
The Interface Between Probability Theoryand Additive Number Theory (Local Limit Theoremsand Structure Theory of Set Addition)Gregory A. Freiman and Alexander A. Yudin�AbstractWe develop a new method for studying distributions of sums of independent randomvariables. This method is based on results obtained from Inverse Problems of AdditiveNumber Theory. The notion of an \isomorphism" of random variables with supportsin spaces of di�erent dimensions is used, paving the way to new types of local limittheorems.1 A short review of results in the �eld of local limittheoremsWe list here several of the main local limit theorems [LLT] emphasizing those whose jointfeatures spurred on the new approach in this paper.Theorem 1 (B. Gnedenko [16]). Let � be a random variable with P(� 2 Z) = 1 and�1; �2; : : : ; �n independent random variables distributed as �. Let Sn =Pni=1 �i, E� = a, andE(� � E�)2 = �2. Let the maximal step of � equal 1, i.e. if q; r 2 N and P(� 2 qZ+ r) = 1,then q = 1.Uniformly on k, we have�pnP(Sn = k)� 1p2� exp��(k � na)22�2n �! 0; if n!1 : (1)A general formulation of the limit problem may be found in M. Loev [18]:There is a series of sums of independent random variablesSn = nXi=1 Xi :�This work was supported by RFFI grant No. 02-01-00368.American Mathematical Society 1991 subject classi�cations. Primary { 11P99; secondary { 60F99.Key words and phrases. Structure, Theory of Set Addition, Local Limit Theorems.1



LOCAL LIMIT THEOREMS AND STRUCTURE THEORY OF SET ADDITIONFind conditions for which L�Sn � ESn�Sn �! N(0; 1) ; (2)where N(0; 1) = 1p2�e�x2=2:We can treat (2) in the following way: transform the random variable �, centralizing it,� ! � � a, and then use the aÆne transformation R2 ,x0 = x�pn ; y0 = �pny ;with corresponding transformation of the random variable.In a further generalization, the random valuesSnbn � anwere studied, and only aÆne transformations of the random variable Sn were used.A condition of an arithmetical nature for which Gnedenko's theorem is valid is when themaximal step equals 1.A natural generalization of Gnedenko's theorem to the case of di�erently distributedsummands is given in [29].Theorem 2 (Y. Prokhorov). Let �1; �2; : : : ; �n; : : : (3)be a series of independent random variables such that1: 8iP(�i 2 Z) = 1 ;2: 8ij�ij � C ; (4)where C is an absolute constant.For LLTs for the sequence (3) to hold it is necessary and suÆcient for the setA = (k 2 Z : 1Xi=1 P(�i = k) =1)to have the maximal step equal to 1.In Y. Rozanov's paper [30], condition (4) of uniform boundedness is weakened.In [25] the following is proved: 2



G.A. FREIMAN AND A.A. YUDINTheorem 3 (G.A. Freiman, D.A. Moskvin, A.A. Yudin) Let�1n; �2n; : : : ; �nn; n = 1; 2; : : : ; (5)be a triangular array of independent random variables distributed as �1n for every given n,P(�1n 2 Z) = 1, E�1n = an, E(�1n � an)2 = �2n.Suppose that1. For (5) the central limit theorem is valid2. �2n = O(n�), where � < ln(2 + c)ln 2 � 1 ;c < 1;3. For q = 2; 3; : : : and ! positive and suÆciently largemax1�r�q P(�1n � r(mod q)) < 1� !max� �2nn�4n ; 1n1��� lnn ;where �n = Ej�1n � anj3 ;� = (1 + �) ln 2ln(2 + c) :Then the LLT for (5) holds.2 Analysis of results of x1 and directions for futurestudyThe comparison and analysis of conditions formulated in [29, 30, 25, 23] and [24] (we do notgive the formulations of theorems from [23] and [24] because they are cumbersome) lead usto the following conclusions.1. In each theorem there are conditions describing \compactness of a random variable".In [29] the random variables have to be uniformly bounded. In [30, 25, 23] and [24] thereare conditions on the rate of growth of variance, of the third moment, and in [16], only thecondition of existence of variance is needed.3



