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Inverse Additive Problems for Minkowski Sumsets II
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Abstract The Brunn–Minkowski Theorem asserts that μd(A+B)1/d ≥ μd(A)1/d +
μd(B)1/d for convex bodies A,B ⊆ R

d , where μd denotes the d-dimensional
Lebesgue measure. It is well known that equality holds if and only if A and B are
homothetic, but few characterizations of equality in other related bounds are known.
Let H be a hyperplane. Bonnesen later strengthened this bound by showing

μd(A + B) ≥ (M1/(d−1) + N1/(d−1))d−1
(

μd(A)

M
+ μd(B)

N

)
,
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where M = sup{μd−1((x + H) ∩ A) | x ∈ R
d} and N = sup{μd−1((y + H) ∩ B) |

y ∈ R
d}. Standard compression arguments show that the above bound also holds

when M = μd−1(π(A)) and N = μd−1(π(B)), where π denotes a projection of R
d

onto H , which gives an alternative generalization of the Brunn–Minkowski bound.
In this paper, we characterize the cases of equality in this latter bound, showing that
equality holds if and only if A and B are obtained from a pair of homothetic convex
bodies by ‘stretching’ along the direction of the projection, which is made formal in
the paper. When d = 2, we characterize the case of equality in the former bound as
well.
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1 Introduction

Let R
d denote the d-dimensional Euclidean space equipped with the usual Lebesgue

measure. Let A,B ⊆ R
d be convex bodies, meaning that A and B are compact, con-

vex subsets with nonempty interior. Their Minkowski sum, or sumset, is

A + B = {a + b | a ∈ A, b ∈ B}.
Whenever the dimension of the convex body A is clear, we will use |A| to denote its
corresponding nonzero Lebesgue measure. For λ ∈ R, let λA = {λa | a ∈ A} denote
the dilation of A by λ. The classical Brunn–Minkowski Theorem gives a lower bound
for |A + B| in terms of |A| and |B|, and there are many far-reaching generalizations
and applications; see [6] for a fairly comprehensive survey. Equality is known to hold
if and only if A and B are homothetic, that is, A = λB +v for some λ > 0 and v ∈ R

d

[6, 9, 12].

Theorem A (Brunn–Minkowski Theorem) If A,B ⊆ R
d are convex bodies, then

|A + B| ≥ (|A|1/d + |B|1/d)d . (1)

For M, N > 0, it can be shown (as remarked in [4, 6]) that

(M1/(d−1) + N1/(d−1))d−1
( |A|

M
+ |B|

N

)
≥ (|A|1/d + |B|1/d)d , (2)

with equality only when

M|B| d−1
d = N |A| d−1

d .

Consequently, the following result given by Bonnesen in 1929 (see, e.g.,
[1, 2, 4, 6]) improves the Brunn–Minkowski Inequality. Note, since A and B are
compact with nonempty interiors, that the values M and N in Theorem B are nonzero
and actually attained for some x ∈ R

d and y ∈ R
d . For d = 1, the coefficients of |A|

and |B| in Bonnesen’s Bound are to be interpreted as their natural limiting values,
i.e., |A + B| ≥ |A| + |B|.
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Theorem B (Bonnesen’s Bound I) If A,B ⊆ R
d are convex bodies and H ⊆ R

d is a
(d − 1)-dimensional subspace, then

|A + B| ≥ (M1/(d−1) + N1/(d−1))d−1
( |A|

M
+ |B|

N

)
, (3)

where M = sup{|(x + H) ∩ A| | x ∈ R
d} and N = sup{|(y + H) ∩ B| | y ∈ R

d}.

By standard symmetrization or compression arguments (see, e.g., [8, 10] or the
proof of Lemma 2.1), Theorem B implies the following alternative generalization of
the Brunn–Minkowski Theorem.

Theorem C (Bonnesen’s Bound II) If A,B ⊆ R
d are convex bodies and π : R

d →
R

d is a linear transformation with dim(kerπ) = 1, then

|A + B| ≥ (M1/(d−1) + N1/(d−1))d−1
( |A|

M
+ |B|

N

)
, (4)

where M = |π(A)| and N = |π(B)|.

In fact, Theorems A, B, and C remain true for any subsets A,B ⊆ R
d such that

all involved quantities are measurable (see [9]). However, the general measurable
case is rather painful from a technical point of view, and it is a rare textbook that
is willing to reproduce the full proof of the case of inequality in Theorem A for
measurable subsets. To avoid similar issues and present our ideas with greater clarity,
we have focused here only on the case of convex bodies. The formulation given in
Theorem C actually arises naturally when attempting to give a discrete version of the
Brunn–Minkowski Theorem valid in Z

d ; see [5, 8], or [7] for a discrete version of a
somewhat different form.

We will use the following notation throughout the paper. Let π : R
d → R

d be
a linear transformation with dim(kerπ) = 1. Then π(Rd) = K for some (d − 1)-
dimensional subspace K . Let e0, e1, . . . , ed−1 ∈ R

d be an orthonormal basis for R
d

such that e1, . . . , ed−1 span K . Since dim(kerπ) = 1, we have kerπ = Ru for any
nonzero u ∈ kerπ . Choose u ∈ kerπ such that the elements u, e1, . . . , ed−1 form a
basis for R

d with the linear isomorphism ϕ : R
d → R

d defined by ϕ(ei ) = ei for
i ≥ 1 and ϕ(e0) = u being volume preserving.

Then an element x = x0u + x1e1 + · · · + xd−1ed−1 ∈ R
d may be written as x =

(x0, x1, . . . , xd−1) and a convex body A ⊆ R
d can be described as

A = {(y,x) ∈ R × R
d−1 | x ∈ π(A), uA(x) ≤ y ≤ vA(x)} (5)

with uA : π(A) ⊆ R
d−1 → R a convex function and vA : π(A) ⊆ R

d−1 → R a con-
cave function. We say that A′ is a stretching of A (with respect to π ) of amount h ≥ 0
if

A′ = {(y,x) ∈ R × R
d−1 | x ∈ π(A), uA(x) ≤ y ≤ vA(x) + h}.

