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Abstract. We prove that if S is finite set which generates a non-
abelian ordered group, then |S2| ≥ 3|S| − 2. This generalizes a
classical result from the theory of set addition.

1. Introduction

The structure theory of set addition, or Freiman-type theory, is an
area founded by the first named author some time ago, and which
concerns the structure of subsets of groups having so-called small ‘dou-
bling’ (see [F]). This area is very popular (see [B],[C],[GR],[GT],[HLS],
[R],[S] and [T]) and this paper contributes to the current programme
of trying to understand what happens when we move from the abelian
to nonabelian setting.

First we mention the following theorem, which is a classical result in
the theory of set addition.

Theorem 1.1. Let S be a finite subset of an ordered group. Then

|S2| ≥ 2|S| − 1.

Proof. Let S = {x1, x2, · · · , xk}, with x1 < x2 · · · < xk. Then:

x2
1 < x1x2 < x2

2 < x2x3 < x2
3 < · · · < x2

k−1 < xk−1xk < x2
k

and each of these elements belongs to S2. Hence |S2| ≥ 2k − 1 =
2|S| − 1, as required. �

This result is best possible as can be seen by considering geometric
progressions. However, the critical examples (geometric progressions)
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are abelian in character and the main result of this paper is the fol-
lowing theorem, which is a strengthening of Theorem 1.1 if the group
generated by S is nonabelian.

Theorem 1.2. Let S be a finite subset of an ordered group, which

generates a nonabelian subgroup. Then

|S2| ≥ 3|S| − 2.

Theorem 1.2 can be restated in the following Freiman-type equivalent
form.

Theorem 1.3. Let S be a finite subset of an ordered group and suppose

that

|S2| ≤ 3|S| − 3.

Then S generates an abelian subgroup.

This result is best possible, so that there is an ordered group G and
a subset S generating a nonabelian group with |S2| = 3|S| − 2.

We prove Theorem 1.3 in Section 3. Under a bit stronger assumption,
we obtain the following extension of Freiman’s Theorem 1.9 in [F].

Corollary 1.4. Let S be a finite subset of an ordered group G and

suppose that

t = |S2| ≤ 3|S| − 4.

Then there exist x1, g ∈ G, such that g > 1, gx1 = x1g and S is a

subset of the geometric progression

{x1, x1g, x1g
2, · · · , x1g

t−|S|}.

Finally we mention the following interesting result concerning or-
dered groups, which is proved in Section 2.

Corollary 1.5. Let S be a finite subset of an ordered group G. Then

NG(S) = CG(S).

Since the class of ordered groups contains the class of torsion-free

nilpotent groups, our results hold in particular for finite subsets of
torsion-free nilpotent groups.

We conclude this section with the following basic definition.

Definition 1.6. If S, T are subsets of a group G, then we denote

ST = {st | s ∈ S, t ∈ T} and S2 = {s1s2 | s1, s2 ∈ S}.

If S = {s}, then we denote ST by sT and if T = {t}, then we write St
instead of S{t}. If G is an additive group, then we denote

2S = {s1 + s2 | s1, s2 ∈ S}.
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2. Finite subsets of ordered groups

We begin this section with the definitions of ordered groups and of
orderable groups. We recall some properties of these groups that we
shall use in this paper, and we mention some interesting examples of
orderable groups.

In the second part of this section we investigate finite subsets in
ordered groups.

Definition 2.1. Let G be a group and suppose that a total order rela-

tion < is defined on the set G. We say that (G, <) is an ordered group

if for all a, b, x, y ∈ G, the inequality a < b implies that xay < xby.

A group G is orderable if there exists a total order relation < on the

set G, such that (G, <) is an ordered group.

The following properties of ordered groups follow easily from the
definition (we apply the notation of the definition and denote by 1 the
unit element of G).

• If a < b and n is a positive integer, then an < bn and a−n > b−n.
• If a < 1, then x−1ax < 1.
• G is torsion-free.
• If a, x ∈ G and a = x−1a−1x, then a = 1.

The next lemma due to B.H. Neumann (see [N]) will be very useful
in the sequel.

Lemma 2.2. Let (G, <) be an ordered group and let a, b ∈ G. If

[an, b] = 1 for some integer n 6= 0, then [a, b] = 1.

