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Let A be a finite subset of the group Z
2. Let C = {c0, c1, . . . , cs−1} be a finite set of s

distinct points in the plane. For every 0 ≤ i ≤ s− 1, we define Di = {a− a′ : a ∈ A, a′ ∈
A, a + a′ = 2ci} and Rs(A) = |D0 ∪ D1 ∪ · · · ∪ Ds−1|. In [1, 2], we found the maximal
value of Rs(A) in cases s = 1, s = 2 and s = 3 and studied the structure of A assuming
that R3(A) is equal or close to its maximal value. In this paper, we examine the case of
s = 4 centers of symmetry and we find the maximal value of R4(A). Moreover, in cases
when the maximal value is attained, we will describe the structure of extremal sets.
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1. Introduction

Let A be a finite subset of the group Z
2 of cardinality |A| = k. Let M + N =

{m + n : m ∈ M, n ∈ N} be the algebraic sum of two finite sets M and N . We call
2A = A + A the sum set of A and A − A the difference set of A. For every b ∈ Z

2

we define

D(b) = {a − a′ : a ∈ A, a′ ∈ A, a + a′ = b},
r(b) = |{(a, a′) : a + a′ = b, a ∈ A, a′ ∈ A}|.

We easily see that |D(b)| = r(b). Moreover, r(b) is equal to the number of pairs
(a, a′) such that a ∈ A, a′ ∈ A and a and a′ are symmetric with respect to the
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center c = b
2 , i.e.

|D(b)| =
∣∣∣∣
{

(a, a′) : a ∈ A, a′ ∈ A,
a + a′

2
= c

}∣∣∣∣ . (1)

Let C = {c0, c1, . . . , cs−1} be a finite set of s distinct points in the plane such
that bi = 2ci ∈ Z

2, for every 0 ≤ i ≤ s − 1. We define

Di = Di(A) = {a − a′ : a ∈ A, a′ ∈ A, a + a′ = bi}, di = |Di|,
Diffs(A) = D0 ∪ D1 ∪ · · · ∪ Ds−1,

Rs(A) = |Diffs(A)| = |D0 ∪ D1 ∪ · · · ∪ Ds−1|.

This means that di = |Di| = r(bi) and thus Rs(A) counts the number of all distinct
differences d = a − a′ ∈ A − A such that the end points a and a′ are symmetric
with respect to some set C of centers of symmetry.

In [1] we determined the maximal value of R3(A) for finite sets A ⊆ Z
2, assuming

that b0, b1, b2 are non-collinear, and we described the structure of planar extremal
sets A∗, i.e. sets of integer lattice points in the plane Z

2 for which we have |A∗| = k

and R3(A∗) = 3k − √
3k. In [2] we studied the structure of finite sets A ⊆ Z

2

assuming that R3(A) is close to its maximal value, i.e. R3(A) ≥ 3k − θ
√

k, with
θ ≤ 1.8.

In this paper, we continue the study of finite sets of lattice points in the plane
and we will examine the case of four centers of symmetry c0, c1, c2, c3 defined by

b0 = 2c0 = (0, 0), b1 = 2c1 = (1, 0), b2 = 2c2 = (0, 1), b3 = 2c3 = (1, 1). (2)

We will obtain a sharp upper bound for R4(A) = |D0 ∪ D1 ∪ D2 ∪ D3| and we will
determine its maximal value

R4(k) = max{R4(A) : A ⊆ Z
2, |A| = k}. (3)

Moreover, in cases when the maximal value is attained, we will describe the structure
of extremal sets. The case (2) which we will study in this paper is, of course, a
partial one. Nevertheless, we conjecture that this case gives the maximal number of
differences max R4(A) comparing with any other choice of four centers of symmetry.

We should mention that the proof given here, while representing a natural devel-
opment of [1], is significantly shorter. More importantly, this new method provides
clear intuition for the structure of extremal sets, and it seems plausible that our
approach can be applied to derive general results for sets of lattice points in Z

d.

In order to describe the canonical form of an extremal set , we will use the
following notation. If p = (x, y) ∈ R

2, we denote by x and y its coordinates with
respect to the canonical basis {e1 = (1, 0), e2 = (0, 1)} and e0 = (0, 0) represents
the origin point.
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Definition 1. For every integer t ≥ 2, we denote by Et the set of all lattice points
p = (x, y) ∈ Z

2 which satisfy the following conditions:

(a) |x| < t,
(b) |y| < t,
(c) |x − y| < t,
(d) |x + y − 1

2 | < t.

The set Et lies on 2t − 1 lines parallel to the line x = 0, on 2t − 1 lines parallel to
the line y = 0, on 2t − 1 lines parallel to the line x − y = 0 and on 2t lines parallel
to the line x+ y = 0 (see Fig. 1). Note that the set Et can also be defined using the
l1-norm ||(x, y)||1 = |x| + |y|:

Et = {(x, y) ∈ Z
2 : |x − 0.25|+ |y − 0.25| < t}.

Thus, Et is the set of all lattice points that lie inside a two-dimensional open l1-disk
of radius t and center (0.25, 0.25).

We will prove the following theorem.

Theorem 1. Let A be a finite subset of Z
2 with |A| = k. If k is sufficiently large

and if b0 = (0, 0), b1 = (1, 0), b2 = (0, 1), b3 = (1, 1), then

R4(A) = |Diff4(A)| ≤ 4k −√
8k + 1. (4)

Moreover, the equality

R4(A) = 4k −√
8k + 1 (5)

holds if and only if there is t ∈ Z such that k = t(2t − 1) and A is the extremal
set Et.

This paper is organized as follows. In Secs. 2 and 4, we introduce some basic
examples: a two-dimensional arithmetic progression St, the extremal set Et and a
special octagon P . In Sec. 3, we state and prove a tight upper bound for R4(A).
Section 5 contains the proof of Theorem 1 for connected sets, and in Sec. 6, we

Fig. 1. The set Et for t = 4 and the centers c0, c1, c2, c3.
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complete the proof by showing that disconnected sets are not extremal with respect
to (3).

We conclude the introduction with some results obtained in [1]. We will use
them in Secs. 3 and 6.

