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ABSTRACT
Reconstructing continuous signals based on a small number of

discrete samples is a fundamental problem across science and engi-

neering. We are often interested in signals with “simple” Fourier

structure – e.g., those involving frequencies within a bounded range,

a small number of frequencies, or a few blocks of frequencies –

i.e., bandlimited, sparse, and multiband signals, respectively. More

broadly, any prior knowledge on a signal’s Fourier power spectrum

can constrain its complexity. Intuitively, signals with more highly

constrained Fourier structure require fewer samples to reconstruct.

We formalize this intuition by showing that, roughly, a continu-

ous signal from a given class can be approximately reconstructed

using a number of samples proportional to the statistical dimension
of the allowed power spectrum of that class. We prove that, in

nearly all settings, this natural measure tightly characterizes the

sample complexity of signal reconstruction.

Surprisingly, we also show that, up to log factors, a universal non-

uniform sampling strategy can achieve this optimal complexity for

any class of signals. We present an efficient and general algorithm

for recovering a signal from the samples taken. For bandlimited and

sparse signals, our method matches the state-of-the-art, while pro-

viding the the first computationally and sample efficient solution

to a broader range of problems, including multiband signal recon-

struction and Gaussian process regression tasks in one dimension.

Our work is based on a novel connection between randomized

linear algebra and the problem of reconstructing signals with con-

strained Fourier structure. We extend tools based on statistical

leverage score sampling and column-based matrix reconstruction

to the approximation of continuous linear operators that arise in the

signal reconstruction problem. We believe these extensions are of

independent interest and serve as a foundation for tackling a broad

range of continuous time problems using randomized methods.
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1 INTRODUCTION
Consider the following fundamental function fitting problem, pic-

tured in Figure 1. We can access a continuous signaly (t ) at any time

t ∈ [0,T ]. We wish to select a finite set of sample times t1, . . . , tq
such that, by observing the signal values y (t1), . . . ,y (tq ) at those
samples, we are able to find a good approximation ỹ to y over the

entire range [0,T ]. We also study the problem in a noisy setting,

where for each sample ti , we only observe y (ti ) + n(ti ) for some

fixed noise function n. We seek to understand:

(1) How many samples q are required to approximately recon-

struct y and how should we select these samples?

(2) After sampling, how can we find and represent ỹ in a com-

putationally efficient way?

Answering these questions requires assumptions on the underlying

signal y. In particular, for the information at our samples t1, . . . , tq
to be useful in reconstructing y on the entirety of [0,T ], the signal

must be smooth, structured, or otherwise “simple” in some way.

Across science and engineering, by far one of the most common

ways in which structure arises is through various assumptions

about ŷ, the Fourier transform of y:

ŷ (ξ ) =

∫ ∞

−∞

y (t )e−2π it ξ dt .

Our goal is to understand signal reconstruction under natural con-

straints on the complexity of ŷ.
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(a) Observed signal y sampled
at times t1, . . . , tq .
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(b) Reconstructed signal ỹ
based on samples.

Figure 1: Our basic function fitting problem requires recon-
structing a continuous signal based on a small number of
(possibly noisy) discrete samples.

1.1 Classical Theory for Bandlimited Signals
Classically, the most standard example of such a constraint is re-

quiring y to be bandlimited, meaning that ŷ is only non-zero for

frequencies ξ with |ξ | ≤ F for some bandlimit F . In this case, we

recall the famous sampling theory of Nyquist, Shannon, and oth-

ers [32, 43, 54, 60]. This theory shows that y can be reconstructed

exactly using sinc interpolation (i.e, Whittaker-Shannon interpola-

tion) if 1/2F uniformly spaced samples of y are taken per unit of

time (the ‘Nyquist rate’).

Unfortunately, this theory is asymptotic: it requires infinite sam-

ples over the entire real line to interpolate y, even at a single point.

When a finite number of samples are taken over an interval [0,T ],

sinc interpolation is not a good reconstruction method, either in

theory or in practice [63].
1

This well-known issue was resolved through a seminal line of

work by Slepian, Landau, and Pollak [34, 35, 57], who presented a

set of explicit basis functions for interpolating bandlimited func-

tions when a finite number of samples are taken from a finite

interval. Their so-called “prolate spheroidal wave functions” can

be combined with numerical quadrature methods [31, 56, 64] to

obtain sample efficient (and computationally efficient) methods for

bandlimited reconstruction. Overall, this work shows that roughly

O (FT + log(1/ϵ )) samples from [0,T ] are required to interpolate a

signal with bandlimit F to accuracy ϵ on that same interval.
2

1.2 More General Fourier Structure
While the aforementioned line of work is beautiful and powerful, in

today’s world, we are interested in far more general constraints than

bandlimits. For example, there is wide-spread interest in Fourier-
sparse signals [20], where ŷ is only non-zero for a small number of

frequencies, and multiband signals, where the Fourier transform is

confined to a small number of intervals. Methods for recovering sig-

nals in these classes have countless applications in communication,

imaging, statistics, and a variety of other disciplines [22].

More generally, in statistical signal processing, a prior distribu-
tion, specified by some probability measure µ, is often assumed on

the frequency content of y [23, 48]. For signals with bandlimit F , µ

1
Approximation bounds can be obtained by truncating theWhittaker-Shannonmethod;

however, they are weak, depending polynomially, rather than logarithmically, on the

desired error ϵ (see full version of this paper [4]).

2
We formalize our notion of accuracy in Section 2.

would be the uniform probability measure on [−F , F ]. Alternatively,

instead of assuming a hard bandlimit, a zero-centered Gaussian

prior on ŷ can encode knowledge that higher frequencies are less

likely to contribute significantly to y, although they may still be

present. Such a prior naturally suits a Bayesian approach to signal

reconstruction [26] and, in fact, is essentially equivalent to assum-

ing y is a stationary stochastic process with a certain covariance

function (see Section 3). Under various names, including “Gauss-

ian process regression” and “kriging,” likelihood estimation under

a covariance prior is the dominant statistical approach to fitting

continuous signals in many scientific disciplines, from geostatistics

to economics to medical imaging [50, 52].

1.3 Our Contributions
Despite their clear importance, accurate methods for fitting contin-

uous signals under most common Fourier transform priors are not

well understood, even 50 years after the groundbreaking work of

Slepian, Landau, and Pollak on the bandlimited problem. The only

exception is Fourier sparse signals: the noiseless interpolation prob-

lem can be solved using classical methods [10, 18, 46], and recent

work has resolved the much more difficult noisy case [12, 13].

In this paper, we address the problem far more generally. Our

contributions are as follows:

Theorem 1: Up to constant factors, we characterize the informa-

tion theoretic sample complexity of reconstructing y under any

Fourier transform prior, specified by probability measure µ. In es-

sentially all settings, we show this complexity scales near linearly

with a natural statistical dimension parameter associated with µ.

Theorem2: Wepresent amethod for sampling fromy that achieves
the aforementioned statistical dimension bound to within a poly-

logarithmic factor. Our approach is randomized and universal: we
prove that it is possible to draw t1, . . . , tq from a fixed non-uniform

distribution over [0,T ] that is independent of µ, i.e., “spectrum-blind.”

In other words, the same sampling scheme works for bandlimited,

sparse, or more general priors.

Theorem 3: We show thaty can be recovered from t1, . . . , tq using

a simple and completely general algorithm. In particular, we just

solve a kernel ridge regression problem involving y (t1), . . . ,y (tq )
and an appropriately chosen kernel function for µ. Thismethod runs

in O (q3) time and is already widely used for signal reconstruction,

albeit with suboptimal strategies for choosing t1, . . . , tq .

Overall, this approach gives the first finite sample, provable

approximation bounds for all common Fourier-constrained signal

reconstruction problems beyond bandlimited and sparse functions.

Our results are obtained by drawing on a rich set of tools from

randomized numerical linear algebra, including sampling methods

for approximate regression and deterministic column-based low-

rank approximation methods [6, 17]. Many of these methods view

matrices as sums of rank-1 outer products and approximate them

by sampling or deterministically selecting a subset of these outer

products. We adapt these tools to the approximation of continuous

operators, which can be written as the (weak) integral of rank-

1 operators. For example, our universal time domain sampling

distribution is obtained using the notion of statistical leverage [1, 21,
58], extended to a continuous Fourier transform operator that arises

in the signal reconstruction problem. We hope that, by extending
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Figure 2: Examples of Fourier transform “priors” induced by
various measures µ (we plot the corresponding density). Our
algorithm can reconstruct signals under any of these priors.

many of the fundamental contributions of randomized numerical

linear algebra to build a toolkit for ‘randomized operator theory’,

our work will offer a starting point for progress on many signal

processing problems using randomized methods.