When u = e0, which we will be able to assume as a normalization condition as ex-
plained at the beginning of Sect. 2, we speak of a vertical stretching.
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The goal of this paper is to characterize the pairs A and B for which equality holds
in Theorem C.

Theorem 1.1 Let A,B ⊆ R
d be convex bodies and let π : R

d → R
d be a linear

transformation with dim(kerπ) = 1. Then

|A + B| = (M1/(d−1) + N1/(d−1))d−1
( |A|

M
+ |B|

N

)
, (6)

where M = |π(A)| and N = |π(B)|, if and only if there are homothetic convex bodies
A′, B ′ ⊆ R

d such that A is a stretching of A′ and B is a stretching of B ′, both with
respect to π .

When d = 2, we also give a simple argument to derive the characterization of
equality in Theorem B from the characterization of equality in Theorem C.

Theorem 1.2 Let H ⊆ R
2 be a one-dimensional subspace and let A,B ⊆ R

2 be
convex bodies translated so that

M := |H ∩ A| = sup{|(x + H) ∩ A| | x ∈ R
2} and

N := |H ∩ B| = sup{|(x + H) ∩ B| | x ∈ R
2}.

Then

|A + B| = (M + N)

( |A|
M

+ |B|
N

)
(7)

if and only if there exists a linear transformation π : R
2 → R

2 and homothetic convex
bodies A′, B ′ ⊆ R

2 such that π(R2) = H ,

π(A) = π(A′) = H ∩ A = H ∩ A′ and π(B) = π(B ′) = H ∩ B = H ∩ B ′

with A a stretching of A′ and B a stretching of B ′, both with respect to π .

2 Equality in the Projection Bonnesen Bound

The goal of this section is to prove Theorem 1.1. The case d = 1 is trivial, so
we henceforth assume d ≥ 2. We use the notation introduced before Theorem 1.1.
Then, letting π ′ : R

d → R
d denote the projection given by π ′(y0e0 + y1e1 + · · · +

yd−1ed−1) = y1e1 + · · · + yd−1ed−1, we have |π(A)| = |π ′(ϕ−1(A))| and |π(B)| =
|π ′(ϕ−1(B))|. Since ϕ is volume preserving, and hence ϕ−1 as well, we see that it
suffices to prove the theorem when u = e0, as we can then apply this case of the
theorem to ϕ−1(A) + ϕ−1(B), derive the structure of ϕ−1(A) and ϕ−1(B), and then
find the structure of A and B by applying the linear isomorphism ϕ. Thus we assume
u = e0 throughout this section. In particular, π : R

d → R
d denotes the projection

given by

π(x0, x1, . . . , xd−1) = (0, x1, . . . , xd−1).
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The proof requires a solid grasp of the fundamental metric properties and differ-
ential calculus of convex functions; see, e.g., [3, 10, 13]. We summarize the needed
points below for the convenience of the reader.

2.1 Convex Calculus Basics

If S ⊆ R
d−1 is a convex set and f : S → R≤0, then we let

epi ∗f = {(y,x) | y ∈ R, x ∈ S, f (x) ≤ y ≤ 0} ⊆ R
d

denote the (truncated) epigraph of f in R
d . Following the standard convention in the

theory of convex analysis, the above definition of epigraph is written upside down.
This is done, in part, because under this convention, the function f is convex precisely
when epi ∗f is a convex set.

Recall that a function f : S → R≥0 is concave if and only if −f is convex, which
is equivalent to

−epi ∗(−f ) = {(y,x) | y ∈ R, x ∈ S, 0 ≤ y ≤ f (x)} ⊆ R
d

being convex. For z ∈ R
d−1, we let

f ′(x; z) := lim
λ→0
λ>0

f (x + λz) − f (x)

λ

denote the one-sided directional derivative of f at x with respect to the direction z,
and then

−f ′(x;−z) = lim
λ→0
λ<0

f (x + λz) − f (x)

λ
.

When d = 2, there are only two directions, and f+(x) := f ′(x;1) is called the right
derivative and f−(x) := −f ′(x;−1) the left derivative. It is a basic property of con-
vex functions that

f (x + λ) − f (x)

λ
,

for λ > 0, is a non-decreasing function of λ (and thus a non-increasing function of
λ > 0 for concave functions f ), so that f ′(x; z) always exists (apart from points
on the boundary of S where f (x + λz) is undefined for all λ > 0). Moreover,
−f ′(x;−z) ≤ f ′(x; z) with equality occurring precisely when f is differentiable at
x in the direction z, in which case the usual derivative is equal to −f ′(x;−z) =
f ′(x; z).

At a differentiable point x ∈ int S ⊆ R
d−1, where int S denotes the interior of S,

there is a unique tangent hyperplane passing through (f (x),x) ∈ R × R
d−1, which

gives rise to the usual gradient ∇f (x) ∈ R
d−1, whose i-th coordinate is the usual

derivative f ′(x; ei ). When f is not differentiable at x, there is not a unique tangent
hyperplane passing through (f (x),x) ∈ R × R

d−1. Instead, there are several sup-
porting hyperplanes passing through (f (x),x), each one giving rise to a different
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subgradient at x. We let ∂f (x) be the subdifferential of f at x, which is the set of
all subgradients x∗ ∈ R

d−1, formally, all x∗ ∈ R
d−1 such that the graph of the affine

function h(z) = f (x) + 〈x∗, z − x〉 is a non-vertical supporting hyperplane to epi ∗f
at (f (x),x), which can be alternatively phrased as all x∗ ∈ R

d−1 such that

f (z) ≥ f (x) + 〈x∗, z − x〉 for all z ∈ R
d−1.

When d = 2, this is simply the set ∂f (x) = [f−(x), f+(x)] consisting of all possible
slopes of a tangent line passing through (f (x), x). For instance, if f (x) = |x| − C,
then ∂f (0) = [−1,1], ∂f (x) = {−1} for x < 0, and ∂f (x) = {1} for x > 0.

