearly limn→∞ αnω exists and is either in Ω2

s or in Ω2
alt according

to whether PA is black or red.
2. Let ω be an element of Ω2

sym. Again we use ω to define a coloring of P as
follows. The pair {m,n} is colored black if ω(m,n) = ω(n,m) = 1, otherwise it
is colored red. Again we deduce that there exists an infinite A ⊂ Z for which PA

is mono-chromatic and as above we conclude that ω′ = limn→∞ αnω exists for a
suitable sequence of permutations αn ∈ S, where now ω′ is either 1 or −1.

3. Let ξ0 ∈ X be the configuration that determines the natural order on Z; that
is ξ0(m,n) = 1 iff m < n. Let ω be an element of Ωalt. This time the pair {m,n} is
colored black if ω(m,n) = −ω(n,m) = 1 and red otherwise. As above we see that
either ξ0 or −ξ0 is in ŌS(ω).

4. Define a sequence of permutations αn ∈ S0 by

αn(j) = −j, for j ∈ [−n, n], and αn(j) = j otherwise;

then clearly limn→∞ αn(ξ0) = −ξ0.
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5. Our proof will be complete when we show that X is indeed minimal. From
steps 3. and 4. it follows that ξ0 ∈ ŌS(ω) for every ω ∈ X and thus it suffices
to verify that every ξ ∈ X is in ŌS(ξ0). This however is easy to see since if ξ
determines a linear order (i.e. ξ is an element of X) then for every n we can find
a permutation αn ∈ S for which ξ(k, l) = x0(α−1

n (k), α−1
n (l)) for all k, l distinct

members of the interval [−n, n] (all the linear orders on a finite set are equivalent).
Now ξ = limn→∞ αnξ0 and the proof is complete. ¤

2.2. Remark. Let ω ∈ X = Ω2
lo be determined by a linear order <ω. Observe that

the stability subgroup
Hω = {α ∈ S : αω = ω},

is exactly the subgroup Aut (Z, <ω) of all the permutations in S which preserve the
order <ω. E.g. for the element ξ0 ∈ Ω2

lo which is determined by the usual order on
Z we have

T := Hξ0 = {α ∈ S : αξ0 = ξ0} = {αt : t ∈ Z} ∼= Z,

where αt ∈ S is defined by αt(n) = n+t. Another example is obtained by fixing a 1-1
correspondence of Z with the set of rational numbers Q and considering the element
η ∈ Ω2

lo which is determined, via this correspondence, by the usual order on Q. We
then have Hη = Aut (Q, <η). By a theorem of Pestov [18] the topological group
G = Aut (Q, <) ∼= Aut (Q, <η) ⊂ S (with the topology of pointwise convergence on
Q) has the ‘fixed point on compacta’ property and thus the existence of the G-fixed
point η ∈ X is a manifestation of this property for the system (X, Aut (Q, <η)).

The next proposition shows that, as far as minimal sets are concerned, on Z2
∗

there is no point in considering an alphabet larger than {±1}.
2.3. Proposition. A minimal subset M ⊂ {a, b, c}Z2

∗ is a set of configurations on
at most two symbols (e.g. M ⊂ {a, b}Z2

∗ ).

Proof. Let π : {a, b, c}Z2
∗ → {1,−1}Z2

∗ be the map defined by a 7→ 1, b 7→ −1, c 7→
−1. Then π(M) is a minimal subset of {1,−1}Z2

∗ hence is either the singleton {1},
the singleton {−1}, or the unique alternating minimal set. In the first two cases we
are done. In the third let ω ∈ M be an element with π(ω) = ξ0 where ξ0 ∈ Ω2

lo is
defined by ξ0(i, j) = 1 iff i < j. Then for every i < j either ω(j, i) = b or ω(j, i) = c.
Ramsey shows that there is a two-symbol element in the orbit closure of ω. ¤

Similar results can be obtained for larger alphabets.

3. The symbolic system Ω3

Next let

Z3
∗ = {(k,m, n) ∈ Z3 : k,m and n are distinct elements of Z},

and set Ω3 = {1,−1}Z3
∗ . A configuration ω ∈ Ω3 is called alternating if it satisfies

(αω)(l, m, n) = (−1)sgn (α)ω(l, m, n), ∀ (l, m, n) ∈ Z3
∗,

and we let Ω3
alt be the collection of all such configurations in Ω3. Clearly Ω3

alt is a
closed S-invariant set.
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We say that a configuration ω ∈ Ω3 is determined by a circular order if there
exists a sequence {zm : m ∈ Z} ⊂ S1 = {z ∈ C : |z| = 1} with m 6= n ⇒ zm 6= zn

such that ω(l,m, n) = 1 for (l, m, n) ∈ Z3
∗ iff the directed arc in S1 defined by

the ordered triple (zl, zm, zn) is oriented in the positive (i.e. counterclockwise)
direction. We let Y = Ω3

c denote the collection of all the configurations in Ω3 which
are determined by a circular order. Clearly Ω3

c ⊂ Ω3
alt.

3.1. Lemma. A configuration ω ∈ Ω3
alt is determined by a circular order iff it

satisfies the following equations:

(3.1) ω(l, m, n) = 1 ∧ ω(n, k, l) = 1 ⇒ ω(k, l,m) = 1 ∧ ω(k,m, n) = 1

It follows that the set Y = Ω3
c is closed and invariant.