LOCAL LIMIT THEOREMS AND STRUCTURE THEORY OF SET ADDITION2. Conditions characterizing the arithmetical properties of the support of a randomvariable are always present. For example, values taken by random variable �1n have to bewell distributed between classes mod q for every q and the valuesmaxr P(�1n 2 fn : n � r(mod q)g)must be separated from 1 as in [16] and [29].Di�erent forms of arithmetic conditions are discussed in more detail in [25] and [26].The aim of this work is to show how the additive structure of support of a randomvariable � in some cases de�nes the behavior ofP(Sn = a) :Let G be a group where operation is denoted by +. For A � G and B � G, we de�neA+B = fx : x = a+ b; a 2 A; b 2 Bg ;sA = (s� 1)A+ A :The condition of \small doubling" of the support A of a random variable � will play themain role here. Namely, we suppose thatj2Aj = jA+ Aj < CjAj ; (6)where C is some positive constant.We will show that the condition of small doubling (6) gives a new form of the conditionof compactness and will provide a way of obtaining a new type of LLT, valid for distributionsfor which the usual conditions on random variables from [16, 18, 29, 30, 25, 23, 24] and [26]may not be true (for example, the variance may be missing), and LLT in its usual form maynot take place at all.It appears that, if supp � is a set with small doubling, we can build a map of � on arandom variable �0 with values in Zs for suitable s (see x4). This map, which preservesadditive properties of supp � may be constructed in such a way that, for supp �, conditionsof compactness and of arithmetic types will be ful�lled. Applying LLT to S 0n and, knowingthe values P(S 0n = a0), we can now �nd the values P(Sn = a).For the history, bibliography and results for the problem of structure of sets with a smalldoubling the reader is referred to G.A. Freiman [11], [9], Y. Bilu [2], M. Nathanson [27] andT. Gowers [15]. See also the websitewww.maths.cam.ac.ukand [8] and [10]. 4



G.A. FREIMAN AND A.A. YUDINIn xx3 and 7, we formulate results for random variables with �nite support. Let usmention that this condition does not limit generality. If supp � is in�nite we can alwaysapproximate � by a random variable �0 with �nite support.We conclude this section with a discussion of the methods of the proofs of LLT, usuallythe method of characteristic functions. Letf�(t) =Xk2ZP (� = k)e2�iktbe a characteristic function of the random variable �. To obtain the LLT, we have onlyto estimate the asymptotics of fn� (t) in some neighborhood of t = 0, and estimates jf�(t)jnfrom above for points t which are not in this neighborhood. In [16], [29, 30], [23, 24, 26]these estimates were obtained explicitly with the use of the usual characteristics of a randomvariable � (variance, moments). Only in [22], [1] were the conditions and methods proposed,which enabled the study of the behavior of characteristic functions f�(t) in a more subtleway; and in [22], the behavior of the resolvent of a random walk was discussed. Estimatesof precision for asymptotics of LLT may be found in [26],[14],[33],[32]. In [14] it was shownthat the precision of LLTs depends on the structure of the set of those t for which jf�(t)j isclose to 1. In [5] and [6] it was shown how the distribution of values of a positively de�nedfunction (the characteristic function is, evidently, such a function) is de�ned by the additivearithmetic structure of its support, supp �.3 An exampleThe discussion of x2 will now be illustrated by a simple example.Let us consider a triangular array of independent random variables�1n; �2n; : : : ; �nn ; (7)where Kn = supp �in = f0; 1; 2; 2n+ 2; 2n+ 3; 4n+ 4g :and 8i; 1 � i � n and 8a, a 2 Kn we haveP(�in = a 2 Kn) = 16 :Let us show that the LLT in the usual form (1) does not hold. Denoting �1n = �, wehave, E� = 43n+O(1)5



LOCAL LIMIT THEOREMS AND STRUCTURE THEORY OF SET ADDITIONE(� � E�)2 = b2 � cn2 :If for Sn = nPi=1 �in LLT is valid, thenpcn3P(Sn = k) = 1p2� exp �� (k � 43n2)22cn3 � + o(1)and for all k such that ����k � 43n2���� < 2nor for 43n2 � 2n � k � 43n2 + 2n (8)we will obtain pcn3P(Sn = k) = 1p2� + o(1) : (9)Let us study now the numbers x from Sn. They have a formx = x1 + x2 + � � �+ xn (10)where 8jxj 2 f0; 1; 2; 2n+ 2; 2n+ 3; 4n+ 4g and thereforexj = cj + (2n+ 2)dj (11)and xj � cj (mod 2n+ 2) ; (12)where cj may be equal to only one of three values 0; 1 or 2.We see that in the case x � c (mod 2n+ 2)where c is a residue from the system of nonnegative minimal residues, we have0 � c � 2nfrom (10) and (12), and 2n+ 1 + (2n+ 2)t 62 Sn for any integer t. Therefore,P(Sn = 2n+ 1 + (2n+ 2)t) = 0 :Inequality (8) de�nes an interval containing more than 2n+ 2 points. So in this intervalwe can �nd a number k� � 2n+ 1(mod 2n+ 2) for which P(Sn = k�) = 0 and (9) gives us0 = 1p2� + o(1) ;6



