

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. MATRIX ANAL. APPL. c© 2009 Society for Industrial and Applied Mathematics
Vol. 31, No. 2, pp. 694–720

COMBINATORIAL PRECONDITIONERS FOR SCALAR ELLIPTIC
FINITE-ELEMENT PROBLEMS∗

HAIM AVRON† , DORON CHEN‡ , GIL SHKLARSKI† , AND SIVAN TOLEDO§

Abstract. We present a new preconditioner for linear systems arising from finite-element dis-
cretizations of scalar elliptic partial differential equations (PDE’s). The solver splits the collection
{Ke} of element matrices into a subset of matrices that are approximable by diagonally dominant
matrices and a subset of matrices that are not approximable. The approximable Ke’s are approxi-
mated by diagonally dominant matrices Le’s that are assembled to form a global diagonally dominant
matrix L. A combinatorial graph algorithm then approximates L by another diagonally dominant
matrix M that is easier to factor. Finally, M is added to the inapproximable elements to form the
preconditioner, which is then factored. When all the element matrices are approximable, which is
often the case, the preconditioner is provably efficient. Approximating element matrices by diago-
nally dominant ones is not a new idea, but we present a new approximation method which is both
efficient and provably good. The splitting idea is simple and natural in the context of combinatorial
preconditioners, but hard to exploit in other preconditioning paradigms. Experimental results show
that on problems in which some of the Ke’s are ill conditioned, our new preconditioner is more ef-
fective than an algebraic multigrid solver, than an incomplete-factorization preconditioner, and than
a direct solver.

Key words. preconditioning, finite elements, support preconditioners, combinatorial pre-
conditioners

AMS subject classifications. 65Y20, 65N22, 65F10

DOI. 10.1137/060675940

1. Introduction. Symmetric semidefinite matrices that are diagonally domi-
nant are relatively easy to precondition. This observation has led two groups of
researchers to propose linear solvers that are based on element-by-element approxi-
mation of a given coefficient matrix by a diagonally dominant matrix. The diagonally
dominant approximation is then used to construct a preconditioner, which is applied
to the original problem. Before we describe their proposals and our new contributions,
however, we describe the formulation of the problem.

These existing techniques, as well as our new algorithm, use a given finite-element
discretization of the following problem: Find u : Ω −→ R satisfying

(1.1)
∇ · (θ(z)∇u) = −f on Ω

u = u0 on Γ1 ,
θ(z)∂u/∂n = g on Γ2 .

The domain Ω is a bounded open set of Rd and Γ1 and Γ2 form a partition of the
boundary of Ω. The conductivity θ is a spatially varying d-by-d symmetric positive

∗Received by the editors November 27, 2006; accepted for publication (in revised form) by E. Ng
July 17, 2008; published electronically June 17, 2009. This research was supported by an IBM
Faculty Partnership Award, by grant 848/04 from the Israel Science Foundation (founded by the
Israel Academy of Sciences and Humanities), and by grant 2002261 from the United-States–Israel
Binational Science Foundation.

http://www.siam.org/journals/simax/31-2/67594.html
†Blavatnik School of Computer Science, Raymond and Beverly Sackler Faculty of Exact Sciences,

Tel-Aviv University, Tel-Aviv 69978, Israel (haima@tau.ac.il, shagil@tau.ac.il).
‡IBM Haifa Research Lab, Tel-Aviv Site, Israel (cdoron@il.ibm.com).
§Blavatnik School of Computer Science, Raymond and Beverly Sackler Faculty of Exact Sciences,

Tel-Aviv University, Tel-Aviv 69978, Israel and MIT Computer Science and Artificial Intelligence
Laboratory, Cambridge, MA 02139 (stoledo@tau.ac.il).

694

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COMBINATORIAL PRECONDITIONERS FOR FINITE ELEMENTS 695

definite matrix, f is a scalar forcing function, u0 is a Dirichlet boundary condition,
and g is a Neumann boundary condition.

We assume that the discretization of (1.1) leads to an algebraic system of equa-
tions

Kx = b .

The matrix K ∈ Rn×n is called a stiffness matrix, and it is a sum of element matrices,
K =

∑
e∈E Ke. Each element matrix Ke corresponds to a subset of Ω called a finite

element. The elements are disjoint except perhaps for their boundaries and their union
is Ω. We assume that each element matrix Ke is symmetric, positive semidefinite,
and zero outside a small set of ne rows and columns. In most cases ne is uniformly
bounded by a small integer (in our experiments ne is 4 or 10). We denote the set of
nonzero rows and columns of Ke by Ne.

For the problem (1.1), all the element matrices are singular with rank ne − 1 and
null vector

[
1 1 · · · 1

]T . This is a key aspect of techniques for approximating
element matrices by diagonally dominant ones: the methods only works when element
matrices are either nonsingular or are singular with rank ne − 1 and null vector[
1 1 · · · 1

]T .
Reitzinger and his collaborators were the first to propose element-by-element ap-

proximation by symmetric and diagonally dominant (SDD) matrices [22, 37, 28]. They
proposed two element-approximation techniques. In one technique, the approximation
problem is formulated as an optimization problem, in which one tries to minimize the
generalized condition number of a given element matrix Ke and an SDD matrix Le;
a generic optimization algorithm is then used to find Le. The second technique uses
symbolic algebra to formulate the approximation problem, and uses symbolic-algebra
algorithms to find Le. Both methods are quite expensive and slow. A row or a column
that is zero in Ke is also zero in Le, so the Le’s are also very sparse. Once the Le’s
are found, they are assembled. When all the Le’s are SDD, their sum L is also SDD.
The matrix L is then used to construct an algebraic multigrid solver, which is used
as a preconditioner for K.

Boman, Hendrickson, and Vavasis proposed a different element-by-element ap-
proximation technique [10]. They used geometric information about the elements and
the values of θ to directly construct Le. The approximation algorithm is inexpensive.
They show that under certain conditions on the continuous problem and on the finite-
element mesh, the approximations are all good. They proposed to use L to construct
a combinatorial preconditioner rather then apply multigrid to L. This proposal was
based on the observation that over the last decade, several provably good combina-
torial graph algorithms for constructing preconditioners for SDD matrices have been
developed [46, 21, 20, 7, 43, 44, 18, 45, 29]. Some of them, as well as some combina-
torial heuristics, have been shown to be effective in practice [15, 25, 36, 38, 19, 35].

In this paper, we extend this paradigm in two ways. First, we propose a novel,
effective, and purely algebraic method for approximating an element matrix Ke by an
SDD matrix Le. Our approximation algorithm is relatively inexpensive and provably
good: the spectral distance between Ke and Le is within a n2

e/2 factor of the best
possible for an SDD approximation of Ke, where ne is the number of nonzero rows
and columns in Ke. In particular, this means that our algorithm produces good ap-
proximations whenever the algorithm of Boman et al. does. Furthermore, there exist
element matrices that are ill conditioned and that are far from diagonal dominance
(in the sense that a small perturbation of their entries cannot make them diagonally
dominant), which our algorithm approximates well.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

696 H. AVRON, D. CHEN, G. SHKLARSKI, AND S. TOLEDO

Vavasis has shown [49] that some of the results in this paper can be used to find
an optimal approximation of an element matrix Ke by an SDD matrix Le. Since
his method is computationally expensive, it is not clear if it is effective in a prac-
tical solver. Our code uses our provably good, cheap to compute, but suboptimal
approximation instead.