Proof. The necessity is clear. Suppose ω ∈ Ω3
alt satisfies the equations (3.1). We

shall construct inductively a sequence {zn}n∈Z ⊂ S1 whose circular order deter-
mines ω.

Step 1: We first show that for every four elements (k, l, m, n) (for simplicity
(0, 1, 2, 3)) the finite pattern ω ¹ {0, 1, 2, 3}3∗ is determined by the circular order
of four points z0, z1, z2, z3 on S1. Suppose e.g. that ω(0, 1, 2) = 1 and put down
z0, z1, z2 in S1 so that the arc (z0, z1, z2) is positively oriented. We shall show that
exactly one of the relations

ω(0, 3, 1) = 1, ω(1, 3, 2) = 1, ω(2, 3, 0) = 1

holds. It follows then that if we choose z3 in the corresponding arc (−−−→z0, z1, if
ω(0, 3, 1) = 1 etc.), all relations will be given by the circular order.

If one of these holds — say ω(2, 3, 0) = 1 — then by (3.1) the other two fail to
hold. It remains to see what happens when

ω(0, 3, 1) = −1, ω(1, 3, 2) = −1, ω(2, 3, 0) = −1.

In that case we get, by the alternating property, ω(1, 2, 3) = 1 ∧ ω(3, 0, 1) = 1
and (3.1) implies ω(0, 2, 3) = 1, hence ω(2, 3, 0) = 1. This however contradicts
our assumption that the relation ω(2, 3, 0) = −1 holds and the proof of step 1. is
complete.

Step 2: Assume, by induction, that for some N ≥ 4 the restriction of ω to each
N -set can be represented by a circular order. We must show the same for N + 1
sets. Take 0, 1, 2, . . . , N . Find z1, z2, . . . , zN to represent 1, 2, . . . , N and assume
with no loss in generality that the arc −−−−−−−−−→z1, z2, . . . , zN is positively oriented. Also
find z0, z

′
2, . . . , z

′
N to represent 0, 2, . . . , N . We may assume that z2 = z′2, z3 =

z′3, . . . , zN = z′N since the circular order is unique. We now consider two cases:
Case I: The points z0 and z1 fall in different intervals defined by {z2, z3, . . . , zN}.

In this case it is easy to see that we have found a circular imbedding consistent
with the data. In fact if z0 is in the arc −−−−−→zj , zj+1 and 1 ≤ i ≤ N , we have two
subcases to consider. The first is ω(1, i, j) = 1. This together with ω(j, 0, 1) = 1
yields ω(1, i, 0) = 1, as required. The other subcase, namely ω(j + 1, i, 1) = 1, is
treated similarly. (We assumed, e.g. that zj 6= z1 and zj 6= zi, but the cases where
equality occurs are similar).

Case II: Both z0 and z1 fall in −−−→zN , z2. By step 1. (the case N = 4) there is
an imbedding {zN , z0, z1, z2}, say with −−−−−−−−→zN , z0, z1, z2. Again we must verify that
ω(0, 1, i) = 1 for all 3 ≤ i ≤ N − 1. Since zi is in the arc −−−→z1, zN and since z0 is in
the arc −−−→zN , z1 we have ω(1, i, N) ∧ ω(N, 0, 1) and (3.1) implies ω(0, 1, i) = 1 as
required.
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This concludes the proof by induction and shows that (3.1) characterizes the
configurations in Y . The last assertion of the lemma follows and the proof of the
lemma is complete. ¤

3.2. Remark. It was pointed out to us by the referee that this lemma may be
deduced from the work of E. V. Huntington on postulate systems for cyclical orders
cf. [13].

3.3. Theorem. (Y, S) is a minimal subsystem of (Ω3, S).

Proof. As in step 4 of the proof of Theorem 2.1 we observe that our assertion follows
from the fact that all finite circular orders are equivalent. ¤

3.4. Remark. Using the notations of Remark 2.2 it is easy to see that there are
exactly two fixed points in X ⊂ Ω2 for the action of the subgroup T ⊂ S, namely
ξ0 and −ξ0. On the other hand there are infinitely many fixed points for T in the
system Y ⊂ Ω3. E.g. given any irrational number ξ ∈ R let zn = e2πinξ, (n ∈ Z)
and define ωξ ∈ Y by the requirement that ωξ(l, m, n) = 1 iff (zl, zm, zn) defines
a positively oriented arc. Conversely, the order type of the sequence {zn}n∈Z de-
termines the irrational number ξ (mod 1), as is shown in the study of rotation
numbers for circle homeomorphisms. For every irrational ξ and t ∈ Z we clearly
have αtωξ = ωξ and it follows that there are 2ℵ0 distinct elements of the form ωξ

in Y . We conclude that the minimal systems (X, S) and (Y, S) are not isomorphic.
However (Y, S) is a factor of (X, S), as the following theorem shows.

3.5. Theorem. The map π : Ω2
lo → Ω3

c defined by

(πξ)(i, j, k) = −ξ(i, j)ξ(j, k)ξ(k, i), (ξ ∈ X)

is a homomorphism of X onto Y .