G.A. FREIMAN AND A.A. YUDINa contradiction.We will now show that the LLT in the sense of the discussion in x2 is nevertheless valid.For this, we relate the random variable �1n with random variable � with values in Z2.De�ne � in the following way:K 0 = supp � = f(0; 0); (1; 0); (2; 0); (0; 1); (1; 1); (0; 2)gand 8a0 2 K 0 P(� = a0) = 16 :The map ' : Kn ! K 0;'(0) = (0; 0); '(1) = (1; 0); '(2) = (2; 0); '(2n+ 2) = (0; 1) ;'(2n+ 3) = (1; 1); '(4n+ 4) = (0; 2)(see Fig. 1) is a bijection which, because of (11), may be written in the following way'(c+ (2n+ 2)d) = (c; d) :For a sequence of independent random variables�1; �2; : : : ; �n; : : : (13)where, 8i�i is distributed as �, the multidimensional LLT is valid (see [21] and [20]).These papers showed that the necessary and suÆcient condition for validity of LLT forthe sequence (13) is the following: let a be any �xed element of supp �, then supp � � agenerates Z2. In our example this fact is evident.Therefore, we will have (see Fig. 2)P(S 0n = �1 + � � �+ �n = h 2 Z2) == 12�np� �exp��12Q�h� napn �� + o(1)� ; (14)where a = E�, Q is the quadratic form with a matrix inverse to a covariance matrix of arandom variable �, � is the determinant of this covariation matrix.What kind of progress have we made by introducing the series (13)? First, instead ofthe triangular array (7) we obtained a simpler case of a series of equally distributed randomvariables. Of course, this is not the most general situation but it may occur often. Second,these random variables appeared to be \good", i.e. the compactness condition and arithmetic7



LOCAL LIMIT THEOREMS AND STRUCTURE THEORY OF SET ADDITION

Figure 1conditions were ful�lled automatically, which gave us the possibility of obtaining the valueof P(S 0n) in (14). And last, we will now show how formula (14) will enable us to �nd thedistribution for the array �.Let us build a bijection f : nKn ! nK 0 :For the element x 2 nKn, we havex = x1 + x2 + � � �+ xn; (15)where 8ixi 2 Kn ;and (15) is one of the possible representations of the element x.In view of (11), xi may be presented asxj = h1j + h2j(2n+ 2) :8



G.A. FREIMAN AND A.A. YUDIN

Figure 2De�ne f(x) = '(x1) + '(x2) + � � �+ '(xn) == nXj=1 '(h1j + h2j(2n+ 2))= nXj=1(h1j; h2j) = (h1; h2) :We have still to prove that the map f is de�ned correctly. Let some other representation ofx be x = y1 + y2 + � � �+ yn ;where 8i yi 2 Kn :Then yj = h01j + h02j(2n+ 2) ;x = nXi=1 h01j + (2n+ 2) nXj=1 h02j = h01 + (2n+ 2)h02and f(x) = (h01; h02) :9



LOCAL LIMIT THEOREMS AND STRUCTURE THEORY OF SET ADDITIONWe have x = h1 + (2n+ 2)h2 = h01 + (2n+ 2)h02From h1 = nPj=1h1j and 0 � hij � 2 we get0 � h1 � 2nand, in the same way, we have 0 � h01 � 2nIt follows that h1 � h01 (mod 2n+ 2) ;h1 = h01and h2 = h02 :Let us show that f is a surjection. Take some element from nK 0:(h1; h2) 2 K 0Then (15) gives (h1; h2) = nXj=1(h1j; h2j) ;where 8j(h1j; h2j) 2 K 0We see that for x = x1 + x2 + � � �+ xn ;where xj = h1j + h2j(2n+ 2)we have x = nXj=1 h1j + (2n+ 2) nXj=1 h2j = h1 + (2n+ 2)h2and f(x) = (h1; h2) :We have shown that f(x) is a surjection. 10



G.A. FREIMAN AND A.A. YUDINLet us show that f is an injection. Suppose thatf(x) = f(y) = (h1; h2) : (16)We have x = h1 + (2n+ 2)h2; y = h01 + (2n+ 2)h2and therefore f(x) = (h1; h2); f(y) = (h01; h02)(16) gives h1 = h01; h2 = h02and x = y :f is an injection.Now we prove that P(Sn = x) = P(S 0n = (h1; h2)) ;where f(x) = (h1; h2) :Take one of the possible representations of x:x = x1 + x2 + � � �+ xn ; (17)where xj 2 Knand xj = h1j + (2n+ 2)h2j :The event �j = xj has the probability of 1=6 and the probability of event x under condition(15) is 1=6n. If Q is the number of representations (17), thenP(Sn = x) = Q6nThe value xj is de�ned by the value of (h1j; h2j). Then:f(x) = (h1; h2) = (�(h1j; h2j))P(�j = (h1j; h2j)) = 1611



LOCAL LIMIT THEOREMS AND STRUCTURE THEORY OF SET ADDITIONand P(S = (h1; h2)) = P(S = nPj=1(h1j; h2j)) = 1=6n if (h1j; h2j) is given. The number of all npossible pairs (h1j; h2j) is equal to Q andP(S = (h1; h2)) = Q6n ;which means P (Sn = x) = P(S = (h1; h2)) : (18)

