
AN ENVELOPING SEMIGROUP PROOF OF THE FACT THAT
RP [d] IS AN EQUIVALENCE RELATION

ELI GLASNER

Let T be a countable abelian group and let (X,T ) be a minimal dynamical system;
i.e. X is a compact Hausdorff space and T acts on it as a group of homeomorphisms.
Following [4] and [7] we introduce the following notations (generalizing from the case

T = Z to the case of a general T action). For an integer d ≥ 1 let X [d] = X2d .
We index the coordinates of an element x ∈ X [d] by subsets ε ⊂ {1, . . . , d}. Thus
x = (xε : ε ⊂ {1, . . . , d}), where for each ε, xε ∈ Xε = X. E.g. for d = 2 we have

x = (x∅, x{1}, x{2}, x{1,2}). We let X
[d]
∗ = X2d−1 =

∏
{Xε : ε 6= ∅} and for x ∈ X [d] we

let x∗ ∈ X [d]
∗ denote its projection; i.e. x∗ is obtained by omitting the ∅-coordinate

of x. For each ε ⊂ {1, . . . , d} we denote by πε the projection map from X [d] onto

Xε = X. For a point x ∈ X we let x[d] ∈ X [d] and x
[d]
∗ ∈ X [d]

∗ be the diagonal points
all of whose coordinates are x. ∆[d] = {x[d] : x ∈ X} is the diagonal of X [d] and

∆
[d]
∗ = {x[d]∗ : x ∈ X} the diagonal of X

[d]
∗ . Another convenient representation of

X [d] is as a product space X [d] = X [d−1] ×X [d−1] (with X [0] = X). When using this
decomposition we write x = (x′, x′′).

We next define two group actions on X [d], the face group action F[d] and the total
group action G[d]. These actions are representations of T d = T × T × · · · × T (d
times) and T d+1, respectively, as subgroups of Homeo (X [d]). For the F[d] action
F[d] ×X [d] → X [d],

((t1, . . . , td), (xε : ε ⊂ {1, . . . , d})) 7→ (tεxε : ε ⊂ {1, . . . , d}),
where tεxε = tn1 · · · tnj

xε, if ε = {n1, . . . , nj} and t∅x∅ = x∅. We can then represent

the homeomorphism τ ∈ F[d] which corresponds to (t1, . . . , td) ∈ T d as

τ = τ d(t1,...,td) = (tε : ε ⊂ {1, . . . , d}).

We will also consider the restriction of the F[d] action to X
[d]
∗ which is defined by

omitting the first coordinate.
For example, if we consider a minimal cascade (X, f), taking T = Z = {fn : n ∈

Z}, d = 3 and τ = τ 3(2,5,11) ∈ F[3] ∼= Z3, we have:

τ(x) = (x∅, f
2x{1}, f

5x{2}, f
2+5x{1,2}, f

11x{3}, f
2+11x{1,3}, f

2+5+11x{1,2,3}),

and

τ(x∗) = (f 2x{1}, f
5x{2}, f

2+5x{1,2}, f
11x{3}, f

2+11x{1,3}, f
2+5+11x{1,2,3}).
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Note that the fact that the F[d] action is well defined depends on the commutativity
of the group T .

The action of T d+1 on X [d], denoted by G[d], is the action generated by the face
group action F[d] and the diagonal θ-action of T , T ×X [d] → X [d], defined by

(t, x) 7→ θdt x = (txε : ε ⊂ {1, . . . , d}).

Thus for the G[d] action G[d] ×X [d] → X [d],

((t1, . . . , td, td+1), (xε : ε ⊂ {1, . . . , d})) 7→ (td+1tεxε : ε ⊂ {1, . . . , d}),

where tεxε = tn1 · · · tnj
xε, if ε = {n1, . . . , nj} and t∅x∅ = x∅. In other words, the G[d]

action on X [d] is given by the representation:

T d+1 → Homeo (X [d]), (t1, . . . , td, td+1) 7→ θdtd+1
τ d(t1,...,td).

Notice that

(1) τ d(t1,...,td)(x
′, x′′) = (τ d−1(t1,...,td−1)

x′, θd−1td
τ d−1(t1,...,td−1)

x′′).