Proof. The continuity of π is clear and it is easy to check that πξ is alternating
when ξ is. In view of the minimality of X and Y , all we need to check is that π
intertwines the actions of S on X and Y and that η0 := πξ0 ∈ Y ; i.e. that η0 is
determined by a circular ordering. In fact for α ∈ S, ξ ∈ X and η := αξ we have

(α(πξ))(i, j, k) = −ξ(α−1i, α−1j)ξ(α−1j, α−1k)ξ(α−1k, α−1i)

= −(αξ)(i, j)(αξ)(j, k)(αξ)(k, i)

= (π(αξ))(i, j, k),

hence π is a homomorphism (of Ω2 into Ω3). It remains to check that η0 = πξ0 is
determined by a circular order.

Let zn = eπi( n
n+1 ) for n ≥ 0 and zn = z−n for n < 0. The fact that the circular

order of the sequence {zn}n∈Z determines the configuration η0 is easy to check. ¤

The analysis of the next section will enable us to determine all minimal subsets
of Ω3.
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4. The symbolic systems Ωk and their minimal subsets

For every integer k ≥ 2 let

Zk
∗ = {(i1, i2, . . . , ik) ∈ Zk : i1, i2, . . . , ik are distinct elements of Z}.

We write Z(k) for the collection of un-ordered subsets with k distinct elements of
Z. Thus the map

(i1, i2, . . . , ik) 7→ {i1, i2, . . . , ik},
is k! to 1 from Zk

∗ onto Z(k). Let Ωk = {1,−1}Zk
∗ , and endow it with the (compact

metric) topology of pointwise convergence. Consider the dynamical system (Ωk, S),
where for α ∈ S and ω ∈ Ωk we let

(αω)(i1, i2, . . . , ik) = ω(α−1i1, α
−1i2, . . . , α

−1ik).

We call the elements of Ωk configurations. Let Ωk
alt ⊂ Ωk consist of all the alter-

nating configurations, that is those elements ω ∈ Ωk satisfying

ω(σ(i1), σ(i2), . . . , σ(ik)) = sgn (σ)ω(i1, i2, . . . , ik),

for all σ ∈ Sk and (i1, i2, . . . , ik) ∈ Zk
∗. Clearly Ωk

alt is a closed and S-invariant
subset of Ωk.

We denote the involution that sends an element ω ∈ Ωk to −ω by . Clearly
the map  : Ωk → Ωk commutes with the action of S; i.e.  is an automorphism
of the system (Ωk, S). Denoting by ω̃ the set {ω,−ω} and by Ω̃k = Ωk/{id, }, the
corresponding quotient space, we observe that the map ω 7→ ω̃ from Ωk to Ω̃k is a
group extension.

Set T = {1,−1}Sk and consider the collection TZ
(k)

of all maps from Z(k) to T.
We refer to elements of T as tables. For each ω ∈ Ωk define an element ω̂ in TZ

(k)

as follows. For {i1, i2, . . . , ik} ∈ Z(k), with i1 < i2 < · · · < ik and σ ∈ Sk set

ω̂(i1, i2, . . . , ik)(σ) = ω(iσ(1), iσ(2), . . . , iσ(k)).

Clearly this is a continuous correspondence and, in fact, the configuration ω ∈ Ωk

is completely determined by ω̂ ∈ TZ
(k)

so that ω̂ is just a different way of looking
at ω.

We let Sk act on T by multiplication on the left:

(LτT )(σ) = T (τ−1σ), (τ, σ ∈ Sk).

Given T ∈ T, we set

HT = {π ∈ Sk : LπT = T} = {π ∈ Sk : T (π−1σ) = T (σ), for every σ ∈ Sk}.
Clearly H is a subgroup of Sk. Note that

HLτ T = τHT τ−1.

4.1. Lemma. For ω ∈ Ωk, i1 < i2 < · · · < ik, α ∈ S let {j1, j2, . . . , jk} =
α−1{i1, i2, . . . , ik}, with j1 < j2 < · · · < jk. Set T = ω̂(j1, j2, . . . , jk). Then there
exists τ = τ(α ; i1 < i2 < · · · < ik) ∈ Sk such that

α̂ω(i1, i2, . . . , ik) = Lτ−1T
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or more explicitly:

α̂ω(i1, i2, . . . , ik)(σ) = T (τσ) = Lτ−1 ω̂(j1, j2, . . . , jk)(σ),

for every σ ∈ Sk.

Proof. By definition, for i1 < i2 < · · · < ik,

α̂ω(i1, i2, . . . , ik)(σ) = (αω)(iσ(1), iσ(2), . . . , iσ(k))

= ω(α−1iσ(1), α
−1iσ(2), . . . , α

−1iσ(k))

= ω(jτσ(1), jτσ(2), . . . , jτσ(k))

= T (τσ),

where the permutation τσ = τσ(α ; i1 < i2 < · · · < ik) ∈ Sk is defined by

jτσ(p) = α−1iσ(p), p = 1, 2, . . . , k.

Since for σ = e we have
α(jτe(p)) = ip,

it follows that
α(jτσ(p)) = iσ(p) = α(jτe◦σ(p)).

Thus we get the identity τσ = τe ◦ σ. Taking τ = τe we obtain the formula claimed
in the lemma. ¤

For a subgroup H ⊂ Sk, we denote the conjugacy class of H by [H] and set

Ωk
[H] = {ω ∈ Ωk : ∀ {i1, i2, . . . , ik} ∈ Z(k),

HT ∈ [H], where T = ω̂(i1, i2, . . . , ik)}.
4.2. Corollary. The subset Ωk

[H] ⊂ Ωk is closed and S-invariant.