Figure 3As a result (see Fig. 3), we obtain formula (18) for �nding the value of P (Sn = a) throughthe value of P (S 0n = h). For this we don't need to know the variance of the random variable�1n (of the order n2). It is suÆcient to know that the mean and variance of the randomvariable of �i are uniformly bounded, they have all the moments and values of P(S 0u = h)that could be found with the required precision.If the distribution of a random variable Sn were presented graphically on Z, it would bediÆcult to see any regularity. At the same time, the distribution of S 0n on Z2, even for rathersmall (n � 10) values of n, is very near to a normal distribution.We have discussed a rather simple example: the support Kn = supp �1n has a smallcardinality, the distribution of �1n is uniform.To obtain results for wider classes of random variables we need to introduce notions fromStructure Theory of Set Addition (see the review [11], and Nathanson's book [27]).12



G.A. FREIMAN AND A.A. YUDIN4 Isomorphism of random variablesDe�nition 1 Let A � G1 and B � G2 and in each of sets G1 and G2 an algebraic operationis de�ned. Sets A and B will be called isomorphic if:1. There exists a bijection ' : A! B,2. Bijection ' induces the bijection � : 2A! 2Bin the following sense: if b 2 2A, and b = a1 + a2, a1; a2 2 A, then�(b) = '(a1) + '(a2) :We can formulate the second point in another form:8x1; x2; x3; x4 2 Ax1 + x2 = x3 + x4 ��! ���1 '(x1) + '(x2) = '(x3) + '(x4) :Example 1 Let A = f0; 1; 3g, B = f0; 1; 5g. Then A is isomorphic to B. We will denotethis by A � B.Example 2 A = f0; 1; 3g and B = f(0; 0); (1; 0); (0; 1)g are isomorphic. '(0) = (0; 0),'(1) = (1; 0), '(3) = (0; 1).Example 3 Here we will give an example of two sets which are not isomorphic: A =f0; 1; 2g, B = f(0; 0); (1; 0); (0; 1)g. If these two sets would be isomorphic then the sets 2Aand 2B must have the same cardinality but this is not the case.In De�nition 1 we describe the notion of isomorphism for the case when only two setsare added. This is a partial case (n = 2) of the following de�nition.De�nition 2 Subsets A � G and B � G2 will be called isomorphic of the n-th order, if1. There exists a bijection ' : A! B.2. There exists the map � : nA! nB which is induced by ' and which is a bijection.Example 4 The sets A = f0; 1; n+ 1g and B = f0; 1; n+ 2g give an example of sets whichare isomorphic of the n-th order but are not isomorphic of the n+ 1-th order.13



LOCAL LIMIT THEOREMS AND STRUCTURE THEORY OF SET ADDITIONNow let us introduce a de�nition for the isomorphism of n-th order for random variables.Let �1, and �2 be random variables with values in Zs1 and Zs2, respectively,Kj = supp �j = fa 2 ZSj ; P(�j = a) 6= 0g ; j = 1; 2 :De�nition 3 Random variables �1 and �2 we will call s-isomorphic if the sets K1 and K2are s-isomorphic, and for bijection ' : K1 ! K2 we have for 8a 2 K1P(�1 = a) = P(�2 = '(a)) :Example 5 Let �1 be a random variable support of which K1 = f�h;�1; 0; 1; hg withuniform probability distribution, and for a random variable �2, supp �2 = K2 = f(0; 0),(0; 1), (1; 0), (�1; 0), (0;�1)g also with probabilities 1=5 in each point.The bijection' : 0! (0; 1); 1! (1; 0); �1! (�1; 0); h! (0; 1); �h! (0;�1)is an (h� 1) - isomorphism.At the same time K1 and K2 are not h-isomorphic, and therefore �1 and �2 are notisomorphic either.The random variable �1 can be presented in a \good" way if we study its s-fold convolu-tions only up to S � h� 1.Now we shall discuss the notion of dimension of a set K and of random variable �.De�nition 4 Let ' be an isomorphism A! Zm such that there exists no proper subgroupG � Zm or G + x, such that '(A) � G + x. Maximal m with such property will be calledthe \dimension" of the set A for s-isomorphism ' which we will denote by dimsA.De�nition 5 The dimension of the support � will be called the dimension of �, denoted bydims �.Some properties of dims � are as follows:1. Dimension dims � is invariant under action on � of the group of non-singular lineartransformation g, i.e. dims � = dim(g� + b) ;where g is a nonsingular linear transformation, where b is in the domain of values of �.2. s1 � s2 ) dims1 A � dims2 A. 14



