AN ENVELOPING SEMIGROUP PROOF OF THE FACT THAT $RP^{[d]}$ IS AN EQUIVALENCE RELATION

ELI GLASNER

Let T be a countable abelian group and let (X,T) be a minimal dynamical system; i.e. X is a compact Hausdorff space and T acts on it as a group of homeomorphisms. Following [4] and [7] we introduce the following notations (generalizing from the case $T=\mathbb{Z}$ to the case of a general T action). For an integer $d\geq 1$ let $X^{[d]}=X^{2^d}$. We index the coordinates of an element $x\in X^{[d]}$ by subsets $\epsilon\subset\{1,\ldots,d\}$. Thus $x=(x_\epsilon:\epsilon\subset\{1,\ldots,d\})$, where for each $\epsilon,x_\epsilon\in X_\epsilon=X$. E.g. for d=2 we have $x=(x_\emptyset,x_{\{1\}},x_{\{2\}},x_{\{1,2\}})$. We let $X_*^{[d]}=X^{2^{d-1}}=\prod\{X_\epsilon:\epsilon\neq\emptyset\}$ and for $x\in X^{[d]}$ we let $x_*\in X_*^{[d]}$ denote its projection; i.e. x_* is obtained by omitting the \emptyset -coordinate of x. For each $\epsilon\subset\{1,\ldots,d\}$ we denote by π_ϵ the projection map from $X^{[d]}$ onto $X_\epsilon=X$. For a point $x\in X$ we let $x^{[d]}\in X^{[d]}$ and $x_*^{[d]}\in X_*^{[d]}$ be the diagonal points all of whose coordinates are x. $\Delta^{[d]}=\{x^{[d]}:x\in X\}$ is the diagonal of $X^{[d]}$ and $\Delta_*^{[d]}=\{x_*^{[d]}:x\in X\}$ the diagonal of $X_*^{[d]}$. Another convenient representation of $X^{[d]}$ is as a product space $X^{[d]}=X^{[d-1]}\times X^{[d-1]}$ (with $X^{[0]}=X$). When using this decomposition we write x=(x',x'').

We next define two group actions on $X^{[d]}$, the face group action $\mathcal{F}^{[d]}$ and the total group action $\mathcal{G}^{[d]}$. These actions are representations of $T^d = T \times T \times \cdots \times T$ (d times) and T^{d+1} , respectively, as subgroups of Homeo $(X^{[d]})$. For the $\mathcal{F}^{[d]}$ action $\mathcal{F}^{[d]} \times X^{[d]} \to X^{[d]}$,

$$((t_1,\ldots,t_d),\ (x_\epsilon:\epsilon\subset\{1,\ldots,d\}))\mapsto (t_\epsilon x_\epsilon:\epsilon\subset\{1,\ldots,d\}),$$

where $t_{\epsilon}x_{\epsilon} = t_{n_1} \cdots t_{n_j}x_{\epsilon}$, if $\epsilon = \{n_1, \dots, n_j\}$ and $t_{\emptyset}x_{\emptyset} = x_{\emptyset}$. We can then represent the homeomorphism $\tau \in \mathcal{F}^{[d]}$ which corresponds to $(t_1, \dots, t_d) \in T^d$ as

$$\tau = \tau^d_{(t_1, \dots, t_d)} = (t_{\epsilon} : \epsilon \subset \{1, \dots, d\}).$$

We will also consider the restriction of the $\mathcal{F}^{[d]}$ action to $X_*^{[d]}$ which is defined by omitting the first coordinate.

For example, if we consider a minimal cascade (X, f), taking $T = \mathbb{Z} = \{f^n : n \in \mathbb{Z}\}, d = 3 \text{ and } \tau = \tau^3_{(2,5,11)} \in \mathcal{F}^{[3]} \cong \mathbb{Z}^3$, we have:

$$\tau(x) = (x_{\emptyset}, f^{2}x_{\{1\}}, f^{5}x_{\{2\}}, f^{2+5}x_{\{1,2\}}, f^{11}x_{\{3\}}, f^{2+11}x_{\{1,3\}}, f^{2+5+11}x_{\{1,2,3\}}),$$

and

$$\tau(x_*) = (f^2x_{\{1\}}, f^5x_{\{2\}}, f^{2+5}x_{\{1,2\}}, f^{11}x_{\{3\}}, f^{2+11}x_{\{1,3\}}, f^{2+5+11}x_{\{1,2,3\}}).$$

Date: December 9, 2013.

