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ABSTRACT
Triangle counting is an important problem in graph min-
ing with several real-world applications. Interesting met-
rics, such as the clustering coefficient and the transitivity
ratio, involve computing the number of triangles. Further-
more, several interesting graph mining applications rely on
computing the number of triangles in a large-scale graph.
However, exact triangle counting is expensive and memory
consuming, and current approximation algorithms are un-
satisfactory and not practical for very large-scale graphs.
In this paper we present a new highly-parallel randomized
algorithm for approximating the number of triangles in an
undirected graph. Our algorithm uses a well-known rela-
tion between the number of triangles and the trace of the
cubed adjacency matrix. A Monte-Carlo simulation is used
to estimate this quantity. Each sample requires O(|E|) time
and O(ǫ−2 log(1/δ)ρ(G)2) samples are required to guaran-
tee an (ǫ, δ)-approximation, where ρ(G) is a measure of the
triangle sparsity of G (ρ(G) is not necessarily small). Our
algorithm requires only O(|V |) space in order to work effi-
ciently. We present experiments that demonstrate that in
practice usually only O(log2 |V |) samples are required to
get good approximations for graphs frequently encountered
in data-mining tasks, and that our algorithm is competitive
with state-of-the-art approximate triangle counting meth-
ods both in terms of accuracy and in terms of running-time.
The use of Monte-Carlo simulation support parallelization
well: our algorithm is embarrassingly parallel with a criti-
cal path of only O(|E|), achievable on as few as O(log2 |V |)
processors.

Categories and Subject Descriptors
F.2.0 [Analysis of Algorithms and Problem Complex-
ity]: General; G.2.1 [Combinatorics]: Counting problems
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1. INTRODUCTION
The use of graphs to model many real-world phenomena

(like the World Wide Web, social networks and protein inter-
action networks) gives rise to many different graph-mining
tasks. A very common graph-mining task is counting the
number of triangles in the graph (i.e., the number of con-
nected vertex triplets), because the number of triangles is
closely connected with estimating the clustering coefficients
and the transitivity ratio of the graph. Counting the number
of triangles has other applications. In explorations of net-
works, triangles are a frequently used network statistic in
the exponential random graph model [14, 19] and naturally
appear in models of real-world network evolution [17]. Tri-
angles have been used in several applications such as spam
detection [7] and uncovering the hidden thematic layers in
the web [12]. In the context of social networks triangles
have a natural interpretation: friends of friends tend to
be friends [20], and this can be used in link recommenda-
tion/friend suggestion [24].

However, counting triangles in large-scale graphs, with
millions and billions of edges, is expensive. It is not prac-
tical to count triangles with a single machine, and parallel
algorithms are required. Furthermore, the graph may be
too large to hold in memory and streaming algorithms are
needed (the total number of indexed nodes in the Web is in
the order of 1010, and the typical number of links per Web
page is between 20 and 30 [7]).

In this paper we present TraceTriangle, a new embarrassingly-
parallel randomized algorithm for approximating the num-
ber of triangles. TraceTriangle is based on a numerical
approximation of the trace (sum of diagonal value) of A3,
where A is the adjacency matrix of the graph, using a Monte-
Carlo simulation. It is a well-known fact that the number of
triangles is equal to trace(A3)/6. Each Monte-Carlo sample
requires O(|E|) operations. We present three variants, based
with a different sampling space. The first variant is theoret-
ically the best, requiring O(ǫ−2 log(1/δ)ρ(G)2) to guarantee
an (ǫ, δ)-approximation, where ρ(G) is a measure of the tri-
angle sparsity (ρ(G) can be very large, but it seems that
often it is not too large). Weaker bounds are be established
for other variants, but these variants have advantages in



Table 1: Notations and symbols used throughout
the paper.

G = (V, E) Undirected graph, no loops.
n = |V | # of vertices.
△(G) # of triangles in G.
A Adjacency matrix of G.
λ1, . . . , λn Eigenvalues of A.
trace(M) Sum of diagonal elements,

trace(M) = Σn
i=1Mii = Σn

i=1λi

terms of implementation. Only O(|V |) space is required in
addition to the space required for storing the graph. The
algorithm can be implemented efficiently when the graph is
kept in secondary storage, therefore effectively only O(|V |)
space is needed. TraceTriangle is embarrassingly paral-
lel: most of the work can be done in parallel without any
synchronization. The critical path is O(|E|) (the work re-
quired for a single sample).

We report an experimental evaluation of TraceTrian-
gle. We show that in practice usually only O(log2 |V |) sam-
ples are required to get good approximation for graphs fre-
quently encountered in data-mining applications. We com-
pare TraceTriangle to the state-of-the-art method Eigen-
Triangle [23] and show that TraceTriangle is competi-
tive both in terms of accuracy and in terms of running-time.

2. RELATED WORK

2.1 Triangle counting algorithms
A typical strategy for counting triangles is to list all trian-

gles. The most widely-used listing methods are the NodeIt-
erator and the EdgeIterator algorithms. The NodeIt-
erator algorithm considers each one of the nodes and ex-
amines which pairs of its neighbors are connected. The
EdgeIterator algorithm computes for each edge the num-
ber of triangles that contain it. Asymptotically, both meth-
ods have the same time complexity: Θ(

∑

v∈V deg(v)2), where
deg(v) is the degree of v. NodeIterator and EdgeIter-
ator’s have two major drawbacks when it comes to count-
ing triangles in very large-scale graphs. First, they do not
parallelize well. It is hard to load-balance work and space
requirements between compute units. We are not aware of
any paper presenting an efficient parallel implementation of
NodeIterator and EdgeIterator. Secondly, both algo-
rithm traverse the graph randomly, so an efficient imple-
mentation is required to store the graph in main memory.
In contrast, our method traverses the graph sequentially so
it can be kept in secondary storage without a big penalty.

