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Abstract

We develop a new method for studying distributions of sums of independent random
variables. This method is based on results obtained from Inverse Problems of Additive
Number Theory. The notion of an “isomorphism” of random variables with supports
in spaces of different dimensions is used, paving the way to new types of local limit
theorems.

1 A short review of results in the field of local limit
theorems

We list here several of the main local limit theorems [LLT] emphasizing those whose joint

features spurred on the new approach in this paper.

Theorem 1 (B. Gnedenko [16]). Let & be a random wvariable with P(§ € Z) = 1 and
&1, &, ..., & independent random variables distributed as §. Let S, =Y . &, E€ = a, and
E(& — E&)* = o2, Let the mazimal step of € equal 1, i.e. if g,r € N and P(€ € ¢Z + 1) =1,
then g = 1.

Uniformly on k, we have

o/nP(S, = k) — \/12_7Texp (—%) — 0, if n — oo . (1)

A general formulation of the limit problem may be found in M. Loev [18]:

There is a series of sums of independent random variables

i=1
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Find conditions for which
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We can treat (2) in the following way: transform the random variable £, centralizing it,

& — £ — a, and then use the affine transformation R?,

¥ =—— o =ovay,

&V’

with corresponding transformation of the random variable.

In a further generalization, the random values

Sn
_ian

by

were studied, and only affine transformations of the random variable S,, were used.

A condition of an arithmetical nature for which Gnedenko’s theorem is valid is when the

maximal step equals 1.

A natural generalization of Gnedenko’s theorem to the case of differently distributed

summands is given in [29].
Theorem 2 (Y. Prokhorov). Let

1,8, ., &n, ...

be a series of independent random variables such that
2. Vil&Gl <O,

where C is an absolute constant.

For LLTs for the sequence (3) to hold it is necessary and sufficient for the set

A:{keZ:iP(fi:k):oo}

to have the mazximal step equal to 1.

In Y. Rozanov’s paper [30], condition (4) of uniform boundedness is weakened.

In [25] the following is proved:
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Theorem 3 (G.A. Freiman, D.A. Moskvin, A.A. Yudin) Let

5171,762717"‘757171,7 n:1727"'7 (5)

be a triangular array of independent random variables distributed as &, for every given n,
P(&, € Z) =1, E&y, = a,, E(&1, — a,)? = 02,
Suppose that

1. For (5) the central limit theorem is valid

2. 02 = O(n”), where

3. Forq=2,3,... and w positive and sufficiently large

2 1
max P(&, = r(modq)) < 1 — wmax ( Pn , ) Inn ,

1<r<q

where

Then the LLT for (5) holds.

2 Analysis of results of §1 and directions for future
study

The comparison and analysis of conditions formulated in [29, 30, 25, 23] and [24] (we do not
give the formulations of theorems from [23] and [24] because they are cumbersome) lead us
to the following conclusions.

1. In each theorem there are conditions describing “compactness of a random variable”.
In [29] the random variables have to be uniformly bounded. In [30, 25, 23] and [24] there
are conditions on the rate of growth of variance, of the third moment, and in [16], only the

condition of existence of variance is needed.
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2. Conditions characterizing the arithmetical properties of the support of a random
variable are always present. For example, values taken by random variable &;,, have to be

well distributed between classes mod ¢ for every ¢ and the values
max P(&, € {n:n=r(modq)})

must be separated from 1 as in [16] and [29].
Different forms of arithmetic conditions are discussed in more detail in [25] and [26].
The aim of this work is to show how the additive structure of support of a random

variable £ in some cases defines the behavior of

Let GG be a group where operation is denoted by +. For A C G and B C G, we define

A+B={r:x=a+b, a€ A be B},
sA=(s—1)A+A.

The condition of “small doubling” of the support A of a random variable ¢ will play the

main role here. Namely, we suppose that
24| =|A+ Al < C|A], (6)

where C' is some positive constant.

We will show that the condition of small doubling (6) gives a new form of the condition
of compactness and will provide a way of obtaining a new type of LLT, valid for distributions
for which the usual conditions on random variables from [16, 18, 29, 30, 25, 23, 24] and [26]
may not be true (for example, the variance may be missing), and LLT in its usual form may
not take place at all.