Given an element τ ∈ Sk we define an automorphism τ̃ : Ωk → Ωk as follows:

(τ̃(ω))(i1, i2, . . . , ik) = ω(iτ1, iτ2, . . . , iτk), ∀ (i1, i2, . . . , ik) ∈ Zk
∗

In terms of the representation ω̂ we have

(̂τ̃(ω))(σ) = ω̂(σ ◦ τ).

It is easy to check that τ̃ is indeed an automorphism of the system (Ωk, S). It is
also clear that each Ωk

[H] is τ̃ -invariant.
We denote by gr (τ̃) the graph {(ω, τ̃(ω)) : ω ∈ Ωk} of the automorphism τ̃ .

4.3. Theorem. (1) For every minimal set Σ ⊂ Ωk there exists a subgroup
H ⊂ Sk with Σ ⊂ Ωk

[H] and there exists a configuration ω0 ∈ Σ for which
ω̂0 : Zk

∗ → T has a constant value T ∈ T independent of the set of indices
{i1, i2, . . . , ik} and such that HT = H.

(2) There is only a finite number (≤ 2k!) of minimal sets in each Ωk
[H], and

hence in Ωk.
(3) Let H be a subgroup of Sk and Σ ⊂ Ωk

[H] a minimal subset. For every pair
(ω, ω′) ∈ Σ×Σ there exists a permutation τ ∈ Sk with ŌS(ω, ω′)∩gr (τ̃) 6= ∅.
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(4) Set
K = {τ̃ ∈ Sk : τ ∈ Sk and τ̃Σ ∩ Σ 6= ∅},

Then K = Aut (Σ,S), the automorphism group of the minimal system (Σ, S)
and Σ → Σ̃ := Σ/K is a group extension with Σ̃ a proximal system. (In
fact, as we shall see later, this group extension is either two-to-one or trivial
one-to-one).

Proof. 1. Given ω ∈ Ωk we consider ω̂ : Z(k) → T as coloring of Z(k) and then
Ramsey’s theorem yields an infinite set J ⊂ Z and a fixed element T ∈ T with
ω̂(i1, i2, . . . , ik)(σ) = T (σ), for all σ ∈ Sk and all {i1, i2, . . . , ik} ⊂ J . Using an ap-
propriate sequence of permutations αn ∈ S we obtain an element ω0 = limn→∞ αnω
with

ω̂0(i1, i2, . . . , ik)(σ) = T (σ)

for all σ ∈ Sk and {i1, i2, . . . , ik} ∈ Z(k).

If Σ is a minimal subset of Ωk and we start with a configuration ω ∈ Σ we obtain
this way a configuration ω0 ∈ Σ for which the corresponding ω̂0 : Zk

∗ → T has a
constant value T ∈ T independent of the set of indices {i1, i2, . . . , ik}. From the
first part of the proof we deduce that there exists a subgroup H ⊂ Sk, namely
H = HT , with Σ ⊂ Ωk

[H].
2. There are 2k! tables.
3. Given (ω, ω′) ∈ Σ × Σ we note that, since ω′ = limn→∞ αnω for some se-

quence αn ∈ S, for a fixed k-tuple (i1, i2, . . . , ik) ∈ Zk
∗, eventually ω′(i1, i2, . . . , ik) =

ω(α−1
n i1, α

−1
n i2, . . . , α

−1
n ik) is independent of n and, by Lemma 4.1, there exists τ ∈

Sk with ω̂′ = Lτ−1 ω̂. Define a map c : Z(k) → Sk as follows: for i1 < i2 < · · · < ik

c(i1, i2, . . . , ik) = τ, where ω̂′ = Lτ−1 ω̂,

i.e.
ω̂′(i1, i2, . . . , ik)(σ) = ω̂(i1, i2, . . . , ik)(τσ), (σ ∈ Sk).

By Ramsey’s theorem there exist τ ∈ Sk and an infinite J ⊂ Z with c(i1, i2, . . . , ik) =
τ for every {i1, i2, . . . , ik} ⊂ J . This implies that for some sequence αn ∈ S we have
(ρ, ρ′) = limn→∞ αn(ω, ω′) with

ρ̂′(i1, i2, . . . , ik)(σ) = ρ̂(i1, i2, . . . , ik)(τσ), (σ ∈ Sk).

for every (i1, i2, . . . , ik) ∈ Zk
∗; i.e. (ρ, ρ′) ∈ gr (τ̃).

4. By the minimality of Σ, τ̃Σ ∩ Σ 6= ∅ for τ ∈ Sk implies τ̃Σ = Σ and therefore
τ̃ : Σ → Σ is an automorphism. From the previous step we conclude that gr (τ̃), for
τ̃ ∈ K are the only minimal subsets of Σ×Σ. It follows that K is the automorphism
group of the minimal system (Σ, S) and Σ → Σ̃ := Σ/K is a group extension with
Σ̃ a proximal system. ¤

5. The symbolic factors of X = Ω2
lo

In this section we show that all the minimal sets constructed so far are factors
of Ω2

lo.

5.1. Theorem. Every minimal subset of the system (Ωk,S) is a factor of the min-
imal system (Ω2

lo, S).
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Proof. Fix a minimal subset Σ ⊂ Ωk. We shall construct a homomorphism φ :
Ω2

lo → Σ.
1. By Theorem 4.3 there exists a subgroup H ⊂ Sk such that Σ ⊂ Ωk

[H] and
there exits a configuration ω0 ∈ Σ for which the corresponding ω̂0 : Zk

∗ → T has a
constant value T ∈ T independent of the set of indices {i1, i2, . . . , ik} and such that
HT = H.