Our second contribution to this paradigm is a technique to handle problems in
which some of the element matrices cannot be well approximated by SDD matrices.
This may arise because of anisotropy in θ, or because of ill-shaped elements, for
example. Our algorithm splits the elements into two sets: the set E(t) in which Le is
a good approximation of Ke, and the rest (where t is a parameter that determines how
good we require approximations to be). We then scale and assemble the good element-
by-element approximations to form L =

∑
e∈E(t) αeLe. Next, we use a combinatorial

graph algorithm to construct an easy-to-factor approximation M of L. Finally, we
scale M and add γM to the inapproximable elements to form γM +

∑
e�∈E(t) Ke. We

factor this matrix and use it as a factored preconditioner for K =
∑

e Ke.
The splitting idea is simple, but there is no easy way to exploit it in most pre-

conditioning paradigms. In Reitzinger’s method, for example, one could build an
algebraic multigrid solver for L =

∑
e∈E(t) αeLe, but how would one incorporate the

inapproximable elements into this solver? There is no obvious way to do this. An
algebraic multigrid solver for γM +

∑
e�∈E(t) Ke is unlikely to be much better as a

preconditioner than an algebraic multigrid solver for K, because γM +
∑

e�∈E(t) Ke is
far from diagonal dominance unless all the elements are approximable.

The reason that the splitting idea works well with combinatorial preconditioners is
that combinatorial preconditioning algorithms sparsify the SDD matrix L that is given
to them as input. The sparsification makes the Cholesky factorization of the sparsified
M much cheaper and sparser than the factorization of L. If most of the elements are
approximable, adding

∑
e�∈E(t) Ke to γM is likely to yield a preconditioner that is

still cheap to factor.
Once the Cholesky factor of the preconditioners is computed, we use it in a

preconditioned symmetric Krylov-subspace solver such as conjugate gradients [17, 24],
symmlq, or minres [33]. For most of the combinatorial algorithms that we can use
to construct M , it is possible to show that the preconditioner is spectrally close to
K. The spectral bounds give a bound on the number of iterations that the Krylov-
subspace algorithm performs.

Experimental results that explore the performance and behavior of our solver
show that the solver is highly reliable. In particular, on some problems other solvers,
including an algebraic-multigrid solver and an incomplete Cholesky solver, either fail
or are very slow; our solver handles these problems without difficulty.

The rest of the paper is organized as follows. Section 2 presents our element-
approximation method. The scaling of the element-by-element approximation is pre-
sented in section 3. The combinatorial sparsification phase is described in section 4,
and the handling of inapproximable elements in section 5. The costs associated with
the different phases of the solver are described in section 6. Experimental results are
presented in section 7. We mention some open problems that this research raises in
section 8.

2. Nearly optimal element-by-element approximations. In this section we
show how to compute a nearly optimal SDD approximation Le to a given symmetric
positive semidefinite matrix Ke that is either nonsingular or has a null space consisting
only of the constant vector.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COMBINATORIAL PRECONDITIONERS FOR FINITE ELEMENTS 697

2.1. Defining the problem. Let S be a linear subspace of Rn (the results of
this section also apply to Cn, but we use Rn in order to keep the discussion concrete).
We denote by RS ⊆ Rn×n the set of symmetric positive (semi)definite matrices whose
null space is exactly S.

Definition 2.1. Given two matrices A and B in RS, a finite generalized eigen-
value λ of (A, B) is a scalar satisfying Ax = λBx for some x �∈ S. The generalized
finite spectrum Λ(A, B) is the set of finite generalized eigenvalues of (A, B), and the
generalized condition number κ(A, B) is

κ(A, B) =
maxΛ(A, B)
min Λ(A, B)

.

(This definition can be generalized to the case of different null spaces, but this
is irrelevant for this paper.) We informally refer to κ(A, B) as the spectral distance
between A and B.

We refer to the following optimization problem as the optimal symmetric semidef-
inite approximation problem.

Problem 2.2. Let A be a symmetric positive (semi)definite matrix with null
space S and let B1, B2, . . . , Bm be rank-1 symmetric positive semidefinite matrices.
Find coefficients d1, d2, . . . , dm that minimize the generalized condition number of A
and

Bopt =
m∑

j=1

d2
jBj

under the constraint null(Bopt) = null(A), or decide that the null spaces cannot match
under any dj’s. We can assume without loss of generality that all the Bj’s have unit
norm.

A slightly different representation of the problem is useful for characterizing the
optimal solution. Let Bj = ZjZ

T
j , where Zj is a column vector. Let Z be an n-by-m

matrix whose columns are the Zj ’s. Then

m∑
j=1

d2
jBj =

m∑
j=1

d2
jZjZ

T
j = ZDDT ZT

where D is the m-by-m diagonal matrix with dj as its jth diagonal element. This
yields an equivalent formulation of the optimal symmetric semidefinite approximation
problem.

Problem 2.3. Given a symmetric positive (semi)definite n-by-n matrix A with
null space S and an n-by-m matrix Z, find an m-by-m diagonal matrix D such that
null(ZDDT ZT) = S and that minimizes the generalized condition number
κ(A, ZDDT ZT), or report that no such D exists.

We are interested in cases where range(Z) = range(A), where the problem is
clearly feasible.

Vavasis has pointed out [49] that minimizing κ(ZT DT DZ, A) is equivalent to
finding a diagonal nonnegative matrix S that minimizes maxΛ(ZT SZ, A) such that
min Λ(ZT SZ, A) ≥ 1, and taking D = S1/2. He showed that this optimization prob-
lem can be solved as a convex semidefinite programming problem: find the min-
imum t and the corresponding S for which the constraints min Λ(tA, ZT SZ) ≥ 1
and min Λ(ZT SZ, A) ≥ 1 can be satisfied simultaneously. Convex semidefinite pro-
gramming problems can be solved in polynomial time. An algorithm based on this

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

698 H. AVRON, D. CHEN, G. SHKLARSKI, AND S. TOLEDO

observation can find an optimal SDD approximation, but applying it might be costly.
We have decided to pursue a different direction by finding a suboptimal but provably
good approximation using a fast and simple algorithm.

2.2. From generalized condition numbers to condition numbers. The
main tool that we use to find nearly optimal solutions to Problem (2.2) is a reduction
of the problem to the well-studied problem of scaling the columns of a matrix to
minimize its condition number.

Definition 2.4. Given a matrix A, let σmax be the largest singular value of A
and σmin be the smallest nonzero singular value of A. The condition number of A is
κ(A) = σmax/σmin. If A ∈ RS, then κ(A) = κ(A, P⊥S), where P⊥S is the orthogonal
projector onto the subspace orthogonal to S.

The following lemma, which is a generalization of [9, Theorem 4.5], is the key to
the characterization of Bopt.

Lemma 2.5. Let A = UUT and B = V V T , where U and V are real valued
matrices of order n × m. Assume that A and B are symmetric, positive semidefinite
and null(A) = null(B). We have

Λ (A, B) = Σ2
(
V +U

)
and

Λ (A, B) = Σ−2
(
U+V

)
.

In these expressions, Σ(·) is the set of nonzero singular values of the matrix within the
parentheses, Σ� denotes the same singular values to the 	th power, and V + denotes
the Moore–Penrose pseudoinverse of V .