It appears that, if supp £ is a set with small doubling, we can build a map of £ on a
random variable £ with values in Z*® for suitable s (see §4). This map, which preserves
additive properties of supp & may be constructed in such a way that, for supp &, conditions
of compactness and of arithmetic types will be fulfilled. Applying LLT to S;, and, knowing
the values P(S, = a'), we can now find the values P(S,, = a).

For the history, bibliography and results for the problem of structure of sets with a small
doubling the reader is referred to G.A. Freiman [11], [9], Y. Bilu [2], M. Nathanson [27] and
T. Gowers [15]. See also the website

www.maths.cam.ac.uk
and [8] and [10].
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In §83 and 7, we formulate results for random variables with finite support. Let us
mention that this condition does not limit generality. If supp £ is infinite we can always
approximate £ by a random variable & with finite support.

We conclude this section with a discussion of the methods of the proofs of LLT, usually

the method of characteristic functions. Let

fﬁ(t) = ZP(g = k.)e%m:kt

ke

be a characteristic function of the random variable £&. To obtain the LLT, we have only
to estimate the asymptotics of f{(¢) in some neighborhood of ¢ = 0, and estimates | f¢(t)["
from above for points ¢ which are not in this neighborhood. In [16], [29, 30], [23, 24, 26]
these estimates were obtained explicitly with the use of the usual characteristics of a random
variable £ (variance, moments). Only in [22], [1] were the conditions and methods proposed,
which enabled the study of the behavior of characteristic functions f¢(¢) in a more subtle
way; and in [22], the behavior of the resolvent of a random walk was discussed. Estimates
of precision for asymptotics of LLT may be found in [26],[14],[33],[32]. In [14] it was shown
that the precision of LLTs depends on the structure of the set of those ¢ for which |fe(t)] is
close to 1. In [5] and [6] it was shown how the distribution of values of a positively defined
function (the characteristic function is, evidently, such a function) is defined by the additive

arithmetic structure of its support, supp &.

3 An example

The discussion of §2 will now be illustrated by a simple example.

Let us consider a triangular array of independent random variables

€1n7§2na"'7§nn ) (7)

where
K, =supp&, ={0,1,2,2n+2,2n+ 3,4n + 4} .

and V;,1 <i <n and Va, a € K,, we have

P(&n =a € K,) =

2 o=

Let us show that the LLT in the usual form (1)

have,

oes not hold. Denoting &;,, = &, we

E¢ = %n +O(1)
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E( —Ef* =10 ~cn? .

If for S, = > & LLT is valid, then

i=1

Vend3P(S, = k) = \/12_7Texp ( - s

and for all £ such that

4
kE— —-n?l <2n
3

or for
4, 4,
—n°—2n<k<-n"+2n (8)
3 3

we will obtain

VenB(S, — k) \/% o). ()

Let us study now the numbers x from S,,. They have a form
rT=T1+x2+ -+ 1, (10)
where V,z; € {0,1,2,2n+ 2,2n + 3,4n + 4} and therefore
z; = ¢+ (2n 4 2)d; (11)

and
r; =c¢; (mod 2n+ 2) , (12)

where ¢; may be equal to only one of three values 0,1 or 2.
We see that in the case

r=c¢ (mod 2n+2)

where ¢ is a residue from the system of nonnegative minimal residues, we have
0<ec<2n
from (10) and (12), and 2n + 1+ (2n + 2)t ¢ S,, for any integer ¢. Therefore,
P(S,=2n+14+(2n+2)t)=0.

Inequality (8) defines an interval containing more than 2n + 2 points. So in this interval
we can find a number £* = 2n + 1(mod 2n + 2) for which P(S,, = k*) = 0 and (9) gives us
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a contradiction.
We will now show that the LLT in the sense of the discussion in §2 is nevertheless valid.
For this, we relate the random variable &;,, with random variable n with values in Z2.

Define 7 in the following way:

K' = suppn = {(an)a (LO)’ (2’0)5 (Oa 1)5 (1’ 1)5 (072)}

and Va' € K’

The map ¢ : K,, — K';

©(0) = (0,0), (1) = (1,0),0(2) = (2,0), 0(2n + 2) = (0,1) ,
e(2n+3) = (1,1), p(4n + 4) = (0, 2)

(see Fig. 1) is a bijection which, because of (11), may be written in the following way

olc+ (2n+2)d) = (¢, d) .