Proposition 1. Let A be a finite subset of Z
2.

(a) If A lies on the line (y = 0), then R2(A) = |D0(A) ∪ D1(A)| ≤ 2|A| − 1.

(b) If A lies on two parallel lines (y = h) and (y = −h), then

R2(A) = |D0(A) ∪ D1(A)| ≤ 2|A| − 2.

(c) If A lies on a lines parallel to the line (x = 0), on b lines parallel to the line
(y = 0) and on c lines parallel to the line (x + y = 0), then

|A| ≤ 1
3

(a + b + c)2

4
+

1
4
.

Proof. Assertion (a) is equivalent to [1, Proposition 2(a)]. Assertion (b) is true
in view of [1, Lemma 1(b)]. Finally, using [1, proof of Corollary 1], we obtain
assertion (c).

2. Some Examples

We begin with a simple remark about the sets of differences D0, D1, D2 and D3. As
we mentioned in Sec. 1, the centers ci = bi

2 satisfy assumption (2).

Lemma 1. Let A ⊆ Z
2 be a finite set of k lattice points in the plane. Assume that

b0 = (0, 0), b1 = (1, 0), b2 = (0, 1), b3 = (1, 1). We have

D0(A) ⊆ 2Z × 2Z, D1(A) ⊆ (2Z + 1) × 2Z,

D2(A) ⊆ 2Z × (2Z + 1), D3(A) ⊆ (2Z + 1) × (2Z + 1)

and thus the sets of differences D0(A), D1(A), D2(A) and D3(A) are disjoint.

Proof. For every lattice point p = (x, y) ∈ Z
2, we denote by

pi = 2ci − p

the symmetric reflection of p with respect to ci, 0 ≤ i ≤ 3. If d ∈ Di(A), then there
is a point p = (x, y) ∈ A such that pi ∈ A and

d = p − pi = 2p − 2ci = (2x, 2y) − bi.

Lemma 1 is proved, in view of (2).

We will first examine the case of a two dimensional arithmetic progression St,
which includes the extremal example Et (see Figs. 2 and 1). We will prove the
following result.
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Fig. 2. The set St for t = 3 and the centers c0, c1, c2, c3.

Lemma 2. Let t ≥ 2 be an integer and let St denote the set of all lattice points
p = (x, y) ∈ Z

2 such that |x| < t, |y| < t. Then n = |St| = (2t − 1)2 and

R4(St) = 4n − 4
√

n + 1. (6)

Proof. We will estimate |Di(St)| using equality (1). Let us now examine Fig. 2.
We have n = (2t − 1)2 and c0 = b0

2 = e0
2 , c1 = b1

2 = e1
2 , c2 = b2

2 = e2
2 , c3 = b3

2 =
e1+e2

2 . The set St is symmetric with respect to c0 and thus

d0 = |D0(St)| = n. (7)

The set St\(x = −t + 1) is symmetric with respect to the center c1 and thus

d1 = |D1(St)| = n − (2t − 1). (8)

The set St\(y = −t + 1) is symmetric with respect to the center c2 and thus

d2 = |D2(St)| = n − (2t − 1). (9)

Finally, the set St\((x = −t + 1) ∪ (y = −t + 1)) is symmetric with respect to the
center c3 and thus

d3 = |D3(St)| = n − 2(2t − 1) + 1. (10)

Moreover, the sets D0(St), D1(St), D2(St), D3(St) are disjoint by Lemma 1, so we
conclude that the total number of differences is

R4(St) = |D0(St) ∪ D1(St) ∪ D2(St) ∪ D3(St)|
= d0 + d1 + d2 + d3 = 4n− 4(2t − 1) + 1 = 4n− 4

√
n + 1.

Lemma 2 is proved.

In case of s = 2 centers of symmetry, the extremal sets are arithmetic pro-
gressions of difference ∆ = 2c1 − 2c0 (see [1, Proposition 2]). Surprisingly, the
maximal value of R4(A) is not attained for a two dimensional arithmetic progres-
sion St. In order to describe the extremal set Et, let us recall that the canonical
form of an extremal set for the case of three centers c0, c1, c2 is a hexagon Hα
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Fig. 3. The set Hα and the centers ci = ei
2

, i = 0, 1, 2.

(see [1, Theorem 1]). This set (see Fig. 3) lies on pairs of symmetric lines with
respect to three lines

l1 : (x = 0), l2 : (y = 0) and l3 : (x + y = 0.5).

Note that c0 and c2 belong to l1, c0 and c1 belong to l2 and c1 and c2 belong to
l3. The definition of Et is similar in the sense that this set also lies on pairs of
symmetric lines with respect to four lines

l1 : (x = 0), l2 : (y = 0), l3 : (x + y = 0.5) and l4 : (x − y = 0).

Note that c0 and c3 belong to l4.

The following result determines the number of differences for Et and, at the same
time, implies that R4(k) = max{R4(A) : A ⊆ Z

2, |A| = k} is at least 4k −√
8k + 1:

Lemma 3. Let t ≥ 2 be an integer and let Et denote the set of all lattice points
p = (x, y) ∈ Z

2 such that |x − y| < t and |x + y − 1
2 | < t. Then k = |Et| = (2t− 1)t

and

R4(Et) = 4k −√
8k + 1. (11)

Proof. We will estimate |Di(Et)| using equality (1). Let us now examine Fig. 1. We
have k = (2t − 1)t and c0 = b0

2 = e0
2 , c1 = b1

2 = e1
2 , c2 = b2

2 = e2
2 , c3 = b3

2 = e1+e2
2 .

