ON A KAKEYA-TYPE PROBLEM II
GREGORY A. FREIMAN, YONUTZ V. STANCHESCU

Abstract: Let A be a finite subset of an abelian group G. For every element b_i of the sumset $2A = \{b_0, b_1, \ldots, b_{|2A|-1}\}$ we denote by $D_i = \{a - a' : a, a' \in A; a + a' = b_i\}$ and $r_i = |\{(a, a') : a + a' = b_i; a, a' \in A\}|$. After an eventual reodering of $2A$, we may assume that $r_0 \geq r_1 \geq \ldots \geq r_{|2A|-1}$. For every $1 \leq s \leq |2A|$ we define $R_s(A) = |D_0 \cup D_1 \cup \ldots \cup D_{s-1}|$ and $R_s(k) = \max\{R_s(A) : A \subseteq G, |A| = k\}$. Bourgain and Katz and Tao obtained an estimate of $R_s(k)$ assuming s being of order k. In this paper we describe the structure of A assuming that $G = \mathbb{Z}^2$, $s = 3$ and $R_3(A)$ is close to its maximal value, i.e. $R_3(A) = 3k - \theta \sqrt{k}$, with $\theta \leq 1.8$.

Keywords: Inverse additive number theory, Kakeya problem.

1. Introduction

Let A be a finite subset of the group $G = \mathbb{Z}$ or $G = \mathbb{Z}^2$. For every element b_i of the sumset $2A = A + A = \{x + x' : x \in A, x' \in A\} = \{b_0, b_1, b_2, \ldots, b_{|2A|-1}\}$ we denote

$$D_i = \{a - a' : a \in A, a' \in A, a + a' = b_i\}, \quad d_i = |D_i|,$$

$$r_i = r_i(A) = |\{(a, a') : a + a' = b_i, a \in A, a' \in A\}|.$$

After an eventual reordering of the set $2A$, we may assume that $r_0 \geq r_1 \geq \ldots \geq r_{|2A|-1}$. We denote

$$c_i = \frac{b_i}{2}, \quad C = \{c_0, c_1, c_2\}, \quad \text{Diff}(A) = D_0 \cup D_1 \cup D_2,$$

$$R_3(A) = |\text{Diff}(A)| = |D_0 \cup D_1 \cup D_2|,$$

$$R_3(k) = \max\{R_3(A) : A \subseteq G, |A| = k\}.$$

In the paper [1], we determined the maximal value of $|\text{Diff}(A)|$ for finite sets $A \subseteq \mathbb{Z}^2$, assuming that b_0, b_1, b_2 are non-collinear. We also described the structure

The research of the second named author was supported by The Open University of Israel's Research Fund, Grant No. 100937.

2000 Mathematics Subject Classification: primary 11P70; secondary 11B75.
of planar extremal sets A^*, i.e. sets of integer lattice points on the plane \mathbb{Z}^2 for which we have

$$R_3(A^*) = R_3(k) = 3k - \sqrt{3}k. \quad (3)$$

More precisely, for every $\alpha \in \mathbb{N}$ we denote by H_α the set of all points $P = (x, y) \in \mathbb{Z}^2$ such that x and y are odd integers and $-2\alpha < x, y, x + y - 1 < 2\alpha$. We proved the following result (see [1], Section 3):

Theorem 1. Let A be a finite subset of \mathbb{Z}^2, $|A| = k$. Then

$$R_3(A) = |\text{Diff}(A)| \leq 3k - \sqrt{3}k. \quad (4)$$

Moreover, the equality $R_3(A) = 3k - \sqrt{3}k$ holds if and only if $k = 3\alpha^2$ and there is an affine isomorphism $\phi : \mathbb{R}^2 \to \mathbb{R}^2$ such that $A = \phi(H_\alpha)$.

Note that H_α, the canonical form of an extremal set, contains only odd lattice points (x, y) (i.e. both coordinates x and y are odd integers), its convex hull is a hexagon and the set H_α lies on 2α lines parallel to the line $y = 0$, on 2α lines parallel to the line $x = 0$ and on 2α lines parallel to the line $x + y = 1$ (see Figure 1.1). Moreover, H_α satisfies equality (3) with respect to the centers c_0, c_1, c_2 given by $e_0 = (0, 0), e_1 = (1, 0), e_2 = (0, 1)$, respectively.

![Figure 1.1: The set H_α and the centers $c_i = e_i$, $i = 0, 1, 2$.](image)

In this paper we continue the study of such finite sets and we will determine the structure of sets of odd lattice points on the plane for which $c_i = e_i$, $i = 0, 1, 2$ and the number of differences $R_3(A)$ is close to its maximal value (3). In order to formulate our main result we will use the following notation. If $u = (u_1, u_2) \in \mathbb{R}^2$, we denote by u_1 and u_2 its coordinates with respect to the canonical basis $e_1 = (1, 0), e_2 = (0, 1)$ and $e_0 = (0, 0)$ represents the origin point. Let $a = 2\alpha$, $b = 2\beta$ and $c = 2\gamma$ be three natural numbers such that

$$2 \leq c \leq a + b - 2. \quad (5)$$
We denote by $H(a, b, c)$ the set of all points $P = (x, y) \in \mathbb{Z}^2$ which satisfy the following conditions:

$$H(a, b, c) : \begin{cases} -2\alpha + 1 \leq x \leq 2\alpha - 1, & \text{x odd,} \\ -2\beta + 1 \leq y \leq 2\beta - 1, & \text{y odd,} \\ -2\gamma + 1 \leq x + y - 1 \leq 2\gamma - 1. \end{cases} \quad (6)$$

Note that if $a = b = c = 2\alpha$, then $H(a, b, c)$ is the perfect hexagon H_α described in Figure 1.1.

We will prove that if $c_i - b_i^2 - e_i$, for $i = 0, 1, 2$ and if $|\text{Diff}(A)| \geq 3k - 1.8\sqrt{k}$, then A is almost hexagonal, i.e. an essential part of the set A can be approximated by a hexagon similar to the extremal set H_α. A precise formulation is given in the following:

Definition 1. We say that $A \subseteq \mathbb{Z}^2$ is an almost hexagonal set if there is a subset $A^* \subseteq A$ and a hexagon $H(a, b, c)$ which satisfy the conditions:

1. $|A^*| \geq 0.9|A|$,
2. A^* is included in $H(a, b, c)$ and $|H(a, b, c)| \leq 1.081|A^*|$,
3. if $a \preceq b \leq c$, then $a > 0.8\sqrt{|A^*|}$, $b < 1.75a$, $c < 0.75(a + b)$.