1991 Mathematics Subject Classification. 54H20.

Note that the fact that the $\mathcal{F}^{[d]}$ action is well defined depends on the commutativity of the group T.

The action of T^{d+1} on $X^{[d]}$, denoted by $\mathcal{G}^{[d]}$, is the action generated by the face group action $\mathcal{F}^{[d]}$ and the diagonal θ -action of T, $T \times X^{[d]} \to X^{[d]}$, defined by

$$(t,x) \mapsto \theta_t^d x = (tx_{\epsilon} : \epsilon \subset \{1,\ldots,d\}).$$

Thus for the $\mathcal{G}^{[d]}$ action $\mathcal{G}^{[d]} \times X^{[d]} \to X^{[d]}$,

$$((t_1,\ldots,t_d,t_{d+1}),\ (x_{\epsilon}:\epsilon\subset\{1,\ldots,d\}))\mapsto (t_{d+1}t_{\epsilon}x_{\epsilon}:\epsilon\subset\{1,\ldots,d\}),$$

where $t_{\epsilon}x_{\epsilon} = t_{n_1} \cdots t_{n_j}x_{\epsilon}$, if $\epsilon = \{n_1, \dots, n_j\}$ and $t_{\emptyset}x_{\emptyset} = x_{\emptyset}$. In other words, the $\mathfrak{G}^{[d]}$ action on $X^{[d]}$ is given by the representation:

$$T^{d+1} \to \text{Homeo}(X^{[d]}), \qquad (t_1, \dots, t_d, t_{d+1}) \mapsto \theta^d_{t_{d+1}} \tau^d_{(t_1, \dots, t_d)}.$$

Notice that

(1)
$$\tau_{(t_1,\dots,t_d)}^d(x',x'') = (\tau_{(t_1,\dots,t_{d-1})}^{d-1}x',\theta_{t_d}^{d-1}\tau_{(t_1,\dots,t_{d-1})}^{d-1}x'').$$

In their paper [7] Shao and Ye prove that $RP^{[d]}$, the generalized regionally proximal relation of order d, is always an equivalence relation for a minimal cascade (X, T). Their proof is based on the detailed analysis of the $\mathcal{G}^{[d]}$ action provided by Host Kra and Mass in [4]. In turn, the results obtained in [4] are based on the profound ergodic theoretical results obtained by Host and Kra in [3]. The main tool used by Shao and Ye is a theorem which asserts that for each $x \in X$ the face action $\mathcal{F}^{[d]}$ is minimal on the orbit closure cls $\mathcal{F}^{[d]}x_*^{[d]}$. Their proof of this theorem is based on the general structure theory of minimal flows due to Ellis-Glasner-Shapiro [2], McMahon [6] and Veech [8]. But in fact, unknown to them, I have already shown, a few years earlier, to Bernard Host and Bryna Kra (in a private conversation) a direct proof of this fact which is very similar to the proof by Ellis and Glasner given in, [5, page 46]. The possibility of applying the Ellis Glasner proof as a shortcut to Shao and Ye's proof was also discovered by Ethan Akin. In the next section I present this short proof, established for a general commutative group. For the interested reader I will, in a subsequent section, briefly reproduce the Shao-Ye proof of the fact that for each $d \geq 1$, $RP^{[d]}$ is an equivalence relation.

1. The minimality of the face action on $Q_{x_*}^{[d]}$

Let (X,T) be a minimal flow with T abelian. Let

$$Q^{[d]} = \operatorname{cls} \left\{ gx^{[d]} : x \in X, \ g \in \mathcal{G}^{[d]} \right\} = \overline{\mathcal{F}^{[d]}\Delta^{[d]}}.$$

For $x \in X$ let $Q_x^{[d]} = Q^{[d]} \cap \{x\} \times X^{2^{d-1}}$ and let $Y_x^{[d]} = \mathcal{F}^{[d]}(x^{[d]})$ be the orbit closure of $x^{[d]}$ under $\mathcal{F}^{[d]}$.