2 FORMAL STATEMENT OF RESULTS
As suggested, we formally capture Fourier structure through any

probability measure µ over the reals.
3
We often refer to µ as a

“prior”, although we will see that it can be understood beyond the

context of Bayesian inference. The simplicity of a set of constraints

will be quantified by a natural statistical dimension parameter for µ,
defined in Section 2.1.

For signals with bandlimit F , µ is the uniform probabilitymeasure

on [−F , F ]. For multiband signals, it is uniform on the union of k
intervals, while for Fourier-sparse functions, µ is uniform on a

union of k Dirac measures. More general priors are visualized in

Figure 2. Those based on Gaussian or Cauchy-Lorentz distributions

are common in scientific applications, and we will discuss examples

shortly. For now, we begin with our main problem formulation.

Problem 1. Given a probability measure µ onR, for any t ∈ [0,T ],
define the inverse Fourier transform of д(ξ ) with respect to µ as

[
F ∗µ д

]
(t )

def

=

∫
R
д(ξ )e2π iξ t dµ (ξ ). (1)

Suppose our input y can be written as y = F ∗µ x for some frequency
domain function x (ξ ) and, for any chosen t , we can observey (t )+n(t )
for some fixed noise function n(t ). Then, for error parameter ϵ , our
goal is to recover an approximation ỹ satisfying

∥y − ỹ∥2T ≤ ϵ ∥x ∥2µ +C∥n∥
2

T , (2)

where ∥x ∥2µ
def

=
∫
R
|x (ξ ) |2 dµ (ξ ) is the energy of x with respect to µ,

and ∥z∥2T
def

= 1

T

∫ T
0
|z (t ) |2dt , so that ∥y−ỹ∥2T and ∥n∥2T are the mean

squared error and noise level respectively. C ≥ 1 is a fixed constant.

3
We consider the measure space (R, B, µ ) where B is the Borel σ -algebra on R.

Unlike the ∥x ∥2µ term in (2), which we can control by adjusting

ϵ , we can never hope to recover y to accuracy better than ∥n∥2T .

Accordingly, we consider ∥n∥2T to be small and are happy with any

solution of Problem 1 that is within a constant factor of optimal –

i.e., where C = O (1).
Problem 1 captures signal reconstruction under all standard

Fourier transform constraints, including bandlimited, multiband,

and sparse signals.
4
The error in (2) naturally scales with the av-

erage energy of the signal over the allowed frequencies. For more

general priors, ∥x ∥2µ will be larger when y contains a significant

component of frequencies with low density in µ.5 For a given num-

ber of samples, wewould thus incur larger error in (2) in comparison

to a signal that uses more “likely” frequencies.

As an alternative to Problem 1, we can formulate signal fitting

from a Bayesian perspective. We assume that n is independent

random noise, and y is a stationary stochastic process with ex-

pected power spectral density µ. This assumption on y’s power
spectral density is equivalent to assuming that y has covariance

function (a.k.a. autocorrelation) µ̂ (t ), which is the type of prior used
in kriging and Gaussian process regression. While we focus on the

formulation of Problem 1 in this work, we also give an informal

discussion of the Bayesian setup in the full version [4].

2.0.1 Examples and applications. As discussed in Section 1.2, “hard

constraint” versions of Problem 1, such as bandlimited, sparse, and

multiband signal reconstruction, have applications in communi-

cations, imaging, audio, and other areas of engineering. General-

izations of the multiband problem to non-uniform measures (see

Figure 2d) are also useful in various communication problems [38].

On the other hand, “soft constraint” versions of the problem

are widely applied in scientific applications. In medical imaging,

images are often denoised by setting µ to a heavy-tailed Cauchy-

Lorentz measure on frequencies [8, 25, 36]. This corresponds to

assuming an exponential covariance function for spatial correlation.

Exponential covariance and its generalization, Matérn covariance,

are also common in the earth and geosciences [51, 52], as well as

in general image processing [45, 49].

A Gaussian prior µ, which corresponds to Gaussian covariance,

is also used to model both spatial and temporal correlation in medi-

cal imaging [24, 62] and is very common in machine learning. Other

choices for µ are practically unlimited. For example, the popular

ArcGIS kriging library also supports the following covariance func-

tions: circular, spherical, tetraspherical, pentaspherical, rational

quadratic, hole effect, k-bessel, and j-bessel, and stable [30].

2.1 Sample Complexity
With Problem 1 defined, our first goal is to characterize the number

of samples required to reconstruct y, as a function of the accuracy
parameter ϵ , the rangeT , and themeasure µ. We do so usingwhat we

refer to as the Fourier statistical dimension of µ, which corresponds

4
For sparse or multiband signals, Problem 1 assumes frequency or band locations are

known a priori. There has been significant work on algorithms that can recovery when

these locations are not known [12, 37, 39, 47]. Understanding this more complicated

problem in the multiband case is an important future direction.

5
Informally, decreasing dµ (ξ ) by a factor of c > 1 requires increasing x (ξ ) by a

factor of c to give the same time domain signal. This increases x (ξ )2 by a factor of c2

and so increases its contribution to ∥x ∥2µ by a factor of c2/c = c .
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to the standard notion of statistical or ‘effective dimension’ for

regularized function fitting problems [28, 65].

Definition 2 (Fourier statistical dimension). For a proba-
bility measure µ on R and time length T , define the kernel operator
Kµ : L2 (T ) → L2 (T )

6 as:

[Kµz](t )
def

=

∫
ξ ∈R

e2π iξ t
[

1

T

∫
s ∈[0,T ]

z (s )e−2π iξ s ds

]
dµ (ξ ). (3)

Note that Kµ is self-adjoint, positive semidefinite and trace-class.7

The Fourier statistical dimension for µ, T , and error ϵ is denoted by
sµ,ϵ and defined as:

sµ,ϵ
def

= tr(Kµ (Kµ + ϵIT )
−1), (4)

where IT is the identity operator on L2 (T ). Letting λi (Kµ ) denote the
ith largest eigenvalue of Kµ , we may also write

sµ,ϵ =
∞∑
i=1

λi
(
Kµ

)
λi

(
Kµ

)
+ ϵ
. (5)

Note thatKµ and sµ,ϵ , and Fµ as defined in Problem 1, all depend

on T and thus could naturally be denoted Fµ,T , Kµ,T , and sµ,ϵ,T .
However, since T is fixed throughout our results, for conciseness

we do not use T in our notation for these and related notions.

It is not hard to see that sµ,ϵ increases as ϵ decreases, meaning

that we will require more samples to obtain a more accurate so-

lution to Problem 1. The operator Kµ corresponds to taking the

Fourier transform of a time domain input z (t ), scaling that trans-
form by µ, and then taking the inverse Fourier transform. Readers

familiar with the literature on bandlimited signal reconstruction

will recognize Kµ as the natural generalization of the frequency

limiting operator studied in the work of Landau, Slepian, and Pollak

on prolate spheroidal wave functions [34, 35, 57]. In that work, it

is established that a quantity nearly identical to sµ,ϵ bounds the

sample complexity of solving Problem 1 for bandlimited functions.

Our first technical result is that this is true for any prior µ.

Theorem 1 (Main result, sample complexity). For any proba-
bility measure µ, Problem 1 can be solved usingq = O

(
sµ,ϵ · log sµ,ϵ

)
noisy signal samples y (t1) + n(t1), . . . ,y (tq ) + n(tq ).

What does Theorem 1 imply for common classes of functions

with constrained Fourier transforms? Table 1 includes a list of upper

bounds on sµ,ϵ for many standard priors.

A complexity of O (sµ,ϵ · log sµ,ϵ ) equates to Õ (k ) samples for

k-sparse functions and Õ (FT + log 1/ϵ ) for bandlimited functions.

Up to log factors, these bounds are tight for these well studied

problems. In Section 6, we show that Theorem 1 is actually tight

for all common Fourier transform priors: Ω(sµ,ϵ ) time points are

required for solving Problem 1 as long as sµ,ϵ grows slower than

1/ϵp for some p < 1. This property holds for all µ in Table 1. We

conjecture that our lower bound can be extended to hold even

without this weak assumption.

To compliment the sample complexity bound of Theorem 1, we

introduce a universal method for selecting samples t1, . . . , tq that

6L2 (T ) denotes the complex-valued square integrable functions with respect to the

uniform measure on [0, T ].