The set Et\(x + y = t) is symmetric with respect to the center c0 and thus

d0 = |D0(Et)| = k − (t − 1). (12)

The set Et\(−x + y = t − 1) is symmetric with respect to the center c1 and thus

d1 = |D1(Et)| = k − t. (13)

The set Et\(−x + y = −t + 1) is symmetric with respect to the center c2 and thus

d2 = |D2(Et)| = k − t. (14)

Finally, the set Et\(x + y = −t + 1) is symmetric with respect to the center c3 and
thus

d3 = |D3(Et)| = k − t. (15)



July 29, 2011 11:53 WSPC/S1793-0421 203-IJNT S1793042111004174

Sets with Several Centers of Symmetry 1121

Moreover, the sets D0(Et), D1(Et), D2(Et), D3(Et) are disjoint by Lemma 1, so we
conclude that the total number of differences is

R4(Et) = |D0(Et) ∪ D1(Et) ∪ D2(Et) ∪ D3(Et)|
= d0 + d1 + d2 + d3 = 4k − (4t − 1) = 4k −√

8k + 1.

Lemma 3 is proved.

3. A Sharp Upper Bound

Let A ⊆ Z
2 be a finite set of k = |A| lattice points. In this section, the method

of [1] will be used in order to obtain a sharp upper bound for R4(A).
Let a be the number of lines �′1 : (x = h) such that A ∩ (x = ±h) �= ∅, let b be

the number of lines �′2 : (y = h) such that A ∩ (y = ±h) �= ∅, let c be the number
of lines �′3 : (x + y = h) such that A ∩ (x + y − 0.5 = ±(h − 0.5)) �= ∅ and finally,
let d be the number of lines �′4 : (x − y = h) such that A ∩ (x − y = ±h) �= ∅.
For example, if A = Et, then a = b = c − 1 = d = 2t − 1 and if A = St, then
2a − 1 = 2b − 1 = c = d = 4t − 3.

Lemma 4. (a) d0 + d1 = |D0(A) ∪ D1(A)| ≤ 2k − b.

(b) R4(A) ≤ 4k − max(2a, 2b, c + d).
(c) R4(A) ≤ 4k − 1

2 (a + b + c + d) − δ
2 , where δ = 0 if a + b + c + d is even and

δ = 1 if a + b + c + d is odd.

Proof. We follow the argument used in the proof of [1, Lemma 2]. For every integer
h, we denote by

Ah = A ∩ (y = h)

the set of points of A that lie on the line y = h. For every 0 ≤ i ≤ 3, the set Di(A)
consists of all differences d = p− pi such that both points p and pi = 2ci − p belong
to the set A. Therefore each difference d ∈ Di is of the form

d = 2p− 2ci = 2p − bi.

Note that if p ∈ Ah, then p0 ∈ A−h, p1 ∈ A−h and p2 ∈ A−h+1, p3 ∈ A−h+1. This
remark allows us to split each set of differences Di, i = 0, 1, 2, 3, into a disjoint
union of sets:

Di =
⋃
h

Di(h),

where

D0(h) = D0(A, h) = {2p− e0 : p ∈ Ah, p0 ∈ A−h},
D1(h) = D1(A, h) = {2p− e1 : p ∈ Ah, p1 ∈ A−h},
D2(h) = D2(A, h) = {2p− e2 : p ∈ Ah, p2 ∈ A−h+1},
D3(h) = D3(A, h) = {2p− (e1 + e2) : p ∈ Ah, p3 ∈ A−h+1}.
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Let H be the set of all integers h such that A±h = Ah ∪ A−h �= ∅. We have

D0(A) =
⋃

h∈H

D0(h) =
⋃

h∈H,h≥0

D0(A±h),

D1(A) =
⋃

h∈H

D1(h) =
⋃

h∈H,h≥0

D1(A±h),

D0(A) ∪ D1(A) =
⋃

h∈H,h≥0

(D0(A±h) ∪ D1(A±h)).

If h = 0 belongs to H , we have |D0(A0) ∪ D1(A0)| ≤ 2|A0| − 1, in view of
Proposition 1(a). For 0 < h ∈ H , the set A±h is contained by two parallel lines. If
|Ah| > 0 and |A−h| > 0, then |D0(A±h) ∪ D1(A±h)| ≤ 2|A±h| − 2, by Propo-
sition 1(b). If |Ah| = 0 or |A−h| = 0, then A±h lies on a line and obviously
|D0(A±h) ∪ D1(A±h)| = 0 ≤ 2|A±h| − 2 < 2|A±h| − 1. We conclude that

d0 + d1 = |D0(A) ∪ D1(A)| =
∑

h∈H,h≥0

|D0(A±h) ∪ D1(A±h)|

≤ |D0(A0) ∪ D1(A0)| +
∑

h∈H,h>0

(2|A±h| − 2)

≤ 2|A| − b = 2k − b.

In order to prove (b) we will use Lemma 1 and get

R4(A) = |D0(A) ∪ D1(A) ∪ D2(A) ∪ D3(A)| = d0 + d1 + d2 + d3.

Note that inequality (a) was obtained using a partition of A into sets lying on lines
�′2 : (y = h) parallel to the segment [c0, c1]. In a similar way, considering lines
parallel to the segments [c2, c3], [c0, c2], [c1, c3], we obtain respectively that

d2 + d3 ≤ 2k − b, d0 + d2 ≤ 2k − a, d1 + d3 ≤ 2k − a.

Moreover, considering lines parallel to the segments [c1, c2], [c0, c3], we obtain that

d1 + d2 ≤ 2k − c, d0 + d3 ≤ 2k − d.

Indeed, these last two inequalities are also valid, because c represents the number
of lines �′3 : (x + y = h) such that A ∩ (x + y − 0.5 = ±(h − 0.5)) �= ∅ and d is the
number of lines �′4 : (x − y = h) such that A ∩ (x − y = ±h) �= ∅. It follows that

R4(A) ≤ 4k − 2a, R4(A) ≤ 4k − 2b, R4(A) ≤ 4k − (c + d)

and thus

R4(A) ≤ 4k − max(2a, 2b, c + d). (16)
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Moreover,

4R4(A) = 4(d0 + d1 + d2 + d3)

= (d0 + d1) + (d2 + d3) + (d0 + d2) + (d1 + d3) + 2(d1 + d2) + 2(d0 + d3)

≤ (2k − b) + (2k − b) + (2k − a) + (2k − a) + 2(2k − c) + 2(2k − d)

= 16k − 2(a + b + c + d).

and thus

R4(A) = d0 + d1 + d2 + d3 ≤ 4k − 1
2
(a + b + c + d) − δ

2
, (17)

where we put δ = 0 if a+ b+ c+d is even and δ = 1 if a+ b+ c+d is odd. Lemma 4
is proved.