Proof. Both U and V have n rows, so U+ and V + have n columns. Therefore,
the products V +U and U+V exist. Therefore,

Σ2
(
V +U

)
= Λ

(
V +UUT

(
V +
)T)

= Λ
((

V +
)T

V +UUT
)

= Λ
((

V V T
)+

UUT
)

= Λ
(
B+A

)
.

(Λ(·) denotes the set of eigenvalues of the argument.) For the second line we use the
following observation. If X is n-by-k and Y is k-by-n, then the nonzero eigenvalues
of XY and Y X are the same. The second line follows from this observation for
X = (V +)T and Y = V +UUT . The third line follows from the equality

(
XXT

)+ =
(X+)T

X+ for an order n-by-k matrix X [6, Proposition 6.1.6].
It is sufficient to show that Λ (B+A) = Λ(A, B) in order to prove the first part

of the lemma. Let λ ∈ Λ(A, B), then there exists a vector x ⊥ null(B) = null(A),
such that Ax = λBx. Since B is symmetric, x ∈ range(B) = range(BT). Therefore,
B+Ax = λB+Bx = λx. The last equality follows from the fact that B+B is a
projector onto range(BT) [6, Proposition 6.1.6]. Therefore, Λ (B+A) ⊇ Λ(A, B). Let
λ ∈ Λ(B+A), then there exists a vector x, such that B+Ax = λx. Therefore, Ax =
BB+Ax = λBx. The first equality follows from the fact that range(A) = range(B)
and [6, Proposition 6.1.7]. Therefore, Λ (B+A) ⊆ Λ(A, B), which shows the equality.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COMBINATORIAL PRECONDITIONERS FOR FINITE ELEMENTS 699

The second result Λ (A, B) = Σ−2 (U+V) follows from replacing the roles of A and
B in the analysis above and from the equality Λ (A, B) = Λ−1 (B, A). The reversal
yields

Λ (A, B) = Λ−1 (B, A) =
(
Σ2
(
U+V

))−1
= Σ−2

(
U+V

)
.

This lemma shows that Problems (2.2) and (2.3) can be reduced to the problem of
scaling the columns of a single matrix to minimize its condition number. Let A = UUT

and let Z satisfy range(Z) = range(A). (If A is symmetric positive semidefinite but U
is not given, we can compute such a U from the Cholesky factorization of A or from
its eigendecomposition.) According to the lemma,

Λ
(
A, ZDDT ZT

)
= Σ−2

(
U+ZD

)
.

Therefore, minimizing κ(A, ZDDT ZT) is equivalent to minimizing the condition num-
ber κ(U+ZD) under the constraint range(ZD) = range(Z).

The other equality in Lemma 2.5 does not appear to be useful for such a reduction.
According to the equality

Λ
(
A, ZDDT ZT

)
= Σ2

(
(ZD)+U

)
,

but unfortunately, there does not appear to be a way to simplify (ZD)+ U in a way
that makes D appear as a row or column scaling. (Note that in general, (ZD)+ �=
D+Z+.)

The problem of scaling the columns of a matrix to minimize its condition number
has been investigated extensively. Although efficient algorithms for minimizing the
condition number of a rectangular matrix using diagonal scaling do not exist, there is
a simple approximation algorithm. It may be possible to use Vavasis’s algorithm [49]
to solve this problem too, but this is not the concern of this paper.

2.3. Computing the pseudoinverse of a factor of an element matrix.
Before we can find a scaling matrix D, we need to compute U+ from a given element
matrix Ke = UUT and to form U+Z.

We compute U+ in one of two ways. If the input to our solver is an element
matrix Ke with a known null space, we can compute U+ from an eigendecomposition
of Ke. Let Ke = QeΛeQ

T
e be the reduced eigendecomposition of Ke (that is, Qe is

n-by-rank(Ke) and Λe is a rank(Ke)-by-rank(Ke) nonsingular diagonal matrix). We
have Ke = QeΛ

1/2
e (QeΛ

1/2
e)T so we can set U = QeΛ

1/2
e , so U+ = Λ−1/2

e QT
e .

Many finite-element discretization techniques actually generate the element matri-
ces in a factored form. If that is the case, then some symmetric factor F of Ke = FFT

is given to our solver as input. In that case, we compute a reduced singular-value de-
composition SVD of F , F = QeΣeR

T
e , where Σe is square, diagonal, and invertible,

and Re is square and unitary, both of order rank(F). Since

Ke = FFT = QeΣeR
T
e ReΣT

e QT
e = QeΣ2

eQ
T
e

is an eigendecomposition of Ke, we can set U = QeΣe and we have Ke = UUT . In
this case U+ = Σ−1

e QT
e . This method is more accurate when Ke is ill conditioned.

Note that in both cases we do not need to explicitly form U+; both methods
provide a factorization of U+ that we can use to apply it to Z.

Once we form U+Z, our solver searches for a diagonal matrix D that brings the
condition number of U+ZD close to the minimal condition number possible. This

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

700 H. AVRON, D. CHEN, G. SHKLARSKI, AND S. TOLEDO

problem is better understood when U+Z is full rank. Fortunately, in our case it
always is.

Lemma 2.6. Let U be a full rank m-by-n matrix, m ≥ n, and let Z be an m-by-	
matrix with range(Z) = range(U). Then U+Z has full row rank.

Proof. Since range(Z) = range(U), there exists an n-by-l matrix C such that Z =
UC. By definition, rank(Z) ≤ rank(C) ≤ n. Moreover, since range(Z) = range(U)
and U is full rank, we have that n = rank(Z). Therefore, rank(C) = n.

It is sufficient to show that C = U+Z to conclude the proof of the lemma. Since
U is full rank and m ≥ n, the product U+U is the n-by-n identity matrix. Therefore,
U+Z = U+UC = C.

Without the assumption range(Z) = range(U), the matrix U+Z can be rank
deficient even if both U+and Z are full rank.

Example 2.7. Let

U =

⎡
⎣ 2 0
−1 −1
−1 1

⎤
⎦ , Z =

⎡
⎣1 1
1 −1
1 0

⎤
⎦ .

The columns of U are orthogonal, range(Z) �= range(U). This gives

U+ =
[
1/3 −1/6 −1/6
0 −1/2 1/2

]

and

U+Z =
[
0 1/2
0 1/2

]
,

which is clearly not full rank.

2.4. Nearly optimal column scaling. Given a matrix U+Z, we wish to find a
diagonal matrix D that minimizes the condition number of U+ZD, under the assump-
tion range(Z) = range(U), and under the constraint that range(ZD) = range(Z).

To keep the notation simple and consistent with the literature, in this section we
use A to denote U+Z and we use m and n to denote the number of rows and columns
in A = U+Z.