7
See Section 3 for a formal explanation of these facts.

8
This intuitively matches the asymptotic Landau rate for multiband functions [33].

Table 1: Statistical dimension upper bounds for common
Fourier interpolation problems. Our result (Theorem 1) re-
quires O (sµ,ϵ · log sµ,ϵ ) samples.

Fourier prior, µ Statistical dimension, sµ,ϵ

k-sparse k

bandlimited to [−F , F ] O (FT + log(1/ϵ ))

multiband, F1, . . . , Fs O (
∑
i FiT + s log(1/ϵ ))8

Gaussian, variance F O
(
FT

√
log(1/ϵ ) + log(1/ϵ )

)
Cauchy-Lorentz, scale F O

(
FT
√

1/ϵ +
√

1/ϵ
)

nearly matches this complexity. Our method selects samples at

random, in a way that does not depend on the specific prior µ.

Theorem 2 (Main result, sampling distribution). For any
sample size q, there is a fixed probability density pq over [0,T ] such
that, if q time points t1, . . . , tq are selected independently at random
according to pq , and q ≥ c · sµ,ϵ · log

2 sµ,ϵ for some fixed constant c ,
then it is possible to solve Problem 1 with probability 99/100 using the
noisy signal samples y (t1) + n(t1), . . . ,y (tq ) + n(tq ).9

Theorem 2 is our main technical contribution. By achieving

near optimal sample complexity with a universal distribution, it

shows that wide range of common Fourier constrained interpolation

problems are more closely related than previously understood.

Moreover, pq (which is formally defined in Theorem 17) is very

simple to describe and sample from. As may be intuitive from

results on polynomial interpolation, bandlimited approximation,

and other function fitting problems, it is more concentrated towards

the endpoints of [0,T ], so our sampling scheme selects more time

points in these regions. The density is shown in Figure 3.

(a) Density for selecting time
points.

(b) Example set of nodes sam-
pled according to pq .

Figure 3: A plot of the universal sampling distribution, pq ,
which can be used to reconstruct a signal under any Fourier
transform prior µ. To obtain pq for a given number of sam-
plesq, chooseα so thatq = Θ(α log

2 α ). Set zq (t ) = α/min(t ,T−
t ), except near 0 and T , where the function is capped at
zq (t ) = α6. Construct pq by normalizing so zq integrates to 1.

9
In Section 5.4, we formally quantify the tradeoff between success probability and

sample complexity.
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2.2 Algorithmic Complexity
While Theorem 2 immediately yields an approach for selecting

samples t1, . . . , tq , it is only useful if we can efficiently solve Problem
1 given the noisy measurements y (t1)+n(t1), . . . ,y (tq )+n(tq ). We

show that this is possible for a broad class of constraint measures.

Specifically, we need only assume that we can efficiently compute

the positive-definite kernel function
10
:

kµ (t1, t2) =

∫
ξ ∈R

e−2π i (t1−t2 )ξdµ (ξ ). (6)

The above integral can be approximated via numerical quadrature,

but for many of the aforementioned applications, it has a closed-

form. For example, when µ is supported on just k frequencies,

it is a sum of these frequencies. When µ is uniform on [−F , F ],

kµ (t1, t2) = sinc(2πF (t1 − t2)). For multiband signals with s bands,
kµ (t1, t2) is a sum of s modulated sinc functions. In fact, kµ (t1, t2)
has a closed-form for all µ illustrated in Figure 2. Further details are

discussed in full version [4]. Assuming a subroutine for computing

kµ (t1, t2), our main algorithmic result is as follows:

Theorem 3. (Main result, algorithmic complexity) There is an
algorithm that solves Problem 1 with probability 99/100 which uses
O

(
sµ,ϵ · log

2 (sµ,ϵ )
)
time domain samples (sampled according to the

distribution given by Theorem 2) and runs in Õ (sωµ,ϵ + s
2

µ,ϵ · Z ) time,
assuming the ability to compute kµ (t1, t2) for any t1, t2 ∈ [0,T ] in
Z time.11 The algorithm returns a representation of ỹ (t ) that can be
evaluated in Õ (sµ,ϵ · Z ) time for any t .

For bandlimited, Gaussian, or Cauchy-Lorentz priors µ,Z = O (1).
For s sparse signals or multiband signals with s blocks, Z = O (s ).

We note that, while Theorem 3 holds when Õ
(
sµ,ϵ

)
samples are

taken, sµ,ϵ may be not be known and thus it may be unclear how to

set the sample size. In our full statement of the Theorem in Section

5.4 we make it clear that any upper bound on sµ,ϵ suffices to set the

sample size. The sample complexity will depend on how tight this

upper bound is. In the full version we give upper bounds on sµ,ϵ
for a number of common µ, which can be plugged into Theorem 3.

2.3 Our Approach
Theorems 1, 2, and 3 are achieved through a simple and practical

algorithmic framework. In Section 4, we show that Problem 1 can

be modeled as a least squares regression problem with ℓ2 regular-

ization. As long as we can compute kµ (t1, t2), we can solve this

problem using kernel ridge regression, a popular function fitting

technique in nonparametric statistics [55].

Naively, the kernel regression problem is infinite dimensional: it

needs to be solved over the continuous time domain [0,T ] to recon-

struct y. This is where sampling comes in. We need to discretize

the problem and establish that our solution over a fixed set of time

samples nearly matches the solution over the whole interval. To

bound the error of discretization, we turn to a tool from randomized

numerical linear algebra: statistical leverage score sampling [21, 58].

We show how to randomly discretize Problem 1 by sampling time

10
When y is real valued, it makes sense to consider symmetric µ . In this case, kµ is

also real valued. However, in general it may be complex valued.

11
For conciseness, we use Õ (z ) to denote Õ (z log

c z ), where c is some fixed constant

(usually ≤ 2). In formal theorem statements we give c explicitly. ω < 2.373 is the

current exponent of fast matrix multiplication [61].

points with probability proportional to an appropriately defined

non-uniform leverage score distribution on [0,T ]. The required

number of samples is O (sµ,ϵ log sµ,ϵ ), which proves Theorem 1.

Unfortunately, the leverage score distribution does not have a

closed-form, varies depending on ϵ , T , and µ, and likely cannot

be sampled from exactly. To prove Theorem 2, we show that for

any µ, for large enough q, the closed form distribution pq upper
bounds the leverage score distribution. This upper bound closely

approximates the true distribution and can thus be used in its place

during sampling, losing only a log sµ,ϵ in sample complexity.

The leverage score distribution roughly measures, for each time

point t , how large |y (t ) |2 can be compared to ∥y∥2T wheny’s Fourier

transform is constrained by µ (i.e., when ∥x ∥2µ as defined in Problem

1 is bounded). To upper bound this measure we turn to another

powerful result from the randomized numerical linear algebra liter-

ature: every matrix contains a small subset of columns that span

a near-optimal low-rank approximation to that matrix [9, 19, 53].

In other words, every matrix admits a near-optimal low-rank ap-

proximation with sparse column support. By extending this result to
continuous linear operators, we prove that the smoothness of a sig-

nal whose Fourier transform has ∥x ∥2µ bounded can be bounded by

the smoothness of an O (sµ,ϵ ) sparse Fourier function. This lets us

apply recent results of [12, 13] that bound |y (t ) |2 in terms of ∥y∥2T
for any sparse Fourier function y . Intuitively, our result shows that

the simplicity of sparse Fourier functions governs the simplicity of

any class of Fourier constrained functions.

The above argument yields Theorem 2. Since we can sample

from pq in O (1) time, we can efficiently sample the time domain

to O (sµ,ϵ · log
2 sµ,ϵ ) points and then solve Problem 1 by applying

kernel ridge regression to these points, which takes Õ (sωµ,ϵ +s
2

µ,ϵ ·Z )

time, assuming the ability to compute kµ (·, ·) in Z time. This yields

the algorithmic result of Theorem 3.

2.4 Roadmap
The rest of this paper is devoted to proving Theorems 1, 2, and 3. In

Section 4 we reduce Problem 1 to a kernel ridge regression problem

and explain how to randomly discretize and solve this problem

via leverage score sampling, proving Theorem 1. In Section 5] we

give an upper bound on the leverage score distribution for general

priors, proving Theorems 2 and 3. Finally, in Section 6 we prove

that, under a mild assumption, the statistical dimension tightly

characterizes the sample complexity of solving Problem 1, and thus

that our results are nearly optimal. Many details are deferred to

the full version of this paper available at [4]. There we also give

an in depth overview of related work and prove our extensions of

a number of randomized linear algebra primitives to continuous

operators.We also bound the statistical dimension for the important

case of bandlimited functions. We use this result to prove statistical

dimension bounds for multiband, Gaussian, and Cauchy-Lorentz

priors (shown in Table 1). Moreover, we show how to compute the

kernel function kµ for these common priors.