The theoretically most efficient counting algorithm is due
to Alon, Yuster and Zwick [4]. It is based on fast matrix

multiplication, and runs in Θ(|E| 2ω

ω+1 ) where ω is the fast
matrix multiplication exponent. Thus, the Alon et al. algo-
rithm currently runs in O(|E|1.41) time. Space complexity
is Θ(|V |2) which is prohibitive to for large graphs.

In many cases an exact count of triangles is not crucial,
and an high quality approximation will suffice. The goal
such an algorithm is to produce a relative ǫ-approximation
of the number of triangles with high probability. Most of
the approximate triangle counting algorithms have been de-
veloped in the streaming model, i.e. these algorithms make

only a constant number of passes over the input, usually by
employing some form of Monte-Carlo simulation.

The simplest method uses naive sampling: three random
nodes are tested whether they form a triangle [21]. The total
number of triangles is estimated as the fraction of the triples
that formed a triangle. For a fixed ǫ and failure probability
the number of samples required to find an ǫ-approximation
is Θ(T0+T1+T2

T3
) where Ti = #of triples with i edges. For

graphs with o(|V |2) triangles this approach is not suitable.
Unfortunately, this is the typical case when dealing with
real-world networks.

A much more subtle approach was presented in [6]. The
authors reduce the problem of triangle counting efficiently
to estimating moments for a stream of node triples. They
then use algorithm presented by Alon-Matias-Szegedy [3] to
proceed. Along the same lines, Buriol et al. [8] proposed two
space-bounded sampling algorithms to estimate the number
of triangles. Again, the underlying sampling procedures are
simple. For the case of the edge stream representation, they
sample randomly an edge and a node in the stream and check
if they form a triangle. Their algorithms are the state-of-the-
art Monte-Carlo algorithms to the best of our knowledge,
but they still require the graph to be fairly dense in order
to get a good approximation.

Recently, a new triangle counting accelerator has been
suggested by Tsourakakis et al. [25]. The algorithm ran-
domly throws out a fraction of the edges, and then counts
the number of triangles in the remaining graph (using any
other triangle counting algorithm). An approximation for
the number of triangles in the full graph can be computed
from the exact count of triangles in the smaller graph. More
theoretical analysis is provided in [9]. The aim of their algo-
rithm is to enable the acceleration of a core triangle counting
algorithm: after the initial sparsification the actual number
of triangles is computed using some other triangle counting
algorithm. The triangle sparsification, can, of course, be
parallelized quite easily. But in order to fully parallelize a
triangle counting code the core algorithm must be parallel as
well. Tsourakakis et al. do not suggest any new way to par-
allelize the core algorithm. Furthermore, they not solve the
issue of memory load. The number of bytes held in memory
drops, but only by a constant factor. It is still the case that
the entire (sparsified) graph must be kept in main memory
for an efficient implementation.

2.2 Spectral counting
Tsourakakis recently presented a method based on com-

puting eigenvalues [23]. It is based on the following obser-
vation [10].

Lemma 1. The total number of triangles△(G) in an undi-
rected graph is equal to the trace of A3 and to the sum of the
cubes of the eigenvalues of the adjacency matrix divided by
six, i.e.:

△(G) =
1

6
trace(A3) =

1

6

n
∑

i=1

λ3
i .

Tsourakakis observed that the absolute values of the eigen-
values tend to be skewed, typically following a power law [13,
18, 11]. Therefore, the number of triangles can be well ap-
proximated using the largest magnitude eigenvalues. The
algorithm, EigenTriangle, uses a Lanczos iteration to find
largest magnitude eigenvalues, and if implemented using



state-of-the-art software like arpack it is very fast. The
method main drawbacks are: it is hard to determine how
many eigenvalues need to be computed, there are no ap-
proximation guarantees, nor are there any guarantees on the
number of steps the algorithm will do. We also note that
there is a data-dependency between Lanczos iterations. The
algorithm can be parallelized by parallelizing the matrix-
vector multiplication, an operation whose parallelism is usu-
ally modeled as the ability to partition a graph. For some
sparse matrices only very mediocre parallelism can be achieved.
For some treatment on the subject see [15]. We do not know
if matrices frequently encountered in graph mining tasks ex-
hibit this problem, and we are unaware of any study on these
issues. Here it should be noted that the use of ScaLAPACK
is not an option as it is targeted for dense matrices, while
the matrices involved in triangle counting are sparse.

In contrast, in our method there is no data-dependency
between matrix-vector multiplication, so our algorithm can
benefit from both the parallelism of the matrix-vector oper-
ation, and the parallelism inherent in the use of independent
Monte-Carlo samples.

2.3 Numerical trace estimation
Computing the trace of an explicit matrix is a computa-

tionally cheap operation. However, in some cases the ma-
trix can only be given implicitly as an operation on vectors.
Counting triangles falls into that category: for large real
networks it is impossible to actually form A3.

The standard Monte-Carlo simulation for estimating the
trace of an implicit matrix is due to Hutchinson [16], who
proves the following Lemma.

Lemma 2. Let A be an n×n symmetric matrix with trace(A) 6=
0. Let z be a random vector whose entries are i.i.d Rademacher
random variables (Pr(zi = ±1) = 1/2). zT Az is an unbi-
ased estimator of trace(A) i.e., E(zT Az) = trace(A) and
Var(zT Az) = 2

(

‖A‖2F −
∑n

i=1
A2

ii

)

.