2. Define the map φ : Ω2
lo → Σ as follows. For ξ ∈ Ω2

lo and (u1, u2, . . . , uk) ∈ Zk
∗

we recall that ξ determines an order <
ξ

and set

(φξ)(u1, u2, . . . , uk) = T (σ),

where σ ∈ Sk is defined by:

uσ−1(1) <
ξ

uσ−1(2) <
ξ
· · · <

ξ
uσ−1(k).

Note that φξ0 = ω0, where ξ0 ∈ Ω2
lo is the configuration determined by the natural

order on Z.
3. We need to check that φ commutes with the S-actions on Ω2

lo and Σ. This
will establish that π : Ω2

lo → Σ is a homomorphism with φ(ξ0) = ω0. Since both
Ω2

lo and Σ are minimal this will complete the proof.
Given α ∈ S and ξ ∈ Ω2

lo, denote η = αξ. Now

(φαξ)(i1, i2, . . . , ik) = (φη)(i1, i2, . . . , ik) = T (σ),

where
iσ−1(1) <

η
iσ−1(2) <

η
· · · <

η
iσ−1(k).

The latter conditions hold iff

(5.1) α−1iσ−1(1) <
ξ

α−1iσ−1(2) <
ξ
· · · <

ξ
α−1iσ−1(k).

On the other hand, denoting α−1ip = jp, p = 1, 2, . . . , k,

(φξ)(j1, j2, . . . , jk) = T (ρ)

means
jρ−1(1) <

ξ
jρ−1(2) <

ξ
· · · <

ξ
jρ−1(k)

hence we find that if

(αφξ)(i1, i2, . . . , ik) = (φξ)(α−1i1, α
−1i2, . . . , α

−1ik)

= (φξ)(j1, j2, . . . , jk)

= T (ρ)

then
jρ−1(1) <

ξ
jρ−1(2) <

ξ
· · · <

ξ
jρ−1(k).

Since jρ−1(q) = α−1iρ−1(q), q = 1, 2, . . . , k, we get

(5.2) α−1iρ−1(1) <
ξ

α−1iρ−1(2) <
ξ
· · · <

ξ
α−1iρ−1(k).

Comparing equations (5.1) with (5.2) we get ρ = σ, hence (φα)(ξ) = (αφ)(ξ) and
we conclude that indeed φ ◦ α = α ◦ φ. ¤
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5.2. Corollary. Let Σ ⊂ Ωk be a minimal subset of the system (Ωk, S). Either
(Σ, S) is proximal or there is an automorphism θ ∈ Aut (Σ, S) of order two such
that π ◦  = θ◦π, in which case Σ → Σ̃ := Σ/{id, θ} is a two-to-one group extension
and (Σ̃,S) is proximal.

Proof. Let π : Ω2
lo → Σ be the homomorphism whose existence is established in

Theorem 5.1. Let ξ be an arbitrary point in Ω2
lo and consider the pair (π(ξ), π(ξ)).

Since (ξ, ξ) is an almost periodic point of Ω2
lo × Ω2

lo (i.e. it belongs to a minimal
subset) it follows that (π(ξ), π(ξ)) is an almost periodic point of Σ × Σ and by
Theorem 4.3 we conclude that π(ξ)) = τ̃(π(ξ)) for some τ̃ ∈ K = Aut (Σ, S).
Denote θ = τ̃ and observe that, by minimality of Σ, π ◦  = θ ◦ π. Since 2 =  it
follows that θ2 = θ and the last assertion of the corollary follows. ¤

In section 7 we shall show how the information we have gained about Ω2
lo suffices

to show that all minimal systems are factors of it.

6. The universal transitive and minimal systems of a topological
group T

Let T be a topological group. We write L(T ) for the commutative C∗-algebra of
bounded left uniformly continuous C-valued functions on T with the norm ‖f‖ =
supt∈T |f(t)|, and with f∗(t) = f(t). Recall that a function f : T → C is in L(T ) iff
it is bounded and for every ε > 0 there exists a symmetric neighborhood V = V −1

of the unit element e ∈ T with

st−1 ∈ V ⇒ |f(s)− f(t)| < ε.

An equivalent condition is ‖Lrf − f‖ < ε for every r ∈ V , where Lrf(t) = f(r−1t).
It is easy to see that L(T ) is right and left T -invariant; that is, f ∈ L(T ) ⇒
Rsf ∈ L(T ) and Lsf ∈ L(T ), where Rsf(t) = f(ts) and Lsf(t) = f(s−1t). The
next lemma is well known and its proof is straightforward.

6.1. Lemma. Let (X, x0, T ) be a pointed T -dynamical system (i.e. X is a compact
Hausdorff space and the action (t, x) 7→ tx, T × X → X is jointly continuous;
x0 ∈ X is a distinguished point with ŌT (x0) = X). Let F ∈ C(X). Then the
function f = fx0 defined by the equation fx0(t) = F (tx0) is an element of L(T ). In
fact the map

Φ : F 7→ fx0 , Φ : C(X) → L(T ),
is a linear isometry of C∗-algebras such that for every s ∈ T

Φ ◦ Ls = Ls ◦ Φ.