3 NOTATION
Let µ be a probability measure on (R,B), where B is the Borel σ -
algebra on R. Let L2 (µ ) denote the space of complex-valued square

integrable functions with respect to µ. For a,b ∈ L2 (µ ), let ⟨a,b⟩µ

1055



STOC ’19, June 23–26, 2019, Phoenix, AZ, USA H. Avron, M. Kapralov, C. Musco, C. Musco, A. Velingker, and A. Zandieh

denote

∫
ξ ∈R a(ξ )

∗b (ξ ) dµ (ξ ) where for any x ∈ C, x∗ is its com-

plex conjugate. Let ∥a∥2µ denote ⟨a,a⟩µ . Let Iµ denote the identity

operator on L2 (µ ). Note that for any µ, L2 (µ ) is a separable Hilbert
space and thus has a countably infinite orthonormal basis [29].

We overload notation and use L2 (T ) to denote the space of

complex-valued square integrable functions with respect to the

uniform probability measure on [0,T ]. It will be clear from con-

text that T is not a measure. For a,b ∈ L2 (T ), let ⟨a,b⟩T denote

1

T

∫ T
0

a(t )∗b (t ) dt and let ∥a∥2T denote ⟨a,a⟩T . Let IT denote the

identity operator on L2 (T ).
Define the Fourier transform operator Fµ : L2 (T ) → L2 (µ ) as:

[
Fµ f

]
(ξ ) =

1

T

∫ T

0

f (t )e−2π it ξdt . (7)

The adjoint of Fµ is the unique operator F ∗µ : L2 (µ ) → L2 (T )

such that for all f ∈ L2 (T ),д ∈ L2 (µ ) we have ⟨д,Fµ f ⟩µ =
⟨F ∗µ д, f ⟩T . It is not hard to see that F

∗
µ is the inverse Fourier trans-

form operator with respect to µ as defined in Section 2, equation

(1):

[
F ∗µ д

]
(t )

def

=

∫
R
д(ξ )e2π iξ t dµ (ξ ). (8)

Note that the kernel operator Kµ : L2 (T ) → L2 (T ) originally
defined in (3) is equal to

Kµ = F
∗
µ Fµ .

Kµ is self-adjoint, positive semidefinite and trace-class and an inte-

gral operator with kernel kµ :

[Kµz](t ) =
1

T

∫ T

0

kµ (s, t )z (s )ds,

where kµ is as defined in (6). The trace of Kµ is equal to 1.
12

We

will also make use of the Gram operator: Gµ
def

= FµF
∗
µ . Gµ is also

self-adjoint, positive semidefinite, and trace-class.

Remark: It may be useful for the reader to informally regard Fµ as

an infinite matrix with rows indexed by ξ ∈ R and columns indexed

by t ∈ [0,T ]. Following the definition of Fµ above, and assuming

that µ has a density p, this infinite matrix has entries given by:

Fµ (ξ , t ) =

√
p (ξ )

T
· e−2π it ξ . (9)

The results we apply on leverage score sampling can all be seen as

extending results for finite matrices from the randomized numerical

linear algebra literature to this infinite matrix.

4 FUNCTION FITTINGWITH LEAST
SQUARES REGRESSION

Least squares regression provides a natural approach to solving the

interpolation task of Problem 1. In particular, consider the following

12
Since the kernel is a Fourier transform of a probability measure, it is Hermitian

positive definite (Bochner’s Theorem). Then we can conclude that Kµ is trace-class

from Mercer’s theorem, and calculate tr(Kµ ) =
1

T

∫ T
0
kµ (t, t )dt = 1.

regularized minimization problem over functions д ∈ L2 (µ )
13
:

min

д∈L2 (µ )
∥F ∗µ д − (y + n)∥2T + ϵ ∥д∥

2

µ . (10)

The first term encourages us to find a function д whose inverse

Fourier transform is close to our measured signal y +n. The second
term encourages us to find a low energy solution – ultimately, we

solve (10) based on only a small number of samplesy (t1), . . . ,y (tk ),
and smoother, lower energy solutions will better generalize to the

entire interval [0,T ]. We remark that it is well known that least

squares approximations benefit from regularization even in the

noiseless case [15].

We first state a straightforward fact: if we minimize (10), even

to a coarse approximation, then we are able to solve Problem 1.

Claim 4. Let y = F ∗µ x , n ∈ L2 (T ) be an arbitrary noise function,
and for any C ≥ 1, let д̃ ∈ L2 (µ ) be a function satisfying:

∥F ∗µ д̃ − (y + n)∥2T + ϵ ∥д̃∥
2

µ

≤ C · min

д∈L2 (µ )

[
∥F ∗µ д − (y + n)∥2T + ϵ ∥д∥

2

µ
]
.

Then

∥F ∗µ д̃ − y∥
2

T ≤ 2Cϵ ∥x ∥2µ + 2(C + 1)∥n∥2T .

Claim 4 shows that approximately solving the regression prob-

lem in (10), with regularization parameter ϵ gives a solution to

Problem 1 with parameter 2Cϵ (decreasing the regularization pa-

rameter to
ϵ

2C will let us solve with parameter ϵ). But how can we

solve the regression problem efficiently? Not only does the problem

involve a possibly infinite dimensional parameter vector д, but the
objective function also involves the continuous time interval [0,T ].

4.1 Random Discretization
The first step is to deal with the latter challenge, i.e., that of a contin-

uous time domain. We show that it is possible to randomly discretize
the time domain of (10), thereby reducing our problem to a regres-

sion problem on a finite set of times t1, . . . , tq . In particular, we can

sample time points with probability proportional to the so-called

ridge leverage function, a specific non-uniform distribution that has

been applied widely in randomized algorithms for regression and

other linear algebra problems on discrete matrices [1, 11, 16, 40, 41].

While we cannot compute the leverage function explicitly for

our problem, an issue highlighted in [5], our main result (Theorem

2) uses a simple, but very accurate, closed form approximation in

its place. We start with the definition of the ridge leverage function:

Definition 3 (Ridge leverage function). For a probability
measure µ on R, time length T > 0, and ϵ ≥ 0, we define the ϵ-ridge
leverage function for t ∈ [0,T ] as14:

τµ,ϵ (t ) =
1

T
· max

{α ∈L2 (µ ): ∥α ∥µ>0}

���[F
∗
µ α](t )���

2

∥F ∗µ α ∥
2

T + ϵ ∥α ∥
2

µ
. (11)

13
The fact that the minimum is attainable is a simple consequence of the extreme value

theorem, since the search space can be restricted to ∥д ∥2µ ≤ ∥ (y + n) ∥
2

T /ϵ .
14
Formally L2 (T ) is a space of equivalence classes of functions that differ at a set of

points with measure 0. For notational simplicity, here and throughout we use F ∗µ α
to denote the specific representative of the equivalence class F ∗µ α ∈ L2 (T ) given

by (8). In this way, we can consider the pointwise value [F ∗µ α ](t ), which we could

alternatively express as ⟨φt , α ⟩µ , for φt (ξ ) = e−2π itξ
.
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Intuitively, the ridge leverage function at time t is an upper

bound on how much a function can “blow up” at t when its Fourier

transform is constrained by µ. The denominator term ∥F ∗µ α ∥
2

T
is the average squared magnitude of the function F ∗µα , while the

numerator term, |[F ∗µ α](t ) |2, is the squared magnitude at t . The

regularization term ϵ ∥α ∥2µ reflects the fact that, to solve (10), we

only need to bound the smoothness for functions with bounded

Fourier energy under µ. As observed in [44], the leverage function

can be viewed as a type of Christoffel function, studied in work on

orthogonal polynomials and approximation theory [7, 42, 44, 59].

The larger the leverage “score” τµ,ϵ (t ), the higher the probability
we will sample time t , to ensure that our sample points well reflect

any possibly significant components or ‘spikes’ of the function y.

Ultimately, the integral of the ridge leverage function

∫ T
0
τµ,ϵ (t )dt

determines how many samples we require to solve (10) to a given

accuracy. Theorem 5 below states the already known fact that

the ridge leverage function integrates to the statistical dimension

[3], which will ultimately allow us to achieve the Õ (sµ,ϵ ) sample

complexity bound of Theorems 1 and 2. Theorem 5 also gives two

alternative characterizations of the leverage function that will prove

useful. The theorem is proven in the full version, using techniques

for finite matrices, adapted to the operator setting.