Using the above notations, we can state now our main result:

Theorem 2. Let $A \subseteq \mathbb{Z}^2$ be a finite subset of odd lattice points on the plane. Assume that $|A| = k$ is sufficiently large and $c_i = e_i$, for $i = 0, 1, 2$. If

$$R_3(A) = |\text{Diff}(A)| = 3k - \theta \sqrt{k}, \quad \theta \leq 1.8, \quad (7)$$

then the set A is almost hexagonal.

We prove Theorem 2 in Sections 2-5. Actually, we will prove a more precise estimate (16). In Section 3 we prove Theorem 2 for connected sets and in Section 5 we complete the proof using properties of disconnected sets obtained in Section 4. In Section 6 we will discuss some directions for further research.

We complete the introduction by recalling some simple remarks from [1]. We will use them whenever necessary without further mention. We easily see that $d_i = r_i$, for every $0 \leq i \leq |2A| - 1$. Indeed, using (1) and (2) we get that for two pairs (a_1, a_1') and (a_2, a_2') of $A \times A$ such that $a_1 + a_1' = a_2 + a_2' = b_i$ we have $a_1 - a_1' = a_2 - a_2'$ if and only if the equality $(a_1, a_1') = (a_2, a_2')$ holds.

Moreover, using (1), we see that d_i is equal to the number of pairs (a, a') such that $a \in A$, $a' \in A$ and a and a' are symmetric with respect to the center $c_i = b_i^2$, i.e.

$$d_i = |D_{c_i}|, \quad \text{where} \quad D_{c_i} = \{(a, a') : a \in A, a' \in A, a + a' = 2c_i\}.$$

We also note that if $a \neq a'$ then the pairs (a, a') and (a', a) give two distinct differences

$$a - a' = a - (b_i - a) = 2a - b_i \quad \text{and} \quad a' - a = -(2a - b_i)$$
and if $a = a'$ we have one pair (a, a) and one difference $d = a - a = 0$. We have
\[R_3(A) = |\text{Diff}(A)| = 3k - \theta \sqrt{k} - |D_0(A) \cup D_1(A) \cup D_2(A)| \]
\[\leq |D_0(A)| + |D_1(A)| + |D_2(A)| \leq d_i + 2k \]
and thus
\[d_i \geq R_3(A) - 2k = k - \theta \sqrt{k}, \]
for every $0 \leq i \leq 2$. Let us denote by
\[p_i = 2c_i - p \]
the symmetric of p with respect to c_i. Denote by M_i the set of points $p \in A$ such that $p_i \notin A$. If $m_i = |M_i|$, then
\[d_i = |D_i(A)| = k - m_i \]
and thus
\[m_i = k - d_i \leq k - (R_3(A) - 2k) = \theta \sqrt{k}. \quad (8) \]

In other words, Theorem 2 describes the structure of sets of lattice points that are "almost" symmetric with respect to some set C of centers of symmetry. This is a natural question to be studied in geometry and in inverse additive number theory.

2. Normal sets and Covering Hexagons

We will prove first several simple remarks.

Lemma 1. Assume that there is a point $p \in A$ such that $p_1 = 2c_1 - p$ and $p_2 = 2c_2 - p$ don't belong to A. If
\[A' = A \setminus \{p\} \]
is the set obtained from A by removing the point p, then
\[R_3(A') \geq R_3(A) - 2. \]

Proof. Assumptions $p_1 = 2c_1 - p \notin A$ and $p_2 = 2c_2 - p \notin A$ imply that the differences
\[d_1 = \pm(p - p_1), \quad d_2 = \pm(p - p_2) \]
do not belong to $D_1(A)$ and $D_2(A)$, respectively. Therefore the removal of p from the set A reduces the cardinality of $\text{Diff}(A)$ by maximum two differences:
\[d_0 = \pm(p - p_0). \]
We conclude that
\[D_0(A') \geq D_0(A) - 2, D_1(A') = D_1(A), D_2(A') = D_2(A), \]
which implies $R_3(A') = |\text{Diff}(A')| \geq |\text{Diff}(A)| - 2 = R_3(A) - 2. \]
Definition 2. If a point \(p \in A \) satisfies the condition
\[
|\{p_0, p_1, p_2\} \cap A| \leq 1,
\] (9)
i.e. at least two symmetric points of \(p \) with respect to \(\{c_0, c_1, c_2\} \) do not belong to \(A \), then we will say that \(p \) is a removable point of \(A \). If the point \(p \) doesn't satisfy the condition (9), then we will say that \(p \) is an essential point of \(A \).

Assume that \(A \) satisfies inequality (7). In the following Lemma we will estimate the number of removable points of \(A \) and we will show that the subset \(A_0 \) of \(A \) consisting of all essential points of \(A \) has the same property (7).

Lemma 2. Let \(A \) be a finite subset of \(\mathbb{Z}^2 \), \(|A| = k \). Assume that
\[
R_3(A) = |\text{Diff}(A)| = 3k - \theta \sqrt{k}, \quad \theta \leq 1.8.
\] (10)

Let \(A_0 \) be the set of all essential points of \(A \) and let \(A \setminus A_0 \) be the set of removable points of \(A \).

(a) If \(k_0 = |A_0| \), then \(R_3(A_0) \geq 3k_0 - \theta \sqrt{k_0} \).

(b) If \(n = |A \setminus A_0| \), then \(n \leq (\theta - 1.73) \sqrt{k} \leq 0.07 \sqrt{k} \), if \(k \) is sufficiently large.