It is easy to see that for a general matrix Hutchinson’s
method can be ineffective because the variance can be ar-
bitrarily large. Even for a symmetric positive definite the
variance can be large: the variance for the matrix of all
1’s, which is symmetric semi-definite, is n2−n, whereas the
trace is only n. Such a large variance precludes the use of
Chebyshev’s inequality to establish a bound on the num-
ber of iterations required to obtain a given relative error in
the trace. For such a bound to hold, the variance must be
o(trace(A)2). It is hard to use Lemma 2 to give rigorous
bounds on the number of samples/matrix multiplications,
and this difficulty carries over to applications of this method.

Recently, rigorous bounds have been discovered using Chernoff-
type analysis [5]. If the entries of z are i.i.d standard normal
variables then O(ǫ−2 log(1/δ)) samples are required for an
(ǫ, δ)-approximation for a positive definite matrix. For i.i.d
Rademacher random variables (i.e., Hutchinson’s method)
O(ǫ−2 log(n/δ)) samples are required for a positive definite
matrix. The analyses in this paper are based on these re-
sults.

3. ALGORITHM
We now describe the first variant of TraceTriangle and

state its properties. This is the variant with the best bounds.
The other two variants, which describe in Sections 4 and 5,
will enjoy some advantages but have weaker bounds. In

Algorithm 1 TraceTriangleN

△=TraceTriangleN(G, undirected graph with n nodes)
⊲ parameter: γ.

1. Form the adjacency matrix A ∈ R
n×n.

2. M =
⌈

γ ln2 n
⌉

3. Do M times, possibly in parallel
4. Form the vector x = (xk), where xi ∼ N(0, 1) are i.i.d
random variables.
5. y ←− Ax
6. Ti ←− (yT Ay)/6,

where i is the index of the do loop
7. end
8. △←− 1

M

∑M
i=1

Ti

order to shorten the expressions in the complexity analysis
we assume that |E| ≥ |V |, although it is easy to generalize
the results for other cases.

We propose Algorithm 1, which we call TraceTrian-
gleN. The subscript (N) denotes that this variant uses
standard normal variables in line 4. TraceTriangleN uses
Monte-Carlo simulation to estimate the trace of A3. Instead
of using vectors composed of Rademacher random variables
standard normal variables are used, since they allow us to
prove better bounds. The number of Monte-Carlo samples
is set to O(log2 |V |). For a large class of graphs this is suf-
ficient, although it might not be sufficient for graphs with
very few triangles.

The following definition and theorem summarizes the main
properties of TraceTriangleN. The definition describes a
measure of how sparse triangles are in the graph.

Definition 1. The eigenvalue triangle sparsity of a graph
is G is

ρ(G) =

∑n
i=1

∣

∣λ3
i

∣

∣

6△(G)
.

If there are no triangles in the graph then ρ(G) =∞.

Theorem 1. Given a fixed approximation ratio ǫ > 0,
fixed probability of failure δ > 0 and fixed sparsity growth ra-
tio C ≥ 1 there exists a γ = f(ǫ, δ, C) such that TraceTriangleN

with γ as the parameter in line 2 on undirected graphs for
which ρ(G) ≤ C log |V | will return ∆ such that

(1− ǫ)△(G) ≤ △ ≤ (1 + ǫ)△(G)

with probability of at least 1−δ. Furthermore, γ = O(ǫ−2C2 log(1/δ)).
The running time of the algorithm is Θ(|E| log2 |V |) (for a
fixed ǫ, δ and C) and it requires only Θ(|V |) space in addi-
tion to the space required for keeping the matrix (which is
O(|E|)).

TraceTriangleN guarantees an (ǫ, δ)-approximation only
for graphs with logarithmically bounded triangle sparsity
(i.e., ρ(G) = O(log |V |)). The number of samples could have
been decoupled from an a-priori bound on the sparsity by
setting M = O(ǫ−2ρ(G)2 log(1/δ)), but the quantity ρ(G)
is unknown and probably impossible to approximate as it
involves two unknown quantities: the number of triangles
and

∑n
i=1

∣

∣λ3
i

∣

∣, so instead we decided to limit the number
of samples and characterize the class of graphs for which
our algorithms finds an (ǫ, δ) approximation. Furthermore,
even if ρ(G) was known in advance it would be impractical



to use the explicit formula for γ. Reasonable values like
ǫ = 0.05 and δ = 0.05 will result in a huge sample size. In
practice, as the experiments shown in Section 6 show, we
noticed that O(log2 |V |) usually gives good approximations
for graphs encountered in data-mining applications, so this
is the sample size we used, thereby bounding running time
to Θ(|E| log2 |V |).

We do, however, prove a simple, yet not fully satisfactory,
bound on

∑n
i=1

∣

∣λ3
i

∣

∣.

Proposition 1. Let A be the adjacency matrix of an undi-
rected graph G = (V, E). Let λ1, . . . , λn be A’s eigenvalues.
The following hold

n
∑

i=1

∣

∣λ3
i

∣

∣ ≤
√

8 |E|3/2 .

Proof. Let x be the vector composed of the absolute
eigenvalues. Since ‖x‖22 = ‖A‖2F = |E| and ‖x‖

3
≤ ‖x‖

2
we

have
n
∑

i=1

∣

∣λ3
i

∣

∣ = ‖x‖3
3
≤ ‖x‖3

2
=
√

8 |E|3/2 .

Real-world graphs usually obey a power-law distribution of
the degrees. This implies that |E| ≈ c |V | ([13]) which in

turn implies that if △(G) = Ω(|V |3/2 / log |V |) our algo-
rithm will achieve a (ǫ, δ)-approximation with a constant γ
(depending on ǫ, δ and c). The relation between number of
triangles and the number of vertices and edges is not clear.
Sergi [22] analyzes the number of triangles in random graph

models and in some cases it is Ω(|E|3/2) but sometimes it is
less. Tsourakakis [23] experimentally shows that the number
of triangles per vertex in real-life networks follows a power-
law with respect to the vertex degree. His experiments
suggest that for real-life networks △(G) ∼ ∑

v∈V deg(v)β

where β ≥ 1.5. In any case this is already an improve-
ment over older randomized counting algorithm which re-
quire △(G) = Ω(|V |2).

