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Abstract We give the structure of discrete two-dimensional finite sets A, B ⊆ R
2 which

are extremal for the recently obtained inequality |A + B| ≥ (
|A|
m + |B|

n − 1)(m + n − 1),

where m and n are the minimum number of parallel lines covering A and B respectively.
Via compression techniques, the above bound also holds when m is the maximal number of
points of A contained in one of the parallel lines covering A and n is the maximal number
of points of B contained in one of the parallel lines covering B. When m, n ≥ 2, we are
able to characterize the case of equality in this bound as well. We also give the structure of
extremal sets in the plane for the projection version of Bonnesen’s sharpening of the Brunn–
Minkowski inequality: μ(A + B) ≥ (μ(A)/m + μ(B)/n)(m + n), where m and n are the
lengths of the projections of A and B onto a line.
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262 G. A. Freiman et al.

1 Introduction

The Minkowski sum A + B, or simply sumset, of two subsets A and B of an abelian group
G is the set of sums {a + b : a ∈ A, b ∈ B}. The classical Brunn–Minkowski inequality
gives a lower bound for the volume of the sumset of two convex bodies in R

d in terms of
the volume of the summands. This seminal result in convex geometry has seen far reaching
extensions and applications; see e.g. [6] for a comprehensive survey. Lower bounds for the
cardinality of the sumset of finite subsets in the d-dimensional Euclidean space have also
been given by Freiman [4], Rusza [13], Green and Tao [8], and Gardner and Gronchi [7].

It is known that equality in the Brunn–Minkowski Theorem holds if and only if the two
sets are homothetic. Bonnesen [2] gave a strengthening of the Brunn–Minkowski Theorem
which takes into account the (d − 1)-dimensional volume of the projections of the two sets
onto a given hyperplane; see e.g. [3]. For the two-dimensional case, a discrete analog of the
inequality of Bonnesen was obtained in [9], which also improves the previously known dis-
crete lower bounds. The purpose of this paper is to obtain inverse results which characterize
the extremal sets for both the continuous and the discrete cases of these inequalities. The
characterization is particularly neat in the two-dimensional case, which is the topic of this
paper. The general d-dimensional case is addressed in a forthcoming paper [5].

Let A ⊆ R
2 be a finite two-dimensional set (i.e., not contained in a line). It is well-known

(see [4]) that

|2A| ≥ 3|A| − 3,

where |X | denotes the cardinality of a finite set X. More generally, for each integer m ≥ 1,

there is an integer k0(m) such that, if |A| ≥ k0(m) and

|2A| <

(
4 − 2

m + 1

)
|A| − (2m + 1), (1)

then A can be covered by at most m parallel lines. For m = 1, 2, this follows by results of
Freiman [4], and for m ≥ 3, by results of Stanchescu [14] (see also [15]). The case of addition
of two different sets was considered by Grynkiewicz and Serra [9] where they obtained the
inequality

|A + B| ≥
( |A|

m
+ |B|

n
− 1

)
(m + n − 1), (2)

where A, B ⊆ R
2 are finite subsets and m and n are the number of lines parallel to some

given line � which cover A and B respectively.
Our first result, Theorem 2.1 in Sect. 2, shows that equality holds in (2) for two-dimen-

sional sets if and only if A and B are both trapezoids with parallel sides parallel to � and
having corresponding pairs of sides between A and B also parallel, allowing sides consisting
of a single point so that our definition of trapezoid also includes triangles.

A common technique in the study of sumsets is the so-called compression, introduced by
Freiman [4] in this context, and used by Kleitman [10] and by Bollobás and Leader [1] among
other authors. By basic compression techniques (replicated in the proof of Theorem 3.1), it
can be shown that (2) also holds when m is the maximum number of points of A contained on
a line parallel to � and n is the maximum number of points of B contained on a line parallel
to �. Our second result, Theorem 3.1 in Sect. 3, characterizes the more complicated cases of
equality in this alternative bound for m, n ≥ 2. When m = 1 or n = 1, we give an example
showing the structure in these cases can be much wilder.
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Inverse additive problems for Minkowski sumsets I 263

Let A and B be two convex two-dimensional bodies in R
2. The Brunn–Minkowski

Theorem implies that

|A + B| ≥ (|A|1/2 + |B|1/2)2
, (3)

where |X | now stands for the area of a measurable set X in R
2. Moreover, equality holds

in (3) if and only if A and B are homothetic. A sharpening of the above Brunn–Minkowski
inequality was obtained by Bonnesen in 1929 (see e.g. [3]) and reproved in [9]:

|A + B| ≥
( |A|

m
+ |B|

n

)
(m + n), (4)

where m = |π(A)| and n = |π(B)| are the lengths of the projections of A and B onto the
first coordinate.

Observe that( |A|
m

+ |B|
n

)
(m + n)=

(
|A| 1

2 +|B| 1
2

)2+
(( n

m
|A|

) 1
2 −

(m

n
|B|

) 1
2
)2

≥
(
|A| 1

2 +|B| 1
2

)2
,

so that the lower bounds (3) and (4) coincide when |A|/m2 = |B|/n2. In this case, we
know that equality holds if and only if A and B are homothetic. On the other hand, if
|A|/m2 �= |B|/n2, then A and B are not homothetic, and (4) is strictly better than (3). One
may ask in this case about the structure of the sets A and B for which equality holds. Our
third result, Theorem 4.2 in Sect. 4, shows that equality holds in (4) if and only if the two sets
are obtained from a pair of homothetic convex bodies by stretching them along the vertical
line (see the appropriate definitions in Sect. 4).

We should remark that the bound (4) was originally proven when

m = sup
{|(x + �) ∩ A| | x ∈ R

2} and n = sup
{|(x + �) ∩ B| | x ∈ R

2} ,

where � is a line parallel to the horizontal axis. Standard compression or symmetrization tech-
niques are then used to derive (4) from this alternative bound, though it can also be derived
independently (via the techniques from [5,9]). The characterization of equality in this fourth
bound is addressed in the forthcoming paper [5] since the argument is more closely related to
the techniques used for the d-dimensional case of equality in (2), which is the main subject of
[5]. Surprisingly, the measure-theoretic extremal structures for this original Bonnesen bound
are very well-behaved and exhibit none of the wilder behavior that is possible for its discrete
analog (see Sect. 3 and [5]). It is even more surprising, given that the discrepancy between
the discrete and measure-theoretic extremal structures for (2) and (4) is much milder (see
Sects. 2 and 4).

2 The Discrete Case I

Let A ⊆ R
2 be a finite set contained in exactly m ≥ 1 parallel lines. Then inequality (1) can

be rephrased by saying that

|2A| ≥
(

4 − 2

m

)
|A| − (2m − 1) =

(
2
|A|
m

− 1

)
(2m − 1). (5)

By choosing the m parallel lines to be �i := {(x, y) | x = i, y ∈ R}, for i = 0, 1, . . . , m −1,

and letting each Ai := A ∩ �i be an arithmetic progression with first term (i, 0), difference
d = (0, 1) ∈ Z

2 and length |A|/m ∈ Z, one can check that inequality (5) becomes tight.
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264 G. A. Freiman et al.

Fig. 1 A standard trapezoid
T (m, h, c, d) = T (6, 19, −1, 2)

As mentioned in the introduction, the following extension of the lower bound (5) was
given in [9]. Let A and B be finite, nonempty sets in R

2. Suppose that, for some line �, A
and B are covered by exactly m and n lines parallel to � respectively. Then

|A + B| ≥
( |A|

m
+ |B|

n
− 1

)
(m + n − 1). (6)

Note that if A = B, then m = n and we get the inequality (5).
To state our characterization in Theorem 2.1, we need the following notation for describing

trapezoids and triangles under a common umbrella.

Definition Let m ≥ 1, h ≥ 1 be integers and let c, d ∈ R be real numbers with c − d ∈ Z

and h − 1 + (m − 1)c ≥ (m − 1)d. A standard trapezoid T (m, h, c, d) in R
2 is a translate of

the bounded set T ⊆ 〈(0, 1), (1, d)〉 ∼= Z
2 defined by the inequalities x ≥ 0, x ≤ m −1, y ≤

cx + h − 1 and y ≥ dx .

Thus a standard trapezoid T (m, h, c, d) is a trapezoid with vertical parallel sides, either
of which are allowed to consist of a single point so that our definition of trapezoid includes
triangles and line segments, and its two (possibly) non-parallel sides of integer slopes c and
d. Moreover, m is the number of points in the perpendicular line segment joining the two
parallel sides while h is the number of points in the leftmost parallel side. See Fig. 1, keeping
in mind that the slopes c and d can each be positive, negative or zero in general.

When characterizing equality in (6), by rotating R
2 appropriately and translating A and

B, there is no loss of generality to assume � is a vertical line and 0 ∈ A∩ B. These are simply
normalization hypotheses in Theorem 2.1. When either A or B is one-dimensional, meaning
contained in a line, then the characterization of equality in (2) is well-known and follows
from Theorem 2.2. A routine calculation shows that two standard trapezoids T (m, h, c, d)
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Inverse additive problems for Minkowski sumsets I 265

and T (n, h′, c, d) with common slopes c and d satisfy equality (7) below. Thus the description
provided by Theorem 2.1 gives a full characterization of the equality (7).

Theorem 2.1 Let A, B ⊆ R
2 be finite two-dimensional subsets with 0 ∈ A ∩ B. Let m and

n be the exact number of vertical lines which cover A and B respectively. Suppose

|A + B| =
( |A|

m
+ |B|

n
− 1

)
(m + n − 1). (7)

Then there exists a linear transformation ϕ : R
2 → R

2 of the form

ϕ(x, y) = (α−1x, β−1 y),

for some positive α ∈ R, β ∈ R, such that both ϕ(A) and ϕ(B) are standard trapezoids
T (m, h, c, d) and T (n, h′, c, d) with common slopes c and d.