Remark 1. The upper bound R4(A) ≤ 4k − 1
2 (a + b + c + d)− δ

2 is sharp. Indeed,
in view of Lemma 3, the set Et satisfies a = b = d = 2t − 1, c = 2t and we have
δ = 1 and

R4(Et) = d0 + d1 + d2 + d3 = 4k −√
8k + 1

= 4k − (4t − 1) = 4k − 1
2
(a + b + c + d) − 1

2
.

We conclude that inequality (17) cannot be improved by reducing the upper bound
for R4(A).

Remark 2. Inequality (17) implies a first non-trivial upper bound for R4(A) in
terms of k:

R4(A) ≤ 4k − 1
2
(a + b) − 1

2
(c + d) ≤ 4k −

√
ab −

√
cd ≤ 4k − 2

√
k.

In the following sections, we will improve this estimate and we will show that
R4(A) ≤ 4k −√

8k + 1, for every finite set of lattice points in the plane.

4. Special Octagons

In this section, we determine the number of differences R4(P ) = |Diff4(P )| for a
special octagon P ⊆ Z

2 (see Fig. 4).
Let a, b, u and v be four natural numbers such that a = 2α− 1, b = 2β − 1 and

u + v + 1 ≤ min{a, b} − 1. (18)

We denote by A = (α−1, β−1), B = (−α+1, β−1), F = −A and G = −B the four
vertices of the rectangle R(a, b) defined by R(a, b) = {(x, y) ∈ Z

2 : |x| < α, |y| < β}.
This finite set lies on a = 2α − 1 lines parallel to (x = 0) and on b = 2β − 1 lines
parallel to (y = 0). Let us choose eight points on the edges of R(a, b) as follows:

A1 = A − ve1, A2 = A − ve2, B1 = B + ue1, B2 = B − ue2,

F1 = F + (v + 1)e1, F2 = F + (v + 1)e2, G1 = G − ue1, G2 = G + ue2
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Fig. 4. The set P = P (a, b, u, v), a = 2α − 1, b = 2β − 1.

and we denote by

P = P (a, b, u, v)

the set of all lattice points that lie in the convex hull of {A1, B1, B2, F2, F1,

G1, G2, A2}. The set P = P (a, b, u, v) is described in Fig. 4.
Let [L, M ] be the line segment {(1 − t)L + tM : 0 ≤ t ≤ 1} between two points

L and M in the plane. Note that inequality (18) implies that each of the following
sets

[A, A1] ∩ [B, B1], [B, B2] ∩ [F, F2], [F, F1] ∩ [G1, G], [G, G2] ∩ [A, A2]

contain no more than one point and therefore the eight points A1, B1, B2, F2, F1, G1,

G2, A2 are all vertices of the convex hull conv(P ). We conclude that P = P (a, b, u, v)
is the set of all points (x, y) ∈ Z

2 which satisfy the following conditions:

P = P (a, b, u, v) :




−α + 1 ≤ x ≤ α − 1,

−β + 1 ≤ y ≤ β − 1,

−γ + 1 ≤ x + y ≤ γ,

−δ + 1 ≤ x − y ≤ δ − 1,

(19)

where γ and δ are given by

γ =
(a + b − 1) − (2v + 1)

2
= α + β − 2 − v,

δ =
(a + b − 1) − 2u + 1

2
= α + β − 1 − u.

(20)
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Note that if α = β = δ = γ, then P (a, b, u, v) is the extremal set Eα described in
Fig. 1. We will now find the number of lattice points located inside P = P (a, b, u, v)
and we will determine the number of differences R4(P ).

Lemma 5. The set P = P (a, b, u, v) lies on a = 2α − 1 lines parallel to (x = 0),
on b = 2β − 1 lines parallel to (y = 0), on c = 2γ lines parallel to (x + y = 0) and
on d = 2δ − 1 lines parallel to (x − y = 0). We have

(a) k∗ = |P | = ab − u(u + 1) − (v + 1)2.
(b) R4(P ) = 4k∗ − (2a + 2b − 2u − 2v − 3) = 4k∗ − (c + d).

Proof. Every point (x, y) ∈ P (a, b, u, v) belongs to the rectangle R(a, b). The set
P = P (a, b, u, v) is obtained from R(a, b) by removing the lattice points belonging
to four triangles

TA = {(x, y) ∈ R(a, b) : x + y = t, where γ + 1 ≤ t ≤ α + β − 2},
TB = {(x, y) ∈ R(a, b) : x − y = t, where −α −β + 2 ≤ t ≤ −δ},
TF = {(x, y) ∈ R(a, b) : x + y = t, where −α −β + 2 ≤ t ≤ −γ},
TG = {(x, y) ∈ R(a, b) : x − y = t, where δ ≤ t ≤ α + β − 2}.

Thus P (a, b, u, v) lies on exactly a = 2α− 1 lines parallel to (x = 0), on b = 2β − 1
lines parallel to (y = 0), on c = 2γ lines parallel to (x + y = 0) and on d = 2δ − 1
lines parallel to (x − y = 0). It is clear that:

nA = |TA| = 1 + 2 + · · · + (v − 1) + v, nB = |TB| = 1 + 2 + · · · + (u − 1) + u,

nF = |TF | = 1 + 2 + · · · + v + (v + 1), nG = |TG| = 1 + 2 + · · · + (u − 1) + u

and thus

k∗ = |P | = |R(a, b)| − (nA + nB + nF + nG) = ab − u(u + 1) − (v + 1)2. (21)

We will estimate |Di(P )| using equality (1) and (19). Let us now examine Fig. 4.
We have

c0 =
b0

2
=

e0

2
, c1 =

b1

2
=

e1

2
, c2 =

b2

2
=

e2

2
, c3 =

b3

2
=

e1 + e2

2
.