- 1.1. **Theorem** (Shaw and Ye). 1. The flow $(Q^{[d]}, \mathcal{G}^{[d]})$ is minimal.
 - 2. For each $x \in X$, the flow $(Y_x^{[d]}, \mathcal{F}^{[d]})$ is minimal.
 - 3. For each $x \in X$ the flow $Y_x^{[d]}$ is the unique minimal subflow of the flow $(Q^{[d]}, \mathcal{F}^d)$.

Proof. 1. Let us denote $N := Q^{[d]}$ and $\mathfrak{T} := \mathfrak{G}^{[d]}$. Let $E = E(N, \mathfrak{T})$ be the enveloping semigroup of (N, \mathfrak{T}) . Let $\pi_{\epsilon} : N \to X_{\epsilon} = X$ be the projection of N on the ϵ coordinate, where $\epsilon \subset \{1, ..., d\}$. We consider the action of the group \mathfrak{T} on the ϵ coordinate via the projection π_{ϵ} , that is, for $\epsilon \subset \{1, ..., d\}, (t_1, ..., t_d, t_{d+1}) \in T^{d+1}$ and $x \in X_{\epsilon} = X$,

$$\mathfrak{I} \times X_{\epsilon} \to X_{\epsilon}, \quad (\theta^d_{t_{d+1}} \tau^d_{(t_1, \dots, t_d)}, x) \mapsto t_{d+1} t_{\epsilon} x.$$

With respect to this action of \mathfrak{T} on $X_{\epsilon} = X$ the map $\pi_{\epsilon} : (N, \mathfrak{T}) \to (X_{\epsilon}, \mathfrak{T})$ is a flow homomorphism. Let $\pi_{\epsilon}^* : E(N, \mathfrak{T}) \to E(X_{\epsilon}, \mathfrak{T})$ be the corresponding homomorphism of enveloping semigroups. Notice that for the action of \mathfrak{T} on X_{ϵ} , $E(X_{\epsilon}, \mathfrak{T}) = E(X, T)$ as subsets of X^X (as $t_{d+1}t_{\epsilon} \in T$).

Let now $u \in E(X,T)$ be any minimal idempotent. Then $\tilde{u} = (u,u,...,u) \in E(N,\mathfrak{T})$. Choose v a minimal idempotent in the closed left ideal $E(N,\mathfrak{T})\tilde{u}$. Then $v\tilde{u} = v$. We want to show that $\tilde{u}v = \tilde{u}$. Set, for $\epsilon \subset \{1,...,d\}$, $v_{\epsilon} = \pi_{\epsilon}^*v$. Note that, as an element of $E(N,\mathfrak{T})$ is determined by its projections, it suffices to show that for each ϵ , $uv_{\epsilon} = u$. Since for each ϵ the map π_{ϵ}^* is a semigroup homomorphism, we have that $v_{\epsilon}u = v_{\epsilon}$ as $v\tilde{u} = v$. In particular we deduce that v_{ϵ} is an element of the minimal left ideal $E(X_{\epsilon},T)u = E(X,T)u$ which contains u. This implies (see [5, Exercise 1.23.2.(b)]) that

$$uv_{\epsilon} = uv_{\epsilon}u = u;$$

and it follows that indeed $\tilde{u}v = \tilde{u}$. Thus, \tilde{u} is an element of the minimal left ideal $E(N, \mathfrak{T})v$ which contains v, and therefore \tilde{u} is a minimal idempotent of $E(N, \mathfrak{T})$.

Now let $x \in X$ and let u be a minimal idempotent in E(X,T) with ux = x (since (X,T) is minimal there always exists such an idempotent). By the above argument, \tilde{u} is also a minimal idempotent of (N,\mathfrak{T}) which implies that $N = Q_{x_*}^{[d]}$, the orbit closure of $x_*^{[d]} = \tilde{u}x_*^{[d]}$, is \mathfrak{T} minimal (see [5, Exercise 1.26.2]).

