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STRUCTURE THEORY OF SET ADDITION II.
RESULTS AND PROBLEMS

G. A. FREIMAN

1. INTRODUCTION

For a general introduction to the relevant background in additive number
theory and structure theory of set addition, readers are referred to the review
[15], of which this’ is a continuation.

This paper is intended to promote further progress in the study of
inverse problems in additive number theory and is aimed at mathematicians
looking for new problems, particularly at young mathematicians.

In Section 2 I shall summarize some essential definitions and basic
results from [15]. Then I shall give a detailed account of ten carefully chosen
typical problems, including related ideas and results and suggest possible
approaches. I shall also mention briefly new applications of structure theory
in ergodic theory and commutative algebra and the results of W. T. Gowers

(18].

2. DEFINITIONS AND BAsSIC RESULTS

We consider a finite subset K of Z" (and often of Z) with cardinality |K| = k.

! This paper is based on my lecture “Additive Problems of Erdés and Structure The-
ory of Set Addition” given on July 8 at the conference “Paul Erdos and his Mathematics”
held in Budapest, July 4-11, 1999.
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We define 2K = K+ K ={z|z=a+b,a € K, be K}. We say that
K has the small doubling property if '

|2K| < Ck,

where either C is a positive constant independent of k or C = C(k) is a
slowly increasing function. The number |2K|/k is called doubling coefficient
of K.

We shall need the notion of an additive isomorphism of one subset onto
another (or, in the language of [15], of an Fy-isomorphism). An additive
isomorphism of A C Z" onto B C Z™ is a bijection ¢ : A — B of A onto
B such that for all a, b, ¢, d in A we have

pla) + o) =plc) +¢(d) ff a+b=c+d.

If there exists an additive isomorphism of A onto B, we write A ~ B,
and we note that ~ is an equivalence relation.

A quantity which is invariant under additive isomorphism is called an
additive invariant. For example, |2K| and {K — K| are additive invariants
for K C Z™.

As no other types of isomorphism on subsets of Z™ will be used, we
shall refer to additive isomorphisms simply as isomorphisms.

We also need the following concept. A d-dimensional parallelepiped is
a subset D of Z¢ of the form

D= {($1,$2,..-,$d)|$i 6Z30S$i<hi}hi 2211 S?'Sd}

with cardinality |D| = hihs. .. hy.
The “Main Theorem” of inverse additive number theory is discussed in
Section 6 of [15]. The version of a proof due to Y. Bilu may be found in {2].

Main Theorem. For all finite subsets K C Z for which |2K| < Ck, where
the constant C' does not depend on %, there exist ¢ = ¢(C) and D with
d < [C —1] and |D| < ¢k such that K C (D), where ¢ is an isomorphism.
]

We also need the notion of dimension of a subset K C Z.
For a given K C Z, we consider the images ¢(K) under all isomorphisms

K -£5 Z" for all n > 1. The dimension of any ¢(K) is the dimension of the
smallest affine subspace containing it. The maximum dimension of ¢(K)
for all such ¢ is called the dimension of K.
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3. SETS OF k INTEGERS WITH log k& AS DOUBLING COEFFICIENT

Problem 1. Study the structure of K C Z if

(1) 12K < klogk.

In the case of (1) the doubling coefficient is at most log k.

The structure of K that satisfies a small doubling condition of this
type is described, for example, in papers of G. Freiman [13], Y. Bilu [2]
and 1. Ruzsa [20]. The best result, when the doubling coefficient is a small
power of iterated logarithm was obtained by Ruzsa.

W. T. Gowers [18] has recently obtained a quantitative result for the
density 5 of a finite subset of integers in a segment [1,n] such that this
set contains four-term arithmetic progression. This result is obtained for
densities that are characterized by a power of iterated logarithm. To obtain
a density of order Eé—g or, at least, some small power of it as in the result
of Heath-Brown [19] in Roth problem on a set with a three-term arithmetic
progression, it seems that we need a condition of type (1). This gives added
importance to improving our understanding of the structure of sets with a

small doubling property.

4. SETS OF k INTEGERS WITH |2K| IN [3k ~3, ¥k 5)

Problem 2. Prove the following conjecture.
Let K C Z such that

|2K| = 3k — 3 + b,

where 0 < b < 13“- — 2. Then there exist a constant kg, which does not depend
on k, such that if £ > kp then either K C Z, where 7 is an arithmetic

progression such that
|Z) < 2k — 1+ 2b,

or
K C o(D)
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where D C Z2,

D= {(010)1(110)1"-:(":1 “1,0), (011)&(111):---1(’“2 _111)}5
ki + ks <k+5,

@ : D — Z 1s an isomorphism.