TraceTriangle has a few other desirable properties.
Unlike some approximation methods, like EigenTriangle,
there is no threshold: the number of steps needed for com-
pletion is known in advance. The number of random bits
required is only O(|V | log2 |V |). It is embarrassingly paral-
lel: each of the samples can be processed in parallel without
any synchronization. The only step that requires synchro-
nization is the summation in step 8. Even without paral-
lelzing the implicit matrix multiplication the critical path is
O(|E|), which can be achieved with only O(log2 |V |) proces-
sors. TraceTriangle is also a streaming algorithm (i.e.,
it can be implemented with O(1) passes over the graph),
although as a streaming algorithm the space requirement is
O(|V | log2 |V |) which is very large. As a semi-streaming al-
gorithm space requirement are O(|V | log |V |) and O(log |V |)
passes are needed. O(|V |) space is achievable with O(log2 |V |)
passes. For some graphs the space requirements may be
large, but luckily TraceTriangle is also embarrassingly
parallel in its memory usage: with log2 |V | independent ma-
chines (a cluster) each machine will use only O(|V |) space.
Connected to this issue, is the observation that Trace-
Triangle traverses the graph sequentially, so the graph
itself can be kept in secondary storage without paying a

big penalty. This is especially important for very large-scale
graphs that cannot be held in main memory.

We now present the analysis of the trace estimator. The-
orem 1 readily follows from this analysis. The first lemma
shows that by using Gaussian variables we still get an unbi-
ased estimator. We omit the proof.

Lemma 3. Let A be an n×n symmetric matrix with trace(A) 6=
0. Let z be a random vector whose entries are i.i.d standard
normal random variables. zT Az is an unbiased estimator
of trace(A) i.e., E(zT Az) = trace(A) and Var(zT Az) =
2 ‖A‖2F .

The variance is not small enough to establish a bound on
the error. Using Chernoff-type arguments we can bound the
error.

Definition 2. A Gaussian trace estimator for a symmet-
ric matrix A ∈ R

n×n is

GM =
1

M

M
∑

i=1

zT
i Azi ,

where the zi’s are M independent random vectors whose en-
tries are i.i.d standard normal variables.

Notation 1. For a symmetric matrix X ∈ R
n×n with

eigenvalues λ1, . . . , λn we denote

ρ(X) =

∑n
i=1
|λi|

trace(X)
.

Note that if A is the adjacency matrix of a graph G then
ρ(G) = ρ(A3).

Lemma 4. Let δ > 0 be a failure probability and let ǫ > 0
be a relative error. For M ≥ 20ǫ−2ρ(A)2 ln(4/δ), the Gaus-
sian trace estimator GM of a symmetric matrix A ∈ R

n×n

satisfies

Pr (|GM − trace(A)| ≤ ǫ |trace(A)|) ≥ 1− δ .

Proof. A is symmetric so it can be diagonalized. Let
Λ = UT AU be the unitary diagonalization of A (its eigen-
decomposition), and define yi = Uzi. Since U is a rota-
tion matrix the entries of yi are i.i.d Gaussian variables.
Let λ1, . . . λn be the eigenvalues of A, and assume that
λ1, . . . , λr are negative and λr+1, . . . , λn are positive. No-
tice that GM = 1

M

∑M
i=1

∑n
j=1

λjy
2
ij where yij is the j’th

entry of yi. Let us write τ+ =
∑n

j=r+1
λj and G+

M =
∑M

i=1

∑n
j=r+1

λiy
2
ij . We will show that if M ≥ 12ǫ−2ρ(A)2 ln(4/δ)

we have

Pr
(
∣

∣G+

M − τ+

∣

∣ ≤ ǫτ+/ρ(A)
)

≥ 1− δ/2 .

The bound will be proved using a Chernoff-style argu-
ment. Since yij is standard normal then

∑M
i=1

y2
ij ∼ χ2(M).

Therefore, the moment generating function of Z = MG+

M is

mZ(t) = E(exp(tZ))

=
n
∏

i=r+1

(1− 2λit)
−M/2

= (1− 2τ+t + h(t))−M/2 (1)

where

h(t) =

n
∑

s=2

(−2)sts
∑

S ⊆ Λ+(A)
|S| = s

∏

x∈S

x



as long as |λit| ≤ 1

2
(Λ+(A) is the set of positive eigenvalues

of A).
It is easy to see if x1, . . . , xn is a set of non-negative real

numbers. For all i = 1, . . . , n we have

∑

S ⊆ [n]
|S| = i

∏

j∈S

xj ≤
(

n
∑

i=1

xi

)i

.

Therefore, we can bound

|h(t)| ≤
n
∑

j=2

(2τ+t)j .

Denote ǫ0 = ǫ/ρ(A). Set t = ǫ0/4τ+(1 + ǫ0/2). For i =
r +1, . . . , n we have λit ≤ 1

2
so (1) is the correct formula for

mZ(t). We have

|h(t)| ≤
n
∑

j=2

(

ǫ0
2(1 + ǫ0/2)

)j

≤ ǫ20
4(1 + ǫ0/2)

.

Markov’s inequality asserts that

Pr
(

G+

M ≥ τ+(1 + ǫ0)
)

= Pr (Z ≥ τ+M(1 + ǫ0)) .