In their paper [7] Shao and Ye prove that RP [d], the generalized regionally proximal
relation of order d, is always an equivalence relation for a minimal cascade (X,T ).
Their proof is based on the detailed analysis of the G[d] action provided by Host Kra
and Mass in [4]. In turn, the results obtained in [4] are based on the profound ergodic
theoretical results obtained by Host and Kra in [3]. The main tool used by Shao and
Ye is a theorem which asserts that for each x ∈ X the face action F[d] is minimal
on the orbit closure clsF[d]x

[d]
∗ . Their proof of this theorem is based on the general

structure theory of minimal flows due to Ellis-Glasner-Shapiro [2], McMahon [6] and
Veech [8]. But in fact, unknown to them, I have already shown, a few years earlier,
to Bernard Host and Bryna Kra (in a private conversation) a direct proof of this
fact which is very similar to the proof by Ellis and Glasner given in, [5, page 46].
The possibility of applying the Ellis Glasner proof as a shortcut to Shao and Ye’s
proof was also discovered by Ethan Akin. In the next section I present this short
proof, established for a general commutative group. For the interested reader I will,
in a subsequent section, briefly reproduce the Shao-Ye proof of the fact that for each
d ≥ 1, RP [d] is an equivalence relation.

1. The minimality of the face action on Q
[d]
x∗

Let (X,T ) be a minimal flow with T abelian. Let

Q[d] = cls {gx[d] : x ∈ X, g ∈ G[d]} = F[d]∆[d].

For x ∈ X let Q
[d]
x = Q[d] ∩ {x} ×X2d−1 and let Y

[d]
x = F[d](x[d] be the orbit closure

of x[d] under F[d].

1.1. Theorem (Shaw and Ye). 1. The flow (Q[d],G[d]) is minimal.

2. For each x ∈ X, the flow (Y
[d]
x ,F[d]) is minimal.

3. For each x ∈ X the flow Y
[d]
x is the unique minimal subflow of the flow (Q[d],Fd).
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Proof. 1. Let us denote N := Q[d] and T := G[d]. Let E = E(N,T) be the enveloping
semigroup of (N,T). Let πε : N → Xε = X be the projection of N on the ε coordinate,
where ε ⊂ {1, ..., d}. We consider the action of the group T on the ε coordinate via
the projection πε, that is, for ε ⊂ {1, . . . , d}, (t1, . . . , td, td+1) ∈ T d+1 and x ∈ Xε = X,

T ×Xε → Xε, (θdtd+1
τ d(t1,...,td), x) 7→ td+1tεx.

With respect to this action of T on Xε = X the map πε : (N,T) → (Xε,T) is a flow
homomorphism. Let π∗ε : E(N,T) → E(Xε,T) be the corresponding homomorphism
of enveloping semigroups. Notice that for the action of T on Xε, E(Xε,T) = E(X,T )
as subsets of XX (as td+1tε ∈ T ).

Let now u ∈ E(X,T ) be any minimal idempotent. Then ũ = (u, u, ..., u) ∈ E(N,T).
Choose v a minimal idempotent in the closed left ideal E(N,T)ũ. Then vũ = v. We
want to show that ũv = ũ. Set, for ε ⊂ {1, . . . , d}, vε = π∗ε v. Note that, as an
element of E(N,T) is determined by its projections, it suffices to show that for each
ε, uvε = u. Since for each ε the map π∗ε is a semigroup homomorphism, we have that
vεu = vε as vũ = v. In particular we deduce that vε is an element of the minimal
left ideal E(Xε, T )u = E(X,T )u which contains u. This implies (see [5, Exercise
1.23.2.(b)]) that

uvε = uvεu = u;

and it follows that indeed ũv = ũ. Thus, ũ is an element of the minimal left ideal
E(N,T)v which contains v, and therefore ũ is a minimal idempotent of E(N,T).

Now let x ∈ X and let u be a minimal idempotent in E(X,T ) with ux = x (since
(X,T ) is minimal there always exists such an idempotent). By the above argument, ũ

is also a minimal idempotent of (N,T) which implies that N = Q
[d]
x∗ , the orbit closure

of x
[d]
∗ = ũx

[d]
∗ , is T minimal (see [5, Exercise 1.26.2]).

2. Given x ∈ X we now let N := Q
[d]
x∗ and T := F[d]. The proof of the minimality

of the flow (Q
[d]
x∗ ,F

[d]) is almost verbatim the same, except that here the claim that

for u a minimal idempotent in E(X,T ), the map ũ = (u, u, ..., u) is in E(Q
[d]
x∗ ,F

[d]), is
not that evident. However, as u is an idempotent this fact follows from the following
lemma (with p1 = · · · = pd = u).

1.2. Lemma. Let p1, . . . , pd ∈ E(X,T ) and for ε = {n1, . . . , nk} ⊂ {1, . . . , d}, with
n1 < · · · < nk, let qε = pn1 · · · pnk

. Then the map (qε : ε ⊂ {1, . . . , d}, ε 6= ∅) is an

element of E(Q
[d]
x∗ ,F

[d]).