The set P\[A1, A2] is symmetric with respect to the center c0 and thus

d0 = |D0(P )| = k∗ − (v + 1). (22)

The set P\([B1, B2]∪ [B2, F2]) is symmetric with respect to the center c1 and thus

d1 = |D1(P )| = k∗ − (b − (v + 1)). (23)

The set P\([F1, G1]∪ [G1, G2]) is symmetric with respect to the center c2 and thus

d2 = |D2(P )| = k∗ − (a − (v + 1)). (24)
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Finally, the set P\([B2, F2] ∪ [F2, F1] ∪ [F1, G1]) is symmetric with respect to the
center c3 and thus

d3 = |D3(P )| = k∗ − ((b − u) + (a − u) − (v + 2)). (25)

Moreover, the sets D0(P ), D1(P ), D2(P ), D3(P ) are disjoint by Lemma 1, so we
conclude that the total number of differences is

R4(P ) = |D0(P ) ∪ D1(P ) ∪ D2(P ) ∪ D3(P )|
= d0 + d1 + d2 + d3 = 4k∗ − (2a + 2b − 2u − 2v − 3).

Note that (20) implies that c = 2γ = (a + b − 1) − (2v + 1), d = 2δ − 1 =
(a + b − 1) − 2u and thus

c + d = 2a + 2b − 2u − 2v − 3. (26)

We conclude that

R4(P ) = 4k∗ − (2a + 2b − 2u − 2v − 3) = 4k∗ − (c + d). (27)

Lemma 5 is proved.

We will obtain now an upper bound for R4(P ) depending only on k∗ = |P |:

Lemma 6. Let us define

ε = (a − b)2 + (c + d − a − b)2 + 2(v − u)(v − u + 1) − 1. (28)

(a) ε is a non-negative integer and

(c + d)2 = (8k∗ + 1) + 2ε ≥ 8k∗ + 1. (29)

(b) Every set P = P (a, b, u, v) satisfies

R4(P ) = 4k∗ − (c + d) ≤ 4k∗ −√
8k∗ + 1. (30)

(c) We have equality R4(P ) = 4k∗−(c+d) = 4k∗−√
8k∗ + 1 if and only if v = u−1,

α = β = δ = γ = u + 1 and P (a, b, u, v) is the extremal set Eα.

Proof. Let us put w = v − u. Using (26) and (18) we get that

c + d − a − b = (a + b) − (2u + 2v + 3) ≥ 1.

Thus (c + d − a − b)2 ≥ 1. This implies that ε is a non-negative integer, because
(v − u)(v − u + 1) = w(w + 1), being a product of two consecutive integers, is
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non-negative. We have

8ab + 2ε = 8ab + 2(a − b)2 + 2(c + d − a − b)2 + 4w(w + 1) − 2

= 8ab + 2(a − b)2 + 2((a + b) − (2u + 2v + 3))2 + 4w(w + 1) − 2

= (2a + 2b)2 − 2(2a + 2b)(2u + 2v + 3) + 2(2u + 2v + 3)2 + 4w(w + 1) − 2

= ((2a + 2b)− (2u + 2v + 3))2 + (2u + 2v + 3)2 + 4w(w + 1) − 2

= (2a + 2b − 2u − 2v − 3)2 + (2u + 2v + 3)2 + 4w(w + 1) − 2

= (2a + 2b − 2u − 2v − 3)2 + 8u(u + 1) + 8(v + 1)2 − 1.

Therefore (26) gives

(c + d)2 = (2a + 2b − 2u − 2v − 3)2

= 8ab + 2ε − 8u(u + 1) − 8(v + 1)2 + 1

= 8(ab − u(u + 1) − (v + 1)2) + 1 + 2ε

= (8k∗ + 1) + 2ε ≥ 8k∗ + 1.

Assertion (a) is proved. The upper bound (30) is an immediate consequence of (29)
and (27). Moreover, we have equality R4(P ) = 4k∗ − (c + d) = 4k∗ − √

8k∗ + 1 if
and only if ε = 0, which means

(i) a = b, c + d = a + b + 1, v = u

or
(ii) a = b, c + d = a + b + 1, v = u − 1.

Case (i) is impossible because (c+d)− (a+ b+1) = (a+ b)− (2u+2v +3)−1 =
2a − 4v − 4 = 4α − 4v − 6 �= 0.

In case (ii), equality (26) and c+d = a+b+1 imply that 2a+2b−2u−2v−3 =
a + b + 1 and so

2a = a + b = 2u + 2v + 4 = 4u + 2.

We apply (20) and get

a = b = 2α − 1 = 2β − 1 = 2u + 1,

c = 2γ = (a + b − 1) − (2v + 1) = 2a − 2u = 2u + 2,

d = 2δ − 1 = (a + b − 1) − 2u = (2a − 1) − 2u = 2u + 1.

In conclusion, α = β = γ = δ = u + 1. The proof of Lemma 6 is complete.

5. Connected Sets and Covering Octagons

We can now prove Theorem 1 for connected sets. We need the following definition.



July 29, 2011 11:53 WSPC/S1793-0421 203-IJNT S1793042111004174

1128 G. A. Freiman & Y. V. Stanchescu

Definition 2. Let A ⊆ Z
2 be a finite set of k = |A| lattice points. Let us choose

the parameters a, b, u, v such that:

(i) A ⊆ P (a, b, u, v),
(ii) a and b are minimal,
(iii) u and v are maximal.

The finite set P (a, b, u, v) ⊆ Z
2 defined by the above three conditions will be called

a covering polygon of the set A and we will denote it by P (A). Let

x = ±(α − 1), y = ±(β − 1), x + y = γ, x + y = −γ + 1, x − y = ±(δ − 1)

denote the supporting lines of the covering polygon P = P (A). We say that A is a
connected set if the following conditions are true:

(a) A ∩ (x = ±t) �= ∅, for every integer −α + 1 ≤ t ≤ α − 1,
(b) A ∩ (y = ±t) �= ∅, for every integer −β + 1 ≤ t ≤ β − 1,
(c) A ∩ (x + y − 1

2 = ±(t − 1
2 )) �= ∅, for every integer −γ + 1 ≤ t ≤ γ,

(d) A ∩ (x − y = ±t) �= ∅, for every integer −δ + 1 ≤ t ≤ δ − 1.

