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Abstract.

It is shown that the property of sensitive dependence on initial conditions in the
sense of Guckenheimer, follows from the other two more technical parts of one of the

most common recent definitions of chaotic systems. It follows that this definition ap-

plies to a broad range of dynamical systems, many of which should not be considered
chaotic. We investigate the implications of sensitive dependence on initial conditions

and its relation to dynamical properties such as rigidity, ergodicity, minimality and

positive topological entropy. In light of these investigations and several examples
which we exhibit, we propose a natural family of dynamical systems—χ-systems—as

a better abstract framework for a general theory of chaotic dynamics.

§0. Introduction

The vague notion of Chaos has attracted a great deal of attention in recent
years and several authors have tried to formalize it in various ways. One popular
such attempt uses the definition of “sensitive dependence on initial conditions”. A
chaotic system is defined, according to this school, to be a compact metric space
X, together with a continuous self map T : X −→ X satisfying the following three
properties:

(1) Topological transitivity: There exists a point x0 in X whose orbit O(x0) =
{Tnx0 : n ∈ N} is dense in X. (It then follows that O(x) is dense for all x
in a dense Gδ subset of X).

(2) The T -periodic points are dense in X.
(3) Sensitive dependence on initial conditions: there exists a positive ε such

that for all x ∈ X and all δ > 0 there is some y which is within a distance
δ of x and for some n, d(Tnx, Tny) > ε.

As far as we know the first to formulate (3) was J. Guckenheimer, [7], in his
study on maps of the interval (he required the condition to hold for a set of positive
Lebesgue measure). The phrase—sensitive dependence on initial conditions—was
used by D. Ruelle [9] (see also [1]), to indicate some exponential rate of divergence
of orbits of nearby points. This is not too far from our suggestion of χ-systems
below. The above definition of chaos (which, we believe, was introduced in [2])
became standard in several monographs dealing with the subject of chaos. In some
cases the discussion of various examples of chaotic systems is concluded by proving
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sensitivity (after the usually easy observation that the system in question satisfies
the conditions (1) and (2) of the definition of chaos).

Now it turns out that in fact—unless the system is a cyclic permutation of a
finite set of points—conditions (1) and (2) actually imply condition (3). (Corollary
1.4).

It is thus clear that some other condition should be added to (1) and (2) if one
is to capture the notion of chaos. The most natural candidate for this (in the
topological category, at least) is the requirement that T has positive topological
entropy. This quantifies a rate for the sensitive dependence and says that many
nearby points have orbits that diverge exponentially fast.

Returning to the second condition, that periodic points be dense, we find that it
is unnecessarily restrictive. In lieu of this we suggest, for reasons to become clear to
the reader later in this note, an analogous condition requiring only the existence of
a T -invariant measure whose support is all of X. We call a topologically transitive
system satisfying this latter condition an E-system and if in addition the system
has positive topological entropy we call it a χ-system. When the condition “the
periodic points are dense” in X is replaced instead by a condition requiring the
almost periodic points to be dense, we get the intermediate notion of an M -system.
Recall that a point x0 in a dynamical system (X,T ) is called ”almost periodic” if
its orbit closure is a minimal subset of (X,T ). Equivalently for any ε > 0, the set
of n ∈ N such that d(Tnx0, x0) < ε has bounded gaps.

In section 1 we examine the condition (3) of sensitive dependence on initial
conditions and show that any non-equicontinuous E-system necessarily satisfies
this condition. In the next two sections the notions of E and M systems and their
relation to positive entropy are considered. Alongside these considerations various
examples are exhibited which support the view that the notion of χ-system is a
natural one. To be sure in many physical systems such as the ones modeled by
the Henon map, the dissipative part of the system precludes the possibility that
there be an invariant measure with global support. For these kinds of systems the
chaotic nature lies in the presence of an attractor that is chaotic.

Remark. After the submission of this paper, the note of J. Banks, J. Brooks,G.
Cairns, G. Davis and P. Stacey, ”On Devaney’s Definition of Chaos”, appeared in
Amer. Math. Monthlly, 99 (1992),332-334. Its main result is equivalent to our
corollary 1.4.