Proof. For each integer m > 0 we have the following identities:

[am, b] ≡(a−(m−1)[a, b]am−1)(a−(m−2)[a, b]am−2) · · ·

(a−1[a, b]a1)(a0[a, b]a0)

and

[a−m, b] ≡
−1∏

k=−m

(a−k[a, b]−1ak).

Suppose that [a, b] > 1 ([a, b] < 1). Since [am, b] is a product of con-
jugates of [a, b], each of which is > 1 (< 1), it follows that [am, b] > 1
([am, b] < 1). Similarly, it follows that [a−m, b] < 1 ([a−m, b] > 1).
Hence if [a, b] 6= 1, then [an, b] 6= 1 and the result follows. �

There are many examples of orderable groups. An abelian group

is orderable if and only if it is torsion-free, by a theorem of F.W. Levi
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(see [L]). K. Iwasawa (see [I]), A.I. Mal’cev (see [MA]) and B.H. Neu-
mann (see [N]) proved, independently, that the class of ordered groups
contains the class of torsion-free nilpotent groups.

Other examples of solvable orderable groups can be obtained using
the following theorem of Kargapolov (see [K]).

Theorem 2.3. A torsion-free group G has the property that every full

order for any subgroup of G can be extended to some full order of G
if and only if there exists a normal abelian subgroup A of G such that

G/A is abelian and for any a ∈ A and b ∈ G \ A, there exist positive

integers m, n, m 6= n, such that (am)b = an.

More information concerning ordered groups may be found, for ex-
ample, in [GL] and in [BMR].

We now prove an important proposition concerning finite subsets in
ordered groups.

Proposition 2.4. Let (G, <) be an ordered group and let S be a finite

subset of G of size k. If y ∈ G \ CG(S), then

|yS ∪ Sy| ≥ k + 1.

In particular, there exist xi, xj ∈ S such that yxi /∈ Sy and xjy /∈ yS.

Proof. Suppose, to the contrary, that yS = Sy. Since y /∈ CG(S), there
exists x1 ∈ S such that

yx1 6= x1y.

As yS = Sy, there exists x2 ∈ S such that x2 6= x1 and yx1 = x2y.
Suppose that there exist x1, x2, . . . , xt ∈ S such that

yx1 = x2y(1)

yx2 = x3y

...

yxt−1 = xty

where xi = xj if and only if i = j.
Since yS = Sy, there exists xt+1 ∈ S such that

yxt = xt+1y.

We claim that xt+1 /∈ {x1, x2, . . . , xt}. Indeed, if xt+1 = xu for some
integer u, 1 ≤ u ≤ t, then by (1)

xt = y−1xt+1y = y−1xuy = y−2xu+1y
2 = · · · = y−(t−u+1)xty

t−u+1

and hence [xt, y
t−u+1] = 1. It follows by Lemma 2.2 and (1) that

yxt = xty = yxt−1. But then xt = xt−1, in contradiction to (1). This
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proves our claim. Since this procedure can be carried out indefinitely,
we have reached a contradiction to the finiteness of S. Hence yS 6= Sy
and the proposition follows. �

From Proposition 2.4 we derive Corollary 1.5.

Corollary 1.5. Let S be a finite subset of an ordered group G. Then

NG(S) = CG(S).

Proof. If y ∈ NG(S), then yS = Sy and if follows from Proposition 2.4
that y ∈ CG(S). The opposite containment is trivial. �

3. The main results

In this section we prove our main results and some corollaries. First
we prove Theorem 1.3.

Theorem 1.3. Let S be a finite subset of an ordered group G and

suppose that

(*) |S2| ≤ 3k − 3.

Then S generates an abelian subgroup.

Proof. Let S = {x1, x2, · · · , xk}, with x1 < x2 · · · < xk.
If k = 2, then |S2| ≤ 3. As x2

1 < x1x2 < x2
2, it follows that S2 =

{x2
1, x1x2, x

2
2} and we must have x2x1 = x1x2, as required.

So assume that k > 2 and that all subsets X of G satisfying 2 ≤
|X| < k and |X2| ≤ 3|X| − 3 generate an abelian subgroup. Assume,
moreover, that 〈S〉 is nonabelian. Our aim is to reach a contradiction.

Let i be the maximal integer such that

A = {x1, x2, . . . , xi}

generates an abelian subgroup. Then

(i) 1 ≤ i < k, xi+1 /∈ CG(A), xi+1 /∈ 〈A〉

and there exists xj ∈ A such that

(ii) xi+1xj 6= xjxi+1.