In the situation described in the lemma, we say that the function f is coming
from the pointed system (X, x0, T ).

Let L be the Gelfand space corresponding to the C∗-algebra L(T ) and l0 ∈ L
the multiplicative functional `0 : f 7→ f(e) corresponding to the evaluation of a
function in L(T ) at the identity element e ∈ T .

6.2. Corollary. With the natural action of the group T on the Gelfand space L and
the distinguished point `0, the pointed dynamical system (L, x0, T ) is the universal
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point transitive T -system. I.e. to every point transitive T -system (X, x0, T ) with
distinguished transitive point x0 there exists a unique homomorphism

φ : (L, `0, T ) → (X,x0, T ).

Proof. The map φ is realized by the dual of the isometric isomorphism Φ : C(X) →
L(T ) on the corresponding Gelfand spaces. ¤

We shall use the notation |A| for the Gelfand space of a closed T -invariant
subalgebra A ⊂ L(T ) (i.e. LsA = A for every s ∈ T ). Thus with this notation
L = |L(T )| and in the above corollary |A| ∼= X where A = Φ(C(X)).

Let now M ⊂ L be any minimal subset. If (X, T ) is a minimal system then
the restriction of the map φ : L → X to M is a homomorphism φ : M → X. So
in this sense M is a universal minimal system. It turns out that in fact any two
minimal sets M1 and M2 of L are isomorphic as dynamical systems (we shall not
prove this fact, see for example [4]). Thus (M, T ) is the unique universal minimal
system (although not as a pointed system; fixing a distinguished point m0 ∈ M
and given a pointed minimal system (X,x0, T ), a homomorphism φ : L → X with
φ(m0) = x0 may not exist). The next theorem is due to Pestov [19] (see also [14]).

6.3. Theorem. If the topology of T admits a basis for neighborhoods at e consist-
ing of clopen subgroups, then the topological space L (and hence also M) is zero
dimensional.

Proof. Given a clopen subgroup H ⊂ T let

LH = {f ∈ L(T ) : Lsf = f, ∀ s ∈ H}.
If f̃ is any bounded function on the discrete space H\T then the corresponding
lift f(t) = f̃(Ht) is an element of LH and conversely every element of LH defines
a function in l∞(H\T ). Thus |LH | ∼= β(H\T ) where β(H\T ) is the Stone-C̆ech
compactification of the discrete space H\T ; in particular |LH | is zero-dimensional
(in fact extremely disconnected when H\T is infinite; see [5]).

Given f ∈ L(T ) and ε > 0 there exists a clopen subgroup H ⊂ T with
supt∈T diam f(Ht) < ε. The function g̃ ∈ l∞(H\T ) defined by g̃(Ht) = inf{f(rt) :
r ∈ H} lifts to a function g(t) = g̃(Ht) in LH with ‖g − f‖ ≤ ε.

It follows that the algebra
⋃
{LH : H is a clopen subgroup of T},

is dense in L(T ) and by the Stone-Weierstrass theorem, its closure is all of L(T ).
We conclude that

L = lim
←
|LH |

is the inverse limit of the zero dimensional spaces |LH | over the directed system of
clopen subgroups H ⊂ T . In particular we conclude that L and therefore also its
subset M are zero dimensional. ¤

Again let (X, T ) be a T dynamical system and let F ∈ C(X) be a real valued
function. Let I be the interval [−‖F‖, ‖F‖], and consider the compact space IT of
all maps from T to I (with the topology of pointwise convergence). We define a
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map ψ : X → IT by ψ(x) = fx; i.e. fx(t) = F (tx), (t ∈ T ). Let Y = ψ(X). As
observed in Lemma 6.1 each fx is in L. It is easy to check that ψ is a continuous
map and if we let T act on Y according to the formula tfx(s) = f(st), then tψ(x) =
tfx = ftx = ψ(tx). In fact we have:

6.4. Lemma. The action of T on Y is jointly continuous and the map ψ : (X,T ) →
(Y, T ) is a homomorphism of T -systems.

7. The universal minimal S-system

We recall that the system of clopen subgroups Hk = {α ∈ S : α(i) = i, ∀ |i| ≤ k},
k = 1, 2, . . . , forms a basis for the topology of S at the identity e ∈ S. By Theorem
6.3 it follows that the universal minimal dynamical system M is zero-dimensional.
Let D ⊂ M be a clopen subset and FD = 21D − 1 ∈ C(M), with 1D the indicator
function of D. Let ψD be the map constructed above (see the paragraph preceding
Lemma 6.4) using 1D as F . Fix a point m0 ∈ M, set YD = ψD(M), yD = ψD(m0)
and let (YD, yD,S) be the corresponding pointed dynamical system as in Lemma
6.4. Of course (YD, yD,S) as a factor of (M,m0, S) is minimal.