When f is convex, it is differentiable a.e. with f ′ continuous on the subset of
points where it is defined. In fact, f is Lipschitz continuous in each variable, and
thus absolutely continuous, so that the Fundamental Theorem of Calculus holds. In
particular, if all partial derivatives are zero a.e., then f must be a constant function.
The subdifferential is continuous in the sense that, given any point x in the interior of
the domain of f and any ε > 0, there exists a δ > 0 such that

∂f (z) ⊆ ∂f (x) + Bε for all z ∈ x + Bδ, (8)

where Bρ denotes an open ball of radius ρ (see, e.g., [10, Corollary 24.5.1].) With
regards to minimizing a convex function, we have the rather striking property that
a point x is a global minimum for a convex function f if and only if x is a local
minimum, which occurs precisely when 0 ∈ ∂f (x) (see, e.g., [10, Sect. 27].)

For a subset A ⊆ R
d and λ ≥ 0, we let (A)λ = ⋃

x∈A(x + Bλ) denote the neigh-
borhood of A consisting of all points strictly within distance λ from a point of A.
Then the Hausdorff distance between two sets A,B ⊆ R

d is defined as

dH (A,B) := inf{λ ≥ 0 | A ⊆ (B)λ and B ⊆ (A)λ}.

When restricted to closed subsets of R
d , dH (·, ·) becomes a metric; in particular,

dH (A,B) = 0, for closed subsets A,B ⊆ R
d , if and only if A = B . Blaschke’s Se-

lection Theorem (see, e.g., [3, 12, 13]) asserts that the space of all compact con-
vex sets with the Hausdorff metric is locally compact and complete. In particular, if
A1 ⊆ A2 ⊆ · · · is an increasing sequence of convex bodies all contained within some
fixed closed ball in R

d , then Ai → A, where A is the closure of
⋃

i≥1 Ai and the
limit is with respect to the Hausdorff metric. Additionally, the limit of convex bodies
is again convex.

2.2 A Sequence of Lemmas

Our strategy is to first prove Theorem 1.1 when A and B are the epigraphs of respec-
tive concave functions f : S ⊆ R

d−1 → R≥0 and g : T ⊆ R
d−1 → R≥0, and then

extend to the more general case. To do this, we break the majority of the proof into
a series of lemmas. Our first lemma below allows us to restrict to the case when the
domains S and T are homothetic. During the course of the proof, an outline of the
proof of Theorem C is recreated.
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Lemma 2.1 Let A,B ⊆ R
d be convex bodies. If

|A + B| = (M1/(d−1) + N1/(d−1))d−1
( |A|

M
+ |B|

N

)
, (9)

where M = |π(A)| and N = |π(B)|, then π(A) and π(B) are homothetic.

Proof This is a simple consequence of compression techniques and the proof of Bon-
nesen’s Theorem as given in [4]. We outline the details here. Recalling that we have
assumed u = e0 and writing a convex body A using the notation of (5), we define

C(A) := {(y,x) ∈ R × R
d−1 | x ∈ π(A), 0 ≤ y ≤ vA(x) − uA(x)}.

It is easily derived (see also [8]) that

|C(A)| = |A| and |C(B)| = |B|,
M := |π(A)| = |π(C(A))| = sup{|(x + H) ∩ C(A)| | x ∈ R

d},
N := |π(B)| = |π(C(B))| = sup{|(x + H) ∩ C(B)| | x ∈ R

d},
|A + B| ≥ |C(A) + C(B)|,

where H = e⊥
0 is the orthogonal space to e0, which is spanned by e1, . . . , ed−1. For

z ∈ R, let A(z) = C(A) ∩ (ze0 + H) and B(z) = C(B) ∩ (ze0 + H). Then

|C(A) + C(B)| ≥
∫ +∞

−∞
sup

x+y=z
{|A(x) + B(y)|}dz

≥
∫ +∞

−∞
sup

x+y=z
{(|A(x)|1/(d−1) + |B(y)|1/(d−1))d−1}dz (10)

≥ (M1/(d−1) + N1/(d−1))d−1
( |A|

M
+ |B|

N

)
, (11)

where (10) follows by the Brunn–Minkowski Theorem applied to each A(x) + B(y),
and (11) follows by [4, Theorem 2.1] (as in the proof of Bonnesen’s Bound given in
[4]). Consequently, in view of (9), we see that equality must hold in (10). The remain-
der of the proof now follows easily from the following two basic claims concerning
convex bodies.

Claim 1 If X, Y ⊆ R
d−1 are convex bodies that are not homothetic, then there ex-

ists δ > 0 such that no two convex bodies C, D ⊆ R
d−1 with dH (X,C) < δ and

dH (Y,D) < δ are homothetic.

Proof If the claim is false, then there exist two sequences of convex bodies {Ci}i≥1
and {Di}i≥1 such that Ci → X, Di → Y and, for each i ≥ 1, Ci and Di are ho-
mothetic, so that Di = αiCi + xi for some αi > 0 and xi ∈ R

d−1. Since each of the
sequences {Ci}i≥1 and {αiCi +xi}i≥1 converges to a convex body, it is easily verified
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that αi → α and xi → x for some α > 0 and x ∈ R
d−1. Hence Y = αX + x, contrary

to the hypothesis. �

Claim 2 For any δ > 0, there exists an ε > 0 such that dH (A(0),A(x)) < δ and
dH (B(0),B(y)) < δ for all x, y ∈ [0, ε).

Proof If the claim fails for (say) A, then we can find a sequence x1 > x2 > · · · ,
where xi ∈ R>0, such that xi → 0 and dH (A(0),A(xi)) ≥ δ > 0 for all i. Since x1 >

x2 > · · · , it follows from the definition of A(x) that A(x1) ⊆ A(x2) ⊆ · · · . Thus
A(xi) → A′, where A′ is the closure of

⋃
i≥1 A(xi). Since xi → 0 with xi > 0, it fol-

lows that
⋃

i≥1 A(xi) consist of all points x ∈ R
d−1 such that (y,x) ∈ C(A) for some

y > 0. Consequently, as C(A) = −epi ∗(uA − vA) is a convex body (both −vA and
uA are convex functions), so that uA −vA ≤ 0 cannot be the constant zero function, it
follows by a simple argument that int(A(0)) ⊆ ⋃

i≥1 A(xi), whence A′ = A(0). But
since A(xi) → A′ = A(0), it now follows that dH (A(xi),A(0)) → 0, contradicting
that dH (A(0),A(xi)) ≥ δ > 0 for all i. This completes the claim. �

We now complete the proof of the lemma. If by contradiction A(0) = π(A) and
B(0) = π(B) are not homothetic, then, by Claims 1 and 2 (take X = A(0) and Y =
B(0) in Claim 1 to find the δ to be used for Claim 2), there is some ε > 0 such that
A(x) and B(y) are not homothetic for all x, y ∈ [0, ε). As a result, the application of
the Brunn–Minkowski Theorem to (10) yields a strict inequality for all for z ∈ [0, ε),
whence equality in (10) is impossible, contrary to our assumption. �

The following lemma shows that vertical stretching preserves equality (6) pro-
vided π(A) and π(B) are homothetic, which we will be able to assume using
Lemma 2.1. Not only does this show that the sets described by Theorem 1.1 sat-
isfy the equality (6), but it will also play an important role in the other direction of
the proof of Theorem 1.1, allowing us to consider convex bodies sufficiently stretched
and thereby resolve a delicate technical difficulty with ease.

Lemma 2.2 Let A,B, A′, B ′ ⊆ R
d be convex bodies and suppose that A and B are

vertical stretchings of A′ and B ′, respectively. Then

|A + B| − (M1/(d−1) + N1/(d−1))d−1
( |A|

M
+ |B|

N

)

≥ |A′ + B ′| − (M1/(d−1) + N1/(d−1))d−1
( |A′|

M
+ |B ′|

N

)
,

where M = |π(A)| = |π(A′)| and N = |π(B)| = |π(B ′)|, with equality if and only if
π(A) = π(A′) and π(B) = π(B ′) are homothetic.

Proof Suppose that A is a stretching of A′ of amount α and B is a stretching of B ′
of amount β , where α ≥ 0 and β ≥ 0. Then

|A| = |A′| + |π(A′)|α = |A′| + Mα and (12)

|B| = |B ′| + |π(B ′)|β = |B ′| + Nβ. (13)
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For z ∈ π(A + B), observe that

π−1(z) ∩ (A + B) =
⋃

x+y=z

((π−1(x) ∩ A) + (π−1(y) ∩ B)). (14)

Both π−1(x)∩A and π−1(y)∩B are vertical line segments (as A and B are convex).
Moreover, since A + B is also convex, their union in (14) must again be a vertical
line segment. The vertical line segment π−1(x) ∩ A is obtained by extending the
line segment π−1(x) ∩ A′ by an additional length of α appended onto the top of
the segment π−1(x) ∩ A′; the line segment π−1(x) ∩ B is likewise obtained from
π−1(x) ∩ B ′ appending on an additional length of β to the top of π−1(x) ∩ B ′. Thus,
since the union in (14) is a single vertical line segment, it follows that

∣∣∣∣
⋃

x+y=z

((π−1(x) ∩ A) + (π−1(y) ∩ B))

∣∣∣∣

=
∣∣∣∣

⋃
x+y=z

((π−1(x) ∩ A′) + (π−1(y) ∩ B ′))
∣∣∣∣ + (α + β)

for each z ∈ π(A + B) = π(A′ + B ′) = π(A′) + π(B ′). Consequently,

|A + B| = |A′ + B ′| + |π(A′) + π(B ′)|(α + β)

≥ |A′ + B ′| + (M1/(d−1) + N1/(d−1))d−1(α + β), (15)

where (15) is obtained by applying the Brunn–Minkowski Theorem, with equality if
and only if π(A) = π(A′) and π(B) = π(B ′) are homothetic.

From (15), we conclude that

|A + B| − |A′ + B ′| = |π(A′) + π(B ′)|(α + β)

≥ (M1/(d−1) + N1/(d−1))d−1(α + β), (16)

with equality if and only if π(A) = π(A′) and π(B) = π(B ′) are homothetic. Also,
(12) and (13) yield

(M1/(d−1) + N1/(d−1))d−1
(( |A|

M
+ |B|

N

)
−

( |A′|
M

+ |B ′|
N

))

= (M1/(d−1) + N1/(d−1))d−1(α + β). (17)

Comparing (16) and (17) completes the lemma. �

Lemma 2.3 provides the base case for the inductive proof of Lemma 2.4, which
will be our main argument, combined with standard approximation arguments, for
characterizing the case of equality in Bonnesen’s Bound for epigraphs.

Lemma 2.3 Let m, n > 0, and let f : [0,m] → R≥0 and g : [0, n] → R≥0 be con-
cave functions. Let A,B ⊆ R

2 be defined as A = −epi ∗(−f ) and B = −epi ∗(−g).
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(a) Then

|A + B| ≥ (m + n)

( |A|
m

+ |B|
n

)
+ �, (18)

where

� =
(

nf (m) − n

m

∫ m

0
f (x)dx

)
+

(
mg(0) − m

n

∫ n

0
g(x)dx

)
.

(b) In particular, if f ′+(x) ≥ g′+(y)+ε for all x ∈ [0,m) and y ∈ [0, n), where ε ≥ 0,
then

|A + B| ≥ (m + n)

( |A|
m

+ |B|
n

)
+ mn

2
ε.

Proof We first observe that

A + ([0, g(0)] × {0}) ⊆ (A + B) ∩ (R × [0,m]),
([0, f (m)] × {m}) + B ⊆ (A + B) ∩ (R × [m,m + n]).

Therefore,

|A + B| ≥ |A + ([0, g(0)] × {0})| + |([0, f (m)] × {m}) + B|
= (|A| + mg(0)) + (|B| + nf (m)),

and we complete the proof of part (a) as follows:

|A + B| − (m + n)

( |A|
m

+ |B|
n

)
≥ |A| + mg(0) + |B| + nf (m) − (m + n)

×
( |A|

m
+ |B|

n

)

= mg(0) + nf (m) − n

m
|A| − m

n
|B|

= n

(
f (m) − |A|

m

)
+ m

(
g(0) − |B|

n

)
= �.