Let xj be the maximal such element of A. Then

(iii) xa ∈ CG(xi+1) for each xa ∈ A satisfying xa > xj.

Moreover, it follows from (i) that

(iv) A2 ∩ (xi+1A ∪ Axi+1) = ∅.

Write
D = {xi+1, xi+2, . . . , xk}.
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If |D| = 1, then i = k − 1 and the order in S implies that x2
k /∈ A2 ∪

(xi+1A ∪Axi+1). Thus, by (iv), (ii), Theorem 1.1 and Proposition 2.4,
we get that

|S2| ≥ |A2| + |xi+1A ∪ Axi+1| + |{x2
k}| ≥ (2i − 1) + (i + 1) + 1

= 3i + 1 = 3(k − 1) + 1 = 3k − 2

in contradiction to (*).
So assume that |D| ≥ 2. We claim that

|D2| ≤ 3|D| − 3.

First we notice, that the order in S implies that

(v) D2 ∩ (A2 ∪ xi+1A ∪ Axi+1) = ∅.

This observation, together with (iv), (*), (ii), Theorem 1.1 and Propo-
sition 2.4, yields the following inequality:

|D2| ≤ |S2| − |A2| − |xi+1A ∪ Axi+1| ≤ (3k − 3) − (2i − 1) − (i + 1)

= 3(k − i) − 3 = 3|D| − 3.

This proves our claim.
Since 2 ≤ |D| < k, it follows by the inductive assumption that 〈D〉

is abelian. In particular,

(vi) 〈D〉 ≤ CG(xi+1).

This implies, in view of (ii), that

(vii) D2 ∩ (xjD ∪ Dxj) = ∅.

We claim that

(viii) Axi+1 ∩ xjD = {xjxi+1}.

Indeed, suppose that

(ix) xaxi+1 = xjxd for some xa ∈ A and xd ∈ D.

If xa > xj, then it follows by (ix), (iii) and (vi) that xj ∈ 〈xa, xi+1, xd〉 ≤
CG(xi+1), in contradiction to (ii). On the other hand, if xa < xj, then
it follows by (ix) that xi+1 > xd, which is impossible, since xi+1 is the
smallest element in D. Thus xa = xj, xd = xi+1 and our claim follows.
Since |Axi+1| = |A| = i and |xjD| = |D| = k − i, (viii) implies that

(x) |Axi+1 ∪ xjD| = k − 1.

We also claim that

(xi) A2 ∩ (xjD ∪ Dxj) = ∅.
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Indeed, suppose that there exist xa, xb ∈ A and xd ∈ D satisfying

xaxb = xjxd.

Since xb < xd, it follows that xa > xj. But 〈A〉 is abelian, so xaxb =
xbxa and similarly we get xb > xj. Thus, by (iii) and (vi), xj ∈
〈xa, xb, xd〉 ≤ CG(xi+1), in contradiction to (ii). Hence A2 ∩ xjD = ∅
and a similar proof yields A2 ∩ Dxj = ∅. Thus our claim holds.

It follows by (iv), (v), (vii) and (xi) that

|A2 ∪ D2 ∪ Axi+1 ∪ xjD| = |A2| + |D2| + |Axi+1 ∪ xjD|

and hence, by Theorem 1.1 and (x), we get

|A2 ∪D2 ∪Axi+1 ∪ xjD| ≥ (2i− 1) + (2(k − i)− 1) + (k − 1) = 3k − 3.

Thus, by (*),

(xii) S2 = A2 ∪ D2 ∪ Axi+1 ∪ xjD.

Consider now the element xi+1xj ∈ S2. By (v), xi+1xj /∈ D2 and by
(iv), xi+1xj /∈ A2.

Suppose, first, that xi+1xj ∈ Axi+1. Then

(xiii) xi+1xj = xaxi+1 for some xa ∈ A.

If xa > xj, then by (xiii) and (iii) xj ∈ CG(xi+1), in contradiction to
(ii). Again by (ii) xa 6= xj. Hence xa < xj.

By (ii) and Proposition 2.4, there exists xb ∈ A such that xi+1xb /∈
Axi+1. Since xi+1xj ∈ Axi+1, we know that xb 6= xj and if xb > xj,
then (iii) implies that xi+1xb = xbxi+1 ∈ Axi+1, a contradiction. Hence
xb < xj.