≤ mZ(t) exp(−τ+M(1 + ǫ0)t)

≤ (1− ǫ0/2 (1 + ǫ0/2)

−ǫ20/4(1 + ǫ0/2))−M/2

· exp(−M · ǫ0
2
· 1 + ǫ0
1 + ǫ0/2

)

= exp(−M

2
(ln(1− ǫ0/2)

+
ǫ0
2
· 1 + ǫ0
1 + ǫ0/2

))

≤ exp(−Mǫ20/20)

for ǫ0 ≤ 0.1. We find that if
M ≥ 20ǫ−2

0 ln(4/δ) = 20ǫ−2ρ(A)2 ln(4/δ) then
Pr
(

G+

M ≤ τ+(1 + ǫ/ρ(A))
)

≤ δ/4. Using the same tech-
nique a lower bound can be shown.

Similarly we can show that if τ− =
∑r

j=1
λj and G−

M =
∑M

i=1

∑r
j=1

λiy
2
ij then

Pr
(
∣

∣G−
M − τ−

∣

∣ ≤ ǫ|τ−|/ρ(A)
)

≥ 1− δ/2 .

With probability of at least 1− δ both events happen. Since
GM = G+

M +G−
M and trace(A) = τ++τ− if both event occur

we have

|GM − trace(A)| ≤ |G+

M − τ+|+ |G−
M − τ−|

≤ ǫ

ρ(A)
(τ+ + |τ−|)

=
ǫ

ρ(A)

n
∑

i=1

|λi|

= ǫ trace(A) .

Proof. (of Theorem 1) If we set γ = 20ǫ−2C2 ln(4/δ) we
find that M = 20ǫ−2C2 log2 |V | ln(4/δ). Since we assume

that ρ(G) ≤ C log |V | and ρ(G) = ρ(A3) we find that M ≥
20ǫ−2ρ(G)2 ln(4/δ) so according to lemma 4 GM is an (ǫ, δ)
approximator. Algorithm 1 returns GM/6 which is an (ǫ, δ)
approximator to △(G).

The running time of every iteration (line 4-6) is O(#nnz(A)) =
O(|E|) and there are O(log2 |V |) iterations, so overall run-
ning time is O(|E| log2 |V |). Except for the memory needed
to store the adjacency matrix three vectors have to be kept
in memory (x, y and Ay) so O(|V |) space is need in addition
to the space required to store the matrix.

4. USING RADEMACHER VARIABLES
We now propose another variant of TraceTriangle, which

is called TraceTriangleR. In this variant we replace the
standard normal distribution with the Rademacher distri-
bution. That is, in line 4 of Algorithm 1 xi is ±1 with equal
probability.

There are two reasons why this change makes sense. By
using vectors composed of i.i.d Rademacher variables we are
using the Hutchinson estimator which has a smaller variance
then the Gaussian estimator (compare lemma 2 to lemma 3).
The second reason is related to implementation. It is more
expensive to generate samples from a standard normal dis-
tribution then it is to generate samples from the Rademacher
distribution. Furthermore, in some settings, for example a
database setting, implementing TraceTriangleN can be
non-trivial, while working with ±1 is much easier [1]. The
following lemma analyzes convergence of Hutchinson’s esti-
mator. We omit the proof, and refer the reader to [5] for
analysis of the positive definite case.

Definition 3. An Hutchinson trace estimator for a sym-
metric matrix A ∈ R

n×n is

HM =
n

M

M
∑

i=1

zT
i Azi ,

where the zi’s are M independent random vectors whose en-
tries are i.i.d Rademacher random variables

Lemma 5. Let δ > 0 be a failure probability and let ǫ > 0
be a relative error For M ≥ 6ǫ−2ρ(A)2 ln(2 rank(A)/δ), the
Hutchinson trace estimator HM of a symmetric matrix A ∈
R

n×n satisfies

Pr (|HM − trace(A)| ≤ ǫ |trace(A)|) ≥ 1− δ .

Unfortunately, our current convergence bounds on Huthchin-
son’s estimator introduce a new factor of O(log n) to the
number of samples required. The experiments reported in
Section 6 show that in practice Hutchinson’s estimator is
comparable to using a Gaussian estimator when the same
number of samples is used (this may indicate that the bounds
are weak), so we do not actually increase the number of sam-
ples.

5. REDUCING RANDOMNESS
Our third variant, which is called TraceTriangleM, is

designed to reduce the amount of randomness used by the
algorithm. Although reducing randomness has some theo-
retical interest, in our case there is also a practical interest.
The previous variants of TraceTriangle required Θ(|V |)
random bits per sample. This is too many bits to gen-
erate and store before the Monte-Carlo tests. Therefore,



in a parallel implementation all processors will need access
to the pseudo-random number generator, incurring synchro-
nization costs. TraceTriangleM uses only O(log |V |) ran-
dom bits per sample, so all random bits can be generated in
advance. A preprocessing step required an additional O(|V |)
random bits, so the overall cost is O(|V |+M · log |V |). This
is obviously less than O(M · |V |) required by the previous
variants of TraceTriangle. The reduction in randomness
does not come without a price, at least from a theoretical
standpoint: an additional factor of O(log2 |V |) samples is
required. The experiments reported in Section 6 show that
the estimator used by TraceTriangleM is comparable to
using a Gaussian estimator when the same number of sam-
ples is used (this may indicate that the bounds are weak),
so we do not actually increase the number of samples.

Our algorithm and its analysis are based on the following
two ideas. The first idea is to restrict the sample vectors
to a small sample space (O(|V |) instead of O(2|V |)). More
specifically we use unit vectors ej as sample vectors. By re-
ducing the size of the sample space to O(|V |) we are able
to form a sample with only O(log |V |) bits. The quadratic
forms eT

j Aej are simply the diagonal elements Ajj , so the

expectation of eT
j Aej is clearly trace(A)/n. In contrast to

previous variants, these quadratic forms do not depend in
any way on the off-diagonal elements of A, only on the diago-
nal elements. The next lemma formalizes these observations.
We omit the proof.