It remains to prove part (b). Thus suppose f ′+(x) ≥ g′+(y) + ε for all x ∈ [0,m)

and y ∈ [0, n), where ε ≥ 0. The product of absolutely continuous functions defined
over a closed, bounded interval is absolutely continuous on this interval. Thus, since
f : [0,m] → R≥0 is a concave function, and thus absolutely continuous (and hence
differentiable a.e.), it follows that xf (x) : [0,m] → R≥0 is also absolutely continuous
(and hence differentiable a.e.). As a result, noting that (xf (x))′ = f (x)+xf ′(x) a.e.,
it follows from the Fundamental Theorem of Calculus that

f (m) = 1

m

∫ m

0
(xf (x))′ dx = 1

m

∫ m

0
xf ′(x) dx + 1

m

∫ m

0
f (x)dx.
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Hence we may rewrite � as

� = n

m

∫ m

0
yf ′(y) dy − m

n

∫ n

0
g(x)dx + mg(0).

Applying the substitution y �→ m
n
x to the first integral and using the fact that f ′(x) =

f ′+(x) a.e., we obtain

� = mg(0) + m

n

∫ n

0

(
xf ′+

(
m

n
x

)
− g(x)

)
dx. (19)

Since f ′+(x) ≥ g′+(y) + ε for all x ∈ [0,m) and y ∈ [0, n), it follows that

xf ′+
(

m

n
x

)
≥ xg′+(0) + xε, (20)

for all x ∈ [0, n). Since g is concave, g(x)−g(0)
x

is a non-increasing function of x,
whence

g′+(0) = lim
λ→0
λ>0

g(λ) − g(0)

λ
≥ g(x) − g(0)

x
(21)

for all x ∈ (0, n). Applying the estimates (20) and (21) to (19), we obtain

� ≥ mg(0) + m

n

∫ n

0

(
xg′+(0) + xε − g(x)

)
dx

≥ mg(0) + m

n

∫ n

0
(−g(0) + xε) dx = mn

2
ε, (22)

which combined with (18) implies the desired bound. �

The proof of the following lemma essentially contains a proof of Theorem C for
d ≥ 3 using the case d = 2 as the base of an inductive argument. The inductive ap-
plication of Theorem C is used to make a kind of (d − 2)-dimensional compression
possible.

Lemma 2.4 Let d ≥ 2, let m, n > 0 and let f : [0,m]d−1 → R≥0 and g :
[0, n]d−1 → R≥0 be concave functions. Let A,B ⊆ R

d be defined as A = −epi ∗(−f )

and B = −epi ∗(−g). Suppose

f ′(x; e1) ≥ g′(y; e1) + ε for all x ∈ [0,m)d−1 and y ∈ [0, n)d−1,

where ε ≥ 0. Then

|A + B| ≥ (m + n)d−1
( |A|

md−1
+ |B|

nd−1

)
+ mn

2
(m + n)d−2ε.
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Proof When d = 2, Lemma 2.3 yields the desired bound. We assume d ≥ 3 and
proceed by induction on d . For x ∈ [0,m] and y ∈ [0, n], let fx : [0,m]d−2 → R≥0

and gy : [0, n]d−2 → R≥0 be defined by fx(x1, . . . , xd−2) = f (x1, . . . , xd−2, x) and
gy(y1, . . . , yd−2) = g(y1, . . . , yd−2, y). Then −epi ∗(−fx) = (Rd−1 ×{x})∩A is the
x-section of A, and we will denote this set by A(x) = (Rd−1 × {x}) ∩ A. Like-
wise define B(y) = −epi ∗(−gy) = (Rd−1 × {y}) ∩ B and, for z ∈ [0,m + n], let
(A + B)(z) = (Rd−1 × {z}) ∩ (A + B). Then (A + B)(z) = ⋃

x+y=z(A(x) + B(y)).
Consequently,

|A + B| ≥
∫ m+n

0
sup

x+y=z
{|A(x) + B(y)|}dz. (23)

By the induction hypothesis, we know

|A(x) + B(y)| ≥ (m + n)d−2
( |A(x)|

md−2
+ |B(y)|

nd−2

)
+ mn

2
(m + n)d−3ε,

for all x ∈ [0,m] and y ∈ [0, n]. Combining the above inequality with (23) gives

|A + B| ≥
∫ m+n

0
sup

x+y=z

{
(m + n)d−2

md−2
|A(x)| + (m + n)d−2

md−2
|B(y)|

}
dz

+ mn

2
(m + n)d−2ε. (24)

Let f̃ : [0,m] → R≥0 be the function defined by

f̃ (x) = (m + n)d−2

md−2
|A(x)|

and let g̃ : [0, n] → R≥0 be the function defined by

g̃(y) = (m + n)d−2

md−2
|B(y)|.

Let Ã = −epi ∗(−f̃ ) and B̃ = −epi ∗(−g̃). As A and B are convex bodies, the func-
tions |A(x)| and |B(y)| are both integrable, and thus f̃ and g̃ as well. Moreover,

|Ã + B̃| =
∫ m+n

0
sup

x+y=z
{f̃ (x) + g̃(y)}dz

=
∫ m+n

0
sup

x+y=z

{
(m + n)d−2

md−2
|A(x)| + (m + n)d−2

md−2
|B(y)|

}
dz. (25)

Applying Theorem C, which (as mentioned in the introduction) holds more generally
for any compact subsets A and B , to Ã + B̃ , we conclude that
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|Ã + B̃| ≥ (m + n)

( |Ã|
m

+ |B̃|
n

)

= (m + n)

(
(m + n)d−2

md−1

∫ m

0
|A(x)|dx + (m + n)d−2

nd−1

∫ n

0
|B(y)|dy

)

= (m + n)d−1
( |A|

md−1
+ |B|

nd−1

)
. (26)

Combining (24), (25), and (26) yields the desired lower bound for |A + B|, complet-
ing the proof. �

Completion of the Proof We can now proceed with the proof of Theorem 1.1, first
in the case when A and B are both epigraphs.