For the proof, we will need the following well-known result (see [11, Theorem 1.4, Lemma
1.3, Corollary 8.1]).

Theorem 2.2 Let G be a torsion-free abelian group and let A, B ⊆ G be finite, nonempty
subsets. Then

|A + B| ≥ |A| + |B| − 1

with equality if and only if min{|A|, |B|} = 1 or A and B are both arithmetic progressions
of common difference.

A main part of the proof of Theorem 2.1 is the following lemma, which replicates the
majority of the original proof used to establish (6).

Lemma 2.3 Let I, J ⊆ R be finite, nonempty subsets and let a = (ai : i ∈ I ) and
b = (b j : j ∈ J ) be two sequences of non-negative real numbers. For each t ∈ I + J, let
ut (a, b) = max{ai + bt−i : i ∈ I, t − i ∈ J }. Then

1

|I | + |J | − 1

∑
t∈I+J

ut (a, b) ≥ 1

|I |
∑
i∈I

ai + 1

|J |
∑
j∈J

b j . (8)

Moreover, if min(|I |, |J |) ≥ 2 with ai , b j > 0 for i ∈ I and j ∈ J, then equality holds
if and only if both I and J are arithmetic progressions with common difference and both
sequences a and b are also arithmetic progressions with common difference.

Proof For a finite sequence x = (xi : i ∈ K ), denote by x = 1
|K |

∑
i∈K xi its average

value. If y = (yi : i ∈ L) is another sequence, we denote by u+(x, y) the subsequence of
the |K |+ |L|− 1 largest elements in the sequence u(x, y) = (ut (x, y) : t ∈ K + L), which
is well-defined in view of Theorem 2.2. We shall prove that

u+(a, b) ≥ a + b. (9)

Let m = |I | and n = |J |. The proof is by induction on m + n. If either m = 1 or n = 1,

then equality in (9) (and in (8)) clearly holds. Assume that m, n ≥ 2.

Let α ∈ I and β ∈ J be elements such that α +β ∈ I + J is a unique expression element;
for instance, letting α and β be the minimal elements from I and J, or the maximal elements,
would guarantee this property. Let a′ = (ai : i ∈ I \ {α}) and b′ = (b j : j ∈ J \ {β}). We
may assume that b̄ − b̄′ ≤ ā − ā′. We clearly have

(m + n − 1)u+(a, b) ≥ (m + n − 2)u+(a, b′) + aα + bβ . (10)
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266 G. A. Freiman et al.

By the induction hypothesis u+(a, b′) ≥ ā + b̄′ and using the assumption b̄ − b̄′ ≤ ā − ā′,
it follows that

(m + n − 1)u+(a, b) ≥ (m + n − 2)(ā + b̄′) + aα + bβ (11)

= (m + n − 2)(ā + b̄′) + mā − (m − 1)ā′ + nb̄ − (n − 1)b̄′

= (m + n − 1)(ā + b̄) + (m − 1)(ā − ā′) + (m − 1)(b̄′ − b̄)

≥ (m + n − 1)(ā + b̄), (12)

as claimed. In view of ai , b j ≥ 0, we see that (8) follows from (9).
Suppose now that min{m, n} ≥ 2, that ai , b j > 0 for i ∈ I and j ∈ J, and that there

is equality in (8). Then I and J are arithmetic progressions with common difference—as
otherwise Theorem 2.2 implies |I + J | > |I | + |J | − 1 while ut (a, b) > 0 for all t ∈ I + J,

whence inequality (9) implies a + b ≤ u+(a, b) < 1
|I |+|J |−1

∑
t∈I+J ut (a, b), contrary to

assumption. Therefore we may assume w.l.o.g. that I = {1, 2, . . . , m} and J = {1, 2, . . . , n}.
In order to see that the sequences a and b are arithmetic progressions with the same dif-

ference, we again proceed by induction on m +n starting at m = n = 2. To this end, suppose
m = 2 and n ≥ 2. In this case, the equality reads (multiplying both sides by n + 1)

n + 1

2
ã + b̃ + b̃

n
= a1 + b1 +

n∑
t=2

max(a1 + bt , a2 + bt−1) + a2 + bn,

where b̃ = ∑n
j=1 b j and ã = ∑m

i=1 ai = a1 + a2. Using the estimate max(a1 + bt , a2 +
bt−1) ≥ 1

2 (a1 +bt +a2 +bt−1), which holds with equality if and only if a2 −a1 = bt −bt−1,

we conclude that

n + 1

2
ã + b̃ + b̃

n
≥ a1 + b1 + 1

2

n∑
t=2

(a1 + bt + a2 + bt−1) + a2 + bn

= n + 1

2
ã + b̃ + b1 + bn

2
, (13)

with equality if and only if a and b are arithmetic progressions of common difference a2 −a1.

When n = 2, we have b1 +bn = b̃, so equality holds in (13), yielding the desired conclusion.
This completes the base case m = n = 2. Therefore we may assume w.l.o.g. that m ≥ 2 and
n ≥ 3 and continue with a second base case of sorts.

Suppose m = 2, n ≥ 3 and b̄ − b̄′ ≤ ā − ā′ fails both when taking α = β = 1 to be the
minimal elements in I and J, and when taking α = m = 2 and β = n to be the maximal
elements in I and J, where a′ and b′ are as defined in the proof of (12). This means

a2 − a1

2
= 1

2
(a1 + a2) − a1 <

1

n

n∑
i=1

bi − 1

n − 1

n∑
i=2

bi = nb1 − b̃

n(n − 1)
and

a1 − a2

2
= 1

2
(a1 + a2) − a2 <

1

n

n∑
i=1

bi − 1

n − 1

n−1∑
i=1

bi = nbn − b̃

n(n − 1)
,

where, as before, b̃ = ∑n
i=1 bi . Adding both these inequalities yields 0 < nb1+nbn−2b̃

n(n−1)
, which

implies b1+bn
2 > b̃

n . However, since m = 2, this contradicts (13). So, when m = 2 and n ≥ 3,

we may assume b̄ − b̄′ ≤ ā − ā′ with w.l.o.g. α = β = 1, and when m ≥ 3 and n ≥ 3, we
may also (by symmetry) assume b̄ − b̄′ ≤ ā − ā′ with α = β = 1. We can now finish the
general case m ≥ 2 and n ≥ 3 as follows.

123



Inverse additive problems for Minkowski sumsets I 267

Since b̄ − b̄′ ≤ ā − ā′, we must have equality in (11) and (12). Since I and J \ {1}
are arithmetic progressions with common difference, we have u+(a, b′) = u(a, b′). Thus
equality in (11) implies u(a, b′) = u+(a, b′) = ā + b̄′. Consequently, since n ≥ 3, we can
apply the induction hypothesis to a and b′ and thus conclude they are arithmetic progressions
with common difference d = a2 − a1. Equality in (12) implies b̄′ − b̄ = ā′ − ā, whence a
and b′ being arithmetic progressions with common difference d = a2 − a1 implies

1
n (b2 − b1) + d n−2

2n = 1
n−1

n−2∑
i=0

(b2 + id) − 1
n

(
b1 +

n−2∑
i=0

(b2 + id)

)

= b̄′ − b̄ = ā′ − ā = 1
m−1

m−1∑
i=1

(a1 + id) − 1
m

m−1∑
i=0

(a1 + id) = d
2 .

Consequently, b2 − b1 = d = a2 − a1, so that b, as well as b′ and a, is an arithmetic
progression with difference d, completing the proof. �

Proof of Theorem 2.1 For a set X ⊆ R
2 and i ∈ R, we let Xi = X ∩{(x, y) | x = i, y ∈ R}

denote the intersection of X with the vertical line defined by x = i. We let π : R
2 → R denote

the vertical projection map onto the horizontal axis: π(x, y) = x . Observe that |π(A)| = m
and |π(B)| = n. If m = 1, then A is contained in a vertical line, contrary to the hypothesis
that it is two-dimensional. As B is also two-dimensional by hypothesis, we cannot have n = 1
either. Therefore m, n ≥ 2.

We have

|A + B| =
∑

t∈π(A)+π(B)

|(A + B)t | (14)

=
∑

t∈π(A)+π(B)

∣∣∪i∈π(A),t−i∈π(B)(Ai + Bt−i )
∣∣ (15)

≥
∑

t∈π(A)+π(B)

max{|Ai + Bt−i | : i ∈ π(A), t − i ∈ π(B)} (16)

≥
∑

t∈π(A)+π(B)

max{|Ai | + |Bt−i | − 1 : i ∈ π(A), t − i ∈ π(B)} (17)

≥ (m + n − 1)

( |A|
m

+ |B|
n

− 1

)
, (18)

where inequality (17) follows from Theorem 2.2 and inequality (18) follows from the first part
of Lemma 2.3 with the sequences a = (|Ai |− 1

2 : i ∈ π(A)) and b = (|B j |− 1
2 : j ∈ π(B)).

Since A and B are extremal sets verifying equality in the lower bound (2), we have equality
in each of (16), (17) and (18).

Equality in (18) implies, in view of m, n ≥ 2 and the second part of Lemma 2.3, that π(A)

and π(B) are arithmetic progressions with common difference (say) α > 0. By applying
the linear transformation (x, y) �→ (α−1x, y) and then translating, we may w.l.o.g. assume
α = 1 with π(A) = {0, 1, . . . , m −1} and π(B) = {0, 1, . . . , n −1}. Moreover, by the same
lemma, the sequences |A0|, |A1|, . . . , |Am−1| and |B0|, |B1|, . . . , |Bn−1| are also arithmetic
progressions with the same common difference (say) d ′ ∈ R, and w.l.o.g. we can assume
d ′ ≥ 0 (as it suffices to prove the theorem for horizontal reflections of A and B). In particular,
for each t ∈ π(A + B), the terms inside the max function in (17) have the same common
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268 G. A. Freiman et al.

value, which means that

|Ai + Bt−i | = |Ai | + |Bt−i | − 1 and (19)

Ai + Bt−i = A j + Bt− j (20)

whenever Ai + Bt−i and A j + Bt− j are nonempty—in view of Theorem 2.2 and equality
holding in (17) and (16).