The key result that we need is due to van der Sluis [47], who showed that choosing
D̃ such that all the columns of AD̃ have unit 2-norm brings AD̃ to within a factor
of

√
n of the optimal scaling. Van der Sluis, extending an earlier result of Bauer for

square invertible matrices [4], analyzed the full-rank case.
Given an m-by-n matrix A, m ≥ n, and a nonsingular diagonal D van der Sluis

defined

(2.1) κvdS(AD) =
‖AD‖2

minx �=0 ‖ADx‖2/‖x‖2

(his original definition is not specific to the 2-norm, but this is irrelevant for us). If
A is nonsingular, then κvdS(AD) = κ(AD). He, like Bauer, was interested in finding
the diagonal matrix D that minimizes (2.1). This definition of the problem implicitly
assumes that A is full rank, otherwise κvdS(AD) = ∞ for any nonsingular diagonal
D. Also, if A is full rank, then the minimizing D must give a full-rank AD. If A
has more columns than rows, we can use a complementary result by van der Sluis,
one that uses row scaling on a matrix with more rows than columns. Van der Sluis

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COMBINATORIAL PRECONDITIONERS FOR FINITE ELEMENTS 701

result shows that if the rows of D̃A have unit 2-norm, then κvdS(D̃A) is within a
factor of

√
m of the minimum possible. This gives us the result that we need, because

κvdS(AD) = κvdS(DT AT). Shapiro showed that, in the general case, van der Sluis’s
estimate on κvdS(AD̃) cannot be improved by more than a

√
2 factor [40]. The

following are formal statements of the last two cited results.
Lemma 2.8 (Part of Theorem 3.5 in [47]). Let A be an m-by-n full-rank matrix

and let D̃ be a diagonal matrix such that in D̃A all rows have equal 2-norm. Then
for every diagonal matrix D we have

κvdS(D̃A) ≤ √
mκvdS(DA) .

Lemma 2.9 (Theorem in [40]). For every ε > 0 there exists an n-by-n nonsingu-
lar, real valued matrix A such that if:

1. D̃ is a diagonal matrix such that all the diagonal elements of D̃AT AD̃ are
equal to one, and

2. D is a diagonal matrix such that κ(AD) is minimized,
then

κ
(
AD̃

)
>
(√

n/2 − ε
)

κ(AD) .

As we have shown in Lemma 2.6, that matrix A = U+Z whose columns we need
to scale is full rank, so van der Sluis’s results apply to it.

We note that further progress has been made in this area for square invertible A’s,
but it appears that this progress is not applicable to our application when A = U+Z
is rectangular (which is usually the case). Braatz and Morari showed that for a
square invertible A, the minimum of κ(AD) over all positive diagonal matrices D
can be found by solving a related optimization problem, which is convex [12]. Their
paper states that this result also applies to the rectangular case [12, Remark 2.5];
what they mean by that comment is that the related optimization problem minimizes
‖AD‖2‖D−1A+‖2 [11], whereas we need to minimize κ(AD) = ‖AD‖2‖(AD)+‖2.

2.5. Nearly optimal symmetric diagonally dominant approximations.
We now turn our attention to the matrices that arise as element matrices in finite-
element discretizations of (1.1). Such a matrix Ke has null space that is spanned
by the constant vector and by unit vectors ej for every zero column j of Ke. The
part of the null space that is spanned by the unit vectors is irrelevant, so we assume
that we are dealing with a matrix A whose null space is spanned by constant vector[
1 1 · · · 1

]T .
We wish to approximate a symmetric semidefinite matrix A with this null space

(or possibly a nonsingular matrix) by a symmetric diagonally dominant matrix B,

Bii ≥
n∑

j=1
j �=i

|Bij | .

To define a matrix Z such that the expression ZDDT ZT can generate any sym-
metric diagonally dominant matrix, we define the following vectors.

Definition 2.10. Let 1 ≤ i, j ≤ n, i �= j. A length-n positive edge vector,
denoted 〈i,−j〉, is the vector

〈i,−j〉k =

⎧⎨
⎩

+1 k = i
−1 k = j

0 otherwise.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

702 H. AVRON, D. CHEN, G. SHKLARSKI, AND S. TOLEDO

A negative edge vector 〈i, j〉 is the vector

〈i, j〉k =

⎧⎨
⎩

+1 k = i
+1 k = j

0 otherwise.

A vertex vector 〈i〉 is the unit vector

〈i〉k =
{

+1 k = i
0 otherwise.

A symmetric diagonally dominant matrix can always be expressed as a sum of
outer products of scaled edge and vertex vectors. Therefore, we can conservatively
define Z to be the matrix whose columns are all the positive edge vectors, all the
negative edge vectors, and all the vertex vectors.

If A is singular and its null space is the constant vector, we can do better.
Chen and Toledo provided a combinatorial characterization of the null space of SDD
matrices [16].

Lemma 2.11 ([16]). Let A be a symmetric diagonally dominant matrix whose
null space is the constant vector. Then A is a sum of outer products of scaled positive
edge vectors. Furthermore, the null space of a symmetric diagonally dominant matrix
with a positive off-diagonal element (corresponding to an outer product of a scaled
negative edge vector) cannot be span

[
1 1 · · · 1

]T .
Therefore, if A is singular with this null space, we only need to include in the

column set Z the set of positive edge vectors. If A is nonsingular, we also include in
Z negative edge vectors and vertex vectors.

We can also create even sparser Z’s; they will not allow us to express every SDD
B as B = ZDDT ZT , but they will have the same null space as A. To define these
sparser Z’s, we need to view the edge vector 〈i,−j〉 as an edge that connects vertex
i to vertex j in a graph whose vertices are the integers 1 through n. The null space
of ZZT is the constant vector if and only if the columns of Z, viewed as edges of
a graph, represent a connected graph. Therefore, we can build an approximation
B = ZDDT ZT by selecting an arbitrary connected graph on the vertices {1, . . . , n}.
By [16, Lemma 4.2], if A is nonsingular, we can include in Z the positive edge vectors
of a connected graph plus one arbitrary vertex vector.

If A is well conditioned (apart perhaps from one zero eigenvalue), we can build
a good approximation B = ZDDT ZT even without the column-scaling technique of
Lemma 2.5. In particular, this avoids the computation of the pseudo-inverse of a
factor U of A = UUT . Clearly, if A is nonsingular and well conditioned, then we can
use I as an approximation: the generalized condition number κ(A, I) is κ(A). If A
has rank n − 1 and the constant vector is its null vector, then

BC(ne) =
1
ne

⎡
⎢⎢⎢⎢⎢⎣

ne − 1 −1 −1 · · · −1
−1 ne − 1 −1 · · · −1
−1 −1 ne − 1 · · · −1
...

...
...

. . .
...

−1 −1 · · · · · · ne − 1

⎤
⎥⎥⎥⎥⎥⎦

yields

(2.2) κ(A, BC(ne)) = σmax(A)/σmin(A),

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COMBINATORIAL PRECONDITIONERS FOR FINITE ELEMENTS 703

which we assumed is low (σmax(A) is the largest singular value of A, and σmin(A) is
the smallest nonzero singular value of A). The matrix BC(ne) is the Laplacian of the
complete graph, and it is clearly SDD. The identity (2.2) follows from the fact that
BC(ne) is an orthogonal projection onto range(A). The following lemma summarizes
this discussion.

Lemma 2.12. Let A be a symmetric positive (semi)definite matrix. If A is
nonsingular, or if the null space of A is span

[
1 1 · · · 1

]T , then there is an SDD
matrix B such that κ(A, B) ≤ κ(A).

This result may seem trivial (it is), but it is nonetheless important. The global
stiffness matrix K =

∑
e Ke is often ill conditioned, but the individual element ma-

trices Ke are usually well conditioned. Since we build the approximation L =
∑

e Le

element by element, this lemma is often applicable: When Ke is well conditioned, we
can set Le to be an extension of BC(ne) into an n-by-n matrix. The rows and columns
of the scaled BC(ne) are mapped to rows and columns Ne of Le and the rest of Le is
zero.