Lemma 7. Let A be a finite subset of Z
2 with |A| = k. If A is connected, then

R4(A) ≤ 4k −√
8k + 1.

Moreover, the equality R4(A) = 4k−√
8k + 1 holds if and only if there is an integer

α such that k = α(2α − 1) and A is the extremal set Eα.

Proof. Let A∗ = P (a, b, u, v) be the covering polygon of A and denote k∗ = |A∗|.
We clearly have

k ≤ k∗.

Define c and d as in Lemma 5. The set A∗ lies on exactly a lines parallel to the line
l1 : (x = 0), on b lines parallel to the line l2 : (y = 0), on c lines parallel to the line
l3 : (x+ y − 1

2 = 0) and on d lines parallel to the line l4 : (x− y = 0). The set A is a
connected set and we may use inequality (b) of Lemma 4 with the same parameters
a, b, c, d. Combining with (29), we get that

R4(A) ≤ 4k − (c + d) = 4k −
√

(8k∗ + 1) + 2ε ≤ 4k −√
8k∗ + 1 ≤ 4k −√

8k + 1.

(31)

We conclude that inequality (4) holds for every connected set of lattice points.
Let us assume now that the connected set A satisfies equality R4(A) = 4k −√

8k + 1. Using (31), we get that

R4(A) = 4k − (c + d) = 4k −
√

(8k∗ + 1) + 2ε = 4k −√
8k∗ + 1 = 4k −√

8k + 1.

(32)

and thus

k = k∗, ε = 0, A = A∗, R4(A) = R4(A∗) = 4k − (c + d) = 4k∗ − (c + d).
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We can use now assertion (c) of Lemma 6 and conclude that

A = A∗ = P (a, b, u, v) = Eα.

Lemma 7 is proved.

6. Disconnected Sets

In this section, we describe the set of differences Diff4(A) for disconnected sets. We
will show that such sets satisfy inequalities (35) and (40) below and Theorem 1 will
be an easy consequence of Lemmas 7 and 10.

Definition 3. Let A ⊆ Z
2 be a finite set. Let

x = ±(α − 1), y = ±(β − 1), x + y = γ, x + y = −γ + 1, x − y = ±(δ − 1)

denote the supporting lines of the covering polygon P = P (A). We say that A is a
disconnected set if at least one of the following conditions is true:

(I) There is an integer t such that −α + 1 ≤ t ≤ α − 1 and A ∩ (x = ±t) = ∅.
(II) There is an integer t such that −β + 1 ≤ t ≤ β − 1 and A ∩ (y = ±t) = ∅.

(III) There is an integer t such that −γ + 1 ≤ t ≤ γ and A ∩ (x + y − 1
2 =

±(t − 1
2 )) = ∅.

(IV) There is an integer t such that −δ + 1 ≤ t ≤ δ − 1 and A ∩ (x − y = ±t) = ∅.
We will now present a detailed study of disconnected sets satisfying case (I).

Cases (II)–(IV) are similar. Let (m < x < n) be the region of the plane equal to
{(x, y) : (x, y) ∈ R

2, m < x < n}.
Lemma 8. Let A ⊆ Z

2 be a finite disconnected set satisfying condition (I). Let us
choose u ≥ 0 minimal such that

A ∩ (x = ±u) = ∅. (33)

Define k = |A|, A1 = A∩ (−u < x < u), A2 = A\A1, k1 = |A1|, k2 = |A2| = k − k1.

Let n0 be the number of points p ∈ A2 such that −p /∈ A2. We have R4(A) =
R4(A1) + R4(A2) and

(a) R4(A2) ≤ 4k2 − n0,

(b) if n0 < k2, then R4(A2) ≤ 4k2 − 8√
6

√
k2 − n0 − 0.5.

Proof. The set A is disconnected and thus k2 = |A2| ≥ 1. The sets Di(A1) and
Di(A2) are disjoint, for i = 0, 1, 2, 3 and thus

R4(A) = R4(A1) + R4(A2). (34)

Indeed, if u = 0, then A1 = ∅ and equality (34) is obvious. Assume that u ≥ 1. Using
(33), we get that every difference d = (d1, d2) ∈ Diff4(A1) satisfies |d1| ≤ 2(u − 1)
and every difference d = (d1, d2) ∈ Diff4(A2) satisfies |d1| ≥ 2(u + 1). Therefore,
Diff4(A1) and Diff4(A2) are disjoint and (34) follows.
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Using equality (1), we get that |D0(A2)| = k2 − n0 and therefore R4(A2) =
|D0(A2)∪D1(A2)∪D2(A2)∪D3(A2)| ≤ 3k2 + |D0(A2)| = 3k2 +k2−n0 = 4k2−n0.

It remains to show that if n0 < k2, then the subset A2 satisfies the inequality

R4(A2) ≤ 4k2 − 8√
6

√
k2 − n0 − 0.5. (35)

The set A2 is a disjoint union of

A+ = A ∩ (x > u)

and

A− = A ∩ (x < −u).

Let k+
2 = |A+| and k−

2 = |A−|. If k+
2 = 0 or k−

2 = 0, then R4(A2) = 0. Therefore,
there is no loss of generality in assuming that k+

2 ≥ 1 and k−
2 ≥ 1.

Denote by π1(x, y) = x the projection parallel to line (x = 0), by π2(x, y) = y

the projection parallel to line (y = 0), by π3(x, y) = x+ y the projection parallel to
line (x + y = 0) and by π4(x, y) = x − y the projection parallel to line (x − y = 0).

We claim that there is an integral vector w ∈ N
2 such that the sets

B+ = A+ + w and B− = A− − w

satisfy the following assertions:

(i) B+ and B− are disjoint,
(ii) the projections πi(B+) and πi(B−) are disjoint, for i = 1, 2, 3, 4,

(iii) the set B = B+ ∪ B− satisfies R4(A2) ≤ R4(B).