For i = 0, 1, . . . , n − 1, let bi ∈ Z be the minimal second coordinate of the elements
from Bi and let b′

i ∈ Z be the maximal second coordinate of the elements from Bi . For
i = 0, 1, . . . , m − 1, let ai ∈ Z be the minimal second coordinate of an element from Ai

and let a′
i ∈ Z be the maximal second coordinate of an element from Ai . In view of (20), we

have

ai + bt−i = a j + bt− j and a′
i + b′

t−i = a′
j + b′

t− j

whenever t ∈ π(A + B) = {0, 1, 2, . . . , m + n − 2}, i, j ∈ [0, m − 1] and t − i, t − j ∈
[0, n−1]. In particular, since m, n ≥ 2, we have a0+bi = a1+bi−1 and b0+a j = b1+a j−1

for all i = 1, . . . , n − 1 and j = 1, . . . , m − 1. Thus the sequences b0, b1, . . . , bn−1 and
a0, a1, . . . , am−1 are arithmetic progressions of common difference (say) d ∈ R and, like-
wise, the sequences b′

0, b′
1, . . . , b′

n−1 and a′
0, a′

1, . . . , a′
m−1 are arithmetic progressions of

common difference (say) c ∈ R. Since c−d = b′
1−b′

0 = (b1+|B1|−b0−|B0|)−(b1−b0) =
|B1| − |B0|, we see that c − d ∈ Z.

In view of d ′ ≥ 0, we have |B0| ≤ |B1| ≤ · · · ≤ |Bn−1| and |A0| ≤ |A1| ≤ · · · ≤ |Am−1|,
with all inequalities being strict when d ′ > 0. Thus |B1| = 1 is only possible if d ′ = 0 and
|Bi | = 1 for all i = 0, 1, . . . , n − 1, in which case Bi = {bi } for all bi . However, in this
case, B is contained in a line with slope d, contradicting that B is two-dimensional. There-
fore, we conclude that |Bi | ≥ 2, for i = 1, . . . , n − 1. Likewise, since A is also assumed
two-dimensional by hypothesis, we have |Ai | ≥ 2, for i = 1, . . . , m − 1.

Let i ∈ {1, . . . , m − 1}. Then |Ai | ≥ 2 and |Bn−1| ≥ 2 (as n ≥ 2), whence the equality
|Ai + Bn−1| = |Ai | + |Bn−1| − 1 from (19) together with Theorem 2.2 shows that Ai and
Bn−1 are both arithmetic progressions of common difference (say) β ∈ R. If |A0| = 1,

then A0 is trivially also an arithmetic progression with difference β, and if |A0| ≥ 2, then
applying the above argument to A0 + Bn−1 shows A0 to be an arithmetic progression with
difference β as well. Repeating these arguments for j ∈ {0, 1, . . . , n − 1}, using Am−1 + B j

instead of Ai + Bn−1, shows that each B j , for j = 0, 1, . . . , n − 1, is also an arithmetic
progression with difference β. Since |Bn−1| ≥ 2, we conclude that β �= 0. Thus, choosing
the sign of the difference appropriately, we may assume β > 0, and then, applying the
affine transformation (x, y) �→ (x, β−1 y), we may w.l.o.g assume β = 1. We now have
A, B ⊆ 〈(0, β), (α, d)〉 = 〈(0, 1), (1, d)〉, whence the theorem is easily seen to hold in
view of b0, b1, . . . , bn−1 and a0, a1, . . . , am−1 being arithmetic progressions of common
difference d ∈ R, b′

0, b′
1, . . . , b′

n−1 and a′
0, a′

1, . . . , a′
m−1 being arithmetic progressions of

common difference c ∈ R, c − d ∈ Z, and π(A) and π(B) being arithmetic progression of
common difference α = 1. �

We note that the inequality (8), which can be seen as a discrete analog of the Prékop-
a–Leindler inequality, is not only a key step in the above proof of inequality (6), but also
equivalent to it, as it can be traced back from the proof itself.
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Inverse additive problems for Minkowski sumsets I 269

3 The Discrete Case II

As mentioned in the introduction, we also have the alternative extension of the lower bound
(6) in which, for a given line �, the meaning of m and n in that equation is replaced by the
maximum number of points of A contained in a line parallel to � and the maximal number
of points of B contained on a line parallel to �; see Theorem 3.1 and (21).

Theorem 3.1 below provides the characterization of equality for two-dimensional subsets
in the alternative bound (21) for m, n ≥ 2. As with Theorem 2.1, the question of charac-
terizing equality when one of the subsets is one-dimensional is well-known and a simple
consequence of Theorem 2.2. For the proof, we will essentially reduce the problem to the
characterization of equality in (6) and then invoke Theorem 2.1. As with Theorem 2.1, the
assumption about � being a horizontal line is purely a normalization assumption.

The assumption m, n ≥ 2 is quite necessary. When m = 1 and n ≥ 2 (or n = 1 and
m ≥ 2), there appear to be much wilder sets satisfying the equality (21). For example, the
pair

A = {(0, 0), (0, 1), (1,−1)} and

B = {(0, 2), (0, 1), (0, 0), (1, 0), (1,−1), (2, 0), (2,−1), (2,−2), (x, 0)},
where x ≥ 4, attains equality in (21) for m = 1, n = 4, |A| = 3, |B| = 9, |A + B| = 17, yet
the horizontal sections of B are not all arithmetic progressions nor is the set B even vaguely
convex in appearance!

Throughout this section, we use π : R
2 → R and π ′ : R

2 → R to denote the vertical and
horizontal projection maps:

π(x, y) = x and π ′(x, y) = y.

As alluded to in the introduction, the extremal structures for (21) include two new cases
which are particular perturbations of a trapezoid.

Definition Let A′ be a standard trapezoid T (m, h, c, d) with min π ′(A′) = min π(A′) = 0
and c, d ≥ 0 integers with c and d not both zero. Given a (0, 1)-sequence ε = (εi : i ∈ Z)

with εi = 0 for all sufficiently small i, let τε : Z
2 → Z

2 be the map defined by

τε(x, y) =
⎛
⎝x +

∑
i≤y

εi , y

⎞
⎠ .

Let ε = (εi : i ∈ Z) be a (0, 1)-sequence with zero entries outside the interval [md,

h − c − 1] and at most one entry equal to one in every subsequence of consecutive max{c, d}
entries. An ε-standard trapezoid Tε(m, h, c, d) is a translate of τε(A′).

An example of an ε-standard trapezoid is shown in Fig. 2. As can be checked by adapting
the arguments from the proof of Theorem 3.1, if a pair (A′, B) of standard trapezoids satisfy
equality in (2), then the pair (A, B), with A an ε-standard trapezoid with the same parame-
ters as A′, satisfies equality in (21) for any suitable choice of the sequence ε. However, the
projection of A along any line may have more than m points and A may not even be convex;
see for instance the example in Fig. 2.

There is a third particular case in Theorem 3.1 besides the ε-standard trapezoids, an
example of which is displayed in Fig. 3. It is described by Theorem 3.1(c) using the notation
{ f (x, y)}, where f (x, y) is an inequality in the variables x and y, to denote the set of all
points (x, y) ∈ Z

2 satisfying the inequality f (x, y). Thus {x ≤ y} = {(x, y) ∈ Z
2 : x ≤ y}

for instance.
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Fig. 2 An ε-standard trapezoid Tε(4, 16, 1, 2), with εi = 1 for i ∈ {8, 12, 14}, is shown on the left side of
the figure. Together with the standard trapezoid T (4, 7, 1, 2) displayed in the right side, they form an instance
of Theorem 3.1(b)

Fig. 3 Illustration of Theorem 3.1(c) with m = 4, n = 4 and k = 7

Theorem 3.1 Let A, B ⊆ R
2 be finite two-dimensional subsets with 0 ∈ A ∩ B. Let m be

the maximal number of points in A contained on a horizontal line and let n be the maximal
number of points in B contained on a horizontal line. Suppose m, n ≥ 2. Then,
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|A + B| ≥
( |A|

m
+ |B|

n
− 1

)
(m + n − 1). (21)

Moreover, if equality holds in (21), then, up to a linear transformation of the form (x, y) �→
(αx + γ y, βy), where α, β, γ ∈ R and α and β non-zero, one of the following holds:

(a) A and B are standard trapezoids T (m, h, c, d) and T (n, h′, c, d) with common slopes
c and d.

(b) A is an ε-standard trapezoid Tε(m, h, c, d) and B is a standard trapezoid T (n, h′, c, d)

with h′ = (n − 1)d + 1, or the same holds with the roles of A and B (and m and n)
reversed.

(c) Up to translation,

A = {x ≥ 0} ∩ {y ≥ 2x} ∩
{

y ≤ x + 2m + k − 5

2

}
∩ {y ≤ 2x + 2m − 1}

and

B = {x ≥ 0} ∩ {y ≥ 2x} ∩ {y ≤ x + 2n − 2},
where k ∈ N is odd, or the same holds with the roles of A and B (and m and n) reversed.

Proof For a finite set X ⊆ R
2 and i ∈ R, we let Xi = X ∩ {(x, y) ∈ R

2 | y = i} denote the
intersection of X with the horizontal line defined by y = i. Recall that π ′ : R

2 → R denotes
the horizontal projection map onto the vertical axis. Since A and B are two-dimensional, we
have |π ′(A)| ≥ 2 and |π ′(B)| ≥ 2.

For X ⊆ R
2, we let c(X) ⊆ R

2 denote the subset with π ′(X) = π ′(c(X)) such that
c(X)i = {(0, i), (1, i), . . . , (|Xi | − 1, i)} for i ∈ π ′(X). Then c(X) is the horizontal com-
pression of X. The following properties are easily observed regarding c(X):

|c(X)| = |X |, |π(c(X))| = max
i

|Xi | and π ′(c(X)) = π ′(X).