In other words, we have to prove that either K is a subset of an
arithmetic progression Z with 2k — 14 2b terms, or K is a part of a union of
two arithmetic progressions 7, and 7, such that |Z;| +{Z5| < k + b, I; and
7, have the same difference, and 27,,7, + Z» and 21, are pairwise disjoint.

The Main Theorem gives for 7 an estimate |Z| < ¢k, where ¢; is a very
large constant.

In Problem 2 we try to get the best possible estimate for |Z|.

Let us show first that the conclusion of the conjecture is false if the
condition b < £ — 2 is violated. Let us take 3 | k, b = £ -2, K =
{0,1,....5-1,ce+1,...,c+5-1,2¢,2c+1,...,2c+ £ -1}, ¢ > 2k.

~ Clearly, 2K| = % — 5 and K does not satisfy the conclusion of
Problem 2.

The example
(2) K={0,1,2,...,k—3,k+b—1,2k +2b -2}

with b < £ — 2, for which dimension of K is one and [2K| = 3k — 3 + b,
shows that the estimate for |Z| conjected in Problem 2 cannot be improved.

We can generalize Example (2). Let s be an integer such that 2 < s <
k —1. Take

(3)
Kop=1{0,1,2,... ,k—s,k—s+b,2(k—s+b),22(k—s+b), ..., 2° " *(k—s+b)},

where b is an integer such that 1 < b < k+ 1 — 5. We have

s242

1+ b.
5 +1+b

(4) 12K, | = sk —

We have constructed an example of a set K for which

k2 —k+4
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dimension of K is equal to one and K is contained in an arithmetic pro-
gression I, p, where

(6) |Zsp) = 257 2(k ~ s+ b) + 1

for K = K.

We can now formulate the following more general conjecture.

Conjecture. Let K, be any set of integers for which (4) holds. Assume
that there exists no arithmetic progression with 257 %(k — s + b) + 1 terms
that contains K. Then

d(KS,b) >1

where d(K) denotes the dimension of the set K.

5. NON-COMMUTATIVE CASE

The next problem invites a natural extension of the above ideas to non-
commutative situation.

First we introduce an appropriate notion of isomorphism of pairs of
sets.

The isomorphism of pairs of sets is defined as follows. Let G and G’ be
groups. A pair A C G and B C G is called isomorphic to a pair A’ C G’

and B' C (' if there exist bijections A <%+ A’ and B <%+ B’ that induce
a bijection AB «+» A'B’. This means that ifa € A, be B,c€ A, d€ B
and ab = cd, then @(a)y(b) = @(c)(d) and, in a case when ab # cd, the
last equality doesn’t hold either.

Problem 3. Investigate the following conjecture.

Let G be a group (non-commutative in general). Let M and K be finite
subsets of G, m = |M|, k = |K|, k < m. Let

) IMK|=m+k—1+b,

where
0<b< k-2
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If G is a torsion-free group, there exist two elements a and b in G such
that the sets _a_lM and Kb~! are contained in a pair 7; ¢ G and I, C G
isomorphic to the pair I}, T, C Z, with

T, ={0,1,2,...,4 — 1},
T =1{0,1,2,...,6, — 1}

and
6Li<m+b, £ <k+b

This result was proved in the case b = 0 by 1. Brailovsky and G. Freiman
[3], and we believe it should be true in general.

Remark. It seems that the conjectured result is valid also in the more
general case when m < ¢r, where r is the minimal order of all elements of G
different from one and c is a sufficiently small absolute constant that does
not depend on G.

Roughly speaking, we can say that, under the small doubling condition
(7), products of subsets of a noncommutative group behave as if the group
is Abelian.

It is desirable to find under which condition of small doubling this is
true.

A complete description of sets with small doubling was given by
G. Elekes ([8] and [9]) for one important noncommutative group, the group
of linear functions where the operation is composition.

6. SMALL NUMBER OF COLLINEAR POINTS

Problem 4. Let K C Z2 such that no three points of K are collinear. Give
a lower estimate for 2K

This problem was raised in the sixties but the only estimate known to
me at this time is |2K| > k(log k)*'?* found by Y. Stanchescu [26]. He used
results of D. R. Heath-Brown [19]. It is desirable to obtain a stronger and
more direct result.