Theorem 5 (Leverage function properties). Let τµ,ϵ (t ) be
the ridge leverage function (Definition 3) and define φt ∈ L2 (µ ) by

φt (ξ )
def

= e−2π it ξ . We have:
• The ridge leverage function integrates to the statistical dimen-
sion:∫ T

0

τµ,ϵ (t )dt = sµ,ϵ
def

= tr(Kµ (Kµ + ϵIT )
−1). (12)

• Inner Product characterization:

τµ,ϵ (t ) =
1

T
· ⟨φt , (Gµ + ϵIµ )

−1φt ⟩µ . (13)

• Minimization Characterization:

τµ,ϵ (t ) =
1

T
· min

β ∈L2 (T )

∥Fµβ − φt ∥
2

µ

ϵ
+ ∥β ∥2T . (14)

In Theorem 6, we give our formal statement that the ridge lever-

age function can be used to randomly sample time domain points to

discretize the regression problem in (10) and solve it approximately.

While complex in appearance, readers familiar with randomized

linear algebra will recognize Theorem 6 as closely analogous to

standard approximate regression results for leverage score sam-

pling from finite matrices [14]. As discussed, since we are typically

unable to sample according to the true ridge leverage function, we

give a general result, showing that sampling with any upper bound

function with a finite integral suffices.

Theorem 6 (Approximate regression via leverage func-

tion sampling). Assume that ϵ ≤ ∥Kµ ∥op.15 Consider a mea-
surable function τ̃µ,ϵ (t ) with τ̃µ,ϵ (t ) ≥ τµ,ϵ (t ) for all t and let

s̃µ,ϵ =
∫ T

0
τ̃µ,ϵ (t )dt . Let s = c · s̃µ,ϵ ·

(
log s̃µ,ϵ + 1/δ

)
for sufficiently

large fixed constant c and let t1, . . . , ts be time points selected by
drawing each randomly from [0,T ] with probability proportional to

15
If ϵ > ∥Kµ ∥op then (10) is solved to a constant approximation factor by д = 0.

τ̃µ,ϵ (t ). For j ∈ 1, . . . , s , letw j =

√
1

sT ·
s̃µ,ϵ

τ̃µ,ϵ (tj )
. Let F : Cs → L2 (µ )

be the operator defined by:

[Fд] (ξ ) =
s∑
j=1

w j · д(j ) · e
−2π iξ tj

and y,n ∈ Rs be the vectors with y(j ) = w j · y (tj ) and n(j ) =
w j · n(tj ). Let:

д̃ = arg min

д∈L2 (µ )

[
∥F∗д − (y + n)∥2

2
+ ϵ ∥д∥2µ

]
(15)

With probability ≥ 1 − δ :

∥F ∗µ д̃ − (y + n)∥2T + ϵ ∥д̃∥
2

µ

≤ 3 min

д∈L2 (µ )

[
∥F ∗µ д − (y + n)∥2T + ϵ ∥д∥

2

µ
]
. (16)

A generalized version of this result is proven in full version

of this paper, which holds even when д̃ is only an approximate

minimizer of (15).

Theorem 6 shows that д̃ obtained from solving the discretized

regression problem provides an approximate solution to (10) and

by Claim 4, ỹ = F ∗µ д̃ solves Problem 1 with parameter Θ(ϵ ). If we

have τ̃µ,ϵ (t ) = τµ,ϵ (t ), Theorem 6 combined with Claim 4 shows

that Problem 1 with parameter Θ(ϵ ) can be solved with sample

complexity O
(
sµ,ϵ · log sµ,ϵ

)
, since by (12),

∫ T
0
τµ,ϵ (t )dt = sµ,ϵ .

Note that, by simply decreasing the regularization parameter in

(10) by a constant factor, we can solve Problem 1 with parameter ϵ .
The asymptotic complexity is identical since, by (14), for any c ≤ 1

and any t ∈ [0,T ], τµ,cϵ (t ) ≤
1

c τµ,ϵ (t ) and so:

sµ,cϵ ≤
1

c
sµ,ϵ . (17)

This proves the sample complexity result of Theorem 1. However,

since it is not clear that sampling according to τµ,ϵ (t ) can be done

efficiently (or at all), it does not yet give an algorithm yielding this

complexity.
16

This issue will be addressed in Section 5, where we

prove Theorem 2.

We show that leverage function sampling satisfies, with good

probability, an affine embedding guarantee: that ∥F∗д− (y+n)∥2
2
+

ϵ ∥д∥2µ closely approximates ∥F ∗µ д − (y + n)∥2T + ϵ ∥д∥
2

µ for all д ∈
L2 (µ ). Thus, a (near) optimal solution to the discretized problem,

min

д∈L2 (µ )

[
∥F∗д − (y + n)∥2

2
+ ϵ ∥д∥2µ

]
,

gives a near optimal solution to the original problem,

min

д∈L2 (µ )

[
∥F ∗µ д − (y + n)∥2T + ϵ ∥д∥

2

µ
]
.

Our proof of the affine embedding property is analogous to existing

proofs for finite dimensional matrices [2, 14].

16
We conjecture that the sample complexity can in fact be upper bounded byO (sµ,ϵ )

by adapting deterministic methods for finite matrices to the operator setting [17]
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4.2 Efficient Solution of the Discretized
Problem

Given an upper bound on the ridge leverage function τ̃µ,ϵ (t ) ≥
τµ,ϵ (t ), we can apply Theorem 6 to approximately solve the ridge

regression problem of (10) and therefore Problem 1 by Claim 4. In

Section 5 we show how to obtain such an upper bound for any µ
using a universal distribution.

First, however, we demonstrate how to apply Theorem 6 al-

gorithmically. Specifically, we show how to solve the randomly

discretized problem of (15) efficiently. Combined with Theorem 6

and our bound on τµ,ϵ (t ) given in Section 5, this yields a random-

ized algorithm (Algorithm 1) for Problem 1. The formal analysis of

Algorithm 1 is given in Theorem 7.

Algorithm 1 Time Point Sampling and Signal Reconstruction

input: Probability measure µ (ξ ), ϵ,δ > 0, time bound T , and
function y : [0,T ]→ R. Ridge leverage function upper bound

τ̃µ,ϵ (t ) ≥ τµ,ϵ (t ) with s̃µ,ϵ =
∫ T

0
τ̃µ,ϵ (t )dt .

output: t1, . . . , ts ∈ [0,T ] and z ∈ Cs .

1: Let s = c · s̃µ,ϵ ·
(
log s̃µ,ϵ +

1

δ

)
for a large enough constant c .

2: Independently sample t1, . . . , ts ∈ [0,T ] with probability pro-

portional to τ̃µ,ϵ (t ) and set the weightwi :=

√
1

sT ·
s̃µ,ϵ

τ̃µ,ϵ (ti )
.

3: Let K ∈ Cs×s be the matrix with K(i, j ) = wiw j · kµ (ti , tj ).
4: Let ȳ ∈ Cs be the vector with ȳ(i ) = wi · [y (ti ) + n(ti )].
5: Compute z̄ := (K + ϵI)−1ȳ.
6: return t1, . . . , ts ∈ [0,T ] and z ∈ Cs with z(i ) = z̄(i ) ·wi .

Algorithm 2 Evaluation of Reconstructed Signal

input: Probability measure µ (ξ ), t1, . . . , ts ∈ [0,T ], z ∈ Cs , and
evaluation point t ∈ [0,T ].

output: Reconstructed function value ỹ (t ).

1: For i ∈ {1, . . . , s}, compute kµ (ti , t ) =
∫
ξ ∈R e

−2π i (ti−t )dµ (ξ ).

2: return ỹ (t ) =
∑s
i=1

z(i ) · kµ (ti , t ).

Theorem 7 (Efficient signal reconstruction given lever-

age function upper bounds). Assume that ϵ ≤ ∥Kµ ∥op.17 Al-
gorithm 1 returns t1, . . . , ts ∈ [0,T ] and z ∈ Cs such that ỹ (t ) =∑s
i=1

z(i ) · kµ (ti , t ) (as computed in Algorithm 2) satisfies with prob-
ability ≥ 1 − δ :

∥ỹ − y∥2T ≤ 6ϵ ∥x ∥2µ + 8∥n∥2T .

Suppose we can sample t ∈ [0,T ] with probability proportional
to τ̃µ,ϵ (t ) in timeW and compute the kernel function kµ (t1, t2) =∫
ξ ∈R e

−2π i (t1−t2 )dµ (ξ ) in time Z . Algorithm 1 queries y + n at s =

O
(
s̃µ,ϵ ·

(
log s̃µ,ϵ + 1/δ

))
points and runs inO

(
s ·W + s2 · Z + sω

)
time18. Algorithm 2 evaluates ỹ (t ) in O (s · Z ) time for any t .