G.A. FREIMAN AND A.A. YUDIN3. Let A � B; is it true that dimsA � dimsB?The answer is negative. An example:A = f1; 2; 22; 23; 24; 25gB = f0; 1; 2; 3; : : :gWe have A � B, dim2B = 1, dim2A = 5.4. Is it true, that for A1 � Zm and A2 � Zm which are s-isomorphic, 9 a nonsingularaÆne map g : Zm ! Zm, such that g(A1) = g(A2)?The answer is negative. The sets A = f(0; 0); (2; 0); (0; 1); (1; 1)g and B = f(0; 0); (3; 0),(4; 0); (0; 1)g are 2-isomorphic but not aÆne equivalent.The problem: Find or estimatedims(f1; 2k; 3k; : : : ; nkg)as a function of s; k and n.An important step in the study of the s-isomorphism of discrete random variables canbe found in [4].5 A new type of local limit theoremThe �nal result of Gnedenko's theorem is formula (1). Formula (14) is an additional exam-ple, when for the series of random variables (13), �1; �2; : : : ; �n, the formula for P (S 0n) wasobtained, and it may be used to compute this probability. Other forms of the formula forP (Sn) are possible. They may depend on the structure of the random variables that arebeing added, on their dimension, and on the precision needed. In all these cases it maybe stated that a LLT takes place in an \explicit" form. Now the LLT for series of randomvariables can be formulated for cases, when in general, the explicit form of the LLT is notapplicable.Theorem 4 Let us suppose that the triangular array ��11�21 �22� � ��n1 �n2 : : : �nn15



LOCAL LIMIT THEOREMS AND STRUCTURE THEORY OF SET ADDITIONis isomorphic to the triangular array ��11�21 �22� � ��n1 �n2 : : : �nnand the LLT for � takes place in an explicit form. Then for � we obtain LLT induced byLLT for �. The conditions, ensuring the description of distributions for the scheme � arethe conditions ensuring that the LLT for the scheme � is true. These conditions may alreadyhave the usual character (existence of variance, conditions on the order of its growth, or theorder of growth of a determinant of covariation matrix of r.v. � and so on).The problem of �nding the series � for which good LLT exist (if at all) in a family ofisomorphic series may not be simple.In the example in x3, the very structure of supp � helped to �nd the map of scheme � ona plane Z2.Look at two more examples.Let � be a scheme of series where �n1 have a homogeneous distribution on a setf0; 1; 2; 2n+ 1; 2n+ 2; 2n+ 3; 4n+ 2; 4n+ 3g :Let � be a scheme of series, where �n+1 is homogeneously distributed on a set f0; 2n; 3n +1; 4n; 6n+ 1; 6n+ 2; 7n+ 1; 8n+ 8g. To �nd a two-dimensional scheme � isomorphic to � isnot a diÆcult task, as supp �1n is very similar to supp �1n in the scheme of x3.The situation is quite di�erent for the scheme �.The schemes � and � are isomorphic (an exercise for the reader). However, beginningfrom scheme � it may not be simple to �nd an isomorphic scheme on a plane.We have shown how to use the theorem in only a few cases.Naturally, we can ask how wide the domain of applications of this theorem is. How largeis the number of classes of the isomorphic schemes � for which an explicit form of LLT isapplicable?In x7 we will try to develop the �rst approach to this problem. To insist that two di�erentschemes be isomorphic up to the n-th order is a rather strong condition to impose.In x6 we develop the notion of isomorphism of subsets, (s; Æ; �)-isomorphism, with thehelp of which we can strongly lessen the order of the isomorphism in question.16



G.A. FREIMAN AND A.A. YUDIN6 (s; Æ; �){isomorphism of random variablesDe�nition Let P and Q be two probabilistic measures with �nite supports A and B respec-tively. Let s 2 Z+, Æ and � be two nonnegative real numbers, and measures P and Q we willcall (s; Æ; �)-isomorphisms if1. There exists a bijection ' : A! B ;2. For two subsets A(s) � sA; B(s) � sB ;there exists a bijection '(s) : A(s) ! B(s) ;3. (i) P �s(A(s)) � 1� Æ ;Q�s(B(s)) � 1� Æ ;(ii) For x1; : : : ; xs; y1; : : : ; ys 2 A we havex1+x2+ � � �+xs = y1+y2+ � � �+ys () '(x1)+ � � �+'(xs) = '(y1)+ � � �+'(ys)(iii) 8x 2 A(s)jP �s(x)�Q�s('(s)(x))j � �.This notion has already been used in [4]. We will now return to the Example 5 in x4 andshow how the results of this section can be generalized.Examine the triangular array�1s; �2s; : : : ; �ss; s = 1; 2; : : :where A = supp �1s = f�h(s);�1; 0; 1; h(s)g ; 8h(s) 2 Nand p0; p1; p2 are positive numbers, for whichp2 = P (�1s = h(s)) = P (�1s = �h(s)) ;p1 = P (�1s = 1) = P (�1s = �1) ;p0 = 1� p1 � p2 ;17