Why is this problem important? Suppose we succeeded in obtaining
an estimate |2K| > kfa(k) in Problem 4. We know now that for every K,
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for which |2K| < kfy(k), there are three points of K on one line. This
is the first step for describing the structure of K. Ask the same question
about K with no more than three, four or s points on a line. From the case
when s is a constant we can go to a situation when s is a function of k, say,
s = kf, where 0 < € < 1, or to the case when s = ¢k with 4 a small positive
constant. Now we can go to sets K when K C Z", n > 2 and ask about the
value of |2K| when there are some restrictions on the number of points not
only on lines but on planes including hyperplanes.

We now see that all these results, when obtained, will be helpful to have
an advancement in the direction of Theorem 5.1 of Y. Bilu [2], p. 85, which
is a very important part of the proof of the Main Theorem.

7. EXACT ESTIMATES

Problem 5. Find by elementary means the extremal estimates describing
the structure of K C Z2, where d(K) > 2 and

[2K| < 4.5k.

Again we are asking about the structure of a set under a condition of
small doubling. The special features of this case are that we seek ezact
estimates obtained with the help of elementary methods.

The first results of this type were those for K C Z, for which |2K| <
3k—3 (see [15], page 3, (2], page 77). I also obtained results for |[2K| = 3k—2,
but the argument was extremely long and complicated and it was clear that
the scope of a satisfactory elementary approach is limited to |2K| < 3k — 3.

The study of the case when K is on two parallel lines and |2K| < 4k—6
was completed by Y. Stanchescu [23]. He also studied the case when
|I2K| < (4 — €)k, € > 0. Then K is on a finite number of parallel lines (see
[23]) and he obtained a reasonable estimate for cardinality of a covering
rectangle (< 56k).

The real break-through in our understanding began with the following
remarkable result of Y. Stanchescu [22] about K C Z?2 situated on three
parallel lines.

Theorem. Let K C Z?2 and
2K| < 3.5k — 7.
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If K lies on three parallel lines, then the convex hull of K is contained in
three arithmetic progressions with the same common diffetence that have
no more than

(8) k+%(|21{|*3—gﬁ+5)

terms in their union. This upper bound is the best possible.

The proof appeared to be rather complicated and involved a study
of different configurations. It was very startling that, almost for each
configuration, an example was constructed showing that the estimate (8)
cannot be improved. All this led to an understanding that exact estimates
should exist in much wider situations than those already studied.

For the case when K C Z? lies on s > 3 lines the following was
conjectured.

Conjecture (Y. Stanchescu). Let K C Z2, K lies on s > 3 parallel lines
and

g
|2K| = (4—;)k—-(23-1)+b
where ok
0<b — 2.
0= <5(3+1)

Then for the number of points H in a minimal convex hull covering K under

isomorphism we have
s
H<k+——b
TPy

For corresponding results for K C Z™, n > 3, we can mention the papers
of Y. Stanchescu [24] and [25], I. Ruzsa [21] and G. Freiman, B. Uhrin and
A. Heppes [16].

8. ANOTHER INVARIANT

- Problem 6. Let K C Z, K a finite set,

1
9) M= [ |5t da
0
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where

(10) S = Z eQm'aw_

e K

Investigate the structure of K if the value of M is given.

We will explain first the arithmetical méaning of M and show that M
is an additive invariant of K {as defined in Section 2 above).

We have
1

1
M=/52§2 do = Z /621ria(a:—y-z+t) do.
0

.’L‘GK 0
yeK
z€K
tcK

Denote by u{a) the number of representations of a number a in the form
e=z—y, €K,y K.

The number of solutions of the equation £ — y — (2 — ¢) = 0 under
condition z —y = 2z —t = a is equal to u?(a) and then M = k? + 2M' where
M = 3 u?(a).

aEZ+

M and M' are additive invariants.

As usual, the first question we ask is about the extremal values of M
and M' and the sets with these extremal values.

The minimal value of M’ is equal to gk—";,lﬁ and the corresponding sets
are Sidon sets that is sets where all nonzero differences are different.

If K is an arithmetic progression we have

(k= 1)k(2k — 1)
- 6

M=>(k-1)2+k(=-22+...+1

and

_ k(2k* +1)

It is not difficult to show that these values are maximal and achieved
only if K is an arithmetic progression.

Let Ky ={ap <a; <...<as-1},s>1and

(s —1)s(25 - 1)
= :

(12) M'(K;) <
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It can be checked that M'(K ;) < M'(K;) + s2.

The differences a; —a, = ¢y, 0 < v < 5—1, are those which are in K,
but not in K.

How many differences of K; are equal to ¢, for some given v (this
number was denoted ug,(c,))? Take one of such differences a; —a; = ¢, =
as; — ay. We have here a; < a,,% < s. From this we obtain a, > a; and
j < v. Thus, 7 may take no more than v different values and so

(13) | ug, (cy) < wv.