17
As discussed for Theorem 6, if ϵ > ∥Kµ ∥op , Problem 1 is trivially solved by ỹ = 0.

18
Hereω < 2.373 is the exponent of fast matrix multiplication. sω is the theoretically

fastest runtime required to invert a dense s × s matrix. We note that the sω term may

be thought of as s3
in practice, and potentially could be accelerated using a variety of

techniques for fast (regularized) linear system solvers.

The proof follows from applying Theorem 6 and Claim 4.

Remark: As discussed, in Section 5 we will give a ridge leverage

function upper bound that can be sampled from inW = O (1) time

and closely bounds the true leverage function for any µ, giving
s̃µ,ϵ = O (sµ,ϵ log sµ,ϵ ). Using this upper bound to sample time

domain points, our sample complexity s is thus within aO (log sµ,ϵ )
factor of the best possible using Theorem 6, whichwewould achieve

if sampling using the true ridge leverage function.

In full version we prove a tighter leverage function bound than

the one in Section 5 for bandlimited signals, removing the loga-

rithmic factor in this case. It is not hard to see that for general

µ we can also achieve optimal sample complexity by further sub-

sampling t1, . . . , ts using the ridge leverage scores of K1/2
. These

scores can be computed in Õ (s · s2

µ,ϵ ) time using known techniques

for finite kernel matrices [40]. Subsampling O
(
sµ,ϵ log sµ,ϵ

δ 2

)
time

domain points according to these scores lets us approximately solve

the discretized problem of (15) to error (1 + δ ).
Applying the more general version of Theorem 6 stated in the

full version, this yields an approximate solution to (10) and thus

to Problem 1. For constant δ , we need just O (sµ,ϵ log sµ,ϵ ) time

samples to solve the subsampled regression problem. By the lower

bound given in Section 6, Theorem 19, this complexity is within a

O (log sµ,ϵ ) factor of optimal in nearly all settings. We conjecture

that one can achieve within an O (1) factor of the optimal sample

complexity by applying deterministic selection methods to F [17].

5 A NEAR-OPTIMAL SPECTRUM BLIND
SAMPLING DISTRIBUTION

In the previous section, we showed how to solve Problem 1 given

the ability to sample time points according to the ridge leverage

function τµ,ϵ . In general, this function depends on T , µ, and ϵ , and
it is not clear if it can be computed or sampled from directly.

Nevertheless, in this section we show that it is possible to effi-

ciently obtain samples from a function that very closely approxi-

mates the true leverage function for any constraint measure µ. In
particular we describe a set of closed form functions τ̃α (t ), each pa-

rameterized by α > 0. τ̃α upper bounds the leverage function τµ,ϵ
for any µ and ϵ , as long as the statistical dimension sµ,ϵ ≤ O (α ).
Our upper bound satisfies∫ T

0

τ̃α (t )dt = O (sµ,ϵ · log sµ,ϵ ),

which means it can be used in place of the true ridge leverage

function to give near optimal sample complexity via Theorem 6

and 7. This result is proven formally in Theorem 17, which as a

consequence immediately yields ourmain technical result, Theorem

2. The majority of this section is devoted towards building tools

necessary for proving Theorem 17.

5.1 Uniform Leverage Score Bound
We seek a simple closed form function that upper bounds the lever-

age function τµ,ϵ . Ultimately, we want this upper bound to be very

tight, but a natural first question is whether it should exists at all.

Is it possible to prove any finite upper bound on τµ,ϵ without using

specific knowledge of µ?
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We answer this first question by showing that τµ,ϵ can be upper

bounded by a constant function. Specifically, we show that for

t ∈ [0,T ], τµ,ϵ (t ) ≤ C for C = poly(sµ,ϵ ). This upper bound

depends on the statistical dimension, but importantly, it does not

depend on µ. Formally we show:

Theorem 8 (Uniform leverage function bound). For all t ∈

[0,T ] and ϵ ≤ 1,19 τµ,ϵ (t ) ≤
2

41 (sµ,ϵ )5 log
3 (40sµ,ϵ )

T .

While Theorem 8 appears to give a relatively weak bound, prov-

ing this statement is a key technical challenge. Ultimately, it is used

in Section 5.3 as one of two main ingredients in proving the much

tighter leverage function bound that yields Theorems 17 and 2.

Towards a proof of Theorem 8, we consider the operator Fµ
defined in Section 3. Since Fµ has statistical dimension sµ,ϵ , Kµ =

F ∗µ Fµ can have at most 2sµ,ϵ eigenvalues ≥ ϵ :

sµ,ϵ = ≥
∑

i :λi (Kµ )≥ϵ

λi (Kµ )

λi (Kµ ) + ϵ
≥

���i : λi (Kµ ) ≥ ϵ ���
2

. (18)

So, if we project Fµ onto Kµ ’s top 2sµ,ϵ eigenfunctions (when

µ is uniform on an interval these are the prolate spherical wave

functions of Slepian and Pollak [57]) we will approximate Kµ up

to its small eigenvalues. The mass of these eigenvalues is at most:∑
i :λi (Kµ )≤ϵ

λi (Kµ ) ≤ 2ϵ ·
∑

i :λi (Kµ )≤ϵ

λi (Kµ )

λi (Kµ ) + ϵ
≤ 2ϵ · sµ,ϵ .

Alternatively, instead of projecting onto the span of the eigen-

functions, we can approximate Kµ nearly optimally by projecting

Fµ onto the span of a subset of O (sµ,ϵ ) of its “rows" – i.e., fre-

quencies in the support of µ. For finite linear operators, is well

known that such a subset exists: the problem of finding these sub-

sets has been studied extensively in the literature on randomized

low-rank matrix approximation under the name column subset se-
lection [9, 19, 53]. In the full version of this paper we show that an

analogous result extends to the continuous operator Fµ :

Theorem 9 (Freqency subset selection). For some s ≤ ⌈36 ·

sµ,ϵ ⌉ there exists a set of distinct frequencies ξ1, . . . , ξs ∈ C such that,
if Cs : L2 (T ) → C

s and Z : L2 (µ ) → C
s are defined by:

[Csд](j ) =
1

T

∫ T

0

д(t )e−2π iξ j tdt Z = (CsC∗s )
−1CsF

∗
µ ,

20
(19)

then

tr(Kµ − C∗sZZ∗Cs ) ≤ 4ϵ · sµ,ϵ . (20)

Note that, if φt ∈ L2 (µ ) is defined φt (ξ ) = e−2π it ξ
and ϕt ∈ C

s
is

defined ϕt (j ) = φt (ξ j ), we have:

tr(Kµ − C∗sZZ∗Cs ) =
1

T

∫
t ∈[0,T ]

∥φt − Z∗ϕt ∥
2

µ dt .

Leverage function bound proof sketch. With Theorem 9 in

place, we explain how to use this result to prove Theorem 8, i.e.,

to establish a universal bound on the leverage function of Fµ .

For the sake of exposition, we use the term “row” of an opera-

tor A : L2 (µ ) → L2 (T ) to refer to the corresponding operator

19
If ϵ > 1 = tr(Kµ ), Problem 1 is trivially solved by returning ỹ = 0.

20
The fact that ξ1, . . . , ξs are distinct ensures that (CsC∗s )−1

exists.

restricted to some time t . We use the term “column” of an operator

as the adjoint of a row of A∗ : L2 (T ) → L2 (µ ), i.e., the adjoint

operator restricted to some frequency ξ .
By Theorem 9, C∗sZ : L2 (µ ) → L2 (T ) (the projection of F ∗µ

onto the range of Cs ) closely approximates the operator F ∗µ yet

has columns spanned by just O (sµ,ϵ ) frequencies: ξ1, . . . , ξs . So
for any α ∈ L2 (µ ), C∗sZα ∈ L2 (T ) is just an O (sµ,ϵ ) sparse Fourier
function. Using the maximization characterization of Definition

3, we can thus bound the time domain ridge leverage function of

C∗sZ by appealing to known smoothness bounds for Fourier sparse

functions [13], even for ϵ = 0. When ϵ = 0, the ridge leverage func-

tion is known as the standard leverage function in the randomized

numerical linear algebra literature, and we refer to it as such.

We can use a similar argument to bound the row norms of the

residual operator [F ∗µ −C∗sZ]. The columns of this operator are each

spanned by O (sµ,ϵ ) frequencies, and so are again sparse Fourier

functions whose smoothness we can bound. This smoothness en-

sures that no row can have norm significantly higher than average.