Additionally, we have

|A + B| =
∑
t∈R

∣∣∣∣∣∣
⋃

i+ j=t

(Ai + B j )

∣∣∣∣∣∣
≥

∑
t∈R

max
i+ j=t

{|Ai + B j |} (22)

≥
∑
t∈R

max
i+ j=t

{|Ai | + |B j | − 1} (23)

=
∑
t∈R

∣∣∣∣∣∣
⋃

i+ j=t

(c(A)i + c(B) j )

∣∣∣∣∣∣ = |c(A) + c(B)| , (24)

where (23) follows from Theorem 2.2.
Since |π(c(A))| = maxi |Ai | = m and |π(c(B))| = maxi |Bi | = n, inequality (21) now

follows from (2). Moreover, if equality holds in (21), then c(A) and c(B) are an extremal
pair for (2). Thus, in view Theorem 2.1, by applying an appropriate linear transformation of
the form (x, y) �→ (x, β−1 y), we can w.l.o.g. re-scale the vertical axis so that c(A) and c(B)

are standard trapezoids T (m, h, c, d) and T (n, h′, c, d) with common slopes c and d. More-
over, since the horizontal sections of c(A) are arithmetic progressions with difference (1, 0),

and since, by definition of a standard trapezoid, the vertical sections of c(A) are arithmetic
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progressions with difference (0, 1), it follows that c(A) ⊆ Z
2, and likewise c(B) ⊆ Z

2,

whence c, d ∈ Z.

Since c(A) and c(B) are horizontally compressed, we see that

c ≤ 0 and d ≥ 0,

so that h = |π ′(A)| and h′ = |π ′(B)|, and by translation we assume π ′(A) = {0, 1, . . . , h −
1} and π ′(B) = {0, 1, . . . , h′ −1}. This assumption will remain in place for the remainder of
the proof, and all affine transformations employed in the proof will preserve this assumption.

Let

I1 =[0, (m−1)d], I2 =[(m − 1)d, h − 1 + (m − 1)c], I3 = [h − 1 + (m−1)c, h−1],
J1 =[0, (n − 1)d], J2 =[(n − 1)d, h′ − 1 + (n − 1)c], J3 =[h′ − 1+(n − 1)c, h′ − 1].

Then

|Ai | =
⎧⎨
⎩

� i
d � + 1, i ∈ I1

m, i ∈ I2

�−i+h−1
−c � + 1, i ∈ I3

and |B j | =

⎧⎪⎨
⎪⎩

� j
d � + 1, j ∈ J1

n, j ∈ J2

�− j+h′−1
−c � + 1, j ∈ J3.

(25)

Let us call a pair (k, l) ∈ [0, h − 1] × [0, h′ − 1] tight if it attains the maximum in (23)
for t = k + l. Since equality holds in (22) and (23), it follows, for t ∈ {0, 1, . . . , h + h′ − 2},
that

|Ak + Bl | = |Ak | + |Bl | − 1 and (26)⋃
i+ j=t

(Ai + B j ) = Ak + Al , (27)

for any tight pair (k, l) with k + l = t. In view of (25), if (k, l) ∈ [0, md − 1] ∩ (I1 ∪ I2) ×
[0, nd − 1] ∩ (J1 ∪ J2) is a pair with k + l ≡ θ mod d and k, l ∈ [0, θ ] + dZ, where
θ ∈ [0, d −1], then (k, l) is tight. We refer to this as the modular rule for tightness. It will be
most often applied in the case of pairs (k, l) ∈ I1 × J1 ⊆ [0, md − 1] ∩ (I1 ∪ I2) × [0, nd −
1] ∩ (J1 ∪ J2). In particular, a pair (k, l) ∈ I1 × J1 is tight whenever k ≡ 0 mod d or l ≡ 0
mod d. A similar statement holds for pairs (k, l) ∈ I3 × J3, though, by symmetry, we will
have little need of an explicit formulation for these cases. Also, every pair (k, l) ∈ I2 × J2

is tight.
Our next goal is to show each Ai and B j is an arithmetic progression with common dif-

ference (α, 0), for some α > 0. First consider i ∈ I2 and j ∈ J2. Then |Ai | = m ≥ 2 and
|B j | = n ≥ 2. Consequently, in view of (26) and Theorem 2.2, it follows that all Ai with
i ∈ I2 and B j with j ∈ J2 are arithmetic progressions of common difference (say) (α, 0),

where w.l.o.g. α > 0. Now consider i ∈ I1. If |Ai | = 1, then Ai is trivially an arithmetic
progression with any difference, so assume |Ai | ≥ 2. Then the pair (i, (n − 1)d) ∈ I1 × J1

is tight by the modular rule for tightness, whence Theorem 2.2 and (26) show Ai is also an
arithmetic progression with difference (α, 0). The same argument works for j ∈ J1, and
symmetrical arguments handle the cases i ∈ I3 and j ∈ J3, so all Ai and B j are arithmetic
progressions with common difference (α, 0), as claimed. By re-scaling the horizontal axis
as need be, we may w.l.o.g. assume α = 1.

Let ai , a′
i ∈ Z be, respectively, the minimal and maximal first coordinate of an element

from Ai and let b j , b′
j ∈ Z be, respectively, the minimal and maximal first coordinate of an

element from B j , for i ∈ [0, h − 1] and j ∈ [0, h′ − 1].
We first consider the case |I3| = |J3| = 1, that is, c = 0.
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Claim 1 Suppose that c = 0. Then, up to an appropriate linear transformation of the form
(x, y) �→ (x − αy, y), one of the following conditions holds:

(i) A and B are standard trapezoids with common slopes 0 and d, or
(ii) A is an ε-standard trapezoid Tε(m, h, 0,±d) and B is a standard trapezoid

T (n, (n − 1)d + 1, 0,±d) with common slopes 0 and ±d, or the same holds with
the roles of A and B (and m and n) reversed.

Proof As both descriptions (i) and (ii) are invariant of translation and horizontal reflection,
we can translate A and B as need be, and it suffices to prove the theorem for the hori-
zontal reflections of A and B. Thus we first show that, by applying an appropriate linear
transformation of the form (x, y) �→ (±(x − αy), y) and translating, we may assume that

ai = b j = 0 for all i ∈ I1 and j ∈ J1. (28)

Note that if the coefficient of x is −1, then the affine transformation involves a horizontal
reflection which swaps the roles of the a′

i and ai , etc. Thus (28) is equivalent to saying that
either the sequences ai and bi or the sequences a′

i and b′
i are arithmetic progressions with

common difference α ∈ R.

Suppose that d ≥ 1, since otherwise (28) is clear. By the modular rule and (27), it follows,
for all i, i ′ ∈ [0, m − 1] and j, j ′ ∈ [0, n − 1] with i + j = i ′ + j ′, that

aid + b jd = ai ′d + b j ′d .

Hence the sequences (aid : i ∈ [0, m − 1]) and (b jd : j ∈ [0, n − 1]) are arithmetic
progressions with the same common difference in view of m, n ≥ 2. By an appropriate
transformation of the form (x, y) �→ (x − αy + α′, y), we may assume that the difference
is zero and thus

aid = b jd = 0 for all i ∈ [0, m − 1] and j ∈ [0, n − 1]. (29)

Moreover, the sequences (a′
id : i ∈ [0, m −1]) and (b′

jd : j ∈ [0, n −1]) are then arithmetic
progressions with difference one. Now (28) holds if d = 1.

Suppose that d ≥ 2. By the modular rule and (27), we have

A0 + B j ⊇ A1 + B j−1 for j ∈ J1 \ {0}. (30)

Moreover, if j �≡ 0 mod d, then the pair (1, j −1) is also tight by the modular rule, whence
(27) shows equality must hold in (30). Hence a0 + b j = a1 + b j−1 for J1 \ {0} with j �≡ 0
mod d, so that the difference b j − b j−1 is constant, being equal to δ := a1 − a0. For
J1 \ {0} with j ≡ 0 mod d, we note that A1 + B j−1 is an arithmetic progression whose
length is only one less than the arithmetic progression A0 + B j , whence (30) instead implies
a1 + b j−1 ∈ a0 + b j +{0, 1}, so that b j − b j−1 ∈ {δ, δ − 1} for J1 \ {0} with j ≡ 0 mod d.

Repeating these arguments with the roles of A and B swapped, we likewise conclude (recall
d ≥ 2) that ai −ai−1 = b1−b0 = a1−a0 = δ for i �≡ 0 mod d, while ai −ai−1 ∈ {δ, δ−1}
for i ≡ 0 mod d. The special case with j = d gives, in view of (29),

dδ = (a0 + δ) + (b0 + (d − 1)δ) = a1 + bd−1 ∈ a0 + bd + {0, 1} = {0, 1}.
Thus δ = 0 or δ = 1

d . If δ = 0, then (ai : i ∈ I1) and (bi : i ∈ J1) are arithmetic

progressions of common difference 0. If δ = 1
d , then a′

i = i
d and b′

j = j
d for i ∈ I1 and

j ∈ J1, whence (a′
i : i ∈ I1) and (b′

i : i ∈ J1) are arithmetic progressions with common
difference 1

d . In either case, (28) is established as previously explained. We now assume (28)
holds for A and B and consider three cases.
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Moreover, and this is important for later applications of the claim, when |J2| = 1, we
show that the conclusion of the claim holds for any transformation of the given form for
which (28) holds, and thus also for the horizontal reflection of such a transform.

Case 1 |I2| = |J2| = 1. Then A and B are the standard trapezoids T (m, (m − 1)d + 1, 0, d)

and T (n, (n − 1)d + 1, 0, d) respectively, giving part (i) of the claim.