Lemma 6. Let A be an n×n symmetric matrix. Let j be
a uniform random integer between 1 and n, and let z = ej

be the j’th unit vector. nzT Az is an unbiased estimator
of trace(A) i.e., E(nzT Az) = trace(A) and Var(nzT Az) =
n
∑n

i=1
A2

ii − trace2(A).

The second idea is to not compute the trace of A3, but the
trace of FA3FT where F is a unitary matrix. It is based on
a simple consequence of lemma 1: we are free to manipulate
the adjacency matrix using unitary transformations since
they preserve eigenvalues. More specifically for any unitary
matrix F we have △(G) = 1

6
trace(FA3FT ).

We construct F using a randomized algorithm that guar-
antees with high probability a relatively flat distribution of
the diagonal elements of FA3FT . More precisely, we con-
struct F in a way that attempts to flatten the distribution
of all the elements of FA3FT , not just its diagonal elements.
Our construction of F is the same as the one used in [2] to
flatten entries of vectors.

Definition 4. A random mixing matrix is F = FD,
where F and D be n-by-n unitary matrices, and where D is
diagonal matrix with diagonal entries that are i.i.d Rademacher
random variables (Pr(Dii = ±1) = 1/2).

The mixing matrix F is the product of two unitary matrices,
a seed matrix F and a matrix D with ±1 on the diagonal,
so F is unitary. For F to be a good mixing matrix the
value of η = max |Fij |2 must be small. The following lemma
shows this. We omit the proof, and refer the reader to [5]
for analysis of the positive definite case.

Definition 5. A random mixed trace estimator for a
symmetric matrix A ∈ R

n×n is

DM =
n

M

M
∑

i=1

zT
i FAFT zi ,

Algorithm 2 TraceTriangleM

△=TraceTriangleM(G, undirected graph with n nodes)
⊲ parameter: γ (see Section 3).

1. Form the adjacency matrix A ∈ R
n×n.

2. Form D, an n× n diagonal matrix with equal
probability ±1 diagonal values.

3. M =
⌈

γ ln2 n
⌉

4. Do M times, possibly in parallel
5. Assign to j a random integer drawn from 1, . . . , n

with uniform distribution.
6. Form the vector x = (xk) be defined by

xk =

{

√

1/n j = 1
√

2/n cos
[

π
(

k + 1

2

)

j/n
]

j 6= 1

(k = 0, . . . , n− 1)
7. y ←− ADx
8. Ti ←− n(yT Ay)/6,

where i is the index of the do loop
9. end
10. △←− 1

M

∑M
i=1

Ti

where the zi’s are M independent uniform random samples
from {e1, . . . , en}, and F is a random mixing matrix with
max |Fij |2 ≤ 2/n.

Remark 1. Notice that the matrix F is random, but is
drawn only once. So in computing a single sample of DM

it the random mixing matrix F incurs a single cost of n
random bits.

Lemma 7. Let δ > 0 be a failure probability and let ǫ > 0
be a relative error. For M ≥ 8ǫ−2ρ(A)2 ln(4/δ) ln2(4n2/δ),
the random mixed trace estimator DM of a symmetric matrix
A ∈ R

n×n satisfies

Pr (|DM − trace(A)| ≤ ǫ |trace(A)|) ≥ 1− δ .

The are a few possibilities for F . The minimal value of η
for a unitary F is 1/n. A normalized DFT matrix achieves
the minimum, but applying it requires complex arithmetic.
A normalized Hadamard matrix also achieves the minimum
and its entries are real. However, Hadamard matrices do
not exist for all dimensions, so they are more difficult to
use (they require padding). The Discrete Cosine Transform
(DCT) and the Discrete Hartley Transform (DHT), which
are real, exist for any dimension, and can be applied quickly,
but their η value is 2/n, twice as large as that of the DFT and
the Hadamard. All are valid choices. The decision should
be based on the implementation cost of computing columns
of F and applying DADT to them versus the value of η. In
TraceTriangleM we use the DCT matrix. The pseudo-
code for the algorithm is given in Algorithm 2. Line 6 is an
explicit formula for the rows of the DCT matrix.

6. EXPERIMENTS
We experimented with all three variants of TraceTrian-

gle . This section reports the results of these experiments.

6.1 Experimental Setup
We compared a sequential implementation of TraceTri-

angle, to EigenTriangle [23], the current state-of-the-art



sequential algorithm. Our algorithm was implemented in C.
EigenTriangle is implemented using matlab’s eigs func-
tion. eigs is, essentially, a matlab interface to arpack1,
which is implemented in Fortran77. EigenTriangle re-
ceives as a parameter the number of eigenvalues to compute.
There is no a-priori way to determine how many eigenval-
ues are needed, nor is it efficient to compute some and then
compute the rest. We therefore used a fixed value of 20
eigenvalues in our experiments.

Running times were measured on a machine with an In-
tel Core2 6400 CPU (we used only one core) running at
2.13 GHz with 4 GB of memory. The measured running
times are wall-clock times that were measured using the
ftime Linux system call.

The test graphs are listed in Table 2. All graphs except
the AS-Oregon one are available from public data-sets. Each
directed graph was converted into an undirected graph by
ignoring the direction of the edges. Multiple edges and self-
loops were removed.

6.2 Results
The goal of the first set of experiments was to compare

the accuracy of different variants of TraceTriangle, and
to compare them, in terms of accuracy, to EigenTriangle.
For each graph we ran 100 experiments with various val-
ues of γ (100 runs for each value of γ). From the results we
found the lowest value of γ that gives acceptable results. Ta-
ble 3 shows the number of runs with error below 5% and the
number of runs with error below 10% for all three variants
of TraceTriangle. All variants of TraceTriangle act
similarly. TraceTriangleR is faster than other variants
(experiments not reported) so we chose it as the variant to
use in all other experiments.