Lemma 2.5 Let d ≥ 2, let S, T ⊆ R
d−1 be convex bodies, and let f : S → R≥0 and

g : T → R≥0 be concave functions. Let A,B ⊆ R
d be defined as A = −epi ∗(−f )

and B = −epi ∗(−g). If

|A + B| = (|S|1/(d−1) + |T |1/(d−1))d−1
( |A|

|S| + |B|
|T |

)
,

then S and T are homothetic and the graphs of f and g are also homothetic, i.e.,

f (x) = λg

(
1

λ
(x − x0)

)
+ C for all x ∈ S,

where C = |A|
|S| − λ|B|

|T | and S = λT + x0 for some λ > 0 and x0 ∈ R
d .

Proof From Theorem C, we know that

|A + B| ≥ (|S|1/(d−1) + |T |1/(d−1))d−1
( |A|

|S| + |B|
|T |

)
.

We wish to characterize when equality holds. By Lemma 2.1, equality in the bound
implies S and T are homothetic, say S = λT + x0 with λ > 0 and x0 ∈ R

d . Hence

|S| = λd−1|T |. (27)

By translating appropriately, without loss of generality we may assume x0 = 0, so
that S = λT . It remains to show that the graphs of f and g are homothetic, that is,
that f (x) = λg( 1

λ
x) + C for all x ∈ S, where C ∈ R is some constant. To calculate

what this constant must be, we have only to note that

|A| =
∫

S

f (x) dx =
∫

S

λg

(
1

λ
x
)

+ C dx = |λB| + |S|C = λd |B| + |S|C,

and combine this with (27), which gives C = |A|
|S| − λ|B|

|T | .
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Let g̃ : S → R≥0 be the concave function defined by g̃(x) = λg( 1
λ

x). Since f and
g are concave functions, they are Lipschitz continuous in each variable, and thus ab-
solutely continuous. Furthermore, g̃′(x; ej ) = g′( 1

λ
x; ej ) for all j ∈ [1, d − 1] and

all x ∈ S. Consequently, if f ′(x; ej ) = g′( 1
λ

x; ej ) = g̃′(x; ej ) for all j ∈ [1, d − 1]
and a.e. x ∈ int(S), then the Fundamental Theorem of Calculus would imply f (x) =
λg( 1

λ
x)+C for some constant C, as desired. Therefore, if the statement of the lemma

is false, then there must be some differentiable point x0 ∈ S, contained in the interior
of S (as the boundary of S has measure zero), such that without loss of general-
ity f ′(x0; e1) ≥ g′( 1

λ
x0; e1) + 2ε with ε > 0. In view of (8), we can find a small

neighborhood around x0 ∈ S in which f ′(x; e1) ≥ f ′(x0; e1) − ε
2 for x in this neigh-

borhood, as well as a small neighborhood around 1
λ

x0 ∈ T in which g′( 1
λ

x; e1) ≤
g′( 1

λ
x0; e1) + ε

2 for x in this neighborhood. Restricting to smaller neighborhoods as
need be, we can thus find a pair of homothetic boxes x0 + [− 1

2δ, 1
2δ]d−1 ⊆ S and

1
λ

x0 + [− 1
2λ

δ, 1
2λ

δ]d−1 ⊆ T such that

f ′(x; e1) ≥ g′(y; e1) + ε

for all x ∈ x0 +
[
−1

2
δ,

1

2
δ

]d−1

and y ∈ 1

λ
x0 +

[
− 1

2λ
δ,

1

2λ
δ

]d−1

, (28)

where ε > 0.
The remainder of the argument is now similar to a standard inner/outer measure

approximation to evaluate a Lebesgue integrable function; see, e.g., [11]. For k ∈
{0,1,2, . . .}, partition R

d−1 into a grid using boxes of the form z + 1
2k [− 1

2δ, 1
2δ]d−1

such that no two boxes share an interior point and such that x0 + [− 1
2δ, 1

2δ]d−1 is a
union of some subset of these boxes. Let Bk be the collection of all these boxes wholly
contained in S and, for each box b ∈ Bk , let Ab ⊆ A be the subset (R×b)∩A, which
corresponds to the epigraph of f restricted to the domain b ⊆ S. Also, let B′

k ⊆ Bk

be those boxes whose union is x0 + [− 1
2δ, 1

2δ]d−1.
Let 1

λ
Bk = { 1

λ
b | b ∈ Bk}. Thus 1

λ
Bk consists of boxes of the form z + 1

2k [− 1
2λ

δ,
1

2λ
δ]d−1, wholly contained in T , such that no two boxes share an interior point and

such that the union of boxes from 1
λ

B′
k is equal to 1

λ
x0 + [− 1

2λ
δ, 1

2λ
δ]d−1. For each

box b ∈ Bk , let Bb ⊆ B be the subset (R× 1
λ
b)∩B , which corresponds to the epigraph

of g restricted to the domain 1
λ
b ⊆ T . Let

mk = δ

2k
and nk = δ

λ2k

be, respectively, the length of each side of the boxes b ∈ Bk and the length of each
side of the boxes 1

λ
b ∈ 1

λ
Bk . Thus

|b| = md−1
k and

∣∣∣∣1

λ
b

∣∣∣∣ = nd−1
k for b ∈ Bk.

It is now easily seen that
⋃

b∈Bk
(Ab + Bb) ⊆ A + B with the intersection of any

two distinct sumsets Ab + Bb being a measure zero subset; of course, we can also
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use the more accurate estimate( ⋃
b∈B′

k

Ab

)
+

( ⋃
b∈B′

k

Bb

)
⊆ A + B

in place of
⋃

b∈B′
k
(Ab + Bb), and its intersection with all other Ab + Bb, with b ∈

Bk \ B′
k , will still be a measure zero subset. Thus

|A + B| ≥
∑

b∈Bk\B′
k

|Ab + Bb| + |
( ⋃

b∈B′
k

Ab

)
+

( ⋃
b∈B′

k

Bb

)
|.