LOCAL LIMIT THEOREMS AND STRUCTURE THEORY OF SET ADDITIONLet � be a two-dimensional random variable andB =supp � = f(�1; 0); (0;�1); (0; 0); (1; 0); (0; 1)g ;p1 = P (� = (1; 0)) = P (� = (�1; 0)) ;p2 = P (� = (0; 1)) = P (� = (0;�1)) :We will study the following cases:1: s � h(s)� 1 : (19)De�ne the map '(1) : B ! A: '(1)((0;�1)) = �h(s), '(1)((�1; 0)) = �1, '(1)((0; 0)) = 0,'(1)((1; 0)) = 1, '(1)((0; 1)) = h(s).In view of (19) the map '(1) induces a one-to-one map'(s) : sB ! sA :The map '(s) is induced also on sB by a map ' of Z2 with a basis e1 = (1; 0) ande2 = (0; 1) on a line Z � Z2 (Z = fke1; k 2 Z) which is a projection parallel to a vector(h(s);�1).For the probabilistic distributions we have8x 2 B(s) P �s('s(x)) = Q�s :In this �rst case, distributions P and Q are (S; 0; 0)-isomorphic.2: h(s) � s < �h2(s) ;where � is a suÆciently small positive number.In this case, the map '(s) : sB ! sA will not already be a bijection and we can illustratehere the usefulness of the notion of (s; �; Æ)-isomorphism to its full extent.We have to de�ne the sets B(s) and A(s) from condition 2 of De�nition 2.The full preimage Gm of the number m 2 Z under the map ' isGm = f(m; 0) + `(h(s);�1); ` 2 Zg (20)For each one of these m which will be in A(s) we will choose only one point in Gm, in thisway building a one-to-one map '(s)(B(s)) = A(s). This choice will be realized in the followingway.For the random variable � the LLT is valid andP (�1 + � � �+ �s = (m1; m2)) = P (Hs = (m1; m2)) =18



G.A. FREIMAN AND A.A. YUDIN= 18�p1p2s exp��12 � m212p1s + m222p2s��+R ;where the error R is small and we will disregard it.In view of P (�1s + � � �+ �ss = m) �= P (Ms = m) = P (Hs 2 Gm)we get P (Ms = m) = X(m1;m2)2Gm P (Hs = (m1; m2)) == 18�p1p2s X(m1;m2)2Gm P (Hs = (m1; m2)) :Now let us �nd the error if we omit all summands in the last sum for whichm212p1s + m222p2s > � : (21)Easy computation shows that18�p1p2s Xm222p1s+ m222p2s>� exp ��12 � m212p1s + m222p2s��� 1pp1p2 e��2 : (22)Now we choose � in such a way that the set Gm and the set of points for whichm212p1 + m222p2 � � (23)intersect at no more than one point.This will be so if we choose � = 1�p1p2 (24)We can now show that distributions P and Q are (s; Æ; �)-isomorphic forÆ = 1pp1p2 e� 1�p1p2 (25)and � = Æ : (26)The set B(s) we de�ne as follows:B(s) = �(m1; m2) : m212p1s + m222p2s � �� (27)19



LOCAL LIMIT THEOREMS AND STRUCTURE THEORY OF SET ADDITIONThe line (m1; m2) + `(h(s);�1)is intersecting the line s(1; 0) in the pointm = m1 +m2h(s) : (28)We have '(s)((m1; m2)) = m where m is de�ned by (28). For all points on the line Gmexcept the point in B(s), see (27), condition (23) is valid and the map '(s)B(s) = A(s) is nowcompletely de�ned.From (24) and estimate (22) we get the values Æ and � in (25) and (26).3: �h2(s) � s :In this case the classical LLT is valid, i.e.P (Ms = m) = 1�p2�s exp�� m22�2s� (1 + 0(1)) (29)where �2 = 2h2(s)p2 + p1 :We would like to stress that LLT for Hs gives a more exact estimate than (29). In thisconnection it is important to mention the following: the distribution �1s depends on threeparameters p2, p2 and h, at the time that the distribution ofHs (the main term of it) dependsonly on E�211 = 2p2h2(s) + 2p1 :We see that, from the information on the limit distribution of Ms, we cannot obtainestimates for all parameters of �11, but from distribution Hs it is possible.7 Density characteristics of probability distributionsThe most important and most common characteristic of a random variable � is the varianceE(� � E�)2 = Æ2 :Knowledge of �2, with the help of Chebishev's inequality enables us to �nd a segment onwhich a substantial part of the probability mass is concentrated. We will say that varianceis a \density condition".The main idea of this paper is to propose the use of density conditions which may beapplied even in cases where variance does not exist. 20



G.A. FREIMAN AND A.A. YUDINLet K be a �nite set, K � Z, jKj = cardK.We say that the set K has a \small doubling" ifj2Kj < cjKj ;where c 2 R+ .To have some understanding of the behavior of cardinality of 2K de�ned by the structureof K, we allow K � Rn . Instead of cardinality of K we will use its measure.Let, �rst, K be an interval I in R1 . Then�(2I) = 2�(I) :If A � Rn then �(2A) � 2n�(A)and equality occurs if A is a convex set (Brunn{Minkowski theorem).We see that in Rn the sets with small doubling are the convex sets. A remarkable factis that in the case of small doubling for K � Z, the structure of K is such that it may bedescribed as a dense subset of a convex set.Theorem 5 Let K � Z, jKj < +1 andj2Kj < 2jKj � 1 + bwhere 0 � b � jKj � 3 :Then K is a part of arithmetic progression of length jKj+ b, i.e. K � L, whereL = fa; a + d; a+ 2d; : : : ; a+ (k + b� 1)dgwhere a; d � Z, d > 0.Corollary Take b = jKj � 3. We obtain that ifj2Kj � 3jKj � 4 ;then K is part of an arithmetic progression of length 2jKj � 3.For the proof, see [8, page 11]. Further results on the structure of sets with small doublingcan be found in [11],[19],[17], [31]. 21