Proof. If \(n = |A \setminus A_0| = k - k_0 \) denotes the number of removable points of \(A \), then Lemma 1 implies that
\[
R_3(A_0) \geq R_3(A) - 2n \geq 3k - \theta \sqrt{k} - 2n
\]
\[
= 3(k - n) - \theta \sqrt{k - n} \leq 3(k - n) - \theta \sqrt{k - n}
\]
\[
= 3k_0 - \theta \sqrt{k_0} + n \left(1 - \frac{\theta}{\sqrt{k} + \sqrt{k - n}} \right)
\]
\[
\geq 3k_0 - \theta \sqrt{k_0},
\]
in view of \(k \geq 4 \geq \theta^2 \). Assertion (a) is proved. We will now estimate the number of removable points of \(A \). We first note that
\[
3k - \theta \sqrt{k} \leq R_3(A) \leq R_3(A_0) + 2n \leq 3|A_0| + 2n = 3(k - n) + 2n = 3k - n
\]
and thus
\[
n = k - k_0 \leq \theta \sqrt{k} \leq 2\sqrt{k}.
\] (11)
This estimate can be improved by using inequality (4) for the set \(A_0 \). Indeed, we have
\[
R_3(A_0) \leq 3|A_0| - \sqrt{3|A_0|} = 3(k - n) - \sqrt{3(k - n)}
\]
and inequality
\[
3k - \theta \sqrt{k} \leq R_3(A) \leq R_3(A_0) + 2n \leq 3(k - n) - \sqrt{3(k - n)} + 2n
\]
clearly implies
\[
n \leq \theta \sqrt{k} - \sqrt{3(k - n)} \leq \theta \sqrt{k} - \sqrt{3\sqrt{k} - 2\sqrt{k}} \leq (\theta - 1.73) \sqrt{k} \leq 0.07 \sqrt{k},
\]
if \(k \) is sufficiently large. Assertion (b) is proved. \(\blacksquare \)
Lemma 2 allows us to study planar sets \(A \) consisting only of essential points.

Definition 3. We say that \(A \subseteq \mathbb{Z}^2 \) is a normal set (with respect to the centers \(c_0 = e_0, c_1 = e_1, c_2 = e_2 \)) if

(i) every point of \(A \) is an essential point and

(ii) every point \(p = (x, y) \in A \) has both coordinates \(x \) and \(y \) odd integers.

Let us choose six integers \(\alpha_1, \alpha_2, \beta_1, \beta_2, \gamma_1, \gamma_2 \) such that:

(i) every point \(p = (x, y) \in A \) satisfies the inequalities

\[
H = H(A) : \begin{cases}
\alpha_1 \leq x \leq \alpha_2, & x \text{ odd}, \\
\beta_1 \leq y \leq \beta_2, & y \text{ odd}, \\
\gamma_1 \leq x + y \leq \gamma_2.
\end{cases}
\]

(ii) on each line \((x = \alpha_1), (x = \alpha_2), (y = \beta_1), (y = \beta_2), (x + y = \gamma_1), (x + y = \gamma_2)\) there is at least one point of \(A \).

The finite set \(H(A) \subseteq (2\mathbb{Z} + 1) \times (2\mathbb{Z} + 1) \) defined by the above two conditions will be called a covering polygon of the set \(A \).

We will prove that if \(A \) is normal set then the points of \(A \) lie on pairs of symmetric lines with respect to three lines defined by

\[
l_1 : (x = 0), \quad l_2 : (y = 0), \quad l_3 : (x + y = 1).
\]

More precisely:

Lemma 3. Let \(A \subseteq \mathbb{Z}^2 \) be a finite normal set. Then

(a) If \(A \cap (x = \alpha) \neq \emptyset \) and \(A \cap (x = -\alpha) \neq \emptyset \) then \(A \cap (x = -\alpha) = \emptyset \).

(b) If \(A \cap (y = \beta) \neq \emptyset \) then \(A \cap (y = -\beta) \neq \emptyset \).

(c) If \(A \cap (x + y - 1 = \gamma) \neq \emptyset \) then \(A \cap (x + y - 1 = -\gamma) \neq \emptyset \).

Proof. In view of (12), the points \(c_0 \) and \(c_2 \) belong to \(l_1 \), \(c_0 \) and \(c_1 \) belong to \(l_2 \) and finally \(c_1 \) and \(c_2 \) belong to \(l_2 \). Therefore there is no loss of generality if we will prove only assertion (a).

To the contrary, assume that \(A \cap (x = \alpha) \neq \emptyset \) and \(A \cap (x = -\alpha) = \emptyset \). In this case, every point \(p \in A \cap (x = \alpha) \) has no symmetric with respect to \(c_0 \) and \(c_2 \) and therefore \(p \) is a removable point of \(A \). This contradicts our assumption that \(A \) is normal set. Lemma 3 is proved.

Let \(A \subseteq \mathbb{Z}^2 \) be a normal set. We will now estimate the number of odd points belonging to a covering polygon \(H(A) \). In view of Definition 3 and Lemma 3, the integers \(\alpha_1, \alpha_2, \beta_1, \beta_2, \gamma_1, \gamma_2 \) that define the covering lines of \(H(A) \) satisfy

\[
\begin{align*}
\alpha_1 \text{ and } \alpha_2 \text{ are odd,} & \quad \alpha_2 = -\alpha_1 = 2\alpha - 1, \\
\beta_1 \text{ and } \beta_2 \text{ are odd,} & \quad \beta_2 = -\beta_1 = 2\beta - 1, \\
\gamma_1 \text{ and } \gamma_2 \text{ are even,} & \quad \gamma_2 = -\gamma_1 + 2 = 2\gamma.
\end{align*}
\]
It follows that $H(A) = H(a, b, c)$, where $a = 2\alpha, b = 2\beta, c = 2\gamma$. Let us denote by

$$
\epsilon = \epsilon(a, b, c) = \frac{(a-b)^2 + (b-c)^2 + (c-a)^2}{2}.
$$

(13)

We have the following estimate

Lemma 4. The set $H(a, b, c)$ lies on $a = 2\alpha$ lines parallel to $(x = 0)$, on $b = 2\beta$ lines parallel to $(y = 0)$, on $c = 2\gamma$ lines parallel to $(x + y = 1)$ and

$$
|H(a, b, c)| = \begin{cases}
 c \min\{a, b\}, & \text{if } c \leq |a - b| \\
 ab - \frac{(a+b-c)^2}{4}, & \text{if } c \geq |a - b| + 2.
\end{cases}
$$

(14)

Moreover,

(a) if $c \leq |a - b|$, then $|H(a, b, c)| \leq \frac{1}{4} \frac{(a+b+c)^2}{4}$.

(b) if $c \geq |a - b| + 2$, then $|H(a, b, c)| \leq \frac{1}{3} \left(\frac{(a+b+c)^2}{4} - \epsilon \right)$.