As a result, making use of (28) and applying Lemma 2.4 to
( ⋃

b∈B′
k

Ab

)
+

( ⋃
b∈B′

k

Bb

)

and then using Theorem C for all other b ∈ Bk \ B ′
k , we obtain

|A + B| ≥
∑

b∈Bk\B′
k

(mk + nk)
d−1

( |Ab|
md−1

k

+ |Bb|
nd−1

k

)

+ 0(m0 + n0)
d−1

(
1

md−1
0

∑
b∈B′

k

|Ab| + 1

nd−1
0

∑
b∈B′

k

|Bb|
)

+ (m0n0)

2
(m0 + n0)

d−2ε

=
(

mk + nk

mk

)d−1 ∑
b∈Bk\B′

k

|Ab| +
(

mk + nk

nk

)d−1 ∑
b∈Bk\B′

k

|Bb|

+
(

m0 + n0

m0

)d−1 ∑
b∈B′

k

|Ab| +
(

m0 + n0

n0

)d−1 ∑
b∈B′

k

|Bb|

+ δd(λ + 1)d−2

2λd−1
ε.

In view of the definition of mk and nk , we have mk+nk

mk
= 1 + 1

λ
and mk+nk

nk
= 1 + λ

for all k ∈ {0,1,2, . . .}. Thus the above calculation implies

|A + B| ≥
(

1 + 1

λ

)d−1 ∑
b∈Bk

|Ab| + (1 + λ)d−1
∑
b∈Bk

|Bb| + δd(λ + 1)d−2

2λd−1
ε. (29)

As k → ∞, we see that
⋃

b∈Bk
b approaches S. More specifically, since S is

a convex body, the difference between limk→∞
⋃

b∈Bk
b and S is a measure zero

subset. Since T = 1
λ
S is just a dilation of S, we likewise see that the difference
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between limk→∞
⋃

b∈Bk

1
λ
b and T is also a measure zero subset. Consequently,∑

b∈Bk
|Ab| → |A| and

∑
b∈Bk

|Bb| → |B| as k → ∞, whence (29), in view of ε > 0
and (27), shows that

|A + B| ≥
(

1 + 1

λ

)d−1

|A| + (1 + λ)d−1|B| + δd(λ + 1)d−2

2λd−1
ε

>

(
1 + |T |1/(d−1)

|S|1/(d−1)

)d−1

|A| +
(

1 + |S|1/(d−1)

|T |1/(d−1)

)d−1

|B|

= (|S|1/(d−1) + |T |1/(d−1))d−1
( |A|

|S| + |B|
|T |

)
,

contrary to hypothesis. �

We conclude the section with the proof of Theorem 1.1 for general convex bodies.

Proof of Theorem 1.1 As noted at the beginning of Sect. 2, without loss of generality
we may assume π is the vertical projection map with u = e0. Since a pair of homo-
thetic convex bodies A′ and B ′ attains equality in the Brunn–Minkowski inequality,
and thus also in (6), Lemma 2.2 shows that the sets described by Theorem 1.1 all
satisfy equality (6).

It remains to complete the other direction in Theorem 1.1, so assume A,B ⊆ R
d

are convex bodies satisfying (6). Let S = π(A) and T = π(B), so that M = |S| and
N = |T |. In view of Lemma 2.1, it follows that S and T are homothetic convex
bodies, say S = λT + x0 with λ > 0 and x0 ∈ R

d , and by translating appropriately,
without loss of generality we may assume that x0 = 0. Write A and B using the
notation of (5). Note that vA(x) ≥ uA(x) and vB(y) ≥ uB(y) for all x ∈ S and y ∈ T .
Let

α = inf
x∈S

{vA(x) − uA(x)} ≥ 0 and β = inf
x∈T

{vB(x) − uB(x)} ≥ 0.

Since S and T are both compact subsets, these finite infima are attained by some v ∈ S

and v′ ∈ T (which, of course, may not be the only points for which the minimum is
attained).

Let A′ ⊆ R
d be the subset with π(A′) = π(A) = S defined by

A′ = {(y,x) ∈ R × R
d−1 | x ∈ π(A), uA(x) ≤ y ≤ vA(x) − α}.

Then uA′ = uA and vA′ = vA − α (in view of the definition of α) so that A′ is the
maximal vertical ‘compression’ of A. In particular, A is a vertical stretching of A′ of
amount α. Likewise, let B ′ ⊆ R

d be the subset with π(B ′) = π(B) = T defined by

B ′ = {(y,x) ∈ R × R
d−1 | x ∈ π(B), uB(x) ≤ y ≤ vB(x) − β}.

The set B is a vertical stretching of B ′ of amount β . In view of Lemma 2.2, we find
that the pair A′ and B ′ also satisfies Bonnesen’s equality (6).
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Since S = λT , it is easily observed that, if the graphs of vA and vB are both
homothetic as well as the graphs of uA and uB , then we can take v′ = 1

λ
v and, more-

over, A′ and B ′ will then be homothetic convex bodies as the graphs of y = vA(x)

and y = uA(x) − α intersect over the point v while the graphs of y = vB(x) and
y = uB(x) − β intersect over the corresponding point v′ = 1

λ
v, which would com-

plete the proof in view of the comments of the previous paragraph. We proceed to
show this is the case.

In view of S and T being homothetic and Lemma 2.2, we see that, to complete
the proof, it suffices to prove the pair of graphs vA and vB and the pair of graphs uA

and uB are both homothetic for any pair of vertical stretchings Ã and B̃ of A and B .
Thus, stretching A and B sufficiently, without loss of generality we may assume

inf
x∈S

vA(x) > sup
x∈S

uA(x) and inf
y∈T

vB(y) > sup
y∈T

uB(y).

Consequently, translating A and B appropriately, we can assume that vA(x) > 0 and
uA(x) < 0 for all x ∈ S, and that vB(y) > 0 and uB(y) < 0 for all y ∈ T .

Let

A+ = A ∩ (R≥0 × R
d−1) and A− = A ∩ (R≤0 × R

d−1),

B+ = B ∩ (R≥0 × R
d−1) and B− = B ∩ (R≤0 × R

d−1).

Then

A+ = −epi ∗(−vA) and B+ = −epi ∗(−vB),

−A− = −epi ∗(−(−uA)) and −B− = −epi ∗(−(−uB)).

Since A and B are convex bodies, we have vA and vB being concave functions and
uA and uB convex functions, in which case −uA and −uB are concave functions.