For well-conditioned A’s, we can also trade the approximation quality for a sparser
approximation than BC(ne). The matrix

BS(ne) =
1
ne

⎡
⎢⎢⎢⎢⎢⎣

ne − 1 −1 −1 · · · −1
−1 1 0 · · · 0
−1 1 · · · 0
...

...
. . .

...
−1 0 · · · 1

⎤
⎥⎥⎥⎥⎥⎦

gives
(2.3)

κ(A, BS(ne)) ≤ κ(A, BC(ne))κ(BC(ne), BS(ne)) = κ(A)κ(BS(ne)) =
neσmax(A)
σmin(A)

.

For small ne, this may be a reasonable tradeoff. The bound (2.3) follows from the ob-
servation that the eigenvalues of BS(ne) are exactly 0, 1, and ne. We note that besides
generating a sparser matrix this kind of approximation preserves structural properties
such as planarity. This may be important for certain sparsification algorithms [5, 27]
and subsequent factorization algorithms.

When A is ill conditioned, there may or may not be an SDD matrix B that
approximates it well. The following two examples demonstrate both cases.

Example 2.13. Let

A =
1
2ε

⎡
⎣1 + ε2 −ε2 −1

−ε2 ε2 0
−1 0 1

⎤
⎦

for some small ε > 0. This matrix has rank 2 and null vector
[
1 1 1

]T , and its
condition number is proportional to 1/ε2. Since A is diagonally dominant, there is
clearly an SDD matrix B (namely, A itself) such that κ(A, B) = 1. This matrix is the
element matrix for a linear triangular element with nodes at (0, 0), (0, ε), and (1, 0) and
a constant θ = 1. The ill conditioning is caused by the high aspect ratio of the triangle,
but this ill-conditioned matrix is still diagonally dominant. Small perturbations of the
triangle will yield element matrices that are not diagonally dominant but are close to
a diagonally dominant one. If we discretize the same triangle with the same material

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

704 H. AVRON, D. CHEN, G. SHKLARSKI, AND S. TOLEDO

constant using a quadratic element, the resulting element matrix is still approximable
and ill-conditioned, but is far from SDD; it has positive off-diagonal with magnitude
proportional to the norm of the element matrix [3].

Example 2.14. Our example of a matrix that cannot be approximated well by an
SDD matrix is the element matrix for an isosceles triangle with two tiny angles and
one that is almost π, with nodes at (0, 0), (1, 0), and (1/2, ε) for some small ε > 0.
The element matrix is

A =
1
2ε

⎡
⎢⎢⎢⎢⎣

1
4 + ε2 1

4 − ε2 − 1
2

1
4 − ε2 1

4 + ε2 − 1
2

− 1
2 − 1

2 1

⎤
⎥⎥⎥⎥⎦ .

This matrix has rank 2 and null vector
[
1 1 1

]T . For any SDD matrix B with the
same null space, κ(A, B) ≥ ε−2/4 [3].

2.6. A heuristic for symmetric diagonally dominant approximations.
In section 2.5 we have shown how to find a nearly optimal SDD approximation
B to a symmetric positive (semi)definite matrix A whose null space is spanned by[
1 · · · 1

]T . In this section we show a simple heuristic. We have found experimen-
tally that it often works well. On the other hand, we can show that in some cases
it produces approximations that are arbitrarily far from the optimal one. Thus, this
section has two related goals: to describe a simple heuristic that often works well, but
to point out that it cannot always replace the method of section 2.5.

Definition 2.15. Let A be a symmetric positive (semi)definite matrix. We
define A+ to be the SDD matrix defined by

(A+)ij =

⎧⎪⎨
⎪⎩

aij i �= j and aij < 0
0 i �= j and aij ≥ 0∑

k �=j − (A+)ik i = j .

Clearly, A+ is SDD. It turns out that in many cases, κ(A, A+) is small, making
A+ a good approximation for A. The following lemma gives a theoretical bound for
κ(A, A+). We omit its proof from space reasons.

Lemma 2.16 ([3]). Let A be an SPSD ne-by-ne matrix with null(A) = span[1 . . . 1]T .
Then null(A+) = span[1 . . . 1]T , and κ(A, A+) ≤ √

neκ(A). Moreover, if there exist a
constant c and an index i such that ‖A‖inf ≤ cAii, then κ(A, A+) ≤ cκ(A).

This means that if A is well conditioned and small, then A+ is always a fairly
good approximation. The matrix A+ is also sparser than A, and similarly to BS(n)

its mesh will be planar if the mesh of A was planar.
But when A is ill conditioned, A+ can be an arbitrarily bad approximation even

though A is approximable by some other SDD matrix.
Example 2.17. Let 0 < ε � 1, and let M ≥ 4

ε ,

A =

⎡
⎢⎢⎣
1 + M −1 0 −M
−1 1 + M −M 0
0 −M M 0

−M 0 0 M

⎤
⎥⎥⎦−

⎡
⎢⎢⎣
0 0 0 0
0 0 0 0
0 0 1 − ε −1 + ε
0 0 −1 + ε 1 − ε

⎤
⎥⎥⎦ .

This matrix is symmetric semidefinite with rank 3 and null vector
[
1 1 1 1

]T .
For small ε, A is ill conditioned, with condition number larger than 8ε−2.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COMBINATORIAL PRECONDITIONERS FOR FINITE ELEMENTS 705

The matrix A+ is a poor approximation of A,

κ(A, A+) >

(
1 − 1 − ε

2M + 1

)
ε−1 ≈ ε−1 .

Nevertheless, the matrix

B =

⎡
⎢⎢⎣
ε + M −ε 0 −M
−ε ε + M −M 0
0 −M ε + M −ε

−M 0 −ε ε + M

⎤
⎥⎥⎦

is a good approximation for A, with κ(A, B) < 9 for a small enough ε. We omit the
proofs, which can be found in [3].

3. Scaling and assembling element-by-element approximations. Given a
set of approximations {Le} to a set of element matrices {Ke}, our solver scales the
Le’s so that their assembly L =

∑
e αeLe is a good approximation of K =

∑
e Ke. We

can scale them in one of two equivalent ways. The next lemma shows that under these
scalings, if every Le is a good approximation of Ke, then L is a good approximation
of K. Both scaling rules require the computation of one extreme eigenvalue for each
pair (Ke, Le).

Lemma 3.1. Let {Ke}e∈E and {Le}e∈E be sets of symmetric positive (semi)definite
matrices with null(Ke) = null(Le). Let αe = min Λ(Ke, Le) and let βe = maxΛ(Ke, Le).
Then

κ

(∑
e∈E

Ke,
∑
e∈E

αeLe

)
≤ maxκ (Ke, Le)

κ

(∑
e∈E

Ke,
∑
e∈E

βeLe

)
≤ maxκ (Ke, Le)

Proof. Scaling Le by αe transforms the smallest generalized eigenvalue of
Λ(Ke, αeLe) to 1, since

Λ(Ke, αeLe) =
1
αe

Λ(Ke, Le) .

Scaling Le clearly does not change the generalized condition number, so
maxΛ(Ke, αeLe) = κ(Ke, Le).

By the splitting lemma [5],

min Λ

(∑
e∈E

Ke,
∑
e∈E

αeLe

)
≥ min {min Λ(Ke, αeLe)}e∈E

= min {1}e∈E

= 1 .