Proof. Every point $P = (x, y) \in H(a, b, c)$ belongs to the rectangle defined by

$$
R(A) : |x| \leq 2\alpha - 1, \quad |y| \leq 2\beta - 1, \quad x \text{ and } y \text{ are odd.}
$$

and thus $H(a, b, c)$ lies on $a = 2\alpha$ lines parallel to $(x = 0)$, on $b = 2\beta$ lines parallel to $(y = 0)$. Moreover, if $P = (x, y)$ is a point of $H(a, b, c)$ lying on the supporting line $(x + y = 2\gamma)$, then $x + y \leq 2\alpha + 2\beta - 2$ and therefore $H(a, b, c)$ lies on $c = 2\gamma \leq 2\alpha + 2\beta - 2 = a + b - 2$ lines parallel to $(x + y = 1)$.

It is enough to examine only the case $a \geq b$.

Case 1. If $2 \leq 2\gamma \leq 2\alpha - 2\beta$, then $2 \leq c \leq a - b$, the set $H(a, b, c)$ is actually a parallelogram and

$$
H(a, b, c) = 2\gamma b = cb = c \min\{a, b\}.
$$

Case 2. If $2\gamma = 2\alpha - 2\beta + 2$, then $c = a - b + 2$. The set $H(a, b, c)$ lies on two parallel lines, if $a = b$, or $H(a, b, c)$ is a pentagon, if $a \neq b$. Therefore

$$
H(a, b, c) = 2\gamma b - 1 - cb - 1 - (a - b + 2)b - 1 = ab - (b - 1)^2 - ab - \frac{(a + b - c)^2}{4}.
$$

Case 3. If $2\alpha - 2\beta + 4 \leq 2\gamma \leq 2\alpha + 2\beta - 4$, then $a - b + 4 \leq c \leq a + b - 4$, the set $H(a, b, c)$ is a hexagon and

$$
H(a, b, c) = ab - \sum_{j=1}^{\alpha + \beta - \gamma - 1} j - \sum_{j=1}^{\alpha + \beta - \gamma} j = ab - (\alpha + \beta - \gamma)^2 = ab - \frac{(a + b - c)^2}{4}.
$$

Case 4. If $2\gamma = 2\alpha + 2\beta - 2$, then $c = a + b - 2$, the set $H(a, b, c)$ satisfies

$$
H(a, b, c) = R(A) \setminus \{v\},
$$
where v is the vertex $v = (-2\alpha + 1, -2\beta + 1)$. Thus

$$H(a, b, c) = ab - 1 = ab - \frac{(a + b - c)^2}{4}.$$

Equality (14) is proved.

Moreover, in case 1 we have $c \leq a - b$, $a \geq b + c$ and thus

$$|H(a, b, c)| = cb = \frac{(b + c)^2 - (b - c)^2}{4} \leq \frac{1}{4} \left(\left(\frac{a + b + c}{2} \right)^2 - (b - c)^2 \right)$$

$$\leq \frac{1}{4} \left(\frac{a + b + c}{2} \right)^2.$$

In cases 2, 3 and 4 we have $c \geq a - b + 2$ and thus

$$|H(a, b, c)| = ab - \frac{(a + b - c)^2}{4} = \frac{2ab + 2bc + 2ca - a^2 - b^2 - c^2}{4}$$

$$= \frac{(a + b + c)^2}{12} - \frac{e}{3}.$$

Lemma 4 is proved.

3. Normal connected sets

In this section we prove Corollary 1 which implies Theorem 2 for connected normal sets. We need the following:

Definition 4. Let $A \subseteq \mathbb{Z}^2$ be a finite normal set and let

$$x = \pm(2\alpha - 1), \quad y = \pm(2\beta - 1), \quad x + y - 1 = \pm(2\gamma - 1)$$

denote the supporting lines of the covering polygon $H(A) = H(a, b, c)$. We say that A is a connected normal set if the following three conditions are true:

(a) for every odd integer p such that $|p| \leq 2\alpha - 1$ we have $A \cap (x = p) \neq \emptyset$.
(b) for every odd integer q such that $|q| \leq 2\beta - 1$ we have $A \cap (y = q) \neq \emptyset$.
(c) for every odd integer r such that $|r| \leq 2\gamma - 1$ we have $A \cap (x + y - 1 = r) \neq \emptyset$.

We will use the following result:

Lemma 5. Let $A \subseteq \mathbb{Z}^2$ be a connected normal set. If $H(A)$, the covering polygon of A, is equal to $H(a, b, c)$, then

$$R_3(A) = |\text{Diff}(A)| \leq 3k - \frac{a + b + c}{2}. \quad (15)$$

Proof. See assertion (b) of Lemma 2 in [1].

We can now prove without difficulty the following corollary which describes the structure of a connected normal set A which satisfies $R_3(A) \geq 3k - \sqrt{3.241}k$. This condition is less restrictive than inequality (10) and will be used in Section 5.
Corollary 1. Let \(A \subseteq \mathbb{Z}^2 \) be a connected normal set. Let \(H(A) = H(a, b, c) \) be the covering polygon of \(A \). Denote by

\[
k = |A|, \quad k^* = |H(A)|.
\]

(a) If \(c \leq |a - b| \), then \(R_3(A) \leq 3k - 2\sqrt{k^*} \leq 3k - 2\sqrt{k} \).

(b) If \(c \geq |a - b| + 2 \), then \(R_3(A) \leq 3k - \sqrt{3k^* + \epsilon} \leq 3k - \sqrt{3k} + \epsilon \).

(c) If \(R_3(A) \geq 3k - \sqrt{3.241k} \), then \(|H(A)| < 1.081|A| \). Moreover, if we assume that \(a \leq b \leq c \), then \(a > 0.8\sqrt{k}, b < 1.75a \) and \(c < 0.75(a + b) \).

Proof. We have \(H(A) = H(a, b, c), k \leq k^* \) and we may assume without loss of generality that \(a \leq b \).