Case 2 |I2| ≥ 2 and |J2| ≥ 2. Since all pairs (i, j) ∈ I2 × J2 are tight, it follows from
(27) that Ai + A j = Ai ′ + A j ′ for all i, i ′ ∈ I2 and j, j ′ ∈ J2. Thus, in view of |I2| ≥ 2
and |J2| ≥ 2, it follows that the sequences (ai : i ∈ I2) and (b j : j ∈ J2) are arithmetic
progressions with the same common difference (say) α. Thus, if d = 0, then |I1| = |J1| = 1
and Claim 1(i) follows by applying a linear transformation of the form (x, y) �→ (x −αy, y).

So consider the case d ≥ 1. Then 0, 1 ∈ I1, whence the modular rule implies the pair
(1, (n − 1)d) is tight, in which case (27) implies

A0 + B(n−1)d+1 ⊆ A1 + B(n−1)d . (31)

In view of |J2| ≥ 2, we have |B(n−1)d | = |B(n−1)d+1|; moreover, |A0| ∈ {|A1|, |A1| − 1}
with |A0| = |A1| − 1 only possibly when d = 1. Thus, as all sets Ai and B j are arithmetic
progressions of common difference, we see that

|A0 + B(n−1)d+1| ∈ {|A1 + B(n−1)d |, |A1 + B(n−1)d | − 1}
with equality only possible when d = 1. Consequently, (31) implies a0 + b(n−1)d+1 ∈
a1 + b(n−1)d + {0, 1} with a0 + b(n−1)d+1 = a1 + b(n−1)d + 1 only possible for d = 1.

In view of (28) and the definition of α, this means α = b(n−1)d+1 − b(n−1)d ∈ {0, 1} with
α = 1 only possible for d = 1. If α = 0, then A and B are standard trapezoids with slopes 0
and d, yielding (i) of the claim. If α = 1 and d = 1, then applying the affine transformation
given by ϕ(x, y) = (x − y, y) results in A and B being standard trapezoids with slopes 0
and −1, also yielding part (i) of the claim and completing Case 2.

Case 3 Either |I2| ≥ 2 and |J2| = 1 or else |I2| = 1 and |J2| ≥ 2. By symmetry, it suffices
to consider the case |I2| ≥ 2 and |J2| = 1. Then, since B is two-dimensional and c = 0, it
follows that d ≥ 1.

Since |I2| ≥ 2, we see that I2 \ {(m − 1)d} is nonempty. Let i ∈ I2 \ {(m − 1)d}. Then
i − 1 ∈ I2 as well, whence (i − 1, (n − 1)d) ∈ I2 × J2 is tight. Hence (27) implies

Ai + B(n−1)d−1 ⊆ Ai−1 + B(n−1)d , (32)

for each i ∈ I2 \{(m −1)d}. Noting that |Ai + B(n−1)d−1| = |Ai−1 + B(n−1)d |−1, it follows
from (32) that ai + b(n−1)d−1 = ai−1 + b(n−1)d + {0, 1}. Combining with (28) shows that

εi := ai − ai−1 ∈ {0, 1},
for i ∈ [(m −1)d +1, h −1]. Set εi = 0 for i ∈ Z outside the interval [(m −1)d +1, h −1].

Suppose ε(m−1)d+ j �= 0 for some j ∈ [1, d − 1] and assume j is minimal with this prop-
erty. Then d ≥ 2, else the interval [1, d−1] is empty. In view of the minimality of j and (28), it
follows that ε(m−1)d+ j = a(m−1)d+ j = 1. However, since the pairs ((m−1)d, (n−1)d−1) ∈
I1×J1 and ((m−1)d+ j, (n−1)d−1− j) ∈ [0, md−1]×[0, (n−1)d−d] are both tight by the
modular rule, it follows that (27) implies A(m−1)d + B(n−1)d−1 = A(m−1)d+ j + B(n−1)d−1− j .

Thus, making use of (28), it follows that

0 = a(m−1)d + b(n−1)d−1 = a(m−1)d+ j + b(n−1)d−1− j = a(m−1)d+ j ,
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contradicting that a(m−1)d+ j = 1 as just shown above. So, since εi = 0 for i ≤ (m − 1)d by
definition, we instead conclude that εi = 0 for all i ≤ md − 1.

To show that part (ii) of Claim 1 holds for A and B, it remains to show that, for the
sequence ε = (εi : i ∈ Z), every subsequence of d consecutive terms has at most one
entry equal to 1, as then A will be an ε-standard trapezoid Tε(m, h, 0, d) with B a standard
trapezoid T (n, (n − 1)d + 1, 0, d). So suppose by contradiction that εi = 1 and ε j = 1 with
i, j ∈ I2, i < j and j − i ≤ d − 1. Note this is only possible if d ≥ 2. We may assume
the difference j − i is minimal, so that εs = 0 for s ∈ [i + 1, j − 1]. Since ε(m−1)d = 0 and
εi = 1 with i ∈ I2, we have i ≥ (m − 1)d + 1, so that i − 1 ∈ I2. By the definition and
minimality of i and j, we have a j = ai−1 + 2. Since (i − 1, (n − 1)d) ∈ I2 × J2, it follows
that this pair is tight, whence (27) yields A j + B(n−1)d−( j−i+1) ⊆ Ai−1 + B(n−1)d . As a
result, since |A j + B(n−1)d−( j−i+1)| = |A(m−1)d + B(n−1)d |−1 in view of j − i +1 ≤ d, we
conclude from (28) that a j ∈ ai−1 +{0, 1}, contradicting that a j = ai−1 +2 and completing
the proof of Claim 1. �

By applying the linear transformation (x, y) �→ (x,−y) and translating, we deduce the
analogous result when d = 0 by swapping the roles of c and d in Claim 1. To complete the
proof of the theorem, we use the following claim.

Claim 2 Let (A, B) be an extremal pair for (21). Let t and t ′ be such that |At | = m and
|Bt ′ | = n respectively, and set

A− = ∪i≤t Ai , B− = ∪ j≤t ′ B j , A+ = ∪i≥t Ai , B+ = ∪ j≥t ′ B j .

Then each of (A−, B−) and (A+, B+) are extremal pairs for (21).

Proof Since (A, B) is an extremal pair for (21), we know that Ai and B j are arithmetic
progressions with the same common difference for each i and j. We have A− ∩ A+ =
At , B− ∩ B+ = Bt ′ and (A− + B−) ∩ (A+ + B+) = At + Bt ′ . Using |At + Bt ′ | =
|At | + |Bt ′ | − 1 = m + n − 1, we get

|A + B| ≥ |(A− + B−) ∪ (A+ + B+)|
= |A− + B−| + |A+ + B+| − |At + Bt ′ |
≥

(( |A−|
m

+ |B−|
n

− 1

)
+

( |A+|
m

+ |B+|
n

− 1

)
− 1

)
(m + n − 1)

=
( |A|

m
+ |B|

n
− 1

)
(m + n − 1),

and all the inequalities are equalities, proving the claim. �
If either c = 0 or d = 0, then the theorem follows from Claim 1. Therefore assume

c ≤ −1 and d ≥ 1. Let

td = max I2, tc = min I2 = (m − 1)d, t ′d = max J2 and t ′c = min J2 = (n − 1)d

and, for t ∈ I2 and t ′ ∈ J2, define

A−(t) = ∪i≤t Ai , B−(t ′) = ∪i≤t ′ Bi , A+(t) = ∪i≥t Ai , and B+(t ′) = ∪i≥t ′ Bi .

We may assume, by exchanging the role of A and B as need be, that |I2| ≥ |I1| and,
by a possible vertical reflection, that d ≥ |c|. By Claim 2, (A−(td), B−(t ′d)) is an extremal
pair for (21) with c = 0. Thus, applying an appropriate affine transformation from Claim 1
coupled with a possible horizontal reflection, we can assume (i) or (ii) from Claim 1 holds
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for (A−(td), B−(t ′d)) with the nonzero slope of the ε-standard or standard trapezoid being
positive and with

ai = b j = 0 for all i ∈ [0, md − 1] ∩ (I1 ∪ I2) and j ∈ [0, nd − 1] ∩ (J1 ∪ J2),

(33)

where we have made use of the fact that εi = 0 for the first d entries of I2 by definition
of an ε-standard trapezoid. By Claim 2, (A+(tc), B+(t ′c)) is also an extremal pair for (21)
with d = 0. Thus we can apply Claim 1 to the vertical reflections of A+(tc) and B+(t ′c) to
conclude there exists a linear transformation φ of the form (x, y) �→ (x −βy,−y) such that
φ(A+(tc)) and φ(B+(t ′c)) satisfy one of the conclusions (i) or (ii) of Claim 1.

Suppose that |I2|, |J2| ≥ 2. Then part (i) of Claim 1 must hold for both (A−(td), B−(t ′d))

and (φ(A+(tc)), φ(B+(t ′c)), in which case A+(tc) and B+(tc) are (non-standard) trapezoids.
Since |I2|, |J2| ≥ 2, there is a unique linear transformation of the form (x, y) �→ (x−αy,−y)

that maps the trapezoids A+(tc) and B+(t ′c) to a pair of standard trapezoids, i.e., there is a
unique such linear transformation that makes the parallel sides vertical. Hence, since the par-
allel sides of the standard trapezoid A−(td), which are already vertical by assumption, are also
the parallel sides of the (non-standard) trapezoid A+(tc), we conclude that φ(x, y) = (x,−y)

is simply a vertical reflection, in which case both A and B are standard trapezoids with com-
mon slopes, yielding (a). So, in view of the assumption |I2| ≥ |J2|, we can instead assume
|J2| = 1, whence t ′c = t ′d = (n − 1)d.