LOCAL LIMIT THEOREMS AND STRUCTURE THEORY OF SET ADDITIONTheorem 6 Let � be a scheme �11�21 �22� � ��n1 �n2 : : : �nnLet Kn = supp �n1, pa;n = P(�n1 = a 2 Kn) and there exists a constant p > 0 such that8n8n9Kn pa;n � p :Let j2Knj � 3jKj � 4 :Then for the scheme �, LLT hold where for the isomorphic scheme � the support �n1 is anarithmetic progression with cardinality 2jKj � 3 and a maximal step equal to one.Using the conditions of the theorem in [25], we can verify that the scheme � is isomorphicto the scheme �, thus, proving our theorem.Let us stress that the theorem is, in fact, only a partial case of Gnedenko's theorem andis given only to illustrate the method which gives the real results in the Main Theorem tofollow.De�nition Let the setD = f(x1; x2; : : : ; xs) j x1 2 Z; 0 � xi < hi; hi 2 Z; hi � 1; 1 � i � sgbe called a d-dimensional parallelepiped. The number of integer points in D is sQi=1 hi = jDj.Theorem 7 (G.A. Freiman, 1964). For every �nite subset K � Z for whichj2Kj < CjKj ; (30)where the constant C does not depend on jKj, there exists c = c(C), d � [C � 1] and ad-dimensional parallelepiped D, jDj < cjKjsuch that K � '(D)where ' is an isomorphism of the second order. 22



G.A. FREIMAN AND A.A. YUDINThe proofs of this theorem can be found in [2],[8],[27],[9],[3].Let us discuss what this theorem contributes to the better understanding of the structureof r.v. � with �nite supp �. From the formulation of the theorem it follows that dimensionof r.v. is connected with a doubling coeÆcient of its support. Degree of \compactness" isgiven by a volume of the parallelepiped D, for which we have an estimatejDj < c(C)j supp �j :The volume D shows to what degree we can \compress" supp � under 2-isomorphism.What is very important here is the connection of the volume of D with the cardinality ofsupp � which is de�ned by a constant c(C). The importance of the study of c(C) was stressedby Gowers in [15]. The best estimate for the moment islog jDjj supp �j < A � C2(logC)3where A is an absolute positive constant. This result was obtained by M.-C. Chang in herdeep work [3].In the book [8] the examples of sets K were given which show thatc(C) > cAC ;where A is an absolute constant.Let us point out that the theorem ensures the existence of an isomorphism of second orderand the necessity of prolonging it to higher orders creates additional diÆculties. Irregularitiesof probabilistic distribution, if they exist, must also be taken into account. We now formulatethe central result of this paper.Main Theorem Consider the scheme ��11�21 �22�n1 �n2 : : : �nnwith the following properties:1. 8jP(�j1 2 Z) = 12. 8jP(�j1 = a 2 supp �j1) � p > 0, p-an absolute constant.3. 8jj2 supp �j1j < Cj supp �j1j (31)23



LOCAL LIMIT THEOREMS AND STRUCTURE THEORY OF SET ADDITION4. 8j 2-isomorphism for supp �j1 derived from the theorem for the scheme � is a j-isomorphism.Then for the scheme �, LLT holds.Proof. Condition (31) of this theorem is the condition (30) of Theorem 7. We obtain a2-isomorphism ' : Dn � Z such that '�1(Kn) � Dn :Let �n1 be a r.v., the image of r.v. �n1 under the 2-isomorphism map '�1,'�1(�n1) = �n1 :We have obtained the scheme � isomorphic to a scheme �. We will now show that for thescheme � the conditions of multidimensional LLT from [7] are ful�lled.Conditions of variance and the third moment are ful�lled in an obvious way in view of thefact then jKnj are uniformly bounded which follows from condition 2 of the Main Theorem.Now, with respect to the arithmetic condition, suppose �rst that for every sublatticeG � Zs and every x 2 Zs we have P(�n1 2 G+ x) 6= 1 :This means that there exists y 2 supp �n1 and y 62 G+ x, and thenmaxx P(�n1 2 G+ x) � 1� P(�n1 = y) � 1� p :If the arithmetic condition is not ful�lled, i.e. P(�n1 2 G + x) = 1 then, with the help of asuitable aÆne transformation, G + x may be transformed to a lattice with the value of thevolume of a fundamental parallelepiped equal to 1. Repeating this reasoning we arrive at ar.v. for which the arithmetic condition is ful�lled.The Main Theorem enables us to obtain new LLT for a wide class of schemes and thereforeenables us to compute values of probabilities of n-fold convolutions, the larger the numbern the more exact.In conclusion, we express our gratitude to Professor Jean-Marc Deshouillers for his in-valuable help throughout the many years of our collaboration.Appendix1. An explicit formula for the example in x3 is as follows:P(�1 + � � �+ �n = m1 + (2n + 2)m2) = 3� � p35 � n � exp�� 12n�(m1 � 2=3n)2� 13(m1 � 2=3n)(m2 � 2=3n) + (m2 � 2=3n)2�� � (1 + o(1)) :24