Case (a). If \(c \leq b - a \), then assertion (a) of Lemma 4 implies that

\[
\frac{a + b + c}{2} \geq 2\sqrt{|H(A)|} = 2\sqrt{k^*} \geq 2\sqrt{k}.
\]

Using (15), we get

\[
R_3(A) \leq 3k - \frac{a + b + c}{2} \leq 3k - 2\sqrt{k^*} \leq 3k - 2\sqrt{k}.
\]

Case (b). If \(c \geq b - a + 2 \), then assertion (b) of Lemma 4 implies that

\[
\frac{a + b + c}{2} \geq \sqrt{3k^* + \epsilon} \geq \sqrt{3k} + \epsilon.
\]

Using (15), we get

\[
R_3(A) \leq 3k - \frac{a + b + c}{2} \leq 3k - \sqrt{3k^* + \epsilon} \leq 3k - \sqrt{3k} + \epsilon.
\]

We prove now assertion (c). Let us assume that the set \(A \) satisfies the inequality

\[
R_3(A) \geq 3k - \sqrt{3.241k}.
\]

Using Corollary 1 (a) and inequalities (5) and (15) we get that

\[
2 + |a - b| \leq c \leq a + b - 2
\]

and

\[
3k - \sqrt{3.241k} \leq R_3(A) \leq 3k - \frac{a + b + c}{2} \leq 3k - \sqrt{3k^* + \epsilon} \leq 3k - \sqrt{3k} + \epsilon
\]

Therefore \(3k^* + \epsilon \leq 3.241k, \sqrt{3k} \leq \frac{a + b + c}{2} \leq 3k - R_3, \epsilon \leq (3k - R_3)^2 - 3k \) and thus

\[
|H(A)| < 1.081|A| - \frac{\epsilon}{3}, \quad (16)
\]

\[
3.464\sqrt{k} \leq a + b + c \leq 2\sqrt{3.241k},
\]

\[
2\epsilon = (a - b)^2 + (b - c)^2 + (c - a)^2 \leq 0.482k. \quad (17)
\]
We may assume without loss of generality that

\[a \leq b \leq c. \]

Denote \(b = a + u \) and \(c = b + v \). Inequality (17) imply that \(u^2 + v^2 + (u + v)^2 \leq 0.482k \). Thus \(u^2 \leq 0.241k, \ v^2 \leq 0.241k, \ (u + v)^2 \leq 0.322k \). Therefore

\[
\begin{align*}
 u & \leq 0.491\sqrt{k}, \quad v \leq 0.491\sqrt{k}, \quad u + v \leq 0.568\sqrt{k}, \\
3.464\sqrt{k} & \leq a + b + c = 3a + u + (u + v) \leq 3a + 1.059\sqrt{k}, \\
a & \geq \frac{1}{3} \cdot 2.405\sqrt{k} \geq 0.801\sqrt{k}.
\end{align*}
\]

Moreover, the quotient \(\frac{b}{a} \) is less than 1.75 because \(2\sqrt{3.241k} \geq a + b + c \geq a + 2b = a(1 + 2\frac{b}{a}) \) implies that

\[
\frac{b}{a} \leq \frac{1}{2} \left(\frac{2\sqrt{3.241k}}{a} - 1 \right) \leq \frac{1}{2} \left(\frac{2\sqrt{3.241k}}{0.801\sqrt{k}} - 1 \right) \leq 1.748.
\]

In order to prove assertion (c), it remains to be shown that \(t = \frac{c}{a+b} \leq 0.75 \). We have

\[
2\sqrt{3.241k} \geq a + b + c = (1 + t)(a + b) \geq 2(1 + t)\sqrt{ab},
\]

\[
k \leq ab - \left(\frac{a + b - c}{2} \right)^2 = ab - \left(\frac{(1 - t)(a + b)}{2} \right)^2
\]

and thus

\[
2\sqrt{3.241k} \geq 2(1 + t)\sqrt{k + \left(\frac{(1 - t)(a + b)}{2} \right)^2}.
\]

Clearly \(\sqrt{3.241k} \geq (1 + t)\sqrt{k} \) and thus \(t \leq 0.8003 \). This last estimate can be slightly improved using the inequalities \(a + b \geq 2\sqrt{ab} \geq 2\sqrt{k} \). Indeed, we obtain

\[
2\sqrt{3.241k} \geq 2(1 + t)\sqrt{k + (1 - t)^2k}, \quad 3.241 \geq (1 + t)^2 + (1 - t)^2
\]

and so \(t^4 - t^2 + 2t \leq 1.241 \). Using \(0 \leq t \leq 1 \) we get \(t < 0.75 \). Corollary 1 is proved.

4. Disconnected normal sets

Definition 5. Let \(A \subseteq \mathbb{Z}^2 \) be a finite normal set and let

\[
\begin{align*}
x &= 2\alpha - 1, \quad x = -2\alpha + 1, \quad y = 2\beta - 1, \quad y = -2\beta + 1, \\
x + y &= 2\gamma, \quad x + y = -2\gamma + 2
\end{align*}
\]

denote the supporting lines of the covering polygon \(H = H(A) \). We say that \(A \) is a disconnected normal set if it is normal and at least one of the assertion (a), (b), (c) of Definition 4 is not true.
As we remarked before, this means that the set A is normal and at least one of the following three conditions is true:

(a) there is an odd integer u such that $-2\alpha + 1 \leq u \leq 2\alpha - 1$ and $A \cap (x = \pm u) = \emptyset$.
(b) there is an odd integer v such that $-2\beta + 1 \leq v \leq 2\beta - 1$ and $A \cap (y = \pm v) = \emptyset$.
(c) there is an even integer w such that $-2\gamma + 2 \leq w \leq 2\gamma$ and $A \cap (x + y = \pm w) = \emptyset$.

We will examine now such a set $K \subset \mathbb{Z}^2$ for which only condition (c) is satisfied.