Table 4 show additional statistics: the mean of the ab-
solute error (in percents), the maximum absolute error (in
percents), the number of runs with error below 5% and the
number of runs with error below 10%.

Except from two graph (Web-Stanford and WikiNov2005)
we were able to obtain results that are usually relatively ac-
curate with γ ≤ 4. A clear majority of the experiments re-
sulted in an error of less than 10% and a majority resulted
in error less than 5%. The maximum error is sometimes
quite large (∼ 20%) but this is not the typical case. For
small web graphs (Web-Stanford and WikiNov2005) Trace-
Triangle seem to converge slowly. Notice that Wikipedia
graphs are larger when the date is later, while better accu-
racy is achieved when the date progresses. This supports
our choice to use a sample size of O(log2 |V |): in seems that
ρ(G) does not grow too quickly.

The two rightmost columns of Table 4 show the deter-
ministic error size of EigenTriangle. The column labeled
“20 eigenvalues” shows the error of EigenTriangle with
20 eigenvalues. In the rightmost time we allow EigenTri-
angle to find as many eigenvalues as possible when it is
given a running time that is about equal to TraceTrian-
gle, and always larger than TraceTrinagle. The equal
time configuration was chosen to avoid needlessly penaliz-
ing EigenTriangle, as one might claim that as the graph
grows the number of eigenvalues that should be computed
should grow as well. We notice that TraceTriangle is
consistently more accurate than EigenTriangle.

1http://www.caam.rice.edu/software/ARPACK/

The results in Table 4 can be used to get some rule-of-
thumb values for γ based on the graph type. For example,
collaborations/citations graph tend to work with low values
of γ (one or two), while web graphs, like the Wikipedia,
require high values of γ. Arguably, the parameter that
changes the most between different graphs is the value of
ρ(G). Different graph types have different typical values
for ρ(G). For collaboration/citations graphs γ = 1 − 2
seems adequate, for social networks γ = 3 and for large
web graphs/communications networks γ = 4.

The second set of experiments we compares the running
time ofTraceTriangleR to EigenTriangle. Both algo-
rithms are deterministic in their running time, so only one
run was necessary. Figure 2 shows the speedup (or slow-
down) of TraceTriangleR with respect to EigenTrian-
gle. We see that for smaller graphs TraceTriangleR is
faster than EigenTriangle, sometimes with a large factor.
For the Wikipedia graphs, which were the largest graphs in
our test set, EigenTriangle was three times faster than
TraceTriangleR. On the other hand, on the Wikipedia
matrices EigenTriangle was not accurate. Furthermore,
the ability to parallelize EigenTriangle is very limited,
while TraceTriangleR parallelizes well. We expect
TraceTriangleR to scale much better with respect to the
number of compute cores, therefore eliminating any running
time advantage of EigenTriangle.

Fixing the number of eigenvalues computed implies that
the number of matrix-vector multiplication done by Eigen-
Triangle grows very slowly. This explains why when the
graph get larger EigenTriangle is faster than TraceTri-
angle. On the other hand as the graph get larger one can
argue that more eigenvalue should be computed. In Figure 1
compare the accuracy-runtime tradeoff of
TraceTriangleR and EigenTriangle. We plot the accu-
racy of both algorithms for different running times. Eigen-
Triangle is deterministic and its data points are based on
a single runs with different #eigenvalues values. Trace-
Triangle is randomized, so for different values of γ we ran
the algorithm 100 times and computed the mean absolute
error. We see that TraceTriangle error is monotonically
decreasing. EigenTriangle’s error is not always mono-
tonic, and is always higher than TraceTriangle’s error.
We note that currently there is no guideline for the number
of eigenvalue in EigenTriangle (and this limits our ability
to compare running time).

6.3 DOULION sparsification
Doulion [25] is an algorithm designed to accelerate trian-

gle counting algorithms by randomly keeping only a small
fraction of the edges. Doulion’s authors suggest to use
doulion with any triangle counting algorithm, so we tested
doulion with TraceTriangle. The potential benefits for
TraceTriangle are clear. If an edge is kept with probabil-
ity p the expected number of edges after the sparsification
is p|E|. Therefore, TraceTriangle is expected to speedup
by roughly 1/p.

The main problem in using doulion is that it changes
the triangle sparsity. Every approximate counting algorithm
must depend in some way on the triangle sparsity. In Trace-
Triangle the accuracy depends on ρ(G) whose bound is
expected to grow after sparsification. Other algorithms suf-
fer from the same problem. Schank et al. method [21], for



Table 2: Graphs used for the experiments

Graph Vertices Edges Source Description

Arxiv-HEP-th 27, 240 341, 923 UF Sparse Matrix Collection
2
, matrix 1502 Arxiv High Energy Physics paper

citation network

CA-AstroPh 18, 772 198, 050 SNAP Network Data Repository
3
, ’ca-AstroPh’

matrix

Arxiv Astro Physics collaboration

network

CA-GrQc 5, 242 14, 484 SNAP Network Data Repository, ’ca-GrQc’

matrix

Arxiv GR-QC General Relativity

and Quantum Cosmology

collaboration network

Epinions 75, 879 405, 740 SNAP Network Data Repository, ’soc-Epinions1’

matrix

Who-trusts-whom network of

Epinions.com

Slashdot0811 77, 360 469, 180 SNAP Network Data Repository,

’soc-Slashdot0811’ matrix

Slashdot social network from

November 2008

wiki-vote 7, 115 100, 762 SNAP Network Data Repository, ’wiki-vote’

matrix

Wikipedia who-votes-on-whom

network

email-EuAll 265, 214 364, 481 SNAP Network Data Repository, ’email-EuAll’

matrix

Email network from a EU research

institution

AS Oregon 13, 579 37, 448 Courtesy of Charalampos Tsourakakis AS Oregon

Web-Stanford 281, 903 1, 992, 636 SNAP Network Data Repository, ’web-Stanford’

matrix

Web graph of stanford.edu

WikiNov2005 1, 634, 989 18, 549, 197 UF Sparse Matrix Collection, matrix 1843 Wikipedia graph, Nov 11, 2005