§1. Sensitivity

In the sequel we call a pair (X,T ), where (X, d) is a compact metric space and
T a continuous map from X to itself a system. we say that a system (X,T ) has
sensitive dependence on initial conditions or more briefly, has property S,
or is sensitive, if there exists an ε > 0 such that for every x ∈ X and every
neighborhood U of x, there exists y ∈ U and n ∈ N with d(Tnx, Tny) > ε. When
(X,T ) does not have property S we say that it is a ∼ S-system, or that it is
not sensitive. Spelling this property out we have: for every ε > 0 there exist an
x ∈ X and a neighborhood U of x such that for every y ∈ U and every n ∈ N,
d(Tnx, Tny) ≤ ε. We observe that trivially (X,T ) is ∼ S whenever X has an
isolated point.

Let (X,T ) be a transitive ( =topologically transitive) system, we say that the
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system (X,T ) is

(1) a P -system if the periodic points are dense in X.
(2) an M-system if the almost periodic points are dense in X.
(3) an E-system if there exists a T -invariant probability measure on X, which

is positive on every non-empty open set.

Following [4], let us call a point x of X, regular if it is a generic point for
some invariant measure ν and ν(U) > 0 for every open neighborhood U of x.
Considering condition (3). we see, using the ergodic decomposition of the invariant
measure, that when this condition is satisfied, the set of regular points is dense
in X. Conversely, when the regular points are dense in X, it is easy to construct
an invariant probability measure which is positive on non-empty open sets. Let
us call a system (X,T ) ergodic if there exists an ergodic T -invariant measure
µ on X whose support is all of X. Thus (X,T ) is an E-system iff the regular
points are dense in X, iff the union of the ergodic sub-systems of X is dense in X.
An example in [10] shows that an E-system need not be ergodic. (The example
constructed there is actually a P -system). Clearly every minimal system is ergodic.

It is now clear that (1) ⇒ (2) ⇒ (3). Notice that for a transitive system these
conditions imply that (X,T ) has no isolated points unless it is finite. Since for a
transitive system with no isolated points T is necessarily onto we conclude that
under each of these conditions T is onto.

Lemma 1.1. For a topologically transitive system (X,T ) with no isolated points,
being ∼ S is equivalent to the following property: For every ε > 0 there exists a
transitive point (i.e. a point with dense orbit) x0 ∈ X and a neighborhood U of x0

such that for every y ∈ U and every n ∈ N, d(Tnx0, T
ny) ≤ ε.

Proof. Let ε be given and let x and U be as in the definition of the property ∼ S.
By transitivity there is a point x0 in X whose orbit is dense; let n0 ∈ N with
Tn0x0 ∈ U . There exists a δ > 0 such that Bδ(Tnx0) ⊂ U . Denote x1 = Tnx0, and
V = Bδ(x1), then it is clear that for every y ∈ V and n ∈ N, d(Tnx1, T

ny) ≤ 2ε.
Since X has no isolated points the point x1 is also transitive and the proof is
complete. �

Recall that a system (X,T ) is called uniformly rigid if there exists a sequence
nk ↗∞ such that the sequence {Tnk} tends uniformly to the identity map on X.

lemma 1.2. A topologically transitive system without isolated points which is not
sensitive is uniformly rigid.

Proof. Given an ε > 0 there is, by the previous lemma, a transitive point x0 and
a neighborhood U of x0 such that d(Tnx0, T

ny) ≤ ε for every n, and every y ∈ U .
Let now k satisfy T kx0 ∈ U , then d(Tn+kx0, T

nx0) ≤ ε for every n, and since x0 is
transitive it follows that d(T kz, z) ≤ ε for every z in X. Applying this observation
to a sequence of εi’s that tend to zero gives a sequence of ki’s such that T kitends
uniformly to the identity. �

We actually proved more than was stated in the lemma. This additional in-
formation will be used in the proof of the following theorem. Since an E-system
is either finite or has no isolated points, it follows that an E-system which is not
sensitive is uniformly rigid.
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Theorem 1.3. An E-system which is not sensitive is necessarily a minimal
equicontinuous system.

Proof. 1 Let (X,T ) be a non-sensitive E-system. If X has an isolated point it is
finite and minimal and we are done. Otherwise, given ε > 0, as in the previous
proof, there exists a transitive point x0 and a neighborhood U of x0 such that
d(Tnx0, T

ny) ≤ ε for every n and every y ∈ U . By assumption there exists a point
z ∈ U , generic for some ergodic measure µ on X with µ(U) > 0.