We have o1
M'(K,) =) uk,(c) + D uk,(a)

v=0 aFcy

a>0
and therefore because of (12)
i1 0 s~1
M'(Ke1) =Y (U, () +1) "+ D uk,(@) < M'(K,) +2) v+s
v=0 aFtcy v=0
a>0
s(s+1)(2s+1)

=M (K, +s%<

6

When M'(K) = @:—ll’%(%il? Only in the case when induction reason-
ing uses equality in (13) for every s and v. The equality ug, _,(ck—1) = k—1
occurs only if

Gg—1 — Qg—2 = Q-2 — Q3 = ... = @] — Gp-
We have finished the first step of studying K for a given value of M.

To continue, we have to gradually diminish values of M and M’ and study
the structure of K for these values.
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9. SEVERAL INVARIANTS

Problem 7. Investigate the structure of K C Z if values of |2K| and M
{as in (9)) are both given.

-Some knowledge about the value of |2K| gave us valuable information
about the structure of K. It is clear that if we will know a value of
an additional additive invariant (or several invariants} we will know more
about K.

We have

/ 528, da = k?
where
) S = Z eZm’ax
zeK
and
— Z e~ 2mior
re2K

and we obtain using Cauchy-Schwartz inequality
- S | ,
(14) K< f 15|* dex f |51 da = M|2K].
0 0

If K is a set with a condition of small doubling |2K | < Ck then, from
(11) and results of Section 8, we obtain :
k3 k(2k2 + 1)
15 — <ML —=
(15) C - 3
We can take values of C a bit larger than the values for which the

structure of K had been already studied, apply (14), and use the knowledge
which gives (15) about M to learn more about the structure of K. |

In Section 8, we introduced the value u(a), the number of representa-
tions of a numher ¢ in the formaea=z -y, z € K, y € K.
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Define the order in the set of numbers {u(a)} in the following way:

(16) U 2 U 2 ... 2 Ug = ...

In the case when u{a;) = u(ag) the order is defined arbitrarily.

The sequence of numbers (16) is a system of invariants. It was used
in (10) to define M and to study K for the maximal value of M. We may
continue in the same way and use (14) to study K in a case of condition
(15). The greater the set of numbers we take from (16), the richer the
information, but working with this set of numbers will be more difficult.

Begin with some simple examples. If 4; = £—1 then K is an arithmetic
progression. If u; = k — 2 then K is a union of two arithmetic progressions
with the same distance. The “3k — 3 theorem” may be checked in this case
directly.

Continuing the investigation in this way taking values u; = k — 3, then
u; = k — 4, etc., introducing different vales ug, u3 etc., we will obtain richer
examples of K and verify the conjectures of Section 2. Further study in this
direction should lead to progress.

If |2K| = 2k — 1 then M = EZEZL 4pq

M2K| = %k’* +O(kY).

If 2K | = 51 then M = 2k% — k and

M]2K| = k* + O(K?).

We may think that M|2K| =< k* but this is not true.

Take? the union of two sets, each containing % elements, where the first
is an arithmetic progression and the second is a Sidon set. We then have
M|2K| = k5.

We can ask about the extremal values of M for a given |2K|. Then we
can investigate the structure of K for a given |2K| and values of M which
are close to these extremal values.

2 1 wish to thank the referee for proposing this example.
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10. TIGHT SUBSETS

Unlike the previous problems, Problem 8 is one which would be difficult
to approach on the basis of present knowledge. It would almost certainly
require more detailed understanding of the structure of K. For this reason
the formulation is necessarily somewhat vague.

Problem 8. For a finite set K C Z find a subset K/ € K such that the
2 f2K]
k -

doubling coeflicient 1]?,"1 will be less than the doubling coefficient

Take the set K, defined in (3). Let s — oo and s = o(k). Then from
(4) we obtain an estimate |2K | ~ sk, and for the arithmetic progression
Z;» of minimal length containing K, ; we obtain from (8)

'Is,bl = 2%k,

Unfortunately, if s > clogk with ¢ a large constant, the above estimate
tells very little about the set K. However, K has a subset K’ = {0,1,...,
k — s} which has the doubling coefficient which is less than 2.

Another example gives us “3k — 3 theorem” (see [2]) where the dou-
bling coefficient of K is close to 3 but there are subsets with the doubling
coefficient close to 2.

Proposition 12 on page 541 of the paper of W. T. Gowers [18] gives a
~ very important result in the same spirit. In a K with a large value of M he
finds a subset with a small value of the invariant |K — K|.