G.A. FREIMAN AND A.A. YUDIN2. The formulation of LLT from [25].Let �n1; �n2; : : : ; �nn be a scheme of independent equally distributed random variables, takinginteger values and having �nite variance. Denote: E(�n1 � E�n1)2 = �2n; E�n1 = an.Theorem Let Ej�n1j3 <1 and �n = Ej�n1 � anj3. Suppose thatI for n!1, �u2u�un lnn!1II �2n = O(n�), where � < ln(2+c)ln 2 � 1 and c < 1,III for q = 2; 3; : : : and suÆciently large ! > 0max1�r�qP (�1 � r(modq)) � 1� !max� �2nn�4n ; 1n1��� lnn ;where � = (1+�) ln 2ln(2+c) . Then for series �n1; �n2; : : : ; �nn the LLT takes place.3. Formulation of LLT from [7].Theorem. Let f~� (n)` gǹ=1 be the scheme of independent vectors ~� (n)e = (�(n)`1 ; : : : ; �(n)`d ), ` =1; 2; : : : ; n; n = 1; 2; : : :We take the vector of mathematical expectations of vectors of series to be zero, andvariances of components �2ni , i = 1; 2; : : : ; d; : : : �nite, but dependent on the number of seriesn. k�(n)ij k are matrix covariations of quadratic form connected with k�(n)cj k we suppose to bepositively de�nedf(x) = (2�)�d=2(det k�ijk)�1=2 � exp(�1=2 dXi;j=1�ijxixj) ; where k�(n)ij k = k�(n)ij k�1 :Standard notation: Pn�(n)1 = mo = p(m), m = (m1; : : : ; md) 2 Zd, su = uPk=1 �(n)k =(Sn1; : : : ; Snd); Pfsn = zg = Pn(z), z = (z1; : : : ; zd) 2 Zd; B2ni = DSni = n�2ni, i = 1; 2; : : : ; d;�n = (Sn1=Bn1; : : : ; Snd=Bnd), z=Bn = (z1=Bn1; : : : ; zd=Bnd).We suppose that �ni = Ej�(n)1i j3 < +1; i = 1; : : : ; d ;8a 2 Z, q � 2 8 a = (a1; : : : ; ad), ai 2 Z, i = 1; : : : ; d, (a1; : : : ; ad; q) = 1;max0�r�a�1 Pf(a; �(n)) � r(mod q)g � 1� �n,�n = K max1�i�d max� �2ni�4ni;�2n � n ; �nipn� lnn ;25



LOCAL LIMIT THEOREMS AND STRUCTURE THEORY OF SET ADDITIONwhere K is some constant, �n = det k�ijk. Let �ni = 0(�3ni�2npn). Then there exists theconstant c(d) and k � c(d) such that the LLT is valid, i.e.Bn1Bn2 � � �BndPn(z)� f � zBn�! 0 :
4. Inequality of S.N. Bernstein, (Probability Theory, 4th Edition,Gostechizdat, 1946, Ch. IV).In the case of uniformly bounded summandsSn = nXj=1 �j ;then, 1� Fn(xBn) < exp(�x2=4) (0 < x < Bn=H) ;1� Fn(xBn) < exp(�xBn=4H) (x > Bn=H) :References[1] Arak, T.V., Za��tsev, A.Yu. (1998). Uniform Limit Theorems for Sums of IndependentRandom Variables. Proc. Steklov Inst. Math. 1 (174) viii+222pp.[2] Bilu, Y. (1999). Structure of sets with small sumset. Structure theory of set addition.Ast�erisque 258 77{108.[3] Chang, M.-C. (2000). A polynomial bound in Freiman's theorem. Duke Math. Journal113:3 399{419.[4] Deshouillers, J.-M., Freiman, G.A., Moran, W. (1999). On series of discrete randomvariables, 1: Real trinomial distributions with �xed probabilities, Structure theory ofset addition, Ast�erisque 258 411{423.[5] Deshouillers, J.-M., Freiman, G.A., Yudin, A.A. (1999). On bounds for the concentra-tion function. I. Structure theory of set addition. Ast�erisque 258 425{436.[6] Deshouillers, J.-M., Freiman, G.A., Yudin, A.A. (2001). On bounds for the concentra-tion function. II. J. Theoret. Probab. 14:3 813{820.[7] Fomin, A.S. (1980). An arithmetical method of proof of a local theorem for series ofindependent integer random vectors (Russian) Math. Zametki 28:5 791{800.26
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