Example 1. Let $t \in \mathbb{Z}$ be a positive integer. Let us define

$$K(t) = H_t \pm (2t, 2t).$$

![Figure 4.1: The set $K(t)$ for $t = 3$. $K(t)$ is included in $(2\mathbb{Z} + 1) \times (2\mathbb{Z} + 1)$.](image)

The set $K(t)$ is described in Figure 4.1 and is defined by the following conditions: a point (x, y) belongs to $K(t)$ if and only if:

(i) $1 \leq x, y \leq 4t - 1, 2t + 2 \leq x + y \leq 6t$ and x and y are both odd integers.

or

(ii) $-4t + 1 \leq x, y \leq -1, -6t + 2 \leq x + y \leq -2t$ and x and y are both odd integers.
Lemma 6. The set $K = K(t)$ satisfies $k = |K| = 6t^2$ and

$$R_3(K) = 3k - \frac{a + b + c}{2} = 3k - 6t = 3k - \sqrt{6k}. \quad (18)$$

Proof. The set $K(t)$ consists of two disjoint translates of H_t and thus

$$k = |K(t)| = 2|H_t| = 6t^2.$$

Using the properties of the set H_α it follows that $K(t)$ lies on $a = 4t$ lines parallel to e_2, $b = 4t$ lines parallel to e_1 and $c = 4t$ lines parallel to $e_1 - e_2$. Each line $(x - x_0), x_0$ odd, $-4t + 1 \leq x_0 \leq 4t - 1$ intersects the set K. Each line $(y = y_0)$, y_0 odd, $-4t + 1 \leq y_0 \leq 4t - 1$ intersects the set K. Nevertheless, the lines $(x + y = s)$, s even, $-2t + 2 \leq s \leq 2t$ does not intersect K. It follows that only condition (c) of Definition 4 is satisfied. Moreover, the three centers of symmetry of K are $c_i = e_i$, for $i = 0, 1, 2$, K is a normal set and we clearly have:

$$d_0 = |D_0(K)| = |\{ p \in K : p_0 = 2c_0 - p \in K \}|$$
$$= k - |K \cap ((x + t = 6t) \cup (x + y = -2t))|,$$

$$d_1 = |D_1(K)| = |\{ p \in K : p_1 = 2c_1 - p \in K \}|$$
$$= k - |K \cap ((x = 1) \cup (x = -4t + 1))|,$$

$$d_2 = |D_2(K)| = |\{ p \in K : p_2 = 2c_2 - p \in K \}|$$
$$= k - |K \cap ((y = 1) \cup (y = -4t + 1))|.$$

We conclude that K is a disconnected normal set and

$$R_3(K) = d_0 + d_1 + d_2 = (k - 2t) + (k - 2t) + (k - 2t) = 3k - 6t = 3k - \sqrt{6k}. \quad \blacksquare$$

We will now examine in detail a normal disconnected set satisfying case (a). Cases (b) and (c) are similar. The following result generalizes inequality (18):

Lemma 7. Assume that the set A is a normal disconnected set satisfying condition (a). Let us choose $u \geq 1$ minimal such that u is odd and

$$A \cap (x = \pm u) = \emptyset.$$

Define $A_1 = A \cap (-u < x < u)$, $A_2 = A \setminus A_1$, $k_1 = |A_1|$, $k_2 = k - k_1$. Then

$$R_3(A) = R_3(A_1) + R_3(A_2) \leq 3k - \sqrt{3k_1} - \sqrt{6(k_2 - n_0 - 0.5)}, \quad (19)$$

where n_0 is the number of points $p \in A_2$ such that $p_0 = 2c_0 - p \notin A_2$.

Proof. We will first show that the subset A_2 satisfies an inequality similar to (18). More precisely, we have

$$R_3(A_2) \leq 3k_2 - \sqrt{6(k_2 - n_0 - 0.5)}. \quad (20)$$
The set A_2 is a disjoint union of

$$A_+ = A \cap (x > u)$$

and

$$A_- = A \cap (x < -u).$$

Denote by $\pi_1(x, y) = x$ the projection parallel to line $(x = 0)$, by $\pi_2(x, y) = y$ the projection parallel to line $(y = 0)$ and by $\pi_3(x, y) = x + y$ the projection parallel to line $(x + y = 0)$. We claim that there is an integral vector $w \in \mathbb{N}^2$ such that the sets

$$B_+ = A_+ + w \quad \text{and} \quad B_- = A_- - w$$

satisfy the following assertions:

(i) B_+ and B_- are disjoint,
(ii) the projections $\pi_i(B_+)$ and $\pi_i(B_-)$ are disjoint, for $i = 1, 2, 3$,
(iii) the set $B = B_+ \cup B_-$ satisfies $R_3(A_2) \leq R_3(B)$.

If both coordinates of w are large enough, then assertions (i) and (ii) are clearly true. Let us explain now (iii). Each difference $d = (d_1, d_2) \in \text{Diff}(A)$ can be written as $d = p - p'$, where $p + p' = 2c_i = 2e_i$ and $p, p' \in A$. Therefore, we have either

$$p \in A_+, \quad p' \in A_-, \quad d_1 \geq 2(u + 2) \geq 6$$

or

$$p \in A_-, \quad p' \in A_+, \quad d_1 \leq -2(u + 2) \leq -6.$$

This remark allows us to define a one to one map φ from

$$\text{Diff}(A_2) = D_0(A_2) \cup D_1(A_2) \cup D_2(A_2)$$

to

$$\text{Diff}(B) = D_0(B) \cup D_1(B) \cup D_2(B).$$

More precisely, if $p_i = 2e_i - p$ denotes the symmetric of p with respect to e_i, then φ is given by

$$\varphi(d) = \begin{cases}
 d + 2w, & \text{if } d = p - p_i, \ p \in A_+, \ p_i \in A_-; \\
 d - 2w, & \text{if } d = p - p_i, \ p \in A_-, \ p_i \in A_+.
\end{cases}$$

The image $\varphi(d) \in \text{Diff}(B)$; indeed, if $d = p - p_i, p \in A_+, p_i \in A_-$, then

$$d + 2w = p - p_i + 2w = (p + w) - (p_i - w),$$

$$p + w \in B_+ \subseteq B, \quad p_i - w \in B_- \subseteq B,$$

$$(p + w) + (p_i - w) = p + p_i = 2c_i = 2e_i.$$
and if \(d = p - p_i, \ p \in A_-, \ p_i \in A_+ \), then
\[
d - 2w = p - p_i - 2w = (p - w) - (p_i + w),
\]
\[
 p - w \in B_- \subseteq B, \quad p_i + w \in B_+ \subseteq B,
\]
\[
 (p - w) + (p_i + w) = p + p_i = 2c_i = 2c_i.
\]

Moreover, we may choose the vector \(w \) such that \(d' + 2w \neq d'' - 2w \), for every \(d', d'', d'' \in \text{Diff}(A_2) \). This implies that \(\varphi \) is one to one and assertion (iii) follows.