Let A = {n ∈ N : Tnz ∈ U}. Since z is generic for µ, it follows that A has
positive upper density. A well known fact (see for example [6],page 75), implies
now that A − A = {a − a′ : a, a′ ∈ A}, is syndetic (i.e. has bounded gaps). Let
k, l ∈ A and suppose k > l. Then T lz ∈ U implies ∀n, d(Tn+lz, Tnx0) ≤ ε and
z ∈ U implies ∀n, d(Tn+lz, Tn+lx0) ≤ ε. Hence ∀n, d(Tn+lx0, T

nx0) ≤ 2ε, hence
∀w ∈ X, d(T lw,w) ≤ 2ε. Similarly we get ∀w ∈ X, d(T kw,w) ≤ 2ε. Put together
these yield

∀w, d(T kw, T lw) = d(T k−lT lw, T lw) ≤ 4ε

Since T is onto we get d(T k−lw,w) ≤ 4ε for all w ∈ X. We have now proved that
for every ε > 0 there exists a syndetic subset B of N with

n ∈ B =⇒ Supw∈Xd(Tnw,w) ≤ ε

This is Bohr’s almost periodicity condition which is well known to be equivalent to
equicontinuity. Finally, transitivity implies that (X,T ) is minimal. �

Corollary 1.4. A P -system which is not sensitive is a cyclic permutation on a
finite set.

Proof. This is an immediate corollary of theorem 1.3. Since however, a direct proof
will only take few lines, let us write it down. Let x0 be a transitive point and U
a neighborhood of x0 with d(Tnx0, T

ny) ≤ ε,∀y ∈ U,∀n. There exists a periodic
point z ∈ U , say T kz = z. Then

∀n,m d(Tn+mkx0, T
nx0) < d(Tn+mkx0, T

n+mkz) + d(Tnz, Tnx0) < 2ε

Hence d(Tmkw,w) < 2ε for every w ∈ X , and every m. This implies equicontinuity;
transitivity implies minimality and since the periodic points are dense, X must be
finite. �

By lemma 1.2 a transitive ∼ S system with no isolated points is uniformly rigid
and by theorem 1.3 such systems are already minimal equicontinuous if they are
E-systems. A natural question to ask is what kind of transitive ∼ S uniformly rigid
systems can arise. Here is a partial answer showing that a wide variety do arise.

Proposition 1.5. Any transitive uniformly rigid system (X,T ) has an extension
(Y, S) that is transitive, uniformly rigid, with no isolated points and is not sensitive.

Proof. We assume that Tni tends uniformly to the identity map and that x0 has
a dense orbit. Define for x, x′ ∈ X, ρ(x, x′) = Supn∈Nd(Tnx, Tnx′) and notice that
by rigidity, the sequence ρ(Tnix, x) tends to 0 with i. Let now Ω = (X ×R)N. For

1We thank H. Furstenberg for his help in the following proof
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ω̄ ∈ Ω we denote by ω̄ = (ξ, ω) the decomposition into ξ ∈ XN and ω ∈ RN. For
ω̄, ω̄′ ∈ Ω let

d̂(ω̄, ω̄′) =
∞∑
k=0

2−k{d(ξ(k), ξ′(k)) + |ω(k)− ω′(k)|}.

Let ω̄0 be the point of Ω whose n-th coordinate is (Tnx0, ρ(Tnx0, x0)) and let Y
be the orbit closure of ω̄0 under the shift map S of Ω

The points ω̄ ∈ Y have the form ω̄(k) = (T kx, ω(k)) for some x ∈ X, and

(Sω̄)(n) = (Tn+1x, ω(n+ 1)).

It turns out, as is always the case for a transitive system, that in checking the
non-sensitivity we will be dealing with only one point ω̄0. Given ε > 0, let U be
the neighborhood of ω̄0 defined by

U = {ω̄ ∈ Y : ω(0) < ε/2}

Since ω̄0 has a dense orbit, in order to verify that for all ω̄ ∈ U and all n

d̂(Snω̄0, S
nω̄) ≤ ε

it suffices to do so for points ω̄ of the form Sjω̄0. Suppose then that Sj0 ω̄0 ∈ U .
Since ρ(T j0x0, x0) < ε/2 we have d(T i+j0x0, T

ix0) < ε/2 for all i ≥ 0, hence
also ρ(T i+j0x0, T

ix0) < ε/2 for all i ≥ 0. By the triangle inequality we find that
|ρ(T ix0, x0)− ρ(T i+j0x0, x0)| ≤ ε/2 for all i ≥ 0. For any n we therefore have

d̂(Snω̄0, S
n(Sj0 ω̄0)) = d̂(Snω̄0, S

n+j0 ω̄0)

=
∞∑
k=0

2−k{d(T k+nx0, T
k+n+j0x0) + |ρ(T k+nx0, x0)− ρ(T k+n+j0x0, x0)|}

≤
∞∑
k=0

2−k{ε/2 + ε/2} = 2ε.