Also by the splitting lemma,

max Λ

(∑
e∈E

Ke,
∑
e∈E

αeLe

)
≤ max {max Λ(Ke, αeLe)}e∈E

= max {κ (Ke, Le)}e∈E .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

706 H. AVRON, D. CHEN, G. SHKLARSKI, AND S. TOLEDO

Combining these two inequalities gives the result. The proof for scaling by βe is the
same.

If we use inexact estimates α̃e for the minimum of Λ(Ke, Le), the bound becomes

κ

(∑
e∈E

Ke,
∑
e∈E

α̃eLe

)
≤ maxe {(αe/α̃e)κ (Ke, Le)}

mine (αe/α̃e)
,

and similarly for estimates of βe. This shows that κ
(∑

e∈E Ke,
∑

e∈E α̃eLe

)
depends

on how much the estimates vary. In particular, if the relative estimation errors
are close to 1, scaling by the estimates is almost as good as scaling by the exact
eigenvalues.

4. Combinatorial sparsification of the assembled SDD approximation.
Once we obtain an SDD approximation L =

∑
e αeLe of K, we can use a combinatorial

graph algorithm to construct an easier-to-factor SDD approximation M of L. Because
M is spectrally close to L and L is spectrally close to K, M is also spectrally close
to K. By applying [9, Proposition 3.6] to both ends of the generalized spectra, we
obtain the following lemma.

Lemma 4.1. Let K, L, and M be symmetric (semi)definite matrices with the
same dimensions and the same null space. Then

κ(K, M) ≤ κ(K, L)κ(L, M) .

There are several algorithms that can build M from L. All of them view an
exactly (but not strictly) SDD matrix L as a weighted undirected graph GL, to which
they build an approximation graph GM . The approximation GM is then interpreted
as an SDD matrix M . If L is strictly diagonal dominant, the approximation starts
from an exactly SDD matrix L −D, where D is diagonal with nonnegative elements.
From L−D the algorithm builds an approximation M̃ ; if M̃ is a good approximation
to L − D, then M̃ + D is a good approximation to L.

Lemma 4.2. Let A and B be symmetric positive (semi)definite matrices with the
same null space S, and let C be a positive symmetric (semi)definite with a null space
that is a subspace, possibly empty, of S. Then

Λ(A + C, B + C) ⊆ [min Λ(A, B) ∪ {1}, maxΛ(A, B) ∪ {1}] .
Proof. The result is a simple application of the splitting lemma [5], since

maxΛ(A + C, B + C) ≤ max {max Λ(A, B), max Λ(C, C)}
= max {max Λ(A, B), 1}
= max Λ(A, B) ∪ {1} ,

and similarly for the smallest generalized eigenvalue.
This lemma is helpful, since most of the algorithms that construct approximations

of SDD matrices provide theoretical bounds on Λ(L−D, M̃) that have 1 as either an
upper bound or a lower bound. When this is the case, adding D to L − D and to M̃
preserves the theoretical condition-number bound.

The earliest algorithm for this subproblem is Vaidya’s algorithm [46, 5, 15]. This
algorithm finds a maximum spanning tree in GM and augments it with suitable edges.
The quantity of extra edges that are added to the tree is a parameter in this algorithm.
When few or no edges are added, κ(L, M) is high (but bounded by nm/2, where m is

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COMBINATORIAL PRECONDITIONERS FOR FINITE ELEMENTS 707

the number of off-diagonal elements in L), but L is cheap to factor (can be factored in
O(n) operations when no edges are added to the tree). When many edges are added,
κ(L, M) shrinks but the cost of factoring L rises. When GM is planar or nearly planar,
then the algorithm is very effective, both theoretically and experimentally. For more
general classes of graphs, even with a bounded degree, the algorithm is less effective.

A heuristic for adding edges to the maximum spanning tree was proposed by
Frangioni and Gentile [19]. They designed their algorithm for SDD linear systems that
arise in the interior-point solution of network-flow problems. There are no theoretical
convergence bounds for this algorithm.

Several algorithms are based on so-called low-stretch spanning trees. Boman and
Hendrickson realized that a low-stretch spanning tree GM of GL leads to a better
convergence-rate bound than maximum spanning trees [8]. Elkin et al. showed sim-
pler and lower-stretch constructions for low-stretch trees [18]. Spielman and Teng
proposed algorithms that create denser graphs GM (which are still based on low-
stretch trees) [43, 44, 45]. The algorithms of Spielman and Teng lead to nearly linear
work bound for solving Lx = b.

There are other classes of combinatorial preconditioners, for example [21, 20, 29].
It is not clear whether they can be used effectively in our framework.

5. Dealing with inapproximable elements. When some of the element ma-
trices cannot be approximated well by an SDD matrix, we split the global stiffness
matrix K into K = K≤t + K>t, where K≤t =

∑
e∈E(t) Ke is a sum of the element

matrices for which we found an SDD approximation Le that satisfies κ(Ke, Le) ≤ t
for some threshold t > 0, and K>t =

∑
e�∈E(t) Ke is a sum of element matrices for

which our approximation Le gives κ(Ke, Le) > t.
We then scale the approximations in E(t) and assemble them to form L≤t =∑

e∈E(t) αeKe. We now apply one of the combinatorial graph algorithms discussed in
section 4 to construct an approximation M≤t to L≤t. Once we have M≤t, we add it
to K>t to obtain a preconditioner M1 = M≤t + K>t.

This construction gives a bound on κ(K, M1), but it is a heuristic in the sense
that M1 may be expensive to factor. The analysis of κ(K, M1) is essentially the same
as the analysis of strictly dominant matrices in section 4: by Lemma 4.2, a theoretical
bound Λ(K≤t, M≤t) ⊆ [α, β] implies Λ(K, M1) ⊆ [min{α, 1}, max{β, 1}].

The scaling technique of Lemma 3.1 ensures that either α, β ≤ 1 or 1 ≤ α, β. But
the interval [α, β] may be quite far from 1. If the interval is far from 1, the bound on
κ(K, M1) can be considerably larger than the bound on κ(K≤t, M≤t). We observed
this behavior in practice (experiments not reported here). To avoid this danger, we
scale M≤t before adding it to K>t; that is, we use a preconditioner Mγ = γM≤t+K>t.
We choose γ as follows. We find some vector v that is orthogonal to null(M≤t) and
compute its generalized Raleigh quotient

γ =
vT K≤tv

vT M≤tv
.

The null space of M≤t is determined by the connected components of its graph, so it
is easy to quickly find such a v (we use a random v in this subspace). This definition
ensures that γ ∈ [α, β]. Since Λ(K≤t, γM≤t) ⊆ [α/γ, β/γ], we have 1 ∈ [α/γ, β/γ].

Lemma 5.1. Under this definition of Mγ, κ(K, Mγ) ≤ β/α, where the interval
[α, β] bounds Λ(K≤t, M≤t). In particular, if we take α and β to be the extremal
generalized eigenvalues of (K≤t, M≤t), we obtain

κ(K, Mγ) ≤ κ(K≤t, M≤t) .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

708 H. AVRON, D. CHEN, G. SHKLARSKI, AND S. TOLEDO

We expect that this overall heuristic will be effective when E \E(t) contains only
few elements. If only a few elements cannot be approximated, then K>t is very sparse,
so the sparsity pattern of Mγ = γM≤t +K>t is similar to that of M≤t. Since M≤t was
constructed so as to ensure that its sparsity pattern allow it to be factored without
much fill, we can expect the same to hold for Mγ . If E \E(t) contains many elements,
there is little reason to hope that the triangular factor of Mγ will be particularly
sparse.

