AN ENVELOPING SEMIGROUP PROOF OF THE FACT THAT
RPY IS AN EQUIVALENCE RELATION

ELI GLASNER

Let T be a countable abelian group and let (X, 7T") be a minimal dynamical system;
i.e. X is a compact Hausdorff space and T acts on it as a group of homeomorphisms.
Following [4] and [7] we introduce the following notations (generalizing from the case
T = 7 to the case of a general T action). For an integer d > 1 let Xl = X 2%,
We index the coordinates of an element z € X9 by subsets e C {1,...,d}. Thus
r = (x.:eCA{l,...,d}), where for each ¢, z. € X, = X. E.g. for d = 2 we have
T = (2, T{1y, Ty2y, T{1,23). We let X9 = x2-1 = [T{X.:e#0} and for x € X we
let x, € X denote its projection; i.e. z, is obtained by omitting the ()-coordinate
of x. For each ¢ C {1,...,d} we denote by 7. the projection map from X% onto
X, = X. For a point € X we let zl7 ¢ X4 and de] € Xid] be the diagonal points
all of whose coordinates are x. AlM = {714 . » € X} is the diagonal of X9 and

AP = {de] : ¢ € X} the diagonal of X Another convenient representation of
X is as a product space X9 = X141 x X4-1 (with X! = X). When using this
decomposition we write x = (2/, z").

We next define two group actions on X4, the face group action F1U and the total
group action G'¥. These actions are representations of 7% = T'x T x --- x T (d

times) and T, respectively, as subgroups of Homeo (X4). For the F9 action
Fldl x Xl 5 Xld

((t1, ... ta), (xe:eC{l,...,d})) — (texe:e C{1,...,d}),

where texe = t,, <+t T, if € = {n1,...,n;} and tyzy = xy. We can then represent

[d]

the homeomorphism 7 € F14 which corresponds to (ti,...,tq) € T as

T:T(Cil td):(te:ec{l""’d})'

77777

We will also consider the restriction of the ¥4 action to X!¥ which is defined by
omitting the first coordinate.

For example, if we consider a minimal cascade (X, f), taking T'=7Z = {f" : n €
Z},d=3and T = 7(32,5711) e FB = 73 we have:

7(x) = (g, gy, ooy, ooy, fMagy, P ras, 77 200s),

and
T(LE*) — (f2${1}’ f5${2}, f2+5${1’2}, fllx{?)}’ f2+1133{1’3}, f2+5+11:v{1,273}).
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Note that the fact that the F19 action is well defined depends on the commutativity
of the group T

The action of T on X denoted by Gl¢ is the action generated by the face
group action ¥ and the diagonal 8-action of T, T x X — X defined by

(t,x) = 0l = (tv. e C {1,...,d}).
Thus for the Gl action G4 x XM — xld
((t1, .. taytarr), (we:e C{l,...,d})) = (tgsitexe e C {1,...,d}),

where texe =ty - -ty xe, if € = {ny,...,n;} and tyzy = 9. In other words, the gld

[d]

action on X% is given by the representation:

T — Homeo (X4), (t1, ... g, tae) — 02 T(”fE

Notice that

<1) T(Cllfl 77777 td)(x/’ :L‘H) - (7551_7-1--7%—1)33,7 egd_ngfl_»-l--id—ﬂx”)'

In their paper [7] Shao and Ye prove that RP!¥, the generalized regionally proximal
relation of order d, is always an equivalence relation for a minimal cascade (X, T).
Their proof is based on the detailed analysis of the G action provided by Host Kra
and Mass in [4]. In turn, the results obtained in [4] are based on the profound ergodic
theoretical results obtained by Host and Kra in [3]. The main tool used by Shao and
Ye is a theorem which asserts that for each € X the face action F4 is minimal
on the orbit closure cls F4z". Their proof of this theorem is based on the general
structure theory of minimal flows due to Ellis-Glasner-Shapiro [2], McMahon [6] and
Veech [8]. But in fact, unknown to them, I have already shown, a few years earlier,
to Bernard Host and Bryna Kra (in a private conversation) a direct proof of this
fact which is very similar to the proof by Ellis and Glasner given in, [5, page 46].
The possibility of applying the Ellis Glasner proof as a shortcut to Shao and Ye’s
proof was also discovered by Ethan Akin. In the next section I present this short
proof, established for a general commutative group. For the interested reader I will,
in a subsequent section, briefly reproduce the Shao-Ye proof of the fact that for each
d > 1, RP is an equivalence relation.