Regardless of whether (i) or (ii) holds for φ(A+(tc)) and φ(B+(t ′c)), it follows that
φ(A+(td)) and φ(B+(t ′d)) are standard trapezoids (in fact, triangles) T (m, 1,±c, 0) and
T (n, 1,±c, 0). The sign of the difference ±c depends, of course, on whether (ai : i ∈ I3)

and (bi : i ∈ J3) or (a′
i : i ∈ I3) and (b′

i : i ∈ J3) are arithmetic progressions of common
difference, one of which must hold, with both signs possible if and only if |c| = 1 which
occurs if and only if both pairs of sequences consist of two arithmetic progressions of com-
mon difference. The difference is |c| = −c when (a′

i : i ∈ I3) and (b′
i : i ∈ J3) are arithmetic

progressions, and −|c| = c when (ai : i ∈ I3) and (bi : i ∈ J3) are arithmetic progressions.
Moreover, since the map φ must either take (ai : i ∈ I3) or (a′

i : i ∈ I3) to an arithmetic
progression with difference 0, it follows that φ is uniquely defined by this property when
c ≤ −2.

The pair (td , t ′d) = (td , (n − 1)d) ∈ I2 × J2 is tight, whence (27) and (33) imply

Atd+1 + B(n−1)d−1 ⊆ Atd + B(n−1)d ⊆ [atd , atd + m + n − 2] × {td + (n − 1)d}.
Since B(n−1)d−1 = [0, n − 2]× {(n − 1)d − 1} and |Atd+1| = m − 1, the previous inclusion
implies that (atd+1, a′

td+1) ∈ {(atd , atd + m − 2), (atd + 1, atd + m − 1), (atd + 2, atd + m)}.
We continue with the following claim.

Claim 3 (atd+1, a′
td+1) = (atd + 2, atd + m) implies d = 1. Suppose by contradiction

that d ≥ 2 and first consider the case when |I2| ≥ 2, so that a(m−1)d+1 ∈ I2. Then,
since d ≥ 2, we conclude from (33) that A(m−1)d+1 = [0, m − 1] × {(m − 1)d + 1} and
A(m−1)d = [0, m − 1] × {(m − 1)d}. As a result, since (a(m−1)d+1, b(n−1)d) ∈ I2 × J2 is
tight, (27) yields

A(m−1)d + B(n−1)d+1 ⊆ A(m−1)d+1 + B(n−1)d = [0, m + n − 2] × {(m + n − 2)d + 1}.
Since A(m−1)d = [0, m−1]×{(m−1)d} and |B(n−1)d+1| = |Bt ′d+1

| = n−1, the above inclu-

sion implies (b(n−1)d+1, b′
(n−1)d+1) = (bt ′d+1

, b′
t ′d+1) ∈ {(0, n − 2), (1, n − 1)}. However,

making use of the assumption (atd+1, a′
td+1) = (atd +2, atd +m), we see that if (ai : i ∈ I3)
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and (bi : i ∈ J3) are arithmetic progression with common difference atd+1 − atd = 2, then
(bt ′d+1

, b′
t ′d
) = (2, n), while if (a′

i : i ∈ I3) and (b′
i : i ∈ J3) are arithmetic progression with

common difference a′
td+1 − a′

td = a′
td+1 − (atd + m − 1) = 1, then (bt ′d+1

, b′
t ′d
) = (3, n),

both contradicting that we just showed (bt ′d+1
, b′

t ′d+1) ∈ {(0, n −2), (1, n −1)}. So it remains

to consider the case |I2| = 1, whence td = tc = (m − 1)d and atd = 0 by (33).
In this case, (td , (n − 1)d − 1) = (tc, (n − 1)d − 1) ∈ I2 × J2 is tight by the modular

rule, whence (33) and (27) together imply

Atd+1 + B(n−1)d−2 ⊆ Atd + B(n−1)d−1 = [0, m + n − 3] × {td + (n − 1)d − 1}.
Since d ≥ 2, (33) implies that B(n−1)d−2 = [0, n − 2] × {(n − 1)d − 2}, whence the above
inclusion yields

(atd+1, a′
td+1) ∈ {(0, m − 2), (1, m − 1)} = {(atd , atd + m − 2), (atd + 1, atd + m − 1)},

contrary to the assumption of the claim. This concludes the proof of Claim 3.
Based upon the work done before Claim 3, we divide the remainder of the proof into

five short cases depending on the value of (atd+1, a′
td+1) and whether (ai : i ∈ I3) and

(bi : i ∈ J3) or (a′
i : i ∈ I3) and (b′

i : i ∈ J3) are arithmetic progressions of common
difference.

Case 1 (atd+1, a′
td+1) = (atd , atd + m − 2) and (ai : i ∈ I3) and (bi : i ∈ J3) are arithmetic

progressions of common difference atd+1−atd = 0. Now, since (ai : i ∈ I3) and (bi : i ∈ J3)

are arithmetic progressions of common difference atd+1 − atd = 0, we see that (28) holds
for appropriate translations of the vertical reflections of A+(tc) and B+(tc). Since |J1| = 1,

this means, as shown in the proof of Claim 1, that we may assume φ is simply the vertical
reflection map φ(x, y) = (x,−y). Consequently, if εi = 0 for all i, which is the case if (i)
holds for A−(td), B−(t ′d)), then (a) immediately follows for A and B. Otherwise, since the
definition of an ε-standard trapezoid ensures that εi ≥ 0 for all i with equality for i outside
I2, and since atc = 0 by (33), we thus have atd > 0 = atc .

Since φ is simply the vertical reflection map φ(x, y) = (x,−y), it follows that φ(A+(tc))
is an ε-standard trapezoid which is now simply the vertical reflection of A+(tc). However,
as εi ≥ 0 is part of the definition of an ε-standard trapezoid, it now follows that at ≥ atd for
all t ∈ [tc, td ], which, in view of atc = 0 < atd , is a contradiction.

Case 2 (atd+1, a′
td+1) = (atd , atd + m − 2) and (a′

i : i ∈ I3) and (b′
i : i ∈ J3) are arithmetic

progressions of common difference a′
td+1 − a′

td = a′
td+1 − (atd + m − 1) = −1. If c = −1,

then (ai : i ∈ I3) and (bi : i ∈ J3) are also arithmetic progressions of common difference
atd+1 − atd = 0, which was a case already handled in Case 1. Therefore assume c ≤ −2,

whence (33) and the assumption of the case together imply bt ′d+2
= b(n−1)d+2 = −1.

Since ((m − 1)d, (n − 1)d) ∈ I2 × J2 is tight, (27) and (33) imply

A(m−1)d−2 + B(n−1)d+2 ⊆ A(m−1)d + B(n−1)d = [0, m + n − 2] × {(m + n − 2)d}.
In view of d ≥ |c| ≥ 2 and (33), we have A(m−1)d−2 = [0, m − 2] × {(m − 1)d − 2}, which
combined with the above inclusion implies b(n−1)d+2 ≥ 0, contrary to what we previously
showed.

Case 3 (atd+1, a′
td+1) = (atd + 2, atd + m). Then, in view of Claim 3 and d ≤ |c|, it follows

that d = 1 and c = −1, so that both (ai : i ∈ I3) and (bi : i ∈ J3) as well as (a′
i : i ∈ I3)
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and (b′
i : i ∈ J3) are arithmetic progressions of common differences atd+1 − atd = 2 and

a′
td+1 − a′

td = a′
td+1 − (atd + m − 1) = 1, respectively, in which case applying the linear

transformation (x, y) �→ (−(x − y), y) reduces Case 3 to the already considered Case 1.

Case 4 (atd+1, a′
td+1) = (atd + 1, atd + m − 1) and (a′

i : i ∈ I3) and (b′
i : i ∈ J3) are

arithmetic progressions of common difference a′
td+1 − a′

td = a′
td+1 − (atd + m − 1) = 0.

In this case, similar to the argument in Case 1, we can assume, as shown in Claim 1, that
φ(x, y) = (−x, y) is simply a vertical reflection, and then (a) or (b) immediately follows for
A and B.

Case 5 (atd+1, a′
td+1) = (atd + 1, atd + m − 1) and (ai : i ∈ I3) and (bi : i ∈ J3) are

arithmetic progressions of common difference atd+1 − atd = 1. If c = −1, then (a′
i : i ∈ I3)

and (b′
i : i ∈ J3) are also arithmetic progressions of common difference a′

td+1 − a′
td =

a′
td+1 − (atd + m − 1) = 0, which was a case already handled in Case 4. Therefore assume

c ≤ −2, in which case the map φ taking A+(tc) to an ε-standard or standard trapezoid is
uniquely defined and must be given by φ(x, y) = (x − y, y). The conditions on the ε-stan-
dard or standard trapezoid A+(tc), when translated with extreme care back to A via φ−1,

imply that εi ∈ {1, 0} for i ∈ [(m − 1)d + 1, h − 1], with no subsequence of |c| consec-
utive terms εi with i ∈ [(m − 1)d + 1, td ] containing more than one value equal to 0, and
εi = 1 for i ∈ [max{(m − 1)d + 1, td − |c| + 2}, h − 1]. Since A−(td) is an ε-standard
or standard trapezoid with slopes 0 and d, we know that no subsequence of d consecutive
terms εi with i ∈ I1 ∪ I2 contains more than one value equal to 1, and that εi = 0 for
i ∈ [1, min{td , md − 1}].

Suppose |I2| ≥ 2. Then, since |c| ≥ 2, it follows that

td ∈ [max{(m − 1)d + 1, td − |c| + 2}, h − 1],
whence εtd = 1 as noted in the previous paragraph. Thus, since εi = 0 for all i ∈
[1, min{td , md − 1}], we conclude that td ≥ md and that εi = 0 for i ∈ [1, md − 1].
If d ≥ 3, then εi = 0 for i = (m − 1)d + 1 and i = (m − 1)d + 2, which contradicts
that no consecutive subsequence of |c| ≥ 2 terms εi with i ∈ [(m − 1)d + 1, td ] contains
more than one value equal to 0. Therefore d = 2, whence 2 ≥ d ≥ |c| ≥ 2 implies
c = −2. Furthermore, since within the interval [(m − 1)d + 1, td ] there can be no d = 2
consecutive terms εi equal to zero nor |c| = 2 consecutive terms εi equal to 1, we conclude
that εi alternates between the values of 0 and 1 in the interval [(m − 1)d + 1, td ]. Since
the last term εtd = 1, as noted before, and since the first term ε(m−1)d+1 = 0, in view of
(m−1)d+1 ≤ md−1 , it follows that there are an even number of terms in [(m−1)d+1, td ],
whence |I2| = |[(m − 1)d + 1, td ]| + 1 is odd and (c) is now seen to hold. So it remains to
consider the case when |I2| = 1.