For a sequence of independent random variables

MmNz, -5 My - - - (13)

where, V;7; is distributed as 7, the multidimensional LLT is valid (see [21] and [20]).

These papers showed that the necessary and sufficient condition for validity of LLT for
the sequence (13) is the following: let a be any fixed element of supp &, then suppé — a
generates Z2. In our example this fact is evident.

Therefore, we will have (see Fig. 2)

P(S, =m+-+mn,=h€L =

el () ). o

where a = E,, () is the quadratic form with a matrix inverse to a covariance matrix of a

random variable 7, A is the determinant of this covariation matrix.

What kind of progress have we made by introducing the series (13)? First, instead of
the triangular array (7) we obtained a simpler case of a series of equally distributed random
variables. Of course, this is not the most general situation but it may occur often. Second,

these random variables appeared to be “good”, i.e. the compactness condition and arithmetic

7
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Figure 1

conditions were fulfilled automatically, which gave us the possibility of obtaining the value
of P(S!) in (14). And last, we will now show how formula (14) will enable us to find the
distribution for the array &.

Let us build a bijection

f:nK, —-nK'.
For the element x € nkK,,, we have
rT=x1+ 29+ + Ty, (15)
where
Viv; € Ky

and (15) is one of the possible representations of the element z.

In view of (11), x; may be presented as
Ty = hlj + th(Qn + 2) .

8
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s

S
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Figure 2

Define

f(@) = o(a1) + @(x2) + -+ p(2a) =

n

@(hij + hyj(2n + 2))

<.
S |l

(hlthQj) - (h17h2) .

1

<.
Il

We have still to prove that the map f is defined correctly. Let some other representation of

z be

r=Nn+Yy2+-+Yn,
where
Then

y; = h'lj + h'Qj(Qn +2),

v= hi+(2n+2)Y by =+ (2n + 2)h)
i=1 j=1

and

fx) = (b, hy) -
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We have
x=hy+ (2n+2)hy = h} + (2n + 2)h,

From hy = ) hy; and 0 < h;; < 2 we get
=1

and, in the same way, we have

It follows that

hy = by (mod 2n + 2) ,
hlth

and
h,g - ]’L’Q .

Let us show that f is a surjection. Take some element from nKk’:
(hy, hy) € K'

Then (15) gives

n

(hhha) = Z(hua h'Qj) )

Jj=1
where
vj(hlj;h2j) e K’

We see that for

T=x1+Ty+ -+ Ty,

where
75 = haj + hyj(2n + 2)
we have . .
r= hij+(2n+2)Y hy =+ (20 +2)h
j=1 j=1
and

f(z) = (h1, hy) .

We have shown that f(x) is a surjection.

10
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Let us show that f is an injection. Suppose that

F@) = F() = (o, ) (16)
We have
x="h+ (2n+2)hy, y=hi+ (2n+2)hy

and therefore
f(@) = (b, he),  f(y) = (B, Iy)

(16) gives
h,] - ]’L’], h,g - ]’L’Q

and

f is an injection.
Now we prove that

B(S, = x) = P(S], = (1, }2) |

where
f(x) = (b1, ha) .

Take one of the possible representations of x:
r=x1+To+ -+, , (17)
where
T; € K,

and
.’Ej = hlj + (271 + 2)h2j .

The event &; = x; has the probability of 1/6 and the probability of event z under condition
(15) is 1/6™. If @ is the number of representations (17), then

P(S, = z) —é%

The value z; is defined by the value of (hy;, hy;). Then:
f(@) = (ha, ha) = (E(haj, hay))
1
P = (hj, hyj)) = &

11
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and P(S = (hy, he)) =P(S = > (hij, hyj)) = 1/6™ if (hyj, hoj) is given. The number of all n
j=1

possible pairs (hy;, ho;) is equéi to @ and

P(S = (hu, 1) = & |
which means
P(S, =x) =P(S = (h, hy)) . (18)

Figure 3

As a result (see Fig. 3), we obtain formula (18) for finding the value of P(S,, = a) through
the value of P(S! = h). For this we don’t need to know the variance of the random variable
&1n (of the order n?). Tt is sufficient to know that the mean and variance of the random
variable of 7; are uniformly bounded, they have all the moments and values of P(S, = h)
that could be found with the required precision.