If both coordinates of w are distinct and large enough, then assertions (i) and (ii)
are clearly true. Let us now explain (iii). Each difference d = (d1, d2) ∈ Diff4(A2)
can be written as d = p− p′, where p + p′ = 2ci and p, p′ ∈ A2. Therefore, we have
either

p ∈ A+, p′ ∈ A−, d1 ≥ 2(u + 1) ≥ 2 (36)

or

p′ ∈ A+, p ∈ A−, d1 ≤ −2(u + 1) ≤ −2. (37)

This remark allows us to define a one-to-one map ϕ from

Diff4(A2) = D0(A2) ∪ D1(A2) ∪ D2(A2) ∪ D3(A2)

to

Diff4(B) = D0(B) ∪ D1(B) ∪ D2(B) ∪ D3(B).

More precisely, if pi = 2ci − p denotes the symmetric reflection of p with respect to
ci, then ϕ is given by

ϕ(d) =

{
d + 2w, if d = p − pi, p ∈ A+, pi ∈ A−,

d − 2w, if d = p − pi, p ∈ A−, pi ∈ A+.
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The image ϕ(d) ∈ Diff(B); indeed, if d = p − pi, p ∈ A+, pi ∈ A−, then

d + 2w = p − pi + 2w = (p + w) − (pi − w),

p + w ∈ B+ ⊆ B, pi − w ∈ B− ⊆ B,

(p + w) + (pi − w) = p + pi = 2ci;

if d = p − pi, p ∈ A−, pi ∈ A+, then

d − 2w = p − pi − 2w = (p − w) − (pi + w),

p − w ∈ B− ⊆ B, pi + w ∈ B+ ⊆ B,

(p − w) + (pi + w) = p + pi = 2ci.

In order to show that ϕ is one to one, it is enough to examine only differences
d′, d′′ ∈ Diff4(A2) of the form

d′ = (d′1, d
′
2) = p′ − p′i, where p′ ∈ A+, p′i ∈ A−,

d′′ = (d′′1 , d′′2) = p′′ − p′′i , where p′′ ∈ A−, p′′i ∈ A+.

In view of (36) and (37), we have d′1 ≥ 2 and d′′1 ≤ −2 and thus d′ + 2w �= d′′ − 2w,
because of w ∈ N

2. This implies that ϕ is one to one and assertion (iii) follows.
Assume that the set B+ lies on exactly a1 lines parallel to the line (x = 0), on

b1 lines parallel to the line (y = 0), on c1 lines parallel to the line (x + y = 0) and
on d1 lines parallel to the line (x − y = 0). In other words:

a1 = |π1(B+)|, b1 = |π2(B+)|, c1 = |π3(B+)|, d1 = |π4(B+)|.
The set B− determines the parameters a2, b2, c2 and d2 in a similar way, i.e.

a2 = |π1(B−)|, b2 = |π2(B−)|, c2 = |π3(B−)|, d2 = |π4(B−)|.
Therefore, property (ii) implies that the set B lies on exactly a1 + a2 lines parallel
to the line (x = 0), on b1 + b2 lines parallel to the line (y = 0), on c1 + c2 lines
parallel to the line (x + y = 0) and on d1 + d2 lines parallel to the line (x − y = 0).
Using inequality (17) and (i), we obtain

R4(A2) ≤ R4(B) ≤ 4|B| − (a1 + a2) + (b1 + b2) + (c1 + c2) + (d1 + d2)
2

= 4|A2| −
(

a1 + b1 + c1 + d1

2
+

a2 + b2 + c2 + d2

2

)
.

Note that k+
2 = |B+| and k−

2 = |B−|. We clearly have

a1 + b1 + c1 + d1

2
≥

√
a1b1 +

√
c1d1 ≥

√
|B+| +

√
|B+| = 2

√
k+
2 ,

a2 + b2 + c2 + d2

2
≥

√
a2b2 +

√
c2d2 ≥

√
|B−| +

√
|B−| = 2

√
k−
2 .
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In order to prove inequality (35), we will improve these two estimates, using
assertion (c) of Proposition 1. Indeed, this result implies that

a1 + b1 + c1

2
≥

√
3k+

2 − 3
4

and thus

a1 + b1 + d1

2
≥

√
3k+

2 − 3
4
,

a1 + c1 + d1

2
≥

√
3k+

2 − 3
4
,

b1 + c1 + d1

2
≥

√
3k+

2 − 3
4
.

These four estimates give 3
2 (a1 + b1 + c1 + d1) ≥ 4

√
3k+

2 − 3
4 and thus

a1 + b1 + c1 + d1

2
≥ 4√

3

√
k+
2 − 1

4
.

A similar inequality is valid for the sum a2 + b2 + c2 + d2 and therefore

R4(A2) ≤ 4|A2| −
(

a1 + b1 + c1 + d1

2
+

a2 + b2 + c2 + d2

2

)

≤ 4|A2| − 4√
3

√
k+
2 − 1

4
− 4√

3

√
k−
2 − 1

4
.

Let us estimate the cardinalities of the sets B+ and B−. Let us recall that n0

denotes the number of points p ∈ A2 such that p0 = 2c0 − p /∈ A2; therefore, the
number of points p ∈ A2 with −p ∈ A2 is equal to k2 − n0, and so

k+
2 = |B+| = |A+| ≥ k2 − n0

2
, k−

2 = |B−| = |A−| ≥ k2 − n0

2
.

Using n0 < k2, we get

R4(A2) ≤ 4k2 − 4√
3

√
k+
2 − 1

4
− 4√

3

√
k−
2 − 1

4

≤ 4k2 − 8√
3

√
k2 − n0

2
− 1

4
= 4k2 − 8√

6

√
k2 − n0 − 0.5

and Lemma 8 is proved.

The following result is an easy consequence of Lemma 8.