11. LARGE TRIGONOMETRIC SUMS

Problem 9. Let K C Z be a finite set and
(17) K clo,1.
For a trigonometric sum

SK(O!) — Z 8211':'0:3

zeK



256 G. A. Freiman

we take a set of a for which ISK a)| is large. Namely, we take a positive
number m < k and define

Exm = {a € [0,1)||SK(a)l > m}.

We write px(m) = p(Ek m), where 4 is the Lebesgue measure on [0, 1].

Also we set

pr(m, €) = A, K (m).

The problem is to find the maximal value pg(m, £) and the set K which
maximizes px(m).

This problem was formulated in [15], Section 33, page 19. The motiva-
tion of introducing condition (17) is given there. We begin our study of K
by taking small values of £ and gradually go to larger values of £.

As an example, we consider the simple case when m = 0.95k and
£ = 1.5k.

We will first show that when {la]] > 2 we have | Sk ()| < 0.95k and
therefore for these values a ¢ Ek .

£
'SK (a)l — Z erioT Z e2miar
z=1 z€[1L{\K
4
< Z elmiax + Z g2z
x=1 ze[1L,O\K
sin woed
< |22 po—k
SN T

1 k
L——"+€—-k<—+0.5k

< 0.95k%.

As the next step we will show that the estimate |S K (o | < 0.95k is
valid also in the interval 5 g

W<y <7

We will use the inequality

Re €2™%% — cos 21z < cos % < (0.8661,
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which holds if |jaz] > 3.
As is easily shown, we can assume without loss of generality that Sk (a)
is real. Then

(18) |Sk(e)| = ;{cos%aw S% {zllqu!l > %H
+ cos % |{a| 5 <llaal < 3|+ {alpost < 55 |

Take an interval I of the length d. How many integers x are there such
that az € I7 It is easy to show that this number is equal to 4 + O(1).

If the numbers ax are on a segment of Iength 1 we have - 6 —+O(1) such
numbers with the addltlonal condltxon laz|| < &, and z; + O(1) numbers
with the condition {5 < |laz|| < £

We now study the case when

=4
+
ot

(19)

Y
A

whereue Z,2<u <T7.
Because of {19) and (17), we have 0 < az < u+ 1 and we obtain

(20) {olleall < 5} < 222 + o),
1) {o] 5 < ol < g} < %2+ o).

Using (20) and (21) we obtain in (18)

1 w4+ 1 u+1 t u+1
|SK(a)| _<_§(k- e )+ o cosa—i— = + O(1)
k u+1 T
<§+ b cosa
< 0.95k.

The case 218- <a< % may be studied in the same way and we omit this
computation. (Because of |S(a)| = |S(—a)| the case =% < a < —g5; is
also covered.)
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If
(22) 0<a<—
=%= 90

the arguments of the numbers e2™**® with z in K are all in an angle less than
7. For an arithmetic progression K,, we will have |S Kap(@)| 2 |S k(a)| for
every « in (22), as shown, for example, in Besser [1], page 50.

An advancement to the values | S| ~ 0.5k and £ ~ 3k would already give
an interesting application.

To avoid difficulties arising when £ is large, we propose the following
variant of Problem 9.

Let K C Z be a finite set and m a positive number, m < k.

Let
EK,m = {ae [0,1)||SK(Q)| 2 m}

Denote
Tkm= / |SK(a)|da.

EK,m

The problem is to find the maximal value of Zg ,, and the set K for
which this value is obtained.

12. ERDOS ADDITIVE PROBLEMS

Problem 10. Describe the structure of sum-free sets and prove the hy-
pothesis about their number.

We recall that the set of integers A C [1,n] is called sum-free if AN
(A+ A) = 0. Paul Erdés conjectured that the number of sum-free sets is
0(27).

The use of very simple inverse additive results has already led to sub-
stantial progress in Problem 10 (see {14], [7]). The same tools gave ad-
vancement in other Erdds additive combinatorial problems (see [4], [5] and
[15]). It is clear that the use of results in Inverse Problems provide a general
method to treat Erdés additive problems.
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13. APPLICATIONS

Applications of structure theory to various topics were discussed in [15],
Sections 21-27, pp. 9-15. Recently new applications to Ergodic theory,
Commutative algebra and Combinatorics have appeared (see [6], [17] and
W. T. Gowers {18]).

14. CONCLUDING REMARKS

Each of the problems sketched above could open up a significant research
direction. I hope that some of my readers will take up the challenge.

15.

I am deeply grateful to Dr. Jane Pitman for her invaluable help in the final
stage of writing this review.
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