Since xi+1xb /∈ Axi+1 and since by (iv) and (v), also xi+1xb /∈ A2∪D2,
it follows by (xii) that xi+1xb ∈ xjD and there exists xd ∈ D such that
xjxd = xi+1xb. Since 〈A〉 is abelian, it follows that xjxdxj = xi+1xbxj =
xi+1xjxb. As by (xiii) xi+1xj = xaxi+1, we get xjxdxj = xaxi+1xb and
xj > xb implies that xjxd < xaxi+1. But xj > xa and xd ≥ xi+1, so
xjxd > xaxi+1, a contradiction.

Suppose, finally, that xi+1xj ∈ xjD. It follows that

xi+1xj = xjxd for some xd ∈ D.

By (ii) and Proposition 2.4 there exists xf ∈ D such that xfxj /∈ xjD.
Since xi+1xj ∈ xjD, we must have xi+1 < xf .

Now, xfxj /∈ xjD and it follows from (vii) and (xi) that xfxj /∈
D2 ∪ A2. Hence by (xii) we must have xfxj ∈ Axi+1. Thus

(xiv) xaxi+1 = xfxj for some xa ∈ A.
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Since xfxj /∈ xjD, we must have xa 6= xj. If xa > xj, then it follows
by (iii) and (vi) that xj ∈ 〈xf , xa, xi+1〉 ≤ CG(xi+1), in contradiction
to (ii). Hence xa < xj.

Since 〈D〉 is abelian, it follows from (xiv) that xi+1xaxi+1 = xi+1xfxj =
xfxi+1xj. Now xi+1xj = xjxd, so xi+1xaxi+1 = xfxjxd. But xi+1 < xf ,
so xaxi+1 > xjxd. However, xa < xj and xi+1 ≤ xd, so xaxi+1 < xjxd,
a contradiction.

We have shown that xi+1xj ∈ S2 does not belong to A2∪D2∪Axi+1∪
xjD, in contradiction to (xii). It follows from this contradiction that
〈S〉 is abelian. �

The result of the previous theorem is best possible. In fact, we
exhibit in the following example an ordered group G and a finite subset
S of G, such that 〈S〉 is nonabelian, |S| = k ≥ 2 and |S2| = 3k − 2.

Example.

Let G = A o 〈b〉 be a semidirect product of an abelian subgroup A,
isomorphic to the additive rational group (Q, +), with an infinite cyclic
group 〈b〉, such that

b−1ab = a2 for each a ∈ A.

Then G is torsion-free and it is orderable by Theorem 2.3.
Let a ∈ A \ {1} and let S = {b, ba, ba2, . . . , bak−1}. Since ab = ba2,

it is easy to see that S2 = {b2, b2a, b2a2, b2a3, . . . , b2a3k−3}. Thus 〈S〉 is
nonabelian and |S2| = 3k − 2.

Theorem 1.3 is clearly equivalent to Theorem 1.2.

Theorem 1.2. Let S be a finite subset of an ordered group, which

generates a nonabelian subgroup. Then

|S2| ≥ 3|S| − 2.

In order to prove Corollary 1.4 we need the following proposition,
which extends Freiman’s Theorem 1.9 in [F] from finite subsets of inte-
gers to finite subsets in ordered groups, generating abelian subgroups.
Although this result is mentioned in [HLS], for sake of completeness
we decided to report it with its proof.

Proposition 3.1. Let S be a finite subset of an ordered group G and

suppose that

t = |S2| ≤ 3|S| − 4

and S generates an abelian group. Then there exist x1, g ∈ G, such

that g > 1, gx1 = x1g and S is a subset of the geometric progression

{x1, x1g, x1g
2, · · · , x1g

t−|S|}.
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Proof. Let S = {x1, x2, · · · , xk}, with x1 < x2 · · · < xk. Clearly we
may assume that G = 〈S〉, an abelian group.

Write yi = x−1
1 xi for i ∈ {1, · · · , k} and let K = {1, y2, · · · , yk}.

Then 1 < y2 < y3 < · · · < yk, S = x1K, S2 = x2
1K

2 and |S2| = |K2|, so
it suffices to prove the theorem when x1 = 1. So assume that x1 = 1.
We argue by induction on k.