1. THE MINIMALITY OF THE FACE ACTION ON Q;[i]
Let (X,T) be a minimal flow with 7" abelian. Let
QY =cls{gz : z € X, g € g9} = FlAAM],

For z € X let Q¥ = Q4 n {2} x X2'~! and let v = gl (219 be the orbit closure
of 14 under F1.

1.1. Theorem (Shaw and Ye). 1. The flow (Q\¥, Gl is minimal.
2. For each x € X, the flow (Yx[d], Fl) is minimal.
3. Foreachx € X the flow V¥ s the unique minimal subflow of the flow (Q14, ).
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Proof. 1. Let us denote N := Q¥ and T := Gl Let E = E(N,T) be the enveloping
semigroup of (N, T). Let m. : N — X, = X be the projection of N on the € coordinate,
where € C {1,...,d}. We consider the action of the group T on the e coordinate via
the projection 7, that is, for e C {1,...,d}, (t1,... ,tg,tar1) € T and z € X, = X,

T x Xe — XG, (6?d+17'(c7l51 ,,,, tq)? f]:) — td+1t€$.

With respect to this action of T on X, = X the map 7. : (N,T) — (X, 7) is a flow
homomorphism. Let 7} : E(N,T) — E(X,,7T) be the corresponding homomorphism
of enveloping semigroups. Notice that for the action of T on X, F(X,T) = E(X,T)
as subsets of X* (as tg 1t € T).

Let now u € E(X,T) be any minimal idempotent. Then @ = (u, u, ...,u) € E(N,T).
Choose v a minimal idempotent in the closed left ideal E(N,T)a. Then va = v. We
want to show that av = @. Set, for e C {1,...,d}, v. = 7mfv. Note that, as an
element of E(N,T) is determined by its projections, it suffices to show that for each
€, uve = u. Since for each € the map 7 is a semigroup homomorphism, we have that
veu = v as vu = v. In particular we deduce that v, is an element of the minimal
left ideal E(X.,T)u = E(X,T)u which contains u. This implies (see [5, Exercise
1.23.2.(b)]) that

UVe = UVU = U;
and it follows that indeed 4v = @. Thus, @ is an element of the minimal left ideal
E(N,T)v which contains v, and therefore @ is a minimal idempotent of E(N,T).

Now let € X and let u be a minimal idempotent in E(X,T) with uz = x (since
(X, T) is minimal there always exists such an idempotent). By the above argument, @
is also a minimal idempotent of (/V,T) which implies that N = Q:E;ﬂ, the orbit closure
of 2 = @z!”, is T minimal (see [5, Exercise 1.26.2]).

2. Given x € X we now let N := QLd*] and T := F9. The proof of the minimality
of the flow ( &dj, F1) is almost verbatim the same, except that here the claim that
for u a minimal idempotent in F(X,T), the map @ = (u, u, ...,u) is in E(Qgcdj, gl is
not that evident. However, as u is an idempotent this fact follows from the following
lemma (with p; = -+ = pg = u).

1.2. Lemma. Let py,...,pq € E(X,T) and for e = {ny,...,nx} C {1,...,d}, with
ny < - < ng, let g = pp, - Pn,.- Then the map (¢ : € C {1,...,d}, e #0) is an
element of E(Q'Y, Fld).