If E \E(t) contains very few elements a different strategy can be used. Instead of
introducing the ill-conditioned elements into Mγ they can be ignored. Each ignored
element can be considered as an ne − 1 rank perturbation. Results in [2] suggest that
this will increase the number of iterations by at most ne−1. Therefore, if the number
of inapproximable elements is small only a few more iterations will be needed. If
many inapproximable elements are dropped, convergence can be slow.

6. Asymptotic complexity issues. In this section we explain the asymptotic
complexity of the different parts of our solver. We do not give a single asymptotic
expression that bounds the work that the solver performs, but comment on the cost
and asymptotics of each phase of the solver. The cost of some of the phases is hard
to fully analyze, especially when E(t) � E. The next section presents experimental
results that complement the discussion here.

The first action of the solver is to approximate each element matrix Ke by an SDD
matrix αeLe. For a given element type, this phase scales linearly with the number of
elements and it parallelizes perfectly. The per-element cost of this phase depends on
the approximation method and on the number ne of degrees of freedom per element.
Asymptotically, all the approximation methods require n3

e operations per element,
but the uniform-clique is the fastest method. This phase also gives us κ(Ke, αeLe)
which we use to decide which elements belong to E(t) and which do not.

The next phase of the solver assembles the scaled SDD approximations in E(t).
The cost of this step is bounded by the cost to assemble K =

∑
e Ke, which most

finite-elements solvers (including ours) perform. The assemblies of K and L perform
O(
∑

e n2
e) operations: fewer than the first phase, but harder to parallelize.

The cost and the asymptotic complexity of the sparsification of L depends on
the algorithm that is used. For Vaidya’s sparsification algorithm, which our code
uses, the amount of work is O(n log n +

∑
e n2

e). For the algorithm of Spielman and
Teng [43, 44, 45], the work is O(m1.31) where m =

∑
e n2

e.
Next, the algorithm assembles the element matrices Ke that are not in E(t) into

M≤t. The cost of this phase is also dominated by the cost of assembling K.
The cost of computing the Cholesky factorization of M is hard to characterize

theoretically, because the cost depends on the nonzero pattern of M in a complex
way. The nonzero pattern of M depends on how many and which elements are not
in E(t), and on how much we sparsified L≤t. The number of operations in a phase
of the solver is not the only determinant of running time, but also the computa-
tional rate. The Cholesky factorization of M usually achieves high computational
rates.

The cost of the iterative solver depends on the number of iterations and on
the per-iteration cost. The number of iterations is proportional to

√
κ(K, Mγ) ≤

t
√

κ(L, M≤t). The amount of work per iteration is proportional to the number of
nonzeros in K plus the number of nonzeros in the Cholesky factor of M . The sparsifi-
cation algorithms of Vaidya and Spielman and Teng control the number of iterations,
and if E(t) = E, then they also control the density of the Cholesky factor.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COMBINATORIAL PRECONDITIONERS FOR FINITE ELEMENTS 709

7. Experimental results. This section presents experimental results that ex-
plore the effectiveness of our solver.

7.1. Setup. Our solver currently runs under Matlab [31], but it is implemented
almost entirely in C. The C code is called from Matlab using Matlab’s cmex in-
terface. The element-by-element approximations are computed by C code that calls
lapack [1]. The assembly of the element-by-element approximations (and possi-
bly the inapproximable elements) is also done in C. The construction of Vaidya’s
preconditioners for SDD matrices is done by C code [15]. The Cholesky factoriza-
tion of the preconditioner is computed by Matlab’s sparse chol function, which in
Matlab 7.2 calls cholmod 1.0 by Tim Davis. We always order matrices using
metis version 4.0 [26] prior to factoring them. The iterative Krylov-space solver that
we use is a preconditioned conjugate gradient written in C and based on Matlab’s
pcg.; within this iterative solver, both matrix-vector multiplications and solution of
triangular linear systems are performed by C code.

In most experiments we compare our solver to an algebraic multigrid solver,
BoomerAMG [23]. We use the version of BoomerAMG that is packaged as part
of hypre 1.2. We compiled it using gcc version 3.3.5, with options -O (this option is
hypre’s default compilation option). We note that BoomerAMG is purely algebraic
and does not exploit the element-by-element information. There exist variations of
algebraic multigrid that do exploit the element structure [13, 14]. We have not exper-
imented with these variants. Our comparison with BoomerAMG is meant mainly to
establish a credible baseline for the results and not to explore the behavior of algebraic
multigrid solvers.

In some experiments we compare our solver to solvers that are based on incomplete
Cholesky preconditioners [30, 32, 39, 48]. To compute these preconditioners, we use
Matlab’s built-in cholinc routine. Here too, the matrices are preordered using
metis.

Since many of our test problems are ill conditioned, we iterate until the relative
residual is at most 10−14, close to εmachine, in order to achieve acceptable accuracy.

We use two mesh generators to partition the three-dimensional problem domains
into finite elements. We usually use tetgen version 1.4 [42]. In a few experiments
we use distmesh [34], which can generate both two- and three-dimensional meshes.

Running times were measured on a 1.6 GHz AMD Opteron 242 computer with
8 GB of main memory, running Linux 2.6. This computer has two processors, but
our solver only uses one. We used a 64-bit version of Matlab 7.2. This version of
Matlab uses the vendor’s blas, a library called acml. The measured running times
are wall-clock times that were measured using the ftime Linux system call.

7.2. Test problems. We evaluated our solver on several three-dimensional prob-
lems. We used both linear and quadratic tetrahedral elements. Table 7.1 summarizes
the problems that we used in the experiments. The boundary conditions are always
pure Neumann ∂u/∂n = 0, and we removed the singularity by fixing the solution at
a fixed unknown (algebraically, we remove the row and column of K corresponding
to that unknown). We generate the right-hand side b of the linear system Kx = b by
generating a random solution vector x and multiplying it by K to form b.

In all the experiments reported below, except for a single experiment, our solver
produced acceptable forward errors. The computed solution x̂ satisfied

‖x̂ − x‖2

‖x‖2
≤ 10−4 .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

710 H. AVRON, D. CHEN, G. SHKLARSKI, AND S. TOLEDO

Table 7.1

Notation for the test problems.

The domain Ω
C A 3-dimensional cube
B A 3-dimensional box with aspect ratio 1-by-1-by-10000
CH A 1-by-1-by-1 cube with a 1-by-0.1-by-0.79 hole in the middle
SC A 10-by-10-by-10 cube containing a spherical shell of inner radius 3 and

thickness 0.1.
The mesh (the parameter indicates the number n of mesh points)
G 3-dimensional, generated by tetgen

D 3-dimensional, generated by distmesh

The conductivity θ(x)
U uniform and isotropic, θ = I everywhere
J jump between subdomains but uniform and isotropic within subdomain (e.g.,

θ = 104I in the spherical shell of domain SC and Θ = I elsewhere); the
parameter indicates the magnitude of the jump

A anisotropic within a subdomain (e.g., the spherical shell in SC) and θ = I
elsewhere; θ is always 1 in the x and y directions and the parameter indicates
the conductivity in the z direction.