In this case, if d = 2, then 2 = d ≥ |c| ≥ 2 implies c = −2, and (c) is again seen to hold
with k = 1. Therefore assume d ≥ 3. Since ((m − 1)d − 1, (n − 1)d) ∈ I2 × J2 is tight by
the modular rule, (27) and (33) imply

A(m−1)d−3+B(n−1)d+2 ⊆ A(m−1)d−1+B(n−1)d =[0, m + n − 3] × {(m + n − 2)d − 1}.
(34)

However, since d ≥ 3 and |c| ≥ 2, and since (bi : i ∈ J3) is an arithmetic progression
with difference 1 by assumption of the case, it follows in view of (33) that A(m−1)d−3 +
B(n−1)d+2 = [2, m + n − 2] × {(m + n − 2)d − 1}, contradicting (34) and completing the
proof. �
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4 The continuous case

Let A and B be two convex bodies in R
2, meaning that A and B are compact convex sets

with nonempty interiors. As we already mentioned in the introduction, Bonnesen proved the
following inequality:

|A + B| ≥
( |A|

m
+ |B|

n

)
(m + n), (35)

where |X | stands for the area of a measurable set X in R
2 and m = |π(A)| and n = |π(B)|

are the lengths of the projections of A and B onto the first coordinate. As was also pointed
out in the introduction, Bonnesen’s inequality (35) implies the classical Brunn–Minkowski
inequality (3).

In this section, we will describe the structure of convex sets A and B in the plane for
which the Bonnesen equality

|A + B| =
( |A|

m
+ |B|

n

)
(m + n) (36)

holds.
A convex body A ⊆ R

2 can be described as

A = {(x, y) ∈ R
2 : x ∈ π(A), u A(x) ≤ y ≤ vA(x)}, (37)

for some pair u A and vA of real functions defined on the interval π(A), where π : R
2 → R

denotes the orthogonal projection onto the x-axis, vA is concave and u A is convex. Without
loss of generality, we may assume that π(A) = [0, m] with m > 0. We will use this notation
in what follows.

In order to formulate our main result, we need the following definition. We say that A′ is
a vertical stretching of A of amount h ≥ 0 if

A′ = {(x, y) ∈ R
2 : x ∈ π(A) = [0, m], u A(x) ≤ y ≤ vA(x) + h}.

Let us show that, by stretching an extremal pair for the Bonnesen inequality, we get another
extremal pair.

Lemma 4.1 Let A and B be two convex bodies and let A′ be a vertical stretching of A. Then
(A, B) is an extremal pair for Bonnesen inequality, i.e.,

|A + B| =
( |A|

m
+ |B|

n

)
(m + n),

if and only if (A′, B) is also an extremal pair, i.e.,

|A′ + B| =
( |A′|

m
+ |B|

n

)
(m + n). (38)

Proof For a convex body X, we denote by u X and vX the bottom and top functions which
define X as in (37). We observe that, if X ′ is an vertical stretching of X of amount h, then

|X ′| =
x∫

0

(vX (t) + h − u X (t))dt = |X | + hx .
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We assume that A is given by (37) and B = {(x, y) ∈ R
2 : 0 ≤ x ≤ n, u B(x) ≤ y ≤

vB(x)}. If u A+B and vA+B are the bottom and top functions defining the convex body A+ B,

then

A′ + B = {(x, y) ∈ R
2 : 0 ≤ x ≤ m + n, u A+B(x) ≤ y ≤ vA+B(x) + h}.

This means that if A′ is a vertical stretching of A of amount h, then A′ + B is also a vertical
stretching of A+ B of amount h. Therefore |A′| = |A|+hm, |A′+ B| = |A+ B|+h(m+n),

and we get

|A′+B| −
( |A′|

m
+ |B|

n

)
(m + n) = |A + B|+h(m + n)−

( |A| + hm

m
+ |B|

n

)
(m + n)

= |A + B|−
( |A|

m
+ |B|

n

)
(m + n).

Lemma 4.1 follows. �
The characterization of extremal sets for the Bonnesen inequality is the following theorem.

Theorem 4.2 Let

A = {(x, y) ∈ R
2 : 0 ≤ x ≤ m, u A(x) ≤ y ≤ vA(x)}, (39)

B = {(x, y) ∈ R
2 : 0 ≤ x ≤ n, u B(x) ≤ y ≤ vB(x)} (40)

be two convex bodies in the plane R
2. Then

|A + B| =
( |A|

m
+ |B|

n

)
(m + n)

if and only if there is a pair A′ and B ′ of homothetic convex bodies such that A is a vertical
stretching of A′ and B is a vertical stretching of B ′.

The proof of Theorem 4.2 will be derived from the results below. Its proof requires only
basic notions from the differential calculus of convex functions; see [12], [16]. We summa-
rize the needed points below. Let f be a positive real concave function defined on an interval
[m, n]. We let

f ′+(x) := lim
λ→0
λ>0

f (x + λ) − f (x)

λ
and f ′−(x) := lim

λ→0
λ<0

f (x + λ) − f (x)

λ

denote the right derivative and left derivative of f at x respectively. It is a basic property of
concave functions that these one sided derivatives exist at every point x ∈ (m, n) and that
f ′−(x) ≥ f ′+(x), with equality occurring precisely when f is differentiable at x . When f is
concave, it is differentiable a.e. with f ′ continuous on the subset of points where it is defined.
In fact, f is Lipschitz continuous, and thus absolutely continuous, so that the Fundamental
Theorem of Calculus holds. In particular, if the derivative is zero a.e., then f must be a
constant function.

We will first give the characterization of equality in Bonnesen’s inequality for convex sets
defined by the graph of non-negative concave functions as in (41) and (42).

Theorem 4.3 Let f and g be concave real positive functions defined in the intervals [0, m]
and [0, n] respectively and let

A = {(x, y) ∈ R
2 : 0 ≤ x ≤ m, 0 ≤ y ≤ f (x)}, (41)

B = {(x, y) ∈ R
2 : 0 ≤ x ≤ n, 0 ≤ y ≤ g(x)} (42)
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be convex sets in the plane R
2. Assume that C = m

( |A|
m2 − |B|

n2

)
is non-negative. Then, the

pair (A, B) is extremal for Bonnesen inequality, that is,

|A + B| =
( |A|

m
+ |B|

n

)
(m + n),

if and only if

f (x) = m

n
g

( n

m
x
)

+ C, for every 0 ≤ x ≤ m.

Remark If the constant C = m
( |A|

m2 − |B|
n2

)
is negative, then we use a similar argument as

in the proof of Theorem 4.3 and we get that that the pair (A, B) is extremal for Bonnesen
inequality if and only if the set B is be a vertical stretching of A.

For the proof of Theorem 4.3, we proceed with a series of lemmas. The first shows that
the condition on f in Theorem 4.3 is sufficient.

Lemma 4.4 Let A and B be the convex sets in the plane R
2 defined in (41) and (42), respec-

tively.

If C = m
( |A|

m2 − |B|
n2

)
≥ 0 and f (x) = m

n g
( n

m x
) + C, then

|A + B| =
( |A|

m
+ |B|

n

)
(m + n).

Proof The hypothesis f (x) = m
n g( n

m x) + C implies that A is a vertical stretching of a
homothetic copy of B of amount C. Thus the statement of the lemma follows from the case
of equality in Brunn–Minkowski Theorem and Lemma 4.1, because the lower bounds for
|A + B| implied by (3) and (4) coincide when C = 0. �
Lemma 4.5 Let A and B be the convex sets in the plane R

2 defined in (41) and (42), respec-
tively. Then

(a)

|A + B| ≥
( |A|

m
+ |B|

n

)
(m + n) + �,

where

� =
⎛
⎝n f (m) − n

m

m∫
0

f (x) dx

⎞
⎠ +

⎛
⎝mg(0) − m

n

n∫
0

g(x) dx

⎞
⎠ .

(b) In particular, if f ′+(x) ≥ g′+(y) + ε for all x ∈ [0, m) and y ∈ [0, n), where ε ≥ 0,

then

|A + B| ≥
( |A|

m
+ |B|

n

)
(m + n) + mn

2
ε.

Proof We first observe that

A + ({0} × [0, g(0)]) ⊆ (A + B) ∩ ([0, m] × R),

({m} × [0, f (m)]) + B ⊆ (A + B) ∩ ([m, m + n] × R).
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Therefore,

|A + B| ≥ |A + ({0} × [0, g(0)])| + |({m} × [0, f (m)]) + B|
= |A| + mg(0) + |B| + n f (m), (43)

and we complete the proof of the first part of Lemma 4.5 as follows:

|A + B| −
( |A|

m
+ |B|

n

)
(m + n) (44)

≥ |A| + mg(0) + |B| + n f (m) −
( |A|

m
+ |B|

n

)
(m + n)

= mg(0) + n f (m) − n

m
|A| − m

n
|B| (45)

= n

(
f (m) − |A|

m

)
+ m

(
g(0) − |B|

n

)
= �. (46)

It remains to prove assertion (b). Thus suppose f ′+(x) ≥ g′+(y) + ε for all x ∈ [0, m)

and y ∈ [0, n), where ε ≥ 0. Since f : [0, m] → R≥0 is a concave function, and thus
absolutely continuous and differentiable a.e., it follows that x f (x) : [0, m] → R≥0 is also
absolutely continuous and differentiable a.e. Thus it follows from the Fundamental Theorem
of Calculus that

f (m) = 1

m

m∫
0

(x f (x))′ dx = 1

m

m∫
0

x f ′(x) dx + 1

m

m∫
0

f (x) dx = 1

m

m∫
0

x f ′(x) dx + |A|
m

.