Assume that the set \(B_+ \) lies on exactly \(a_1 \) lines parallel to the line \((x = 0)\), on \(b_1 \) lines parallel to the line \((y = 0)\) and on \(c_1 \) lines parallel to the line \((x + y = 0)\). In other words:
\[
a_1 = |\pi_1(B_+)|, \quad b_1 = |\pi_2(B_+)|, \quad c_1 = |\pi_3(B_+)|.
\]
The set \(B_- \) determines the parameters \(a_2, b_2 \) and \(c_2 \) in a similar way, i.e.
\[
a_2 = |\pi_1(B_-)|, \quad b_2 = |\pi_2(B_-)|, \quad c_2 = |\pi_3(B_-)|.
\]
Therefore, property (ii) implies that the set \(B \) lies on exactly \(a_1 + a_2 \) lines parallel to the line \((x = 0)\), on \(b_1 + b_2 \) lines parallel to the line \((y = 0)\) and on \(c_1 + c_2 \) lines parallel to the line \((x + y = 0)\). Using Lemma 2.b. and Corollary 1 from [1] we get
\[
R_3(B) \leq 3|B| - \frac{(a_1 + a_2) + (b_1 + b_2) + (c_1 + c_2)}{2}
- 3|B_+| - \frac{a_1 + b_1 + c_1}{2} + 3|B_-| - \frac{a_2 + b_2 + c_2}{2}
\leq 3|B_+| - \sqrt{3(|B_+| - 0.25)} + 3|B_-| - \sqrt{3(|B_-| - 0.25)}.
\]
Let us estimate the cardinalities of the sets \(B_+ \) and \(B_- \) using the fact that \(A, A_2 \) and \(B \) are all "almost symmetric" with respect to \(c_0 \). Let us recall that \(n_0 \) denotes the number of points \(p \in A_2 \) such that \(p_0 = 2c_0 - p \notin A_2 \); therefore we get
\[
n_0 = |\{p : p \in B, p_0 \notin B\}| \leq |B| = |A_2| = k_2
\]
and
\[
|B_+| = |A_+| \geq \frac{|B| - n_0}{2}, \quad |B_-| = |A_-| \geq \frac{|B| - n_0}{2};
\]
inequality (20) follows from:
\[
R_3(A_2) \leq R_3(B) \leq 3|B| - \sqrt{3(|B_+| - 0.25)} - \sqrt{3(|B_-| - 0.25)}
\leq 3|B| - 2\sqrt{3\left(\frac{|B| - n_0}{2} - 0.25\right)} = 3k_2 - \sqrt{6(k_2 - n_0 - 0.5)}.
\]
We will show that inequality (19) is true. The set A is a disjoint union of A_1 and A_2. Using Corollary 1 from [1] we get $R_3(A_1) \leq 3k_1 - \sqrt{3k_1}$. For every $i = 0, 1, 2$ the sets $D_i(A_1)$ and $D_i(A_2)$ are disjoint and thus

$$R_3(A) = R_3(A_1) + R_3(A_2) \leq 3k_1 - \sqrt{3k_1} + 3k_2 - \sqrt{6(k_2 - n_0 - 0.5)}$$

$$= 3k - \sqrt{3k_1} - \sqrt{6(k_2 - n_0 - 0.5)}.$$

Lemma 7 is proved.

5. The general case and proof of Theorem 2

Assume that A is a finite set that satisfies the hypothesis of Theorem 2. Let A_0 be the set of all essential points of A. Using inequality (11) or in view of Lemma 2 we have

$$k_0 = |A_0|, \quad 0 \leq k - k_0 \leq 2\sqrt{k}, \quad R_3(A_0) \geq 3k_0 - \theta \sqrt{k_0}. \quad (21)$$

A_0 is a finite normal set. If A_0 is connected we apply Corollary 1 and Theorem 2 is proved. Assume that A_0 is disconnected. In what follows, we will apply three times Lemma 7 in order to obtain a large normal connected proper subset $A_5 \subset A_0$. Let us choose $u \geq 1$ minimal such that u is odd and

$$A_0 \cap (x = \pm u) = \emptyset.$$

Define $A_1 = A_0 \cap (-u < x < u), A_2 = A_0 \setminus A_1, k_1 = |A_1|, k_2 = k_0 - k_1$. The sets A_1 and A_2 form a partition of A_0 and in view of Lemma 7 we have

$$R_3(A_0) = R_3(A_1) + R_3(A_2) \leq R_3(A_1) + 3k_2 - \sqrt{6(k_2 - n_0 - 0.5)}, \quad (22)$$

where n_0 is the number of points $p \in A_2$ such that $p = 2c_0, -p \notin A_2$.

Let us choose $v \geq 1$ minimal such that v is odd and

$$A_1 \cap (y = \pm v) = \emptyset.$$

Define $A_3 = A_1 \cap (-v < y < v), A_4 = A_1 \setminus A_3, k_3 = |A_3|, k_4 = k_1 - k_3$. The sets A_3 and A_4 form a partition of A_1 and using a similar argument as in the proof of Lemma 7, we get

$$R_3(A_1) = R_3(A_3) + R_3(A_4) \leq R_3(A_3) + 3k_4 - \sqrt{6(k_4 - n_1 - 0.5)}, \quad (23)$$

where n_1 is the number of points $p \in A_4$ such that $p = 2c_0 - p \notin A_4$.

Let us choose $w \geq 1$ minimal such that w is odd and

$$A_3 \cap (x + y - 1 = \pm w) = \emptyset.$$

Define $A_5 = A_3 \cap (-w < x + y - 1 < w), A_6 = A_3 \setminus A_5, k_5 = |A_5|, k_6 = k_3 - k_5$. The sets A_5 and A_6 form a partition of A_3 and using a similar argument as in the proof of Lemma 7, we get

$$R_3(A_3) = R_3(A_5) + R_3(A_6) \leq R_3(A_5) + 3k_6 - \sqrt{6(k_6 - n_2 - 0.5)}, \quad (24)$$
where \(n_2 \) is the number of points \(p \in A_0 \) such that \(p_0 = 2c_0 - p \notin A_6 \). In view of (22), (23), (24) and using \(k_0 = k_5 + k_2 + k_4 + k_6 \) and \(R_3(A_5) \leq 3k_5 - \sqrt{3k_5} \) we get:

\[
R_3(A_0) \leq R_3(A_1) + 3k_2 - \sqrt{6(k_2 - n_0 - 0.5)} \\
\leq R_3(A_3) + 3k_4 - \sqrt{6(k_4 - n_1 - 0.5)} + 3k_2 - \sqrt{6(k_2 - n_0 - 0.5)} \\
\leq R_3(A_5) + 3k_6 - \sqrt{6(k_6 - n_2 - 0.5)} + 3k_4 - \sqrt{6(k_4 - n_1 - 0.5)} \\
+ 3k_2 - \sqrt{6(k_2 - n_0 - 0.5)} \\
\leq R_3(A_5) + 3(k_0 - k_5) - \sqrt{6(k_0 - k_5) - 6(n_0 + n_1 + n_2) - 9} \\
\leq 3k_0 - \sqrt{3k_5} - \sqrt{6(k_0 - k_5) - 6(n_0 + n_1 + n_2) - 9} \\
\leq 3k_0 - \sqrt{3k_5 + 6(k_0 - k_5) - 6(n_0 + n_1 + n_2) - 9}.
\]

