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Abstract. The families of right (left) translation finite subsets of a discrete infinite group

Γ are defined and shown to be ideals. Their kernels ZR and ZL are identified as the closure

of the set of products pq (p · q) in the Čech-Stone compactification βΓ. Consequently

it is shown that the map π : βΓ → ΓWAP , the canonical semigroup homomorphism

from βΓ onto ΓWAP , the universal semitopological semigroup compactification of Γ, is a

homeomorphism on the complement of ZR ∪ ZL.

Introduction

This note is an elaboration on the beautiful work of Ruppert [3] from 1985. Given a

discrete infinite group Γ we define right and left versions of the combinatorial property (of

subsets of Γ) of being translation finite. Then, using the ultrafilter representation of the

Čech-Stone compactification βΓ, we show that the collections of sets with these properties

form ideals (Theorem 2.3). This yields a new proof of Ruppert’s theorem which asserts

that the collection of translation finite sets forms an ideal. We then use these results

to obtain some unexpected information about the map π : βΓ → ΓWAP , the canonical

semigroup homomorphism from βΓ onto ΓWAP , the universal semitopological semigroup

compactification of Γ (Theorem 2.4).

1. The C∗-algebras `∞(Γ) and WAP (Γ)

Let Γ be a countable discrete infinite group with unit element e. We briefly review some

basic properties of the C∗-algebras `∞(Γ), of bounded complex-valued functions on Γ, and

WAP (Γ), the closed subalgebra comprising the weakly almost periodic functions on Γ.

Recall that f ∈ `∞(Γ) is weakly almost periodic if its orbit under translations {f ◦γ : γ ∈ Γ}

is a weakly precompact subset of the Banach space `∞(Γ). We are mostly interested in their

Gelfand (or maximal ideal) spaces: βΓ, the Čech-Stone compactification of Γ, and ΓWAP ,

the universal WAP-compactification of Γ, respectively.
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2 TRANSLATION-FINITE SETS

The compactification βΓ can be viewed as the collection of ultrafilters on Γ, where an

element γ ∈ Γ is presented as the principal ultrafilter eγ = {A ⊂ Γ : γ ∈ A}. Then the

left translation of an ultrafilter q ∈ βΓ by γ is the ultrafilter γq = {A ⊂ Γ : γ−1A ∈ q}

(note that this extends the product on Γ as γeδ = eγδ) . These translations define a left

action of Γ on βΓ and the resulting pointed dynamical system (βΓ, e,Γ) is the universal

ambit (or point transitive pointed system). That is, for any point transitive pointed Γ

dynamical system (Y, y0,Γ) there is a unique homomorphism of pointed dynamical systems

π : (βΓ, e,Γ)→ (Y, y0,Γ).

This Γ action on βΓ can be extended to a multiplication on βΓ as follows: for p, q ∈ βΓ

mR(p, q) = pq = {A ⊂ Γ : {α ∈ Γ : α−1A ∈ q} ∈ p}.

This multiplication has the property that for each fixed q ∈ βΓ the map Rq : βΓ → βΓ,

defined by p 7→ pq = mR(p, p) is continuous. Thus this product makes βΓ a right topological

semigroup. It can be shown that this right topological semigroup can be identified with the

enveloping semigroup E(βΓ,Γ) of the dynamical system (βΓ,Γ).

One can also define a left product on βΓ by

mL(p, q) = p · q = {A ⊂ Γ : {α ∈ Γ : Aα−1 ∈ p} ∈ q}.

This extension of the product on Γ to a product on βΓ makes βΓ a left topological semigroup,

i.e. one in which the maps Lq : βΓ→ βΓ, defined by p 7→ q · p = mL(p, p), are continuous.

The remainder space of Γ is the compact space X := βΓ∗ = βΓ \ Γ. Clearly X is a

subsemigroup of βΓ with respect to both right and left multiplications. We let ZR :=

clsX2 = cls {pq : p, q ∈ X} and ZL := clsX ·2 = cls {p · q : p, q ∈ X}. We also set

Z = ZR ∪ ZL.

As the algebra C0(Γ), comprising the functions on Γ which vanish at infinity, is contained

in the algebra WAP (Γ) we deduce that WAP (Γ) distinguishes points in Γ and that con-

sequently the natural compactification map of Γ into ΓWAP is an isomorphism. We will

therefore consider Γ as a dense discrete subset of both βΓ and ΓWAP .