Finally, we note that the time domain ridge leverage function of

Fµ is approximated to within a constant factor by the sum of the

standard row leverage function of C∗sZ along with row norms of

Fµ − C∗sZ. This gives us a bound on Fµ ’s ridge leverage function.

Theorem 10 (Ridge leverage function approximation). Let
Cs and Z be the operators guaranteed to exist by Theorem 9. Let ℓ(t )
be the standard leverage function of t in C∗sZ:21

ℓ(t )
def

= max

{α ∈L2 (µ ): ∥α ∥µ>0}

1

T
·
|[C∗sZα](t ) |2

∥C∗sZα ∥2T
.

Let r (t ) be the residual 1

T · ∥φt − Z∗ϕt ∥
2

µ where φt and ϕt are as
defined in Theorem 9. Then for all t :

τµ,ϵ (t ) ≤ 2 ·

(
ℓ(t ) +

r (t )

ϵ

)
This theorem can be proved by considering the maximization

characterization of the ridge leverage function.

With Theorem 10 in place, we now bound τ̄µ,ϵ (t ) = 2

(
ℓ(t ) +

r (t )
ϵ

)
,

which yields a uniform bound on the true ridge leverage scores.

Lemma 11. Let ℓ(t ), r (t ) be as defined in Theorem 10 and τ̄µ,ϵ (t )
def

=

2 ·

(
ℓ(t ) +

r (t )
ϵ

)
. For all t ∈ [0,T ]:

τ̄µ,ϵ (t ) ≤
15400(36sµ,ϵ + 2)5 log

3 (36sµ,ϵ + 2)

T
.

Combining Lemma 11 with Theorem 10 yields Theorem 8. We

just simplify the constants by noting that for ϵ ≤ 1, sµ,ϵ ≥
tr(Kµ )

2
=

1

2
and so 36sµ,ϵ + 2 ≤ 40sµ,ϵ . Proof of Lemma 11 proceeds by

bounding the leverage score ℓ(t ) and residual r (t ) components of

τ̄µ,ϵ (t ) using a similar argument based on the smoothness of sparse

Fourier functions for both. Specifically, for both bounds we employ

the following smoothness bound of Chen et al.:

21
Analogously to how [F ∗µ α ](t ) is used in Def. 3, while L2 (T ) is formally a space of

equivalence classes of functions, here we use C∗sZα to denote the specific representa-

tive of the equivalence class C∗sZα ∈ L2 (T ) given by [C∗sZα ](t ) =
∑s
j=1

[Zα ](j ) ·

e2π iξj t = ⟨ϕt , Zα ⟩Cs . In this way, we can consider the pointwise value [C∗sZα ](t ).
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Lemma 12 (Via Lem 5.1 of [12]). For any f (t ) =
∑k
j=1

vje
2π iξ j t ,

max

x ∈[0,T ]

| f (x ) |2

∥ f ∥2T
= 1540 · k4

log
3 k .

Here we show how to bound the leverage scores ℓ(t ) of C∗sZ.
To see how the residuals r (t ) is bounded, refer to the full version
of this paper. For every α ∈ L2 (µ ), C∗sZα is an s = O (sµ,ϵ ) sparse
Fourier function. Specifically, we have:

[C∗sZα](t ) =
s∑
j=1

[Zα](j ) · e2π iξ j t ,

for frequencies ξ1, . . . , ξs ∈ C given by Theorem 9. We can thus

directly apply Lemma 12 giving for any t ∈ [0,T ]:

ℓ(t )
def

= max

{α ∈L2 (µ ):∥α ∥µ>0}

1

T

|[C∗sZα](t ) |2

∥C∗sZα ∥2T

≤ max

{α ∈L2 (µ ):∥α ∥µ>0}

1

T
max

t ′∈[0,T ]

|[C∗sZα](t ′) |2

∥C∗sZα ∥2T
≤

1540

T
s4

log
3 s .

(21)

Theorem 8 gives a universal uniform bound on the ridge leverage

scores corresponding to measure µ in terms of sµ,ϵ . If we directly
sample time points according to the uniform distribution over [0,T ],

this theorem shows that poly(sµ,ϵ ) samples and poly(sµ,ϵ ) runtime

suffice to apply Theorem 7 and solve Problem 1 with good proba-

bility. This is already a surprising result, showing that the simplest

sampling scheme, uniform random sampling, can give bounds in

terms of the optimal complexity sµ,ϵ for any µ. Existing methods

with similar complexity, such as those that interpolate bandlimited

signals using prolate spheroidal wave functions [56, 64] require

nonuniform sampling. Methods that use uniform sampling, such as

truncated Whittaker-Shannon, have sample complexity depending

polynomially rather than logarithmically on the desired error ϵ .

5.2 Gap-based Leverage Score Bound
Our final result gives a much tighter bound on the ridge leverage

scores than the uniform bound of Theorem 8. The key idea is to

show that the bound is loose for t bounded away from the edges of

[0,T ]. Specifically we have:

Theorem 13 (Gap-Based Leverage Score Bound). For all t ,

τµ,ϵ (t ) ≤
sµ,ϵ

min(t ,T − t )
.

Proof. Consider t ∈ [0,T /2]. We will show that τµ,ϵ (t ) ≤
sµ,ϵ
t .

A symmetric proof will hold for t ∈ [T /2,T ], giving the theorem.

We define an auxiliary operator: Fµ,t : L2 (T ) → L2 (µ ) given by

restricting the integration in Fµ to [0, t]. Specifically, for f ∈ L2 (T ):

[Fµ,t f ](ξ ) =
1

T

∫ t

0

f (s )e−2π isξ ds . (22)

We see that [F ∗µ,tд](s ) =
∫
R
д(ξ )e2π isξ dµ (ξ ) for s ∈ [0, t] and

[F ∗µ,tд](s ) = 0 for s ∈ (t ,T ]. We will use the leverage score of some

s ∈ [0, t] in the restricted operator Fµ,t to upper bound those of t
in Fµ . We start by defining these scores as in Definition 3 for Fµ .

Definition 4 (Restricted ridge leverage scores). For proba-
bility measure µ on R, time length T , t ∈ [0,T ] and ϵ ≥ 0, define the
ϵ-ridge leverage score of s ∈ [0, t] in Fµ,t as:

τµ,ϵ,t (s ) =
1

T
· max

{α ∈L2 (µ ): ∥α ∥µ>0}

|[Fµ,tα](s ) |2

∥F ∗µ,tα ∥
2

T + ϵ ∥α ∥
2

µ
.

We have the following leverage score properties, analogous to

those given for Fµ in Theorem 5:

Theorem 14 (Restricted leverage score properties). Let
τµ,ϵ,t (s ) be as defined in Definition 4.

• The leverage scores integrate to the statistical dimension:∫ t

0

τµ,ϵ,t (s ) ds = sµ,ϵ,t

def

= tr(F ∗µ,tFµ,t (F
∗
µ,tFµ,t + ϵIT )

−1). (23)

• Inner Product Characterization: Letting φs ∈ L2 (µ ) have
φs (ξ ) = e−2π isξ for s ∈ [0, t],

τµ,ϵ,t (s ) =
1

T
· ⟨φs , (Fµ,tF

∗
µ,t + ϵIµ )

−1φs ⟩µ . (24)

• Minimization Characterization:

τµ,ϵ,t (s ) =
1

T
· min

β ∈L2 (T )

∥Fµ,t β − φs ∥
2

µ

ϵ
+ ∥β ∥2T . (25)

We first note that the restricted leverage scores of Definition 4

are not too large on average.

Claim 15 (Restricted statistical dimension bound).∫ T

0

τµ,ϵ,t (s ) ds ≤ sµ,ϵ . (26)

From Claim 15 we immediately have:

Claim 16. There exists s⋆ ∈ [0, t] with τµ,ϵ,t (s⋆) ≤
sµ,ϵ
t .

We now show that the leverage score of s⋆ in Fµ,t upper bounds

the leverage score of t in Fµ , completing the proof of Theorem

13. We apply the minimization characterization of Theorem 14,

equation (25), showing that by simply shifting an optimal solution

for s⋆ we can show the existence of a good solution for t , upper
bounding its leverage score by that of s⋆ and giving τµ,ϵ (t ) ≤

τµ,ϵ,t (s
⋆) ≤

sµ,ϵ
t by Claim 16.