We observe that the only reason for requiring (X,T ) to be rigid, is to make sure
that the point ω̄0, is not an isolated point. �

Since there are plenty of uniformly rigid systems which are sensitive—e.g. every
uniformly rigid weakly mixing minimal system, (see [8] e.g. for the existence of
these), is sensitive according to theorem 1.3—it follows from proposition 1.5 that
an extension of a sensitive system with no isolated points, need not itself be sensitive
(see however corollary 1.7 below).

It is not hard to see that whenever we deal with a transitive system with no
isolated points, the condition ∼ S is equivalent to the condition:

∃x ∀ε > 0 ∃δ > 0∀ y ∈ Bδ(x) ∀n d(Tnx, Tny) < ε

A map π : X −→ Y is called semi-open if the image under π of every non-empty
open set has a non-empty interior.
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Lemma 1.6. Let (X,T ) be a transitive ∼ S-system with no isolated points and let
π : X −→ Y be a semi-open homomorphism of systems, then Y is a ∼ S-system.

Proof. Given ε > 0 there exist x ∈ X and δ > 0 such that for every x′ ∈ Bδ(x)
and for every n, d(Tnx, Tnx′) ≤ ε . The map π−1 : Y −→ 2X is an upper-
semicontinuous map; therefore there exists a dense Gδ subset Y0 of Y where π−1

is continuous. Since π is semi-open it follows that X0 = π−1(Y0) is a dense Gδ
subset of X. Let x0 ∈ X1 ∩ X0 ∩ Bδ(x), where X1 is the dense Gδ subset of
transitive points in X. There exists an η > 0 such that Bη(x0) ⊂ Bδ(x) and
then for every x′ ∈ Bη(x0) and every n, d(Tnx0, T

nx′) ≤ 2ε. Since y0 = π(x0) is
a continuity point for π−1, y0 is in the interior of the set π(Bη(x0)). Thus there
exists a θ > 0 with Bθ(y0) ⊂ int π(Bη(x0)). If y′ ∈ Bθ(y0) then there exists
x′ ∈ Bη(x0) with π(x′) = y′ whence, for every n, d(Tnx0, T

nx′) ≤ 2ε and finally
also d(Tny′, Tny0) ≤ 2ε . �

Corollary 1.7. If π : X −→ Y is a semi-open homomorphism where X is transi-
tive with no isolated points and Y is sensitive, then so is X.

§2. Entropy and χ-systems

As was shown in the previous section, a transitive ∼ S-system with no isolated
points is uniformly rigid. In particular this implies that it has zero (topological)
entropy. Thus if (X,T ) is transitive, has no isolated points (e,g, when it is an
E-system), and has positive entropy then it has sensitive dependence on initial
conditions. In the other direction it is easy to produce an example of an infinite
P -system which is sensitive and of zero entropy. One way to build such an example
is as follows.

Example 2.1.

The system X will be the orbit closure of a point ω0 in the shift system
({0, 1}N, σ). To ensure that X has zero topological entropy we insist that for all
k ≥ 1, and n ≥ 0

ω0(n · 3k+1 + i) = ω0(n · 3k+1 + i+ 3k) 0 ≤ i < 3k.

By stage k, ω0(i) will be defined for some indices i, and we will have the property
that if Ak denotes the block ω0(i), 0 ≤ i < 3k, for some sequence of nj tending
to infinity, ω0 will also be defined for nj + m, 0 ≤ m < j · 3k, and will equal
Ak · Ak · · ·Ak (j-times) there. These repetitions don’t conflict with the previous
requirement and it is easy to see that this guarantees property P . There is enough
freedom left to construct a non periodic such ω0 whose orbit closure has then all of
the desired properties. In particular the sensitivity follows from the expansiveness
of all subshifts of symbolic dynamical systems. �

Let us call an E-system of positive entropy an E+-system or a χ-system.
Recall that a system (X,T ) is ergodic if there exists an ergodic measure on X
whose topological support is all of X.