Lemma 9. Let A ⊆ Z
2 be a finite set of k = |A| lattice points in the plane. If A is

disconnected, then we can split it into two disjoint subsets A1 and B1 such that :

(a) |A1| ≥ 0, |B1| ≥ 1 and R4(A) = R4(A1) + R4(B1),
(b) R4(B1) ≤ 4|B1| − 2.9

√|B1| or R4(B1) < 3.99|B1|.
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Proof. There is no loss of generality in assuming that the disconnected set A

satisfies condition (I): there is an integer t such that −α + 1 ≤ t ≤ α − 1 and
A ∩ (x = ±t) = ∅. Choose u ≥ 0 minimal such that A ∩ (x = ±u) = ∅ and define
A1 = A ∩ (−u < x < u) and B1 = A\A1. Let n0 be the number of points p ∈ B1

such that p0 = 2c0−p /∈ B1. Using Lemma 8, we get that k1 = |A1| ≥ 0, l1 = |B1| ≥
1, 0 ≤ n0 ≤ l1, R4(A) = R4(A1) + R4(B1) and

R4(B1) ≤ 4l1 − n0, if 0 ≤ n0 ≤ l1, (38)

and

R4(B1) ≤ 4l1 − 8√
6

√
l1 − n0 − 0.5, if n0 < l1. (39)

We complete the proof by showing that inequalities (38) and (39) imply assertion
(b) of Lemma 9. We may assume that l1 ≥ 3. Indeed, if l1 = 1, then R4(B1) ≤ 1 <

3.99l1, and if l1 = 2, then R4(B1) ≤ 3 < 3.99l1. We distinguish several cases.

Case 1. Assume that 6.77l1 ≥ 32n0 + 16. It follows that n0 < l1, l1 ≥ 1, and
inequality (39) implies that

R4(B1) ≤ 4l1 − 8√
6

√
l1 − n0 − 0.5 ≤ 4l1 − 2.9

√
l1.

Case 2. Assume that 6.77l1 < 32n0+16. Using l1 ≥ 3, we get n0 ≥ 1, and inequality
(38) implies that

R4(B1) ≤ 4l1 − n0 < 4l1 − 6.77l1 − 16
32

< 4l1 − 6.72l1 − 16
32

= 3.79l1 + 0.5 < 3.99l1.

Lemma 9 is proved.

Theorem 1 follows from Lemma 7 and Lemma 10 below.

Lemma 10. Let A ⊆ Z
2 be a finite disconnected set of k = |A| lattice points in the

plane. If k is sufficiently large, then

R4(A) < 4k −√
8k + 1. (40)

Proof. Note that Lemma 9 does not imply directly inequality (40), because the set
A1 is not necessarily connected. Therefore, we apply Lemma 9 several times. Let
A0 = A. There is an integer n ≥ 1 and a finite sequence of subsets of A

{A1, B1, A2, B2, . . . , An, Bn},
such that, for every 1 ≤ j ≤ n, we have

Aj−1 = Aj ∪ Bj , Aj ∩ Bj = ∅ and Bj �= ∅,
R4(Aj−1) = R4(Aj) + R4(Bj),

R4(Bj) ≤ 4|Bj| − 2.9
√|Bj | or R4(Bj) < 3.99|Bj|,

An is connected or An = ∅.

(41)
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Denote kj = |Aj |, lj = |Bj | and define a partition of {1, 2, . . . , n} as follows:

I1 = {j : 1 ≤ j ≤ n, R4(Bj) ≤ 4lj − 2.9
√

lj}, u =
∑
j∈I1

lj ,

I2 = {j : 1 ≤ j ≤ n, R4(Bj) < 3.99lj}, v =
∑
j∈I2

lj.

It follows that kj + lj = kj−1, lj ≥ 1 for 1 ≤ j ≤ n, and we have

k = |A| = kn + l1 + l2 + · · · + ln, k = kn + u + v, u + v ≥ 1.

Using equality (41) several times, we get

R4(A) = R4(A1) + R4(B1) = (R4(A2) + R4(B2)
)

+ R4(B1)

= · · · = R4(An) + R4(Bn) + R4(Bn−1) + · · · + R4(B2) + R4(B1)

= R4(An) +
∑
j∈I1

R4(Bj) +
∑
j∈I2

R4(Bj)

≤ R4(An) +
∑
j∈I1

(4lj − 2.9
√

lj) +
∑
j∈I2

(4lj − 0.01lj)

= R4(An) +
∑

1≤j≤n

4lj − 2.9
∑
j∈I1

√
lj − 0.01

∑
j∈I2

lj

≤ R4(An) +
∑

1≤j≤n

4lj − 2.9
√∑

j∈I1

lj − 0.01
∑
j∈I2

lj

= R4(An) + 4(u + v) − 2.9
√

u − 0.01v. (42)

We distinguish two cases.

Case 1. The set An is connected. Using (42), k = kn + u + v and Lemma 7, we get

R4(A) ≤ 4kn −
√

8kn + 1 + 4(u + v) − 2.9
√

u − 0.01v

≤ 4k −
√

8kn + 8.41u + 1 − 0.01v.

If v = 0, then k = kn + u, u ≥ 1 and thus

R4(A) ≤ 4k −
√

8kn + 8.41u + 1 − 0.01v

= 4k −
√

8kn + 8.41u + 1 < 4k −√
8k + 1.

If v ≥ 1, then k = kn + u + v and thus

R4(A) ≤ 4k −
√

8kn + 8.41u + 1 − 0.01v

≤ 4k −
√

8kn + 8u + 1 − 0.01v < 4k −√
8k + 1.
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Note that the last inequality is true in view of
√

8k + 1 −
√

8kn + 8u + 1 =
8v√

8k + 1 +
√

8kn + 8u + 1
<

8v√
8k + 1

< 0.01v

and if we assume k ≥ 80,000.

Case 2. The set An is empty. Using (42) and k = u + v, we get

R4(A) ≤ 4(u + v) − 2.9
√

u − 0.01v = 4k − 2.9
√

u − 0.01v.

If v = 0, then k = u, u ≥ 1 and thus k ≥ 3 implies

R4(A) ≤ 4k −
√

8.41u < 4k −√
8k + 1.

If v ≥ 1, then k = u + v and thus

R4(A) ≤ 4k −
√

8.41u− 0.01v ≤ 4k −
√

8u − 0.01v < 4k −√
8k + 1.

Note that the last inequality is true in view of
√

8k + 1 −√
8u =

8v + 1√
8k + 1 +

√
8u

≤ 9v√
8k + 1

< 0.01v

and if we assume k ≥ 101250. Lemma 10 is proved.
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