Hence we may rewrite � as

� = n

m

m∫
0

y f ′(y) dy − m

n

n∫
0

g(x) dx + mg(0)

= m

n

n∫
0

(
x f ′+(

m

n
x) − g(x)

)
dx + mg(0), (47)

where we have used that f ′+(x) = f ′(x) a.e. and applied the change of variables y �→ m
n x .

Since f ′+(x) ≥ g′+(y) + ε for all x ∈ [0, m) and y ∈ [0, n), it follows that

x f ′+
(m

n
x
)

≥ xg′+(0) + xε, (48)

for all x ∈ [0, n). Since g is concave, g(x)−g(0)
x is a decreasing function of x, whence

g′+(0) = lim
λ→0
λ>0

g(λ) − g(0)

λ
≥ g(x) − g(0)

x
, (49)

for all x ∈ [0, n). Applying the estimates (48) and (49) to (47), we obtain

� ≥ mg(0)+ m

n

n∫
0

(xg′+(0)+xε − g(x)) dx ≥mg(0)+ m

n

n∫
0

(−g(0)+xε) dx = mn

2
ε,

(50)

completing the proof. �
In order to complete the proof of Theorem 4.3, we need the following lemma.
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Lemma 4.6 Let A and B be the convex sets in the plane R
2 defined by (41) and (42),

respectively.
Let �m,k = {x0 = 0 < x1 < · · · < xk = m} and �n,k = {x ′

0 = 0 < x ′
1 < · · · < x ′

k = n}
be partitions of [0, m] and [0, n] into k equal parts, and let

Ai = {(x, y) ∈ R
2 : xi−1 ≤ x ≤ xi , 0 ≤ y ≤ f (x)}, i = 1, . . . , k,

Bi = {(x, y) ∈ R
2 : x ′

i−1 ≤ x ≤ x ′
i , 0 ≤ y ≤ g(x)}, i = 1, . . . , k.

If (A, B) is an extremal pair for Bonnesen’s inequality, i.e. |A + B| =
( |A|

m + |B|
n

)
(m + n),

then each of (A1, B1), . . . , (Ak, Bk) is also an extremal pair.

Proof Observe that ∪k
i=1(Ai + Bi ) ⊆ A+ B and that |(Ai + Bi )∩ (A j + B j )| = 0 for i �= j.

It follows that

|A + B| ≥
k∑

i=1

|Ai + Bi |

≥
k∑

i=1

(
|Ai |

xi − xi−1
+ |Bi |

x ′
i − x ′

i−1

) (
(xi − xi−1) + (x ′

i − x ′
i−1)

)

=
k∑

i=1

( |Ai |
m/k

+ |Bi |
n/k

)
(m/k + n/k) =

( |A|
m

+ |B|
n

)
(m + n),

where we have applied Bonnesen inequality (35) for the second inequality. Equality |A+B| =( |A|
m + |B|

n

)
(m+n) implies that |Ai +Bi | =

( |Ai |
m/k + |Bi |

n/k

)
(m/k+n/k), for every 1 ≤ i ≤ k.

Lemma 4.6 follows. �

Proof of Theorem 4.3 The sufficiency of the condition on f is Lemma 4.4. Let us show the
necessity.

Set λ = m/n. If f ′(x) = g′(λ−1x) for a.e. x ∈ (0, m), then, by the Fundamental Theorem
of Calculus, we would have f (x) = λg(λ−1x)+c for some constant c, whose value is easily
computed to be C, and the result follows.

Thus we may assume that there is an interior point x0 ∈ (m, n) where both functions are
differentiable and, by exchanging the roles of f and g if necessary, f ′(x0) ≥ g′(x0) + ε′
for some ε′ > 0. By continuity of the derivatives, there is an ε > 0 and a δ > 0 such that
f ′(x) ≥ g′(λ−1x)+ ε a.e. in the interval [x0 − δ, x0 + δ]. Choose k sufficiently large so that,
in the partition {x0 = 0 < x1 < · · · < xk = m} of [0, m] into k equal parts, one of the parts,
say [xi−1, xi ], is contained in the interval [x0 − δ, x0 + δ]. Then {λ−1x0 = 0 < λ−1x1 <

· · · < λ−1xk = n} is a partition of [0, n] whose i-th part [λ−1xi−1, λ
−1xi ] is contained in

the interval [λ−1(x0 − δ), λ−1(x0 + δ)].
By assertion (b) of Lemma 4.5, the restrictions Ai = A ∩ ([xi−1, xi ] × R) and Bi =

B∩([λxi−1, λxi ]×R) do not satisfy equality in Bonnesen’s inequality. Hence, by Lemma 4.6,
the original sets A and B are not an extremal pair. This completes the proof of Theorem 4.3.
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We can now complete the proof of Theorem 4.2.

Proof of Theorem 4.2 Assume that A and B are two convex bodies defined by (39) and (40),
respectively. Without loss of generality, we may assume that

u A(x) ≤ 0 for 0 ≤ x ≤ m and (51)

u B(x) ≤ 0 for 0 ≤ x ≤ n. (52)

In view of Lemma 4.1 and the fact that homothetic convex bodies attain equality in the
Brunn–Minkowski bound, and thus also in Bonnesen’s bound, we see that the sets described
by Theorem 4.2 attain the equality in Bonnesen’s bound. It remains to show these are the
only possibilities.

Choose h > 0 large enough such that

wA(x) = vA(x) + h ≥ 0, for 0 ≤ x ≤ m, (53)

and

wB(x) = vB(x) + h ≥ 0, for 0 ≤ x ≤ n. (54)

Let

Ah = {(x, y) ∈ R
2 : 0 ≤ x ≤ m, u A(x) ≤ y ≤ wA(x)},

Bh = {(x, y) ∈ R
2 : 0 ≤ x ≤ n, u B(x) ≤ y ≤ wB(x)}.

It follows from (51), (52), (53), (54) that we may split each of the convex sets Ah and Bh as
follows:

Ah = A+
h ∪ A−

h ,

A−
h = {(x, y) ∈ R

2 : 0 ≤ x ≤ m, u A(x) ≤ y ≤ 0}, (55)

A+
h = {(x, y) ∈ R

2 : 0 ≤ x ≤ m, 0 ≤ y ≤ wA(x)}, (56)

and

Bh = B+
h ∪ B−

h ,

B−
h = {(x, y) ∈ R

2 : 0 ≤ x ≤ n, u B(x) ≤ y ≤ 0}, (57)

B+
h = {(x, y) ∈ R

2 : 0 ≤ x ≤ n, 0 ≤ y ≤ wB(x)}. (58)

We observe that

(A+
h + B+

h ) ∪ (A−
h + B−

h ) ⊆ Ah + Bh . (59)

By Lemma 4.1, equality

|A + B| =
( |A|

m
+ |B|

n

)
(m + n) (60)

and equality

|Ah + Bh | =
( |Ah |

m
+ |Bh |

n

)
(m + n) (61)

are equivalent.
In view of (59), we have

|Ah + Bh | ≥ |A+
h + B+

h | + |A−
h + B−

h |,
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and Bonnesen’s inequality (36) gives

|Ah + Bh | ≥ |A+
h + B+

h | + |A−
h + B−

h |

≥
(

|A+
h |

m
+ |B+

h |
n

)
(m + n) +

(
|A−

h |
m

+ |B−
h |

n

)
(m + n)

=
( |Ah |

m
+ |Bh |

n

)
(m + n).

Therefore (61) implies

|A+
h + B+

h | =
(

|A+
h |

m
+ |B+

h |
n

)
(m + n) and |A−

h + B−
h | =

(
|A−

h |
m

+ |B−
h |

n

)
(m + n).(62)

Consequently, (A+
h , B+

h ) and (A−
h , B−

h ) are extremal pairs for Bonnesen’s inequality. More-
over, the convex sets A+

h and B+
h are included in the half plane given by y ≥ 0, A−

h and B−
h

are included in the half plane given by y ≤ 0, and these sets are defined by (55), (56), (57)
and (58). Thus we may apply Theorem 4.3 and conclude that (62) is true if and only if there
are c′, d ∈ R such that, for every 0 ≤ x ≤ n, we have

wB(x) = n

m
wA

(m

n
x
)

+ c′ and vB(x) = n

m
vA

(m

n
x
)

+ d.

In view of the definition of wA and wB , this shows that the curves u A and u B , as well as the
curves vA and vB , are homothetic.

Let

α = inf
x∈[0,m]{vA(x) − u A(x)} ≥ 0 and β = inf

x∈[0,n]{vB(x) − u B(x)} ≥ 0.

Let x0 ∈ [0, m] and y0 ∈ [0, n] be points achieving these minima. Let A′ ⊆ R
2 be the subset

with π(A′) = π(A) = [0, m] defined by

A′ = {(x, y) ∈ R
2 | x ∈ [0, m], u A(x) ≤ y ≤ vA(x) − α}.

Then u A′ = u A and vA′ = vA − α (in view of the definition of α) so that A′ is the maxi-
mal vertical ‘compression’ of A. In particular, A is a vertical stretching of A′ of amount α.

Likewise, let B ′ ⊆ R
2 be the subset with π(B ′) = π(B) = [0, n] defined by

B ′ = {(x, y) ∈ R
2 | x ∈ [0, n], u B(x) ≤ y ≤ vB(x) − β}.

Since the curves vA and vB are both homothetic as well as the curves u A and u B , it follows
that we can take x0 = m

n y0 and, moreover, A′ and B ′ will then be homothetic convex bodies
(note vA(x) and u A(x) intersect over the point x = x0 as do vB

(m
n x

)
and u B

(m
n x

)
, so

that these curves fully determine the convex body A′ as well as the dilation m
n · B ′), which

completes the proof.
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