If the distribution of a random variable S,, were presented graphically on 7Z, it would be
difficult to see any regularity. At the same time, the distribution of S/, on Z?, even for rather
small (n &~ 10) values of n, is very near to a normal distribution.

We have discussed a rather simple example: the support K, = supp&;, has a small
cardinality, the distribution of &;,, is uniform.

To obtain results for wider classes of random variables we need to introduce notions from
Structure Theory of Set Addition (see the review [11], and Nathanson’s book [27]).

12
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4 Isomorphism of random variables

Definition 1 Let A C G; and B C (G5 and in each of sets G; and (G5 an algebraic operation
is defined. Sets A and B will be called isomorphic if:

1. There exists a bijection ¢ : A — B,

2. Bijection ¢ induces the bijection
X :2A — 2B

in the following sense: if b € 2A, and b = a; + as, a;,as € A, then
x(b) = plar) + ¢(az) .
We can formulate the second point in another form:

v.’El,.Z'Q,.’Eg,.’E4 cA

Ty + Ty = T3+ Ty é p(z1) + @(12) = p(23) + p(24) -
X!

Example 1 Let A = {0,1,3}, B = {0,1,5}. Then A is isomorphic to B. We will denote
this by A ~ B.

Example 2 A = {0,1,3} and B = {(0,0),(1,0),(0,1)} are isomorphic. ¢(0) = (0,0),
p(1) = (1,0), ¢(3) = (0, 1).

Example 3 Here we will give an example of two sets which are not isomorphic: A =
{0,1,2}, B = {(0,0),(1,0), (0,1)}. If these two sets would be isomorphic then the sets 2A

and 2B must have the same cardinality but this is not the case.

In Definition 1 we describe the notion of isomorphism for the case when only two sets

are added. This is a partial case (n = 2) of the following definition.
Definition 2 Subsets A C G and B C (G5 will be called isomorphic of the n-th order, if
1. There exists a bijection ¢ : A — B.

2. There exists the map x : nA — nB which is induced by ¢ and which is a bijection.

Example 4 The sets A = {0,1,n+ 1} and B = {0,1,n+ 2} give an example of sets which

are isomorphic of the n-th order but are not isomorphic of the n 4 1-th order.

13
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Now let us introduce a definition for the isomorphism of n-th order for random variables.

Let &, and & be random variables with values in Z*®' and Z°2, respectively,

Kj=supp&; ={acZ% P& =a)#0}, j=1,2.

Definition 3 Random variables & and & we will call s-isomorphic if the sets K; and K,

are s-isomorphic, and for bijection ¢ : K; — K5 we have for Va € K,

Example 5 Let & be a random variable support of which K; = {-—h,—~1,0,1,h} with
uniform probability distribution, and for a random variable &, supp& = Ky = {(0,0),
(0,1), (1,0), (=1,0), (0,—1)} also with probabilities 1/5 in each point.

The bijection
©:0—=(0,1), 1 = (1,0), =1 — (—1,0), h = (0,1), —h — (0, —1)

is an (h — 1) - isomorphism.

At the same time K; and K, are not h-isomorphic, and therefore & and & are not
isomorphic either.

The random variable & can be presented in a “good” way if we study its s-fold convolu-
tions only up to S < h — 1.

Now we shall discuss the notion of dimension of a set K and of random variable &.

Definition 4 Let ¢ be an isomorphism A — Z™ such that there exists no proper subgroup
G C Z™ or G + z, such that p(A) C G 4+ x. Maximal m with such property will be called

the “dimension” of the set A for s-isomorphism ¢ which we will denote by dim, A.

Definition 5 The dimension of the support £ will be called the dimension of £, denoted by
dimg, €.

Some properties of dimg & are as follows:

1. Dimension dim,¢ is invariant under action on £ of the group of non-singular linear

transformation g, i.e.

dim, & = dim(g& +b) ,

where ¢ is a nonsingular linear transformation, where b is in the domain of values of &.
2. 512 8 = diHls1 AL dimSQ A.

14
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3. Let A C B; is it true that
dim, A < dim, B?