A dynamical system (X,Γ) is called weakly almost periodic (WAP) if for every F ∈ C(X),

its orbit {F ◦ γ : γ ∈ Γ} forms a weakly precompact subset of the Banach space C(X). A

theorem of Ellis and Nerurkar which is based on well known results of Grothendiek asserts

that a system (X,Γ) is WAP iff its enveloping semigroup E(X) consists of continuous
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maps, iff E(X) is a semitopological semigroup (that is, one in which both right and left

multiplications are continuous). It then follows that the dynamical system ΓWAP is the

universal WAP point transitive dynamical system. Moreover, ΓWAP is isomorphic to its

own enveloping semigroup and is therefore also the maximal semitopological semigroup

compactification of Γ.

Let π : βΓ→ ΓWAP denote the canonical homomorphism of the corresponding dynamical

systems. With our identifications of Γ as a subset of both βΓ and ΓWAP we have π(γ) = γ

for every γ ∈ Γ. We set Y := ΓWAP \Γ. As a direct consequence of the discussion above we

see that for every p, q ∈ βΓ we have π(pq) = π(p)π(q) and π(p ·q) = π(p)π(q). Consequently

π(ZR ∪ ZL) = clsY 2. A result of our analysis shows that the restricted map

π : βΓ \ Z → ΓWAP \ clsY 2

is a homeomorphism (Theorem 2.4 below). This extends results of Ruppert and Hindman

and Strauss (see [2, Theorem 21.22]).

2. Translation-finite sets

2.1. Definitions. 1. Let ZR = clsX2 ⊂ X. Set

IR = {A ⊂ Γ : clsA ∩ ZR = ∅}.

Set FR = {B ⊂ Γ : Bc ∈ I} = {B ⊂ Γ : clsB ⊃ ZR}. Clearly IR is an ideal and FR

is a filter.

2. Set ZL = clsX ·2 ⊂ X, where X ·2 = {p · q : p, q ∈ X}. The ideal IL and the filter FL

are then defined as above with ZL replacing ZR.

3. Let Z = ZR ∪ ZL ⊂ X. Set

I = {A ⊂ Γ : clsA ∩ Z = ∅} = IR ∩ IL.

Set F = {B ⊂ Γ : Bc ∈ I} = {B ⊂ Γ : clsB ⊃ Z}. Clearly then I is an ideal and

F = FR ∩ FL is a filter.

4. A subset A ⊂ Γ is called right translation-finite (RTF for short) if for every infinite

D ⊂ Γ there is a finite F ⊂ D such that ∩δ∈FAδ−1 is finite. We denote by IRTF

be the collection of RTF subsets of Γ. We say that a subset B ⊂ Γ is co-right-

translation-finite (CRTF) if Bc = Γ \ B is RTF and denote the collection of CRTF
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sets by FRTF . Thus a subset B ⊂ Γ is CRTF if for every infinite subset D ⊂ Γ there

is a finite subset F ⊂ D such that ∪δ∈FBδ−1 is co-finite in Γ. These notions have

obvious left analogues, LTF subsets of Γ, ILTF , etc. Following Ruppert we say that

elements of ITF := ILTF ∩ IRTF are translation-finite sets (TF).

5. We let IW be the collection of sets A ⊂ Γ such that clsA is an open subset of ΓWAP

with clsA ∩ clsY 2 = ∅. Then FW = {Ac : A ∈ IW }.

6. We say that A ⊂ Γ is a W-interpolation set if clsA ⊂ ΓWAP is an open subset of ΓWAP

which is homeomorphic to βA. We let IIW denote the collection of W-interpolation

sets, and let FIW = {Ac : A ∈ IIW }.

Recall the following theorems of Ruppert (Theorem 7 and Proposition 13 in [3]).

2.2. Theorem. 1. ITF is an ideal and ITF = IW = IIW .

2. Every infinite subset of Γ contains an infinite TF subset.

Ruppert’s main tools in analyzing the TF property were the universal WAP compact-

ification of Γ and Grothendieck’s double limit characterization of WAP functions. Our

approach is through the Čech-Stone compactification of Γ and the combinatorial definition

of the product of ultrafilters.

2.3. Theorem. 1. FR = FRTF , in particular FRTF is a filter.

2. FL = FLTF , in particular FLTF is a filter.

3. F = FTF = FRTF ∩ FLTF , hence

ITF = ILTF ∩ IRTF = IL ∩ IR = I = IW = IIW

Proof. We prove the two inclusions of claim (1) below. The claim (2) then holds by symme-

try and claim (3) is obtained by taking the appropriate intersections and applying Ruppert’s

theorem.

Side 1: We first show that FRTF ⊂ FR. Consider B ∈ FRTF and suppose A ⊂ Γ has

the property that there are p, q ∈ X with A ∈ pq; i.e. Ap← := {γ ∈ Γ : Aγ−1 ∈ p} ∈ q.