Inequality (21) gives a lower bound for \(R_3(A_0) \) and implies that

\[
3k_5 + 6(k_0 - k_5) - 6(n_0 + n_1 + n_2) - 9 \\
= 3k_0 + 3(k_0 - k_5) - 6(n_0 + n_1 + n_2) - 9 \leq \theta^2 k_0 \leq 3.24k_0.
\]

Thus

\[
k_0 - k_5 \leq 0.08k_0 + 2(n_0 + n_1 + n_2) + 3 \\
\leq 0.08k_0 + 6m_0 + 3 \leq 0.08k_0 + 10.8\sqrt{k_0} + 3, \\
k_5 \geq 0.92k_0 - 10.8\sqrt{k_0} - 3.
\]

We applied here (8) and the obvious inequality \(n_i \leq m_0, i = 0, 1, 2 \).

We claim that the set \(A_5 \) satisfies an inequality similar to (7), namely

\[
R_3(A_5) \geq 3k_5 - \sqrt{3.241k_5}.
\]

Indeed, assume to the contrary that \(R_3(A_5) < 3k_5 - \sqrt{3.241k_5} \). Using (25) we get

\[
R_3(A_0) \leq R_3(A_5) + 3(k_0 - k_5) - \sqrt{6(k_0 - k_5) - 6(n_0 + n_1 + n_2) - 9} \\
< 3k_5 - \sqrt{3.241k_5} + 3(k_0 - k_5) - \sqrt{6(k_0 - k_5) - 6(n_0 + n_1 + n_2) - 9} \\
\leq 3k_0 - \sqrt{3.241k_5 + 6(k_0 - k_5) - 6(n_0 + n_1 + n_2) - 9} \\
\leq 3k_0 - \sqrt{3.241k_0 - 6(n_0 + n_1 + n_2) - 9} \\
\leq 3k_0 - \sqrt{3.241k_0 - 10.8\sqrt{k_0} - 9},
\]

which contradicts inequality (21), if \(k = |A| \) is sufficiently large.

Choose a proper subset \(A_5 \subset A_0 \) such that (26) and (27) are true and \(k_5 = |A_5| \) is minimal. The choice of \(u, v, w \) and the minimality of \(k_5 \) imply that \(A_5 \) is normal and connected. Let

\[
H(A_5) : \begin{cases}
-2\alpha + 1 \leq x \leq 2\alpha - 1, & x \text{ odd,} \\
-2\beta + 1 \leq y \leq 2\beta - 1, & y \text{ odd,} \\
-2\gamma + 2 \leq x + y \leq 2\gamma
\end{cases}
\]

(28)
be the covering polygon of \(A_5 \). Then \(H(A_5) \) lies on \(a = 2\alpha \) lines parallel to \((x = 0) \), on \(b = 2\beta \) lines parallel to \((y = 0) \), on \(c = 2\gamma \) lines parallel to \((x + y = 1) \) and \(2 \leq c \leq a + b - 2 \). We will use now inequality (27) and assertion (c) of Corollary 1. We may assume without loss of generality that \(a \leq b \leq c \). We get that

\[
|H(A_5)| < 1.081|A_5|, \quad a > 0.8\sqrt{k_5}, \quad b < 1.75a \quad \text{and} \quad c < 0.75(a + b).
\]

Define \(A^* = A_5 \) and \(H(a, b, c) = H(A_5) \). Using (21) and (26), we conclude that

\[
k - k_5 = (k - k_0) + (k_0 - k_5) \leq 2\sqrt{k} + 0.08k_0 + 10.8\sqrt{k_0} + 3
\]

\[
\leq 0.08k + 12.8\sqrt{k} + 3
\]

and thus \(|A^*| = |A_5| = k_5 \geq 0.92k - 12.8\sqrt{k} - 3 \). Theorem 2 is proved, if \(k \) is sufficiently large. ■

6. Remarks

We use now the notations of Section 1 for finite sets of integers. It is a natural question whether it is possible to describe the structure of sets of integers \(A \subseteq \mathbb{Z} \) such that \(R_3(A) \geq 3k - 1.8\sqrt{k} \).

We propose the following:

Conjecture. Let \(A \subseteq \mathbb{Z} \) be a finite set of integers. Assume that \(|A| = k \) and

\[
R_3(A) = |\text{Diff}(A)| \geq 3k - 1.8\sqrt{k}.
\]

Then there is a two dimensional set of odd lattice points on the plane \(\tilde{A} \subseteq \mathbb{Z}^2 \) with the following properties:

(a) \(|\tilde{A}| = |A| = k \),

(b) \(3k - 1.8\sqrt{k} \leq R_3(A) \leq R_3(\tilde{A}) \leq 3k - \sqrt{3k} \),

(c) the canonical projection \(\pi: \tilde{A} \to \mathbb{Z}, \pi(x, y) = x \) has the image \(\pi(\tilde{A}) = A \).

Inequality (29) for integers is similar to condition (7) for sets of lattice points in the plane and in a subsequent paper we will show that it is possible to apply Theorem 2 in order to study the structure of such sets of integers.

References

Address: Gregory A. Freiman: School of Mathematical sciences, Tel Aviv University, Tel Aviv 69978, Israel; Yonutz V. Stanchescu: The Open University of Israel, Raanana 43107, Israel and Afeka Academic College, Tel Aviv 69107, Israel.

E-mail: ionut@openu.ac.il, yonit@afeka.ac.il

Received: 22 January 2009; revised: 20 April 2009