Proof. By induction on d, using the identity (1), or more specifically

τ d(e,...,e,td)(x
′, x′′) = (x′, θd−1td

x′′),

and the fact that right multiplication in E(X,T ) is continuous. �

�

2. RP [d] is an equivalence relation

In this section we outline the Shao-Ye proof that RP [d] is an equivalence relation.
We assume that (X,T ) is a minimal compact metrizable T -flow, where T is an abelian
group. We fix a compatible metric ρ on X.
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2.1. Definition. The regionally proximal relation of order d is the relation RP [d] ⊂
X [d] ×X [d] defined by the following condition: (x, y) ∈ RP [d] iff for every δ > 0 there
is a pair x′, y′ ∈ X and (t1, . . . , td) ∈ T d such that:

1. ρ(x, x′) < δ and ρ(y, y′) < δ.
2. For every ∅ 6= ε ⊂ {1, . . . , d},

ρ[d](τ
[d]
(t1,...,td)

x′
[d]
∗ , τ

[d]
(t1,...,td)

y′
[d]
∗ ) := sup{ρ(tεx

′, tεy
′) : ε ⊂ {1, . . . , d}, ε 6= ∅} < δ.

For d = 1 this relation is the classical regionally proximal relation, see e.g. [1].

2.2. Lemma. Let (X,T ) be a minimal system. Let d ≥ 1 and x, y ∈ X . Then

(x, y) ∈ RP [d] if and only if there is some a∗ ∈ X [d]
∗ such that (x, a∗, y, a∗) ∈ Q[d+1].

With the help of Theorem 1.1, we can prove that RP [d] is an equivalence relation.
First we have the following equivalent conditions for RP [d].

2.3. Theorem. Let (X,T ) be a minimal flow and d ≥ 1. The following conditions
are equivalent:

1. (x, y) ∈ RP [d].

2. (x, y, y, . . . , y) = (x, y
[d+1]
∗ ) ∈ Q[d+1].

3. (x, y, y, . . . , y) = (x, y
[d+1]
∗ ) ∈ F[d+1](x[d+1]).

Proof. (3) ⇒ (2) is obvious. (2) ⇒ (1) follows from Lemma 2.2. Hence it suffices to
show (1) ⇒ (3). Let (x, y) ∈ RP [d]. Then by Lemma 2.2 there is some a ∈ X [d] such
that (x, a∗, y, a∗) ∈ Q[d+1]. Observe that (y, a∗) ∈ Qd. By Theorem 3.1-(2), there is a
sequence {Fk} ⊂ F[d] such that Fk(y, a∗)→ y[d]. Hence

Fk × Fk(x, a∗, y, a∗)→ (x, y[d]∗ , y, y
[d]
∗ ) = (x, y[d+1]

∗ ).

Since Fk×Fk ∈ F[d+1] and (x, a∗, y, a∗) ∈ Q[d+1], we have that (x, y
[d+1]
∗ ) ∈ Q[d+1]. By

Theorem 3.1-(1), y[d+1] is F[d+1]-minimal. It follows that (x, y
[d+1]
∗ ) is also F[d+1]-

minimal. Now (x, y
[d+1]
∗ ) ∈ Q[d+1][x] is F[d+1]-minimal and by Theorem 3.1-(2),

F[d+1](x[d+1]) is the unique F[d+1]-minimal subset in Q[d+1][x]. Hence we have that

(x, y
[d+1]
∗ ) ∈ F[d+1](x[d+1]), and the proof is completed. �

By Theorem 2.3, we have the following theorem immediately.

2.4. Theorem. Let (X,T ) be a minimal system and d ≥ 1. Then RP [d] is an equiv-
alence relation.

Proof. It suffices to show the transitivity, i.e. if (x, y), (y, z) ∈ RP [d], then (x, z) ∈
RP [d](X). Since (x, y), (y, z) ∈ RP [d](X), by Theorem 2.3 we have

(y, x, x, . . . , x), (y, z, z, . . . , z) ∈ F[d+1](y[d+1]).

By Theorem 1.1 (F[d+1](y[d+1]),F[d+1]) is minimal, it follows that (y, z, z, . . . , z) ∈
F[d+1](y, x, x, . . . , x). It follows that (x, z, z, . . . , z) ∈ F[d+1](x[d+1]). By Theorem 2.3
again, (x, z) ∈ RP [d]. �

2.5. Remark. By Theorem 3.4 we know that in the definition of regionally proximal
relation of d, x′ can be replaced by x. More precisely, (x, y) ∈ RP [d] if and only if
for any δ > 0 there exist y′ ∈ X and a vector n = (n1, . . . , nd) ∈ Zd such that for



5

any nonempty ε ⊂ {1, . . . , d}, ρ(y, y′) < δ and ρ(T n·εx, T n·εy′) < δ. This conclusion
is first given in [23] for a minimal distal system.
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