Proposition 2.2.
(1) The product of a weakly mixing system (X,T ) and an E-system (Y, T ) is

topologically transitive.
(2) A product of two E-systems which is transitive is an E-system.
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(3) The product of an E-system and a χ-system, when transitive, is a χ-system.
In particular this is the case when at least one of the factors is topologically
weakly mixing.

(4) For a χ-system (X,T ) we have:

h(X,T ) = Sup{h(Y, T ) : (Y, T ) an ergodic subsystem of (X,T )}

Proof. (1) Let A,B ⊂ X,U, V ⊂ Y be nonempty open sets. We have to show
that for some l ∈ Z, T lA ∩ B 6= ∅ and also T lU ∩ V 6= ∅. Let W = ∪n∈ZT

nU ,
then W is a nonempty T -invariant open subset of Y . By assumption there exists
a T -invariant probability measure µ on Y which assigns positive measure to every
nonempty open set, and in particular µ(W ) = a > 0. Since Y is transitive the set
O = W ∩ V is a nonempty open subset and we have µ(O) = b > 0. We now choose
a positive integer N such that

µ(
⋃
|n|≤N

TnU) > a− b/2.

Now the system (X,T ) is topologically weakly mixing, hence by [5] the set
N(A,B) = {k ∈ Z : T kA ∩ B 6= ∅} contains arbitrarily long intervals. We can
therefore find some j ∈ Z with

T j+kA ∩B 6= ∅, ∀|k| ≤ N.

By T -invariance of µ we have

µ(T j(
⋃
|n|≤N

TnU)) = µ(
⋃
|n|≤N

TnU) > a− b/2.

This implies T j(
⋃
|n|≤N T

nU) ∩ V 6= ∅, and there exists n0 with |n0| ≤ N and
T j+n0U ∩ V 6= ∅ as well as T j+n0A ∩B 6= ∅. This completes the proof of (1).

(2) and (3) are now clear. For (4) we recall that the measure theoretical entropy
considered as a function on the space of invariant probability measures onX satisfies
the formula:

h(µ) =
∫
h(ω)dP (ω)

where µ =
∫
ωdP (ω) is the ergodic decomposition of the invariant measure µ.

Combining this with the variational principle we get our result. (See for example
[3],p.78). �

Part (1) of proposition 2.2. generalizes the result of [5] asserting that the product
of a weakly mixing system (X,T ) and a minimal system (Y, S) is topologically
transitive. Taking (Y, S) to be the one point compactification of the translation on
Z it is easy to see that the assumption of topological transitivity of Y is not enough
for this result to hold. We remark, without giving the details, that if one takes
(X,T ) to be a weakly mixing rigid minimal system (see [8]), and (Y, S) the system
constructed in proposition 1.5. then, although the system (Y, S) is transitive and
pointwise recurrent, the product system (X × Y, T × S) is not transitive.

In the parallelism between topological dynamics and ergodic theory, minimal
corresponds to ergodic and M -systems correspond to E-systems. In the next section
we shall examine the possibility of substituting M -systems and minimal systems
for E-systems and ergodic systems respectively in the above proposition.
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§3. Entropy and M-systems

Lemma 3.1. A transitive product of two M -systems is an M -system.

Proof. It suffices to show that if (X,T ) and (Y, T ) are minimal and (X ×Y, T ×T )
is transitive then it is an M -system. Let Z ⊂ X×Y be an arbitrary minimal subset
of (X × Y, T × T ). Clearly Z projects onto all of X and since I × Tn commutes
with T × T , (I × Tn)(Z) is also minimal. Since (Y, T ) is minimal it follows that
∪(I × Tn)(Z) is dense in X × Y as required. �

Let us call an M -system of positive entropy an M+-system.

Corollary 3.2.
(1) A transitive product of an M -system and an M+-system is an M+-system.

In particular this is the case when at least one of the systems is topologically
weakly mixing.

(2) The product of two minimal systems of which at least one is of positive
entropy and at least one weakly mixing, is an M+-system.

Proof. These statements follow from lemma 3.1., proposition 2.2.(1) and the fact
that every M -system is an E-system. �

Are there examples of M+-systems which are not product of minimal systems
and whose subset of periodic points is empty? (The shift on {0, 1}Z is an example of
a P -system of positive entropy which is not a product of minimal sets). The answer
to this question is yes and we next describe an example of such an M+-system which
is moreover the set of non wandering points of a C∞ map.