Formally, by Claim 16 and (25), there is some β⋆ ∈ L2 (T ) giving:

1

T
·
∥Fµ,t β

⋆ − φs⋆ ∥
2

µ

ϵ
+ ∥β⋆∥2T = τµ,ϵ,t (s

⋆) ≤
sµ,ϵ

t
. (27)

We can assume without loss of generality that β⋆(s ) = 0 for s <
[0, t], since Fµ,t β

⋆
is unchanged if we set β⋆(s ) = 0 on this range

and since doing this cannot increase ∥β ∥2T . Now, let
¯β ∈ L2 (T ) be

given by
¯β (s ) = β⋆(s − (t − s⋆)). That is, ¯β is just β⋆ shifted from

the range [0, t] to the range [t − s⋆, 2t − s⋆]. Note that since we are
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assuming t ≤ T /2, [t − s⋆, 2t − s⋆] ⊂ [0,T ]. For any ξ :

[Fµ ¯β](ξ ) =
1

T

∫ T

0

¯β (s )e−2π isξds

=
1

T

∫
2t−s⋆

t−s⋆
β⋆(s − (t − s⋆))e−2π isξds

=
1

T

∫ t

0

β⋆(s )e−2π i (s+(t−s⋆ ))ξds

= [Fµ,t β
⋆

](ξ ) · e−2π i (t−s⋆ )ξ . (28)

We can write φt (ξ ) = e−2π it ξ = e−2π i (t−s⋆ )ξ · φs⋆ (ξ ), which
combined with (28) gives:

∥Fµ ¯β − φt ∥
2

µ =

∫
ξ

���[Fµ
¯β](ξ ) − φt

���
2

dµ (ξ )

=

∫
ξ

���([Fµ,t β
⋆

](ξ ) − φs⋆ ) · e
−2π i (t−s⋆ )ξ ���

2

dµ (ξ )

=

∫
ξ

���([Fµ,t β
⋆

](ξ ) − φs⋆ )
���
2

dµ (ξ )

= ∥Fµ,t β
⋆ − φs⋆ ∥

2

µ . (29)

Finally, since ∥ ¯β ∥T = ∥β
⋆∥T , applying the minimization character-

ization of Theorem 5 the bound in (29) along with (27) gives:

τµ,ϵ (t ) ≤
∥Fµ,t β

⋆ − φs⋆ ∥
2

µ

ϵ
+ ∥β⋆∥2T ≤

sµ,ϵ

t
,

which completes the theorem. □

5.3 Nearly Tight Leverage Score Bound
Combining Theorems 8 and 13 gives our tight, spectrum blind

leverage score bound:

Theorem 17 (Spectrum Blind Leverage Score Bound). For
any α ,T ≥ 0 let τ̃α (t ) be given by:

τ̃α (t ) =



α
256·min(t,T−t ) for t ∈ [T /α6,T (1 − 1/α6)]
α 6

T for t ∈ [0,T /α6
] ∪ [T (1 − 1/α6),T ].

For any probability measure µ, T ≥ 0, 0 ≤ ϵ ≤ 1 and t ∈ [0,T ], if
α ≥ 256 · sµ,ϵ :

τµ,ϵ (t ) ≤ τ̃α (t ) and s̃α
def

=

∫ T

0

τ̃α (t ) dt ≤
α · logα

19

.

A visualization of τ̃α is given in Figure 3.

5.4 Putting It All Together
Finally, we combine the leverage score bound of Theorem 17 with

Theorem 7 to give our main algorithmic result, Theorem 3 (and as

a corollary, Theorem 2). We state the full theorem below:

Theorem 3 (Main result, algorithmic complexity). Con-
sider any measure µ, for which we can compute the kernel function
kµ (t1, t2) =

∫
ξ ∈R e

−2π i (t1−t2 )dµ (ξ ) for any t1, t2 ∈ [0,T ] in time Z .
Let τ̃α (t ) be as defined in Theorem 17. For any ϵ ≤ ∥Kµ ∥op and

T > 0, let τ̃µ,ϵ (t ) = τ̃α (t ) for α = β ·sµ,ϵ with β ≥ 256. Alg. 1 applied
with τ̃µ,ϵ (t ) and failure probability δ returns t1, . . . , ts ∈ [0,T ] and

z ∈ Cs such that ỹ (t ) =
∑s
i=1

z(i ) · kµ (ti , t ) solves Problem 1 with
parameter 6ϵ and probability ≥ 1 − δ . I.e., with probability ≥ 1 − δ :

∥ỹ − y∥2T ≤ 6ϵ ∥x ∥2µ + 8∥n∥2T .

The algorithm queries y + n at s points and runs in O
(
s2 · Z + sω

)
time where

s = O
(
β · sµ,ϵ log(β · sµ,ϵ ) · [log(β · sµ,ϵ ) + 1/δ ]

)
= Õ

(
β · sµ,ϵ

δ

)
.

The output ỹ (t ) can be evaluated inO (sZ ) time for any t with Alg. 2.

Note that if we want to solve Problem 1 with parameter ϵ , it suf-
fices to apply Theorem 3 with parameter ϵ ′ = ϵ/6. The asymptotic

complexity will be identical since, by (17), sµ,ϵ/6
≤ 6sµ,ϵ .

6 LOWER BOUND
We conclude by showing that the statistical dimension sµ,ϵ tightly

characterizes the sample complexity of solving Problem 1, under

a mild assumption on µ that holds for all natural constraints we

discuss in this paper. Thus, Thm. 1 is tight up to logarithmic factors.

We first define a natural lower bound on sµ,ϵ :

nµ,ϵ
def

=

∞∑
i=1

I[λi (Kµ ) ≥ ϵ]. (30)

That is, nµ,ϵ is the number of Kµ ’s eigenvalues ≥ ϵ . By (18), we

always have nµ,ϵ ≤ 2sµ,ϵ . We show that solving Problem 1 requires

Ω(nµ,ϵ ) samples. In turn, under a very mild constraint on µ (which

holds for all µ we consider including sparse, bandlimited, multiband,

Gaussian, and Cauchy-Lorentz), nµ,ϵ = Ω(sµ,ϵ ). Thus, sµ,ϵ gives a

tight bound on the query complexity of solving Problem 1.

Theorem 18 (Lower bound in terms of eigenvalue count).

Consider a measure µ, an error parameter ϵ > 0, and any (possibly
randomized) algorithm that solves Problem 1 with probability ≥ 2/3

for any function y and makes at most r (possibly adaptive) queries
on any input. Then r ≥ nµ,72ϵ /20.

6.1 Statistical Dimension Lower Bound
We now use Theorem 18 to prove that the statistical dimension

tightly characterizes the sample complexity of solving Problem

1 for any constraint measure µ satisfying a simple condition: we

must have sµ,ϵ = O (1/ϵp ) for some p < 1. Note that this assump-

tion holds for all µ considered in this work (including bandlimited,

multiband, sparse, Gaussian, and Cauchy-Lorentz), where sµ,ϵ ei-

ther grows as log(1/ϵ ) or 1/
√
ϵ . Also note that by (5) we can always

bound sµ,ϵ ≤ tr(Kµ )/ϵ = 1/ϵ . So this assumption holds whenever

we have a nontrivial upper bound on sµ,ϵ .

Theorem 19 (Statistical Dimension Lower Bound). Consider
any probability measure µ, with sµ,ϵ = O (1/ϵp ) for constant p < 1.
Consider any (possibly randomized) algorithm that solves Problem 1
with probability ≥ 2/3 for any functiony and any ϵ > 0 and makes ≤
rµ,ϵ (possibly adaptive) queries on any input. Then rµ,ϵ = Ω(sµ,ϵ ).22

22
Here we follow the Hardy-Littlewood definition [27], using f (ϵ ) = Ω(д (ϵ )) to

denote that lim supx→∞
f (ϵ )
д (ϵ ) > 0. Thus the lower bound shows that, for some fixed

constant c > 0, for every ϵ , there is at least some ϵ ′ < ϵ where the number of queries

used by any algorithm solving Problem 1 with probability ≥ 2/3 is at least c · sµ,ϵ .
I.e., the lower bound rules out the possibility that the number of queries is o (sµ,ϵ ).
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Remark A similar technique to Thm. 19 can be used to show that

nµ,ϵ = Ω(sµ,ϵ /ϵ
p ) for any p > 0, without any assumptions on sµ,ϵ .

7 CONCLUSION AND OPEN PROBLEMS
We view our work as the starting point for further exploring the

application of techniques from the randomized numerical linear

algebra literature (such as leverage score sampling, column based

matrix reconstruction, and random projection) in signal processing.

In the full version we lay out a number of open directions related

to higher dimensional setting, learning µ from the samples, and

derandomization of our techniques.
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