The answer is negative. An example:
A={1,2,222% 21 2"}
B=1{0,1,2,3,...}
We have A C B, dimy B =1, dimy A = 5.
4. Is it true, that for A; C Z™ and Ay C Z™ which are s-isomorphic, 9 a nonsingular
affine map ¢ : Z™ — Z™, such that g(A;) = g(A43)?
The answer is negative. The sets A = {(0,0), (2,0), (0,1), (1,1)} and B = {(0,0), (3,0),
(4,0),(0,1)} are 2-isomorphic but not affine equivalent.
The problem: Find or estimate
dim,({1,2% 3%, ... nF})

as a function of s, k and n.
An important step in the study of the s-isomorphism of discrete random variables can
be found in [4].

5 A new type of local limit theorem

The final result of Gnedenko’s theorem is formula (1). Formula (14) is an additional exam-
ple, when for the series of random variables (13), m1,m2, ..., n,, the formula for P(S]) was
obtained, and it may be used to compute this probability. Other forms of the formula for
P(S,) are possible. They may depend on the structure of the random variables that are
being added, on their dimension, and on the precision needed. In all these cases it may
be stated that a LLT takes place in an “explicit” form. Now the LLT for series of random
variables can be formulated for cases, when in general, the explicit form of the LLT is not

applicable.

Theorem 4 Let us suppose that the triangular array &

¥
52] €22

15
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15 1somorphic to the triangular array n

i
M21 7122

Tin1 h2 --- Tan

and the LLT for n takes place in an explicit form. Then for & we obtain LLT induced by
LLT for n. The conditions, ensuring the description of distributions for the scheme & are
the conditions ensuring that the LLT for the scheme n is true. These conditions may already
have the usual character (existence of variance, conditions on the order of its growth, or the

order of growth of a determinant of covariation matriz of r.v. n and so on).

The problem of finding the series 1 for which good LLT exist (if at all) in a family of
isomorphic series may not be simple.

In the example in §3, the very structure of supp £ helped to find the map of scheme £ on
a plane Z2.

Look at two more examples.

Let £ be a scheme of series where &,; have a homogeneous distribution on a set
{0,1,2,2n+1,2n+2,2n + 3,4n + 2,4n + 3} .

Let p be a scheme of series, where p, . is homogeneously distributed on a set {0, 2n,3n +
1,4n,6n+1,6n+2,7n+ 1,8n 4 8}. To find a two-dimensional scheme 7 isomorphic to £ is
not a difficult task, as supp &y, is very similar to supp &y, in the scheme of §3.

The situation is quite different for the scheme p.

The schemes p and £ are isomorphic (an exercise for the reader). However, beginning
from scheme p it may not be simple to find an isomorphic scheme on a plane.

We have shown how to use the theorem in only a few cases.

Naturally, we can ask how wide the domain of applications of this theorem is. How large
is the number of classes of the isomorphic schemes £ for which an explicit form of LLT is
applicable?

In §7 we will try to develop the first approach to this problem. To insist that two different
schemes be isomorphic up to the n-th order is a rather strong condition to impose.

In §6 we develop the notion of isomorphism of subsets, (s, d, €)-isomorphism, with the

help of which we can strongly lessen the order of the isomorphism in question.

16
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6 (s,9,¢)—-isomorphism of random variables

Definition Let P and () be two probabilistic measures with finite supports A and B respec-

tively. Let s € Z, 6 and € be two nonnegative real numbers, and measures P and () we will

call (s, d, €)-isomorphisms if

1. There exists a bijection
p:A— B;

2. For two subsets
A C sA, BY C sB,

there exists a bijection

3. (i)
P*(A)y >1 -4,

Q*(BY)>1-4:

(ii) For zy,...,2s,y1,...,ys € A we have

T4+ 2ot Fxs =y +yet+- -ty <= p(z1)+- -+ e(xs) = p(yr)+- -+ o(ys)

(if}) Vo € A9 [P**(x) — Q* (1 ()] < e.

This notion has already been used in [4]. We will now return to the Example 5 in §4 and
show how the results of this section can be generalized.