Then |Ap←| =∞ and by assumption there is a finite subset F ⊂ Ap← such that ∪δ∈FBδ−1

is cofinite in Γ. As p is an ultrafilter this implies that for some δ ∈ F we have Bδ−1 ∈ p.

Now, as both Bδ−1 and Aδ−1 are in p so is (A ∩ B)δ−1. In particular we conclude that
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A ∩B 6= ∅. This discussion shows that for any two ultrafilters p, q in X their product pq is

in clsB; hence clsB ⊃ ZR, i.e. B ∈ FR.

Side 2: Next we show that FR ⊂ FRTF . Suppose then that A ⊂ Γ is not in FRTF ;

i.e. there is an infinite D ⊂ Γ such that for every finite F ⊂ D we have |(AF−1)c| =

|Γ \ ∪δ∈FAδ−1| =∞. Clearly then the collection of sets of the form (AF−1)c, with F ⊂ D

finite, is a filter, say L, on Γ. Choose some ultrafilter p ⊃ L. Now choose an ultrafilter q

with D ∈ q. We will show that A 6∈ pq, whence A 6∈ FR, as required.

Assuming A ∈ pq we have Ap← = {γ ∈ Γ : Aγ−1 ∈ p} ∈ q. However if δ ∈ D then

(Aδ−1)c ∈ L, hence (Aδ−1)c ∈ p, hence Aδ−1 6∈ p, hence Dc ⊃ Ap← ∈ q, hence Dc ∈ q.

This is a contradiction and we conclude that indeed A 6∈ pq. �

2.4. Theorem. 1. We have π−1(clsY 2) = Z = ZR∪ZL, hence π−1(Y \clsY 2) = X \Z.

2. The restriction of π to the open dense subset X \ Z of X is a homeomorphism from

X \ Z onto Y \ clsY 2.

Proof. Step 1: Given y ∈ U ⊂ (ΓWAP \ clsY 2), where y ∈ Y and U is an open subset of

ΓWAP , let V be an open subset of ΓWAP such that y ∈ V ⊂ clsV ⊂ U . The set Ṽ = π−1(V )

is an open subset of βΓ such that cls Ṽ ∩Z = ∅ (since π is a homomorphism of semigroups

we have π(X2) = π(X ·2) = Y 2, for both right and left semigroup structures on βΓ). Let

A = Γ ∩ Ṽ , then cls βΓA = cls Ṽ and therefore A ∈ I. By Theorem 2.3.3 we have A ∈ ITF

and then, by Theorem 2.2, A ∈ IW . We conclude that cls ΓWAPA is a clopen neighborhood

of y which is contained in U . Thus we have shown that the collection of sets of the form

clsA with A ∈ ITF , is a basis for the topology on ΓWAP \ clsY 2.

Step 2: If A is any set in ITF then again by Theorem 2.2, A ∈ IW = IIW and we

conclude that clsA is a clopen subset of ΓWAP which is homeomorphic to βA. By the

universality of βA it follows that π : cls βΓA→ cls ΓWAPA is a homeomorphism.

Step 3: Again if A is any set in ITF then, by Theorem 2.2, A ∈ IW and we conclude

that clsA is a clopen subset of ΓWAP . We claim that π−1(cls ΓWAPA) = cls βΓA. Clearly

cls βΓA ⊂ π−1(cls ΓWAPA). Conversely, if p ∈ βΓ with π(p) = y ∈ cls ΓWAPA, let p = lim γν

for a net γν ∈ Γ. Then y = π(p) = limπ(γν) = lim γnu and, as by assumption the set

cls ΓWAPA is a clopen subset of ΓWAP , it follows that eventually γν ∈ A. Thus we have

p ∈ cls βΓA as claimed.



6 TRANSLATION-FINITE SETS

Step 4: By Proposition 13 of [3] (Theorem 2.2.2), every infinite subset B ⊂ Γ contains

an infinite subset A ⊂ B with A ∈ ITF . In view of step 1 above this shows that the set

Y \ clsY 2 is a dense open subset of Y .

Step 5: Summing up we have shown that (i) the collection of clopen sets {cls ΓWAPA :

A ∈ ITF } forms a basis for the topology on ΓWAP \ clsY 2, (ii) for each A ∈ ITF ,

π−1(cls ΓWAPA) = cls βΓA and moreover (iii) π : cls βΓA → cls ΓWAPA is a homeomor-

phism. These facts together with the fact that Y \ clsY 2 is a dense open subset of Y prove

the assertions of Theorem 2.4. �

3. Divisible properties, IP and D sets

In [1] a collection P of subsets of Γ is called a divisible property if

(i) ∅ 6∈ P and Γ ∈ P,

(ii) P is hereditary upward (i.e. A ∈ P and B ⊃ A imply B ∈ P and

(iii) if A ∈ P is a union A = A1 ∪A2 then at least one of the sets A1 and A2 is in P.