Assume first that k = 3 and S = {1, x2, x3}. Then the elements
1, x2, x

2
2, x2x3, x

2
3 are all different, since 1 < x2 < x3. But |S2| ≤

3 · 3 − 4 = 5, so S2 = {1, x2, x
2
2, x2x3, x

2
3}, and the only possibility for

x3 ∈ S2 is x3 = x2
2. Hence S = {1, g, g2} with g = x2 > 1 and 2 = t−k,

as required.
Suppose now that k > 3 and that the theorem holds for subsets X

of G satisfying 3 ≤ |X| < k and |X2| ≤ 3|X| − 4. Let g = xkx
−1
k−1.

Then g > 1, since xk > xk−1.
Assume first that for each i, 1 ≤ i ≤ k − 1, we have xi+1 = xig

si+1,
where si+1 are positive integers. Then, as x1 = 1, it follows that
xi+1 = gqi+1, where qi+1 are integers and 0 < q2 < q3 < · · · <
qk. Let D = {0, q2, · · · , qk}. Since S = {1, gq2, · · · , gqk}, it follows
that |2D| = |S2| ≤ 3k − 4. As qi+1 are integers, Freiman’s Theo-
rem 1.9 in [F] implies that D is a subset of the arithmetic progression
{0, q, 2q, · · · , (t − k)q} for some integer q > 0. Thus S is a subset of
the set {1, gq, g2q, · · · , g(t−k)q}, where gq > 1, as required.

Now assume that there exists an integer i, 1 ≤ i ≤ k − 1, such that
for all positive integers l

xi+1 6= xig
l,

and let i be the maximal such integer. It follows by the definition of
g that i < k − 1. Moreover, the definition of i implies that for each
integer s, i < s ≤ k − 1, there exists a positive integer ts such that
xk = xsg

ts, but for s = i such integer does not exist.
Let S ′ = S \ {xk}. Obviously x2

k, xkxk−1 ∈ S2 \ (S ′)2 because of the
order in S. We also claim that xkxi ∈ S2\(S ′)2. In fact, if xkxi ∈ (S ′)2,
then xkxi = xuxv = xvxu for some integers u, v, 1 ≤ u, v ≤ k−1. Since
xk > xu, we must have i < v and similarly i < u. Therefore there
exist positive integers tu, tv such that xk = xug

tu and xk = xvg
tv . Thus

xkxi = xuxv = x2
kg

−(tu+tv), yielding xk = xig
tu+tv with tu + tv > 0,

in contradiction to the definition of i. This contradiction proves that
xkxi ∈ S2 \ (S ′)2. Since xkxi /∈ {x2

k, xkxk−1}, it follows that

|(S ′)2| ≤ |S2| − 3 ≤ 3k − 4 − 3 = 3(k − 1) − 4 = 3|S ′| − 4.

By induction there exists g′ > 1 such that each xj, 1 < j ≤ k −
1, satisfies xj = (g′)qj for some positive integer qj. In particular, if
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xw, xj ∈ S ′ and xwxj > 1, then xwxj = (g′)qw,j , where qw,j is a positive
integer.

Recall that xk > 1 and x2
k /∈ (S ′)2. We claim that if xk 6= (g′)h for

all positive integers h, then each xb ∈ S ′ satisfies xkxb /∈ (S ′)2. Indeed,
assume that this is not the case and xkxb = (g′)z for some positive
integer z. Then xk = (g′)l for some integer l and since xk, g

′ > 1, l
is positive. We have reached a contradiction to our assumption. This
proves our claim, and it follows that |S2| − |(S ′)2| ≥ k. Thus

|(S ′)2| ≤ |S2| − k ≤ 3k − 4 − k = 2(k − 1) − 2 = 2|S ′| − 2,

in contradiction to Theorem 1.1. Hence also xk = (g′)qk for some
positive integer qk. It follows from the order in S and from g′ > 1, that
0 < q2 < q3 < · · · < qk. Applying again Freiman’s Theorem 1.9 in [F]
to D = {0, q2, · · · , qk}, it follows as above that S is as required. �

Corollary 1.4 follows immediately from Theorem 1.3 and Proposi-
tion 3.1.

Corollary 1.4. Let S be a finite subset of an ordered group G and

suppose that

t = |S2| ≤ 3|S| − 4.

Then there exist x1, g ∈ G, such that g > 1, gx1 = x1g and S is a

subset of the geometric progression

{x1, x1g, x1g
2, · · · , x1g

t−|S|}.

Proof. By Theorem 1.3, 〈S〉 is abelian, and hence, by Proposition 3.1,
it is a subset of a geometric progression, as stated. �
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