Proof. By induction on d, using the identity (1), or more specifically
7_(Ule ..... e,td)(xlﬂ x/,) - ('rlv efd_llﬂ)?

and the fact that right multiplication in F(X,T) is continuous. O

2. RPl IS AN EQUIVALENCE RELATION

In this section we outline the Shao-Ye proof that RP!¥ is an equivalence relation.
We assume that (X, T') is a minimal compact metrizable T-flow, where T is an abelian
group. We fix a compatible metric p on X.
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2.1. Definition. The regionally prozimal relation of order d is the relation RP!Y
X4 x X defined by the following condition: (z,%) € RP iff for every § > 0 there
is a pair 2/, 5 € X and (t1,...,t4) € T? such that:

1. p(x,2') < § and p(y,y') < 9.
2. For every ) £ e C {1,...,d},

d d _[d d
P (T([tl] td)x/i ]77-([t1] td)y/L]) = sup{p(ter’, tey’) e C {1,...,d}, e £ 0} <0

..........

For d = 1 this relation is the classical regionally proximal relation, see e.g. [1].

2.2. Lemma. Let (X,T) be a minimal system. Let d > 1 and z,y € X . Then
(z,y) € RPN if and only if there is some a, € X such that (z,a4,y,a,) € Q1.

With the help of Theorem 1.1, we can prove that RP!¥ is an equivalence relation.
First we have the following equivalent conditions for RP.

2.3. Theorem. Let (X,T) be a minimal flow and d > 1. The following conditions
are equivalent:

1. (z,y) € RPY.
_ [d+1] [d+1]
2‘ <I7y7y7"'7y)_('ray* )GQ .
3 (0,9,9,- - oy) = (o) € TR (),
Proof. (3) = (2) is obvious. (2) = (1) follows from Lemma 2.2. Hence it suffices to
show (1) = (3). Let (z,y) € RP!. Then by Lemma 2.2 there is some a € X4 such

that (2, a.,y,a,) € Q1. Observe that (y,a,) € Q. By Theorem 3.1-(2), there is a
sequence {F,} C Fl9 such that Fi(y,a,) — yl¥. Hence

Fy x Fyl(z, av,y, a.) — (2,99, y, yl¥) = (2, yld+1)).

Since Fj, x F, € F41 and (z, a,,y, a,) € QY we have that (=, yLdH]) € QI+ By
Theorem 3.1-(1), ¢+ is Fl U minimal. It follows that (z,yl™™) is also Fl+1-
minimal. Now (z, ™) € QU+1[z] is F+-minimal and by Theorem 3.1-(2),
Fld+1l(zld+1)) is the unique F+-minimal subset in Q**[z]. Hence we have that
(x, yLdH]) € Fldt1(zld+1) "and the proof is completed. O

By Theorem 2.3, we have the following theorem immediately.

2.4. Theorem. Let (X,T) be a minimal system and d > 1. Then RP'Y is an equiv-
alence relation.

Proof. It suffices to show the transitivity, i.e. if (x,7),(y,2) € RPY, then (z,2) €
RPY(X). Since (z,y), (y,2) € RPY(X), by Theorem 2.3 we have
(y,x,2,...,2),(y,2,2,...,2) € Flatll(yld+1]),

By Theorem 1.1 (Fld+i(yld+1]) Fld+1) is minimal, it follows that (y,z,z2,...,2) €
Flatl(y, x,x, ..., x). It follows that (x,z2,z,...,2) € Flatll(zld+1]). By Theorem 2.3
again, (r,z) € RP. O

2.5. Remark. By Theorem 3.4 we know that in the definition of regionally proximal
relation of d,z’ can be replaced by x. More precisely, (z,y) € RP if and only if
for any & > 0 there exist ¥ € X and a vector n = (ny,...,ng) € Z% such that for
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any nonempty ¢ C {1,...,d}, p(y,y") < 6 and p(T™x,T™y’) < 6. This conclusion
is first given in [23] for a minimal distal system.
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