7.1. Lemma. There exists an integer k ≥ 1 such that (YD, S) is isomorphic to a
minimal symbolic system Σ ⊂ Ω2k+1.

Proof. There exists a neighborhood V of e ∈ S such that γD = D for every γ ∈ V
— for otherwise we would have nets γi → e and xi ∈ D with γixi → y 6∈ D,
contradicting the continuity of 1D. For some k ≥ 1 we have Hk ⊂ V and it follows
that γD = D for every γ ∈ Hk. Thus γ ∈ Hk, α ∈ S imply

yD(γα) = FD(γαm0) = Fγ−1D(αm0) = FD(αm0) = yD(α),

i.e. yD can be viewed as a function on Hk\S. Now the function

Hkα 7→ (α−1(−k), . . . , α−1(−1), α(0), α−1(1), . . . , α−1(k)),

is a bijection of Hk\S onto Z2k+1
∗ . This bijection is clearly equivariant with respect

to the S actions and thus we can view YD as a subset of Ω2k+1 as claimed. ¤

7.2. Theorem. Ω2
lo is the universal minimal S-system.

Proof. 1. We denote Ω2
lo = X and choose ξ0 ∈ X as the distinguished point. Since

M is the universal S-minimal system, there exists a homomorphism π : M → X
and we pick some m0 ∈ M with π(m0) = ξ0 as the distinguished point for M.

2. Given a clopen subset D ⊂ M consider the following diagram:

(M, m0)

ψD

²²

π // (X, ξ0)

φD

²²
(YD, yD) (YD, y′D).

The homomorphism ψD was defined above (see the first paragraph of the section)
and yD = ψD(m0). In view of Lemma 7.1 we can apply Theorem 5.1 to define the
homomorphism φD, with y′D defined to be φD(ξ0).
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Now the image (ψD×(φD ◦π))(M,m0) = (W, (yD, y′D)), with W ⊂ YD×YD, is a
minimal subset of the product system (YD×YD, S) and we conclude from Corollary
5.2 that either yD = y′D or y′D = θyD. In the latter case we replace φD by φD ◦ 
and it follows that in either case the above diagram can be replaced by

(M,m0)

ψD %%LLLLLLLLLL
π // (X, ξ0)

φDyysssssssss

(YD, yD) .

Next form the product space

Π =
∏
{YD : D a clopen subset of M},

and let ψ : M → Π be the map whose D-projection is ψD (i.e. (ψ(m))D = ψD(m)).
We set Y = ψ(M) and observe that, since clearly the maps ψD separate points on
M, the map ψ : M → Y is an isomorphism, with ψ(m0) = y0 where y0 ∈ Y is
defined by (y0)D = yD. Likewise define φ : X → Y by (φ(m))D = φD(m), so that
also φ(ξ0) = y0. These equations force the identity ψ = φ ◦ π in the diagram

(M,m0)

ψ %%JJJJJJJJJ
π // (X, ξ0)

φzzuuuuuuuuu

(Y, y0) .

Since ψ is a bijection it follows that so are π and φ and the proof is complete. ¤

8. Unique ergodicity

8.1. Theorem. The universal minimal system (Ω2
lo,S) is uniquely ergodic and

therefore so is every minimal S-system.

Proof. Denote X = Ω2
lo and let MS(X) be the set of S-invariant probability mea-

sures on X. Note that this is the same as the set of S0-invariant measures.
Since S0 is amenable MS(X) is non-empty. We fix µ ∈ MS(X). For an array
{aij : i < j, |i|, |j| ≤ n0} with aij ∈ {1,−1} set

A = {ξ ∈ X : ξ(i, j) = aij},
the corresponding cylinder set in X. Clearly the sequence S2k+1 ⊂ S0 is a Følner
sequence for the amenable group S0 and the mean ergodic theorem implies that,
for every function f ∈ L2(µ), the ergodic averages

Akf =
1

(2k + 1)!

∑

σ∈S2k+1

f(σξ)

converge in L2(µ) to the function EI(f) — the conditional expectation of f with
respect to the σ-algebra I of Borel S0-invariant subsets of X. In particular this
is true for the function f = 1A. However, a moment’s reflection will show that
for k > n0 the function Ak1A(ξ) is a constant and we conclude that Ak1A(ξ) =∫

X
1A dµ = µ(A). Since this holds for every cylinder set A and every µ ∈ MS(X),

we conclude that MS(X) = {µ} is a singleton; i.e. (X, S) is uniquely ergodic. The
second assertion of the theorem now follows by the universality of (X, S). ¤
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As described in Remark 2.2 fix a 1-1 correspondence of Z with the set of ra-
tional numbers Q and consider the element η ∈ Ω2

lo which is determined, via this
correspondence, by the usual order on Q.

8.2. Theorem. The unique S-invariant measure µ on Ω2
lo is supported by a single

S-orbit; namely µ(Sη) = 1.

Proof. The orbit Sη consists of all the linear orders on Z whose order type is that
of the rational numbers Q; in other words ω ∈ Sη iff

(8.1) ∀i, j, ω(i, j) = 1 ⇒ ∃k, ω(i, k) = ω(k, j) = 1,

and

(8.2) ∀i ∃k, l, ω(i, k) = ω(l, i) = 1.

Now, given i 6= j ∈ Z, the measure of the “event”

Ai,j = {ω ∈ Ω2
lo : ω(i, j) = 1 ∧ ∃k, ω(i, k) = ω(k, j) = 1}

can be computed as

lim
n→∞

Anf = lim
n→∞

1
(2n + 1)!

∑

σ∈S2n+1

1A(σξ).