Examine the triangular array
€151€257"'a€557 ‘9:1721"'

where

A =supp&s = {—h(s),—1,0,1,h(s)}, Vh(s)eN

and pg, p1, p2 are positive numbers, for which

b2 = P(fls = h(?)) = P(&]s - 7h(9)) )
D1 :P(fls:]-):P(fhszil) ;
po=1—p1—p2,

17
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Let n be a two-dimensional random variable and

B =suppn = {(*1,0), (Oa *1)5 (0’0)5 (1’0)5 (0’ 1)} )
p = P(n=(1,
p2 = P(n= (0,

We will study the following cases:

1. s<h(s)—1. (19)
Define the map ¢ : B — A: oM ((0, -1)) = —h(s), pD((—1,0)) = —1, o1 ((0,0)) = 0,
SD((1,0)) = 1, (0, 1)) = h(s).
In view of (19) the map ¢! induces a one-to-one map

o) sB — sA .

The map ¢ is induced also on sB by a map ¢ of Z? with a basis e; = (1,0) and
ez = (0,1) on a line Z C Z? (Z = {kei, k € Z) which is a projection parallel to a vector

(h(s), =1).

For the probabilistic distributions we have
Vo € BY  P*(p*(x)) = Q* .

In this first case, distributions P and @ are (S, 0, 0)-isomorphic.

2. h(s) < s < ah®(s),

where « is a sufficiently small positive number.

In this case, the map ¢®) : sB — sA will not already be a bijection and we can illustrate
here the usefulness of the notion of (s, €, §)-isomorphism to its full extent.

We have to define the sets B() and A®) from condition 2 of Definition 2.

The full preimage G,,, of the number m € Z under the map ¢ is

G = {(m,0) + ((h(s), 1), € 7} (20)

For each one of these m which will be in A®) we will choose only one point in G,,, in this
way building a one-to-one map ¢ (B®)) = A®). This choice will be realized in the following
way.

For the random variable n the LLT is valid and
P(m + -+ ns = (mi1,ma)) = P(H; = (m1, mp)) =

18
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1 1 /2 /2
e e )
8mTp1p2s 2 \2p1s  2pss

where the error R is small and we will disregard it.

In view of
we get
POM,=m)= 3 P(H, = (mi.ms)) =
(m1,m2)eGm
1
- P(H, = (mq,ms)) .
87rp1p28( Z)e(; ( rm2)

Now let us find the error if we omit all summands in the last sum for which
2 2
my My

2p1s  2pos

>\

Easy computation shows that

1 1 [ m? m2
8mpip2s 2 \2p1s  2pos

2
m
2>
2p9s

Now we choose A in such a way that the set GG, and the set of points for which

2 2
m m
— =<
2p1 2py
intersect at no more than one point.
This will be so if we choose .
A=
ap1P2

We can now show that distributions P and @ are (s, d, €)-isomorphic for

1 1
) = e epip2
\V P1P2
and
€e=9 .
The set B®) we define as follows:
2 2
B®) = (my,my) o T <A

2pis  2pas
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The line
(ma, my) + £(h(s), —1)

is intersecting the line s(1,0) in the point
m = my + moh(s) . (28)

We have ©*)((my,ms)) = m where m is defined by (28). For all points on the line G,,
except the point in B®), see (27), condition (23) is valid and the map ) B®) = A®) is now
completely defined.

From (24) and estimate (22) we get the values ¢ and € in (25) and (26).

3. ah®(s) <s.

where

— 2h2(s)p2 + 1.

We would like to stress that LLT for H gives a more exact estimate than (29). In this
connection it is important to mention the following: the distribution &;; depends on three
parameters py, p; and h, at the time that the distribution of H, (the main term of it) depends
only on

E&} = 2poh®(s) + 2py -

We see that, from the information on the limit distribution of M, we cannot obtain

estimates for all parameters of &7, but from distribution H, it is possible.

7 Density characteristics of probability distributions

The most important and most common characteristic of a random variable £ is the variance
B~ B> = 6° .

Knowledge of o2, with the help of Chebishev’s inequality enables us to find a segment on
which a substantial part of the probability mass is concentrated. We will say that variance
is a “density condition”.

The main idea of this paper is to propose the use of density conditions which may be

applied even in cases where variance does not exist.
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Let K be a finite set, K C Z, |K| = cardK.
We say that the set K has a “small doubling” if

2K| < ¢|[K],

where ¢ € RT.
To have some understanding of the behavior of cardinality of 2K defined by the structure

of K, we allow K C R". Instead of cardinality of K we will use its measure.
Let, first, K be an interval I in R'. Then

u(2l) = 2u(I) .