A collection P is divisible iff the collection I = {A ⊂ Γ : A 6∈ P} is an ideal iff the dual

collection F = P∗ = {A ⊂ Γ : A ∩B 6= ∅, ∀B ∈ P} is a filter. When F is a filter of subsets

of Γ the compact (nonempty) subset K =
⋂
{clsA : A ∈ F} ⊂ βΓ is called the kernel of F.

Conversely, any compact subset K ⊂ βΓ defines a filter

F = {A ⊂ Γ : clsA ⊃ K}.

The correspondence F ↔ K is one to one and we note that

I = {A ⊂ Γ : clsA ∩K = ∅} and P = {A ⊂ Γ : clsA ∩K 6= ∅},

are the corresponding ideal and divisible properties respectively.

Expressed explicitly the divisible property which corresponds to the ideal of RTF-sets

is the following one: a subset A ⊂ Γ is not right translation finite, an NRTF-set, if there

exists an infinite subset D ⊂ Γ such that for every finite subset F ⊂ D the corresponding

intersection
⋂
δ∈F Aδ

−1 is infinite. NLTF-sets are defined similarly and a set A is NTF if

if there exists an infinite subset D ⊂ Γ such that for every finite subset F ⊂ D at least

one of the two corresponding intersections
⋂
δ∈F Aδ

−1 and
⋂
δ∈F δ

−1A is infinite. In this

terminology Theorem 2.3 is stated as follows:
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3.1. Theorem. The properties NRTF, NLTF and NTF are divisible with corresponding

kernels ZR, ZL and Z respectively.

Note however that the ideal IW is not what we call in [1] the collection of interpolation

sets of the algebra WAP (Γ), as in Definition 2.1.6 we postulate that A ∈ IW when it is a

WAP (Γ) interpolation set which additionally satisfies the requirement that 1D ∈WAP (Γ).

In [1] (Corollary 5.3.2) we have shown that the collection J of WAP-interpolation sets has

the property that if Γ =
⋃n
i=1Ai then at least one of the sets Ai is not in J. Let ΓWAP

dis denote

the universal totally disconnected semitopological compactification of Γ. It is obtained as

the quotient ΓWAP /∼ of ΓWAP by the equivalence relation: x ∼ y ⇐⇒ x and y lie in the

same connected component. Let WAPdis(Γ) denote the corresponding C∗-algebra.

3.2. Problem. (a) Is the collection of WAP (Γ)-interpolation sets an ideal ?

(b) Is the collection of WAPdis(Γ)-interpolation sets an ideal ?

For simplicity let us assume next that Γ is abelian. We will denote the group operation

by + but keep the notation (p, q) 7→ pq for the semigroup operation on βΓ. Recall that

a subset A of Γ is a D-set if there is an infinite sequence {γi}∞i=1 ⊂ Γ such that for every

i 6= j at least one of the elements γi − γj or γj − γi is in A. The subset A is called

an IP-set if there is an infinite sequence {γi}∞i=1 ⊂ Γ such that for every finite sequence

i1 < i2 < · · · < in the element γi1 + γi2 + · · ·+ γin is in A. It is well known that Hindman’s

theorem is equivalent to the fact that the collection of IP-sets is a divisible property with

the set K = cls {v ∈ X : v2 = v} (the closure of the set of idempotents in X) as its kernel.

Obviously K ⊂ Z. It is easy to see that every IP-set is also a D-set.

The filter which corresponds to the IP-sets is the collection of IP∗-sets:

{A ⊂ X : clsA ⊃ K} = {A ⊂ Γ : A ∩B 6= ∅, ∀ IP-set B}.

Similarly the filter which corresponds to the D-sets is the collection of D∗-sets:

{A ⊂ X : clsA ⊃ K} = {A ⊂ Γ : A ∩B 6= ∅, ∀ D-set B}.

The fact that the collection of D-sets is a divisible property is equivalent to Ramsey’s

theorem and in [1] we have identified the kernel of this divisible property as the following

closed subset L ⊂ X. Define the set V ⊂ X as follows: p ∈ X is in V iff there is an element

q ∈ X and a net γα in Γ such that lim γα = q and p = lim γ−1
α q. Now put L = clsV .
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It is easy to see that V ⊂ X2, whence L ⊂ Z. Thus the identifications of the kernels K

and L, together with Theorem 2.3, immediately lead to the following corollary.

3.3. Corollary. Every CTF-set (i.e. the complement of a TF-set) is a D∗-set and a fortiori

an IP∗-set.
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