Since, no matter which configuration ξ we start from, for large k, for most σ ∈ S2k+1

we shall have σξ ∈ A, it follows that this limit is equal to one. Similarly every event
of the form (8.2) will have measure one and we conclude that the intersection of all
these events, namely the set Sη, has µ measure one. ¤

8.3. Remark. The measure µ and its “factor” measures πΣ(µ), where πΣ : Ω2
lo → Σ

are the homomorphisms of Ω2
lo onto the various minimal sets Σ ⊂ Ωk, are by no

means the only invariant probability measures of the dynamical systems (Ωk, S).
For other such measures see Theorem 5.1 in [1].

9. A minimal action of the discrete group G = S/S0

The discrete group S admits the following interesting minimal dynamical system.
Recall that βZ, the Stone-Čech compactification of the integers Z, is the space of
ultrafilters on Z and that the collection U = {UA : A ⊂ Z}, where for each A ⊂ Z
the set UA is the set of ultrafilters in βZ containing A (UA = {p ∈ βZ : A ∈ p}),
forms a basis for a compact Hausdorff topology on βZ. The collection of fixed
ultrafilters; i.e. ultrafilters of the form pn = {A ⊂ Z : n ∈ A} for n ∈ Z, forms an
open, discrete, dense subset of βZ. When this collection is identified with Z, the
space βZ becomes the universal compactification of the discrete topological space
Z in the sense that any map φ : Z → K, where K is a compact Hausdorff space,
can be extended uniquely to a continuous map φ̃ : βZ → K. For more details see
[5], [4] and [12].

Consider the compact subspace X = βZ \Z of βZ, sometimes called the corona.
The universal property of βZ enables one to extend the natural action of S on Z
to an action on βZ. Evidently this action leaves X invariant and it is also clear
that each element of the normal subgroup S0 restricts to the identity map on X.
We can therefore view this action as a G = S/S0 dynamical system (X,G). As we
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shall see, this action is minimal and Uspenskij’s idea will serve us in showing that
it is not the universal one (see [22]).

9.1. Theorem. (1) The system (X, G) is minimal.
(2) The system (X,G) is extremely proximal; i.e. for every closed set ∅ 6= F (

X there exists a net {gi}i∈I in G such that, in the Vietoris topology on the
compact space 2X of closed subsets of X, we have limi∈I giF = {x0} for
some point x0 ∈ X (see [7]).

(3) The minimal system (X, G) is not isomorphic to the universal minimal
system (M(G), G).

Proof. 1. Note that the collection U = {cls βZA ∩ X : A an infinite subset of Z}
is a basis for the topology on X consisting of clopen sets. Since clearly G acts
transitively on this collection, it follows that for every U ∈ U we have ∪{α(U) : α ∈
G} = X. This property is equivalent to the minimality of the system (X, G).

2. Fix some x0 in X such that x0 6∈ F . For an arbitrary basic clopen neigh-
borhood U = cls βZA ∩ X of x0 which is disjoint from F choose αU ∈ G such that
αU (Ac) = A. Then α satisfies αU (F ) ⊂ U . Clearly now {αU : U a neighborhood of
x0} is the required net.

3. Using Uspenskij’s notation, let Φ ⊂ 22X

be the collection of maximal chains
on X. Recall that a chain is a nonempty family c = {Ft} (with t running over some
parameter set) of closed subsets of X such that for every F1, F2 ∈ c either F1 ⊂ F2

or F2 ⊂ F1. A chain c is maximal if it is not properly contained in another chain.
Uspenskij shows that for any dynamical system (X, G) the collection Φ is a closed
invariant subset of the compact space 22X

. It is easy to see that every c ∈ Φ has a
first element F which is necessarily of the form F = {x}. Moreover, calling x the
root of the chain c, it is clear that the map π : Φ → X, sending a chain to its root,
is a homomorphism of dynamical systems.

Suppose (X,G) is isomorphic to the universal minimal G system. Let Y ⊂ Φ
be a minimal subset of Φ. Then, by the coalescence of the universal minimal
system (see the first paragraph of the introduction), the restriction π : Y → X
is an isomorphism. Fix c0 ∈ Y and let p0 ∈ X be its root; i.e. π(c0) = p0. Let
H = {α ∈ G : αp0 = p0}, the stability group of p0. Since π is an isomorphism we
also have H = {α ∈ G : αc0 = c0}. Choose F ∈ c0 such that {p0} ( F ( X and
let p0 6= a ∈ F . There exists an infinite B ⊂ Z such that cls βZB ∩ X is disjoint
from F . Choose subsets P and A of Z with the following properties: P ∩ A = ∅,
P ∪A = Bc, a ∈ cls βZA and p0 ∈ cls βZP. Thus {P,A, B} is a partition of Z.

Next choose a permutation α ∈ G such that α ¹ P = id, α(A) = B and α2 = id,
and set b = α(a). We now have α(p0) = p0, b = α(a) ∈ α(F ) \ F and a = α(b) ∈
F \ α(F ), so that F and α(F ) are not comparable. On the other hand α(p0) = p0

means α ∈ H whence also α(c0) = c0. In particular α(F ) ∈ c0 and as c0 is a chain
one of the inclusions F ⊂ α(F ) or α(F ) ⊂ F must hold. This contradiction shows
that (X, G) cannot be the universal minimal G system. ¤
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in Mathematics 152, Birkhäuser Boston, Inc., Boston, MA, 1999.
[11] M. Gromov and V. D. Milman, A topological application of the isoperimetric inequality,

Amer. J. Math. 105, (1983), 843-854.

[12] N. Hindman and D. Strauss, Algebra in the Stone-Čech compactification, de Gruyter,
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