If A CR" then
H(2A) > 2°(A)

and equality occurs if A is a convex set (Brunn Minkowski theorem).
We see that in R” the sets with small doubling are the convex sets. A remarkable fact
is that in the case of small doubling for K C 7Z, the structure of K is such that it may be

described as a dense subset of a convex set.
Theorem 5 Let K C Z, | K| < +00 and
2K| < 2|K| 140

where

0<b<|K|[-3.

Then K is a part of arithmetic progression of length |K| + b, i.e. K C L, where
L=A{a,a+d,a+2d,...,a+ (k+b—1)d}
where a,d C Z, d > 0.
Corollary Take b = |K| — 3. We obtain that if
2K] < 3K| 4,

then K is part of an arithmetic progression of length 2| K| — 3.
For the proof, see [8, page 11]. Further results on the structure of sets with small doubling
can be found in [11],[19],[17], [31].
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Theorem 6 Let & be a scheme

¥
621 522

Let K,, = supp &1, Pan = P(&n, = a € K,,) and there exists a constant p > 0 such that
Let
|2K,| <3|/K|-4.

Then for the scheme &, LLT hold where for the isomorphic scheme n the support n,, is an

arithmetic progression with cardinality 2| K| — 3 and a mazimal step equal to one.

Using the conditions of the theorem in [25], we can verify that the scheme 7 is isomorphic
to the scheme &, thus, proving our theorem.

Let us stress that the theorem is, in fact, only a partial case of Gnedenko’s theorem and
is given only to illustrate the method which gives the real results in the Main Theorem to

follow.

Definition Let the set
D:{(.’El,.Z‘Q,...,.’ES) ‘.Z'l EZ,OSJIi <hi,hi EZ,hiZ 1,1 SZSS}
be called a d-dimensional parallelepiped. The number of integer points in D is [[ h; = |D].
i=1

Theorem 7 (G.A. Freiman, 1964). For every finite subset K C Z for which
2K| < C|K], (30)

where the constant C does not depend on |K|, there exists ¢ = ¢(C), d < [C' — 1] and a
d-dimensional parallelepiped D,
|D| < ¢| K|

such that
K C ¢(D)

where ¢ is an isomorphism of the second order.
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The proofs of this theorem can be found in [2],[8],[27],[9],[3].

Let us discuss what this theorem contributes to the better understanding of the structure
of r.v. & with finite supp &. From the formulation of the theorem it follows that dimension
of r.v. is connected with a doubling coefficient of its support. Degree of “compactness” is

given by a volume of the parallelepiped D, for which we have an estimate
D] < ¢(C)|supp&] -

The volume D shows to what degree we can “compress” supp & under 2-isomorphism.
What is very important here is the connection of the volume of D with the cardinality of
supp & which is defined by a constant ¢(C'). The importance of the study of ¢(C') was stressed

by Gowers in [15]. The best estimate for the moment is

D
log _I1D_ < A-C*(logC)?
| supp ¢

where A is an absolute positive constant. This result was obtained by M.-C. Chang in her
deep work [3].
In the book [8] the examples of sets K were given which show that

c(C) > 9,

where A is an absolute constant.

Let us point out that the theorem ensures the existence of an isomorphism of second order
and the necessity of prolonging it to higher orders creates additional difficulties. Irregularities
of probabilistic distribution, if they exist, must also be taken into account. We now formulate

the central result of this paper.

Main Theorem Consider the scheme &

3t
521 622
fm 5712 gnn

with the following properties:
1. VP ez)=1
2. V,;P(§1 = a € supp&j1) > p > 0, p-an absolute constant.
V;|2supp&ji| < C|suppéji| (31)
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4. V; 2-isomorphism for supp§; derived from the theorem for the scheme & is a j-

isomorphism.

Then for the scheme &, LLT holds.

Proof. Condition (31) of this theorem is the condition (30) of Theorem 7. We obtain a
2-isomorphism ¢ : D,, C Z such that

o "(K,) CD,.