Since A+ + B+ ⊆ R≥0 × R
d−1 and A− + B− ⊆ R≤0 × R

d−1, we see that (A+ +
B+) ∩ (A− + B−) is a measure zero subset. Thus, applying Theorem C to A+ + B+
and A− + B−, it follows that

|A + B| ≥ |A+ + B+| + |A− + B−|

≥ (M1/(d−1) + N1/(d−1))d−1
( |A+|

M
+ |B+|

N

)

+ (M1/(d−1) + N1/(d−1))d−1
( |A−|

M
+ |B−|

N

)

= (M1/(d−1) + N1/(d−1))d−1
( |A|

M
+ |B|

N

)
.

By hypothesis, equality must hold in the above bound, which is only possible if equal-
ity held in both the estimates for A+ + B+ and for A− + B−. As result, applying
Lemma 2.5 to A+ + B+ and to (−A−)+ (−B−) shows that the graphs of vA and vB

are homothetic as well as the graphs of uA and uB , completing the proof. �
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3 Equality in the Hyperplane Slice Bonnesen Bound for d = 2

In this section, we prove Theorem 1.2, thus determining the structure of extremal con-
vex bodies satisfying Theorem B in dimension 2. To do so, by rotating appropriately,
without loss of generality we may assume H = e⊥

1 is the e0-axis. We begin with the
following lemma, which does not necessarily hold for higher dimensions.

Lemma 3.1 Let A ⊆ R
2 be a convex body and let H = Re0. Suppose A is translated

so that

|H ∩ A| = sup{|(x + H) ∩ A| | x ∈ R
2}.

Then there exists some linear transformation π : R
2 → R

2 with π(R2) = H = Re0
and π(A) = H ∩ A.

Proof Let H ∩A = [m,n]×{0} with m < n. Write A using the notation of (5) (taking
u = e0) and simplifying the notation for uA and vA by defining u := uA and v := vA.
Observe that u(0) = m and v(0) = n. To prove the lemma, we need to find a slope
λ so that the line passing through (m,0) with slope λ as well as the line passing
through (n,0) with slope λ are both supporting/tangent lines to A, as then the linear
transformation π : R

2 → H having the line of slope λ as its kernel will satisfy the
conclusions of the lemma. However, in terms of subdifferentials, this is equivalent to
showing ∂u(0) ∩ −∂(−v)(0) is nonempty.

Define f̃ : π(A) → R by f̃ (x) = u(x) − v(x). Note −f̃ (x) = |((0, x) + H) ∩ A|,
so that, by hypothesis, min f̃ = f̃ (0) = m − n < 0. As A is convex, we know −v

and u are both convex functions. Hence, since the sum of convex functions remains
convex, we see that f̃ is a convex function. Since f̃ (x) attains its minimum at x = 0,
we must have 0 ∈ ∂f̃ (0), which means

f̃ ′−(0) ≤ 0 ≤ f̃ ′+(0). (30)

From the definition of the one-sided derivative, it follows that

f̃ ′+ = u′+ + (−v)′+ and f̃ ′− = u′− + (−v)′−. (31)

Suppose by contradiction that ∂u(0) ∩ −∂(−v)(0) = ∅. Then, since

∂u(0) = [u′−(0), u′+(0)] and −∂(−v)(0) = [−(−v)′+(0),−(−v)′−(0)],
we see that either

u′+(0) < −(−v)′+(0) or −(−v)′−(0) < u′−(0).

Consequently, it follows in view of (31) that either

f̃ ′+(0) = u′+(0) + (−v)′+(0) < 0 or f̃ ′−(0) = u′−(0) + (−v)′−(0) > 0,

contradicting (30). �



Inverse Additive Problems for Minkowski Sumsets II

We now proceed with the simple derivation of Theorem 1.2 from Theorem 1.1.

Proof of Theorem 1.2 If A and B are a pair of sets satisfying the description given
by Theorem 1.2, then the equality (7) is the same as the equality (6), which holds for
A and B in view of Theorem 1.1.

It remains to complete the other direction of Theorem 1.2, so assume A,B ⊆ R
2

are convex bodies satisfying (7). By rotating appropriately, without loss of generality
we may assume that H = e⊥

1 = Re0 is the e0-axis. Also without loss of generality we
may assume

|B|
N2

≤ |A|
M2

. (32)

In view of Lemma 3.1, let π : R
2 → R

2 be a linear transformation such that π(R2) =
H = Re0 and π(A) = H ∩ A. Let N ′ = |π(B)|. Note, since H ∩ B ⊆ π(B) and
N = |H ∩ B|, that

N ≤ N ′.

Applying Theorem C using π , we conclude that

|A + B| ≥ (M + N ′)
( |A|

M
+ |B|

N ′

)
. (33)

Let h : R
2
>0 → R be defined by h(x, y) = (x + y)(

|A|
x

+ |B|
y

). Then

h(M,N) = (M + N)

( |A|
M

+ |B|
N

)
= |A + B|

by hypothesis. Letting hx(y) = h(x, y), we find that h′
x(y) = −|B|x

y2 + |A|
x

, which is
non-negative when

|B|
y2

≤ |A|
x2

, (34)

and positive when |B|
y2 <

|A|
x2 .

If (x, y) ∈ R
2 satisfies (34) with x, y > 0, then (x, y′) will satisfy (34) strictly

for all y′ > y. Consequently, it follows from the above derivative analysis that
h(x, y′) > h(x, y) for such (x, y). In particular, in view of (32) and N ′ ≥ N , we see
that h(M,N ′) ≥ h(M,N) with equality possible only if N ′ = N . As a result, since
|A + B| = h(M,N) holds with equality by hypothesis, we conclude from (33) that
N = N ′. Therefore, since H ∩ B ⊆ π(B) with |H ∩ B| = N = N ′ = |π(B)|, we see
that π(B) \ (H ∩ B) is a measure zero subset. Thus, since B ⊆ R

2 is a convex body,
so that π(B) and H ∩B are both closed intervals in R, it follows that π(B) = H ∩B .
Hence, since we also have π(A) = H ∩ A by the choice of π , we see that applying
Theorem 1.1 with π completes the proof. �
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