- 2. Given $x \in X$ we now let $N := Q_{x_*}^{[d]}$ and $\mathfrak{T} := \mathfrak{F}^{[d]}$. The proof of the minimality of the flow $(Q_{x_*}^{[d]}, \mathfrak{F}^{[d]})$ is almost verbatim the same, except that here the claim that for u a minimal idempotent in E(X,T), the map $\tilde{u} = (u,u,...,u)$ is in $E(Q_{x_*}^{[d]}, \mathfrak{F}^{[d]})$, is not that evident. However, as u is an idempotent this fact follows from the following lemma (with $p_1 = \cdots = p_d = u$).
- 1.2. **Lemma.** Let $p_1, \ldots, p_d \in E(X,T)$ and for $\epsilon = \{n_1, \ldots, n_k\} \subset \{1, \ldots, d\}$, with $n_1 < \cdots < n_k$, let $q_{\epsilon} = p_{n_1} \cdots p_{n_k}$. Then the map $(q_{\epsilon} : \epsilon \subset \{1, \ldots, d\}, \epsilon \neq \emptyset)$ is an element of $E(Q_{x_*}^{[d]}, \mathcal{F}^{[d]})$.

Proof. By induction on d, using the identity (1), or more specifically

$$\tau_{(e,\dots,e,t_d)}^d(x',x'') = (x',\theta_{t_d}^{d-1}x''),$$

and the fact that right multiplication in E(X,T) is continuous.

2. $RP^{[d]}$ is an equivalence relation

In this section we outline the Shao-Ye proof that $RP^{[d]}$ is an equivalence relation. We assume that (X,T) is a minimal compact $metrizable\ T$ -flow, where T is an abelian group. We fix a compatible metric ρ on X.

- 2.1. **Definition.** The regionally proximal relation of order d is the relation $RP^{[d]} \subset$ $X^{[d]} \times X^{[d]}$ defined by the following condition: $(x,y) \in RP^{[d]}$ iff for every $\delta > 0$ there is a pair $x', y' \in X$ and $(t_1, \ldots, t_d) \in T^d$ such that:
 - 1. $\rho(x, x') < \delta$ and $\rho(y, y') < \delta$.
 - 2. For every $\emptyset \neq \epsilon \subset \{1, \ldots, d\}$,

$$\rho^{[d]}(\tau_{(t_1,\dots,t_d)}^{[d]}x'_*^{[d]},\tau_{(t_1,\dots,t_d)}^{[d]}y'_*^{[d]}) := \sup\{\rho(t_{\epsilon}x',t_{\epsilon}y') : \epsilon \subset \{1,\dots,d\}, \ \epsilon \neq \emptyset\} < \delta.$$

For d=1 this relation is the classical regionally proximal relation, see e.g. [1].

2.2. **Lemma.** Let (X,T) be a minimal system. Let $d \geq 1$ and $x,y \in X$. Then $(x,y) \in RP^{[d]}$ if and only if there is some $a_* \in X_*^{[d]}$ such that $(x,a_*,y,a_*) \in Q^{[d+1]}$.

With the help of Theorem 1.1, we can prove that $RP^{[d]}$ is an equivalence relation. First we have the following equivalent conditions for $RP^{[d]}$.

- 2.3. **Theorem.** Let (X,T) be a minimal flow and $d \geq 1$. The following conditions are equivalent:
 - 1. $(x,y) \in RP^{[d]}$.

 - $2. \ (x,y,y,\ldots,y) = (x,y_*^{[d+1]}) \in \underline{Q^{[d+1]}}.$ $3. \ (x,y,y,\ldots,y) = (x,y_*^{[d+1]}) \in \overline{\mathcal{F}^{[d+1]}(x^{[d+1]})}.$
- *Proof.* (3) \Rightarrow (2) is obvious. (2) \Rightarrow (1) follows from Lemma 2.2. Hence it suffices to show (1) \Rightarrow (3). Let $(x,y) \in RP^{[d]}$. Then by Lemma 2.2 there is some $a \in X^{[d]}$ such that $(x, a_*, y, a_*) \in Q^{[d+1]}$. Observe that $(y, a_*) \in Q^d$. By Theorem 3.1-(2), there is a sequence $\{F_k\} \subset \mathcal{F}^{[d]}$ such that $F_k(y, a_*) \to y^{[d]}$. Hence

$$F_k \times F_k(x, a_*, y, a_*) \to (x, y_*^{[d]}, y, y_*^{[d]}) = (x, y_*^{[d+1]}).$$