Let 7,1 be a r.v., the image of r.v. &,; under the 2-isomorphism map ¢!,

Soil(fnl) = Tn1 -

We have obtained the scheme 7 isomorphic to a scheme £&. We will now show that for the
scheme 7 the conditions of multidimensional LLT from [7] are fulfilled.
Conditions of variance and the third moment are fulfilled in an obvious way in view of the
fact then | K| are uniformly bounded which follows from condition 2 of the Main Theorem.
Now, with respect to the arithmetic condition, suppose first that for every sublattice

G C 7Z* and every x € Z° we have
P(1 € G+x)#1.
This means that there exists y € suppn,; and y € G + z, and then
mq{ix]f”(nnl €EG4+2)<1—-Pn=y)<1—p.

If the arithmetic condition is not fulfilled, i.e. P(n,; € G 4+ x) = 1 then, with the help of a
suitable affine transformation, G 4+ x may be transformed to a lattice with the value of the
volume of a fundamental parallelepiped equal to 1. Repeating this reasoning we arrive at a
r.v. for which the arithmetic condition is fulfilled.

The Main Theorem enables us to obtain new LLT for a wide class of schemes and therefore
enables us to compute values of probabilities of n-fold convolutions, the larger the number
n the more exact.

In conclusion, we express our gratitude to Professor Jean-Marc Deshouillers for his in-

valuable help throughout the many years of our collaboration.
Appendix

1. An explicit formula for the example in §3 is as follows:

3 1
— - X _ m*2 377,2
0 p( %[(] /3m)

- %(m —2/30)(ms — 2/3n) + (ms — 2/3n)2D (1 +0(1)) .

P(gl+"'+§n:m1+(2n—|—2)m2):
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2. The formulation of LLT from [25].

Let &,1, &2, - - -, &un be a scheme of independent equally distributed random variables, taking

integer values and having finite variance. Denote: E(&,1 — F&,1)? = 02; B = a,,.

Theorem Let E|¢,,|* < oo and p, = E|,1 — a,|*. Suppose that

2

U
I for n — oo, P nn — oo
uo,

IT 02 = O(n?), where p < lngi—;c) —lande< 1,

IIT for g = 2,3, ... and sufficiently large w > 0

2 1
max P(& = r(modg)) < 1 — wmax ( Pn ’1—u> Inn ,
i

1<r<q no}

where 1 = (11:(3132)2. Then for series &,1,&no, - - -, Enn the LLT takes place.

3. Formulation of LLT from [7].

Theorem. Let {f_}n)}g‘:l be the scheme of independent vectors f_;(n) = ({gz), . ,{,EZ)), (=
1,2,....n;n=1,2,...

We take the vector of mathematical expectations of vectors of series to be zero, and
variances of components (ffli, 1=1,2,....d,... finite, but dependent on the number of series
n. ||p£;]) || are matrix covariations of quadratic form connected with HPS:)H we suppose to be

positively defined

d
F(@) = (2m)"¥2(det || py||)~"/? - exp {1/2 3 a} . where [|a{)]| = | o] 7" .
i,j=1
Standard notation: P {Zﬁ") = m} = p(m), m = (my,...,my) € 7% 35, = Y. & =
(Sn1, -, Sna); P{5n =2} = P(Z2),Z=(21,...,24) € VAR BZ7 =DS,; =no

En = (Snl/Bnla sy Snd/Bnd); E/Bn = (Zl/Bnla BRI Zd/Bnd)
We suppose that

Bi = EIEP < 400, i=1,...,d,

Vo € Z, ¢ > 2 Va = (a1,...,aq), aj € Z, i = 1,....d, (a1,...,aq4,q) = 1;
)

maxoSrSa,] P{ (H, E(Tl)

2
i Oni
a, = K max max{im }lnn,
o

¢ 1 2 )
1<i<d 2 A2 T /n
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where K is some constant, A, = det ||pi;]|. Let 8,, = 0(c3,A2\/n). Then there exists the
constant ¢(d) and k > ¢(d) such that the LLT is valid, i.e.

ByiBus -+ BpaPa(2) — f <i> 0.

4. Inequality of S.N. Bernstein, (Probability Theory, 4th Edition,
Gostechizdat, 1946, Ch. IV).

In the case of uniformly bounded summands

Su= &,
Jj=1

then,

1 — F,(zB,) <exp(—2%/4) (0<xz < B,/H),
1 - F,(xB,) < exp(—zB,/4H) (x> B,/H) .
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