Example 3.3.

Let (Ω, σ) be the shift on two symbols, say 0 and 1. Let T be the circle group,
realized as R mod 1. Let X = Ω× T and let ϕ : Ω −→ T be defined by:

ϕ(ω) =
{

α when ω(0) = 0
β when ω(0) = 1

where α, β and 1 are rationally independent. Now define the skew product map
T : X −→ X by T (ω, t) = (σω, t + ϕ(ω)). Let ω be a periodic point of period k.
Suppose the block defining ω has m zeroes and n ones, and let γ = mα+nβ. Since
σkω = ω, we have T k(ω, t) = (ω, t+γ) and we conclude that {ω, σω, · · · , σk−1ω}×T
is a minimal subset of (X,T ). This observation implies that the almost periodic
points are dense in X. It now follows that for every transitive point ω0 of Ω, the
point (ω0, t) for any t , is a transitive point of X. We conclude that (X,T ) is an
M+-system (hence also a χ-system), with no periodic points.

To see that (X,T ) is not a product of minimal systems we observe that if 0 and
1 are the fixed points of σ, then the restrictions of T to the sets {0}×T and {1}×T
form two disjoint minimal sets. This implies that no non-trivial minimal system
can be a factor of (X,T ).

Finally to exhibit (X,T ) as the subset of non wandering points of a C∞ map,
define a skew product map T on R × T by T (s, t) = (f(s), t + ϕ(s)), where f and
ϕ are the C∞ functions given by the following:

f(t) = 2− 3t2
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and

ϕ(t) =


α t ≤ −1/2
a C∞ interpolation between these values on [−1/2, 1/2].
β t ≥ 1/2

�
The two-shift (Ω, σ) satisfies the following relation:

h(Ω, σ) = Sup{h(Y, σ) : (Y, σ) a minimal subset of(X,σ)}
This formula is true for torus automorphisms, for the horseshoe map and many

other chaotic systems where finite type sub-shifts appear as subsystems. Can one
hope for it to hold for every M -system? The answer is no as the following example
shows.

Example 3.4.

We construct a transitive system (X,T ) with (i) positive topological entropy,
such that (ii) all minimal subsets of (X,T ) have zero entropy but none the less (iii)
the almost periodic points are dense. In fact we construct a single point of {0, 1}Z
whose orbit closure has the desired properties. First let us see how to achieve (i)
and (ii).

Set ω(n) = 0 for all n in the set

A =
∞⋃
k=1

⋃
n 6=0

{n · 10k, n · 10k + 1, . . . , n · 10k + k}

For n /∈ A let ω(n) be independently equal to either zero or one, and let X denote
the orbit closure of ω under the shift T . Now X is a random set (depending on
the outcome of the ω(n) for n /∈ A), and it is easy to see that with probability
one (X,T ) has positive topological entropy. On the other hand, since ω(n) = 0 for
n ∈ A, it is clear that the only minimal set in (X,T ) is the fixed point ζ(n) ≡ 0.

This construction will now be modified so that the periodic points will be dense.
To this end ω(n) will be changed to ω̂(n) only for some n ∈ A. Thus the positivity
of the topological entropy will not be affected at all. For each n, we will ensure that
we have a periodic point pn that contains the block ω̂(i) for −n ≤ i ≤ n, where ω̂
denotes the new point that we are constructing. In the inductive definition if an
denotes the period of pn, then the basic block of pn+1 will consist of the central
2(n+ 1) + 1 block of ω̂ followed by 10 · an zeroes. Thus the period of pn+1 is

an+1 = 2(n+ 1) + 1 + 10 · an.
We insert longer and longer repetitions of this basic block well inside zero blocks of
ω̂ . In this way we can guarantee that the only “new” points that are obtained in
the orbit closure of ω̂ are the periodic points that we are trying to insert. It is fairly
easy to verify now that the only minimal sets are the finite orbits of the periodic
points which clearly have zero entropy. In fact, the nature of our construction is
such that the only blocks in ω̂ of length greater than 2 · an that do not contain
a sub-block of n-consecutive zeroes are those arising from periodic points pi with
i < n.

We remark in passing that ω(n) provides an example showing that sequences
with positive density may have only trivial minimal sets in their orbit closure, thus
proving that Szemeredi’s theorem cannot be established using only the dynamical
van der Warden theorem on arithmetic progressions. �
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