Since $F_k \times F_k \in \mathcal{F}^{[d+1]}$ and $(x, a_*, y, a_*) \in Q^{[d+1]}$, we have that $(x, y_*^{[d+1]}) \in Q^{[d+1]}$. By Theorem 3.1-(1), $y^{[d+1]}$ is $\mathcal{F}^{[d+1]}$ -minimal. It follows that $(x, y_*^{[d+1]})$ is also $\mathcal{F}^{[d+1]}$ minimal. Now $(x, y_*^{[d+1]}) \in Q^{[d+1]}[x]$ is $\mathcal{F}^{[d+1]}$ -minimal and by Theorem 3.1-(2), $\overline{\mathcal{F}^{[d+1]}(x^{[d+1]})}$ is the unique $\mathcal{F}^{[d+1]}$ -minimal subset in $Q^{[d+1]}[x]$. Hence we have that $(x, y_*^{[d+1]}) \in \overline{\mathcal{F}^{[d+1]}(x^{[d+1]})}$, and the proof is completed.

By Theorem 2.3, we have the following theorem immediately.

2.4. **Theorem.** Let (X,T) be a minimal system and $d \geq 1$. Then $RP^{[d]}$ is an equivalence relation.

Proof. It suffices to show the transitivity, i.e. if $(x,y),(y,z)\in RP^{[d]}$, then $(x,z)\in$ $RP^{[d]}(X)$. Since $(x,y),(y,z)\in RP^{[d]}(X)$, by Theorem 2.3 we have

$$(y, x, x, \dots, x), (y, z, z, \dots, z) \in \overline{\mathcal{F}^{[d+1]}(y^{[d+1]})}.$$

By Theorem 1.1 $(\overline{\mathcal{F}^{[d+1]}(y^{[d+1]})}, \mathcal{F}^{[d+1]})$ is minimal, it follows that $(y, z, z, \ldots, z) \in$ $\overline{\mathcal{F}^{[d+1]}(y,x,x,\ldots,x)}$. It follows that $(x,z,z,\ldots,z)\in\overline{\mathcal{F}^{[d+1]}(x^{[d+1]})}$. By Theorem 2.3 again, $(x, z) \in RP^{[d]}$.

2.5. **Remark.** By Theorem 3.4 we know that in the definition of regionally proximal relation of d, x' can be replaced by x. More precisely, $(x,y) \in RP^{[d]}$ if and only if for any $\delta > 0$ there exist $y' \in X$ and a vector $n = (n_1, \dots, n_d) \in \mathbb{Z}^d$ such that for

any nonempty $\epsilon \subset \{1, \ldots, d\}$, $\rho(y, y') < \delta$ and $\rho(T^{n \cdot \epsilon} x, T^{n \cdot \epsilon} y') < \delta$. This conclusion is first given in [23] for a minimal distal system.

References

- [1] J. Auslander, *Minimal Flows and their Extensions*, Mathematics Studies 153, Notas de Matemática, 1988.
- [2] R. Ellis, S. Glasner, L. Shapiro, Proximal-isometric flows, Advances in Math, 17, 1975, 213–260.
- [3] B. Host and B. Kra, Nonconventional ergodic averages and nilmanifolds, Ann. of Math.
 (2) 161, (2005), 397–488.
- [4] B. Host, B. Kra and A. Maass, Nilsequences and a structure theorem for topological dynamical systems, Adv. Math. 224, (2010), no. 1, 103–129.
- [5] E. Glasner, Ergodic Theory via joinings, Math. Surveys and Monographs, AMS, 101, 2003.
- [6] D. C. McMahon, Relativized weak disjointness and relatively invariant measures, Trans. Amer. Math. Soc. 236, (1978), 225–237.
- [7] S. Shao and X. Ye, Regionally proximal relation of order d is an equivalence one for minimal systems and a combinatorial consequence, Adv. in Math., 231, (2012), 1786–1817.
- [8] W. A. Veech, *Topological dynamics*, Bull. Amer. Math. Soc. **83**, (1977), 775–830.

DEPARTMENT OF MATHEMATICS, TEL AVIV UNIVERSITY, TEL AVIV, ISRAEL E-mail address: glasner@math.tau.ac.il