WikiSep2006 2, 983, 494 35, 048, 116 UF Sparse Matrix Collection, matrix 1844 Wikipedia graph, Sep 25, 2006

WikiNov2006 3, 148, 440 37, 043, 458 UF Sparse Matrix Collection, matrix 1845 Wikipedia graph, Nov 4, 2006

WikiFeb2007 3, 566, 907 42, 375, 912 UF Sparse Matrix Collection, matrix 1846 Wikipedia graph, Feb 6, 2007

Table 3: Comparison between different variants of TraceTriangle, based on 100 runs. The “% err < 5%” and
“% err < 10%” show the percent of cases for which the error was smaller than 5% and 10%.

TraceTriangleN TraceTriangleR TraceTriangleM

Graph γ % err < 5% % err < 10% % err < 5% % err < 10% % err < 5% % err < 10%

Arxiv-HEP-th 1 85% 100% 85% 100% 90% 100%
CA-AstroPh 1 98% 100% 98% 100% 100% 100%
CA-GrQc 2 70% 97% 77% 98% 72% 96%
Epinions 3 63% 95% 60% 94% 73% 96%
Slashdot0811 3 61% 91% 62% 95% 66% 95%
wiki-vote 3 51% 86% 52% 86% 52% 86%
email-EuAll 4 52% 81% 54% 85% 64% 93%
AS Oregon 4 45% 79% 39% 81% 53% 84%
Web-Stanford 3 36% 68% 40% 70% 36% 61%
WikiNov2005 4 34% 62% 34% 67% 33% 62%
WikiSep2006 4 58% 87% 69% 91% 57% 94%
WikiNov2006 4 65% 91% 58% 95% 62% 92%
WikiFeb2007 4 68% 97% 69% 99% 64% 95%



Table 4: Accuracy on various data sets, based on 100 runs of TraceTriangleR and a two (deterministic) runs
of EigenTriangle: with 20 eigenvalues, and with running time equal to TraceTriangle. The “% err < 5%” and
“% err < 10%” show the percent of cases for which the error was smaller than 5% and 10%.

Graph γ mean abs error max abs error % err < 5% % err < 10% EigenTriangle

20 eigenvalue

EigenTriangle

' time

Arxiv-HEP-th 1 2.7% 6.7% 85% 100% 41% 75%

CA-AstroPh 1 1.6% 6.5% 98% 100% 47% 84%

CA-GrQc 2 3.2% 11.5% 77% 98% 12% 48%

Epinions 3 4.6% 12.3% 60% 94% 6.2% 9.6%

Slashdot0811 3 4.5% 16.0% 62% 95% 2.9% 3.1%

wiki-vote 3 5.6% 19.0% 52% 86% 1.9% 0.9%

email-EuAll 4 5.6% 22.4% 54% 85% 17% 16%

AS Oregon 4 6.5% 16.3% 39% 81% 1.5% 9.7%

Web-Stanford 3 7.9% 24.9% 40% 70% 28% 26%

WikiNov2005 4 8.7% 28.3% 34% 67% 49% 42%

WikiSep2006 4 4.1% 14.0% 69% 91% 54% 44%

WikiNov2006 4 4.4% 13.9% 58% 95% 54% 44%

WikiFeb2007 4 4.0% 11.3% 69% 99% 55% 48%

Figure 1: Closer inspection of the accuracy of Trace-
Triangle vs. EigenTriangle on WikiSep2006. We
varied EigenTriangle’s #eigenvalues parameter and
TraceTriangle’s γ parameter.
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Figure 2: Speedup of TraceTriangleR with respect
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Table 5: Results involving TraceTriangle with
doulion sparsification. Error is the mean of 10 runs
for 10 different sparsifications.

Graph p mean error speedup

CA-AstroPh 0.1 6.2% 3.5

Slashdot0811 0.2 12.5% 2.3

WikiNov2006 0.2 16.7% 4.2

example, requires Θ(T0+T1+T2

T3
) samples. After the sparsifi-

cation the numerator grows and the denominator shrinks.
Table 5 shows the results for three matrices. In one case,

triangle density was high enough after sparsification to still
yield reasonable results. In other graphs triangle sparsity
was too high and results are of low quality. Speedup is
achieved at the cost of accuracy. We conclude that in order
to effectively use graph sparsification in approximate trian-
gle counting the sparsification algorithm must somehow keep
the triangle sparsity close to the original. This is a feature
that doulion lacks. We currently are not aware of any such
algorithm and leave this issue for future research.

7. CONCLUSIONS
We have presented an embarrassingly parallel algorithm

for approximating the number of triangles in a graph. We
showed that given sufficient triangle density our algorithm
gives a good estimate to the number of triangles with high
probability. We also showed that for real-life graphs encoun-
tered in graph-mining applications our algorithm approxi-
mates the number of triangles well. An interesting feature
of our algorithm is the use of a randomized numerical linear
algebra algorithm to solve a combinatorial problem. Our
main contributions are:

• The new triangle counting algorithm and its theoreti-
cal analysis.

• Experiments on large graphs with several millions of
vertices and edges.
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