The element type
L Linear tetrahedral element, 4-by-4 element matrix
Q Quadratic tetrahedral element, 10-by-10 element matrix

In one of the experiments with well-conditioned elements and jumping coefficients
with ratio 108 (section 7.5), when running Vaidya’s preconditioner with the goal 0.6,
the forward error was 1.24 · 10−3.

7.3. Choosing the parameter t. We begin with simple problems that are de-
signed to help us choose t, the approximation threshold. The behavior of our solver
depends on two parameters, t and the aggressiveness of the combinatorial sparsifica-
tion algorithm. These parameters interact in complex ways, because both influence
the sparsity of the Cholesky factor of M and the number of iterations in the Krylov-
space solver. It is hard to visualize and understand the performance of a solver in a
two-dimensional (or higher) parameter space. Therefore, we begin with experiments
whose goal is to establish a reasonable value for t, a value that we use in all of the
subsequent experiments.

Figure 7.1 shows the results of these experiment, which were carried out on two
meshes, one generated by distmesh and the other by tetgen. The elements are all
linear tetrahedral, and their approximations Le are built using our nearly optimal
approximation algorithm. The graphs on the left show the distributions of κ(Ke).
With distmesh, we see that the elements belong to two main groups, a large group
of elements with generalized condition numbers smaller than about 100, and a small
set of so-called slivers with much higher condition numbers, ranging from 200 to 108.
From results not shown here, it appears that for the nonslivers, κ(Ke, Le) is smaller
than κ(Ke) by roughly a constant factor. For the slivers, κ(Ke, Le) is close to κ(Ke).
With tetgen, there are no highly ill-conditioned elements, and the distributions of
κ(Ke) and κ(Ke, Le) are smoother.

The graphs on the right show the number of iterations that the conjugate gradients
algorithm performs for several values of t and various levels of sparsification. In all the
graphs in the paper whose horizontal axis is fill in the Cholesky factor, the horizontal
axis ranges from 0 to the number of nonzeros in the Cholesky factor of K. When t is
small, K>t is relatively dense, so the sparsification algorithm cannot be very effective.
Even when we instruct Vaidya’s algorithm to sparsify L≤t as much as possible, the

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COMBINATORIAL PRECONDITIONERS FOR FINITE ELEMENTS 711

10
0

10
5

10
100

0.2

0.4

0.6

0.8

1

Condition Number

P
er

ce
nt

CH_D8954_U_L

κ(K

e
)

0 2 4 6 8 10
x 10

5

10
1

10
2

10
3

10
4

NNZ in the Cholesky factor

Ite
ra

tio
ns

CH_D8954_U_L

t = 101

t = 102

t = 103

t = 104

t = 1015

10
0

10
5

10
100

0.2

0.4

0.6

0.8

1

Condition Number

P
er

ce
nt

CH_G32867_U_L

κ(K

e
)

0 2 4 6 8
x 10

6

10
1

10
2

10
3

10
4

NNZ in the Cholesky factor

Ite
ra

tio
ns

CH_G32867_U_L

t = 101

t = 102

t = 103

t = 104

t = 1015

Fig. 7.1. The distribution of element condition numbers (left graphs) and the number of it-
erations for several values of t and several sparsification levels (right graphs). The top row shows
results on a mesh generated by distmesh, and the bottom row on a mesh generated by tetgen.

Cholesky factor of M remains fairly similar to the Cholesky factor of K. On the other
hand, a small t leads to faster convergence. With a large t we can construct M ’s with
very sparse factors, but convergence is very slow. If all the elements are relatively
well-conditioned, then there is little dependence on t, as can be seen in the bottom
right figure. A value of t near 1000 gives a good balance between high iteration
counts caused by using Le’s with fairly high κ(Ke, Le) and the inability to construct
a sparse preconditioner caused by a dense K>t. We use the fixed value t = 1000 in
the remaining experiments in order to clarify the role of the other parameter in the
algorithm.

We stress that the selection of t in practice should not be static; it should be based
on the actual distribution of the generalized condition numbers of the approximation
and on analysis similar to the one described in this section.

7.4. Baseline tests. The next set of experiments shows the performance of our
solver relative to other solvers on the same problems and the same meshes, for a
few relatively easy problems. The graphs in Figure 7.2 compare the running time
of our solver to that of an incomplete Cholesky preconditioner, BoomerAMG, and a
state-of-the-art direct solver, cholmod. In these graphs the vertical axis represents
wall-clock time for all the phases of the solution and the horizontal axis represents
the number of nonzeros in the triangular factors of the preconditioner. The rightmost
(largest) horizontal coordinate in the graphs always corresponds to the number of
nonzeros in a complete sparse Cholesky factor of the coefficient matrix. When the

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

712 H. AVRON, D. CHEN, G. SHKLARSKI, AND S. TOLEDO

0 2 4 6 8 10
x 10

5

0

10

20

30

40

50

60

NNZ in the Cholesky factor

T
im

e
(s

ec
)

CH_D8954_U_L

Direct
AMG
NOC+Vaidya
cholinc

0 2 4 6 8
x 10

6

0

10

20

30

40

50

NNZ in the Cholesky factor

T
im

e
(s

ec
)

CH_G32867_U_L

Direct
AMG
NOC+Vaidya
cholinc

Fig. 7.2. Running times for our solver, for incomplete Cholesky, for BoomerAMG, and for a
direct solver on simple three-dimensional problems. The graph on the left uses a mesh generated
by distmesh, and the one on the right a mesh generated by tetgen. See the first paragraph of
section 7.4 for a complete explanation of the graphs.

complete factorization runs out of space, we still use this scaling of the horizontal
axis, and we estimate the running time of the complete factorization based on the
assumptions that it runs at 109 floating-point operations per second. The direct
solver and BoomerAMG only give us one data point for each problem; their running
times are represented in the graphs by horizontal lines. We ran each preconditioned
solver with several values of the parameter that controls the sparsity of the factor
(drop tolerance in incomplete Cholesky and the sparsification parameter in Vaidya’s
preconditioner). Therefore, for each preconditioned solver we have several data points
that are represented by markers connected by lines. Missing markers and broken
lines indicate failures to converge within a reasonable amount of time. Our algorithm
is labeled as “NOC+Vaidya”. NOC stands for “nearly optimal clique” because our
algorithm uses a clique topology for the approximation. Most of the remaining graphs
in this section share the same design.

The graphs in Figure 7.2 compare the running time of the solvers on easy problems
with a relatively simple domain and uniform coefficients. The mesh produced by
tetgen leads to a linear system that is easy for all the iterative solvers. With a good
drop-tolerance parameter, incomplete Cholesky is the fastest, with little fill. Our
solver is slower than all the rest, even with the best sparsity parameter. The mesh
produced by distmesh causes problems to BoomerAMG, but incomplete Cholesky is
faster than our solver.

Although the performance of incomplete Cholesky appears to be good in the ex-
periments reported in Figure 7.2, it sometimes performs poorly even on fairly simple
problems. Figure 7.3 shows that on a high-aspect-ratio three-dimensional structure
with uniform coefficients, incomplete Cholesky performs poorly: the sparser the pre-
conditioner, the slower the solver. Our solver, on the other hand, performs reasonably
well even when its factor is much sparser than the complete factor. On the high-aspect-
ratio problem, as well as on any problem of small to moderate size, the direct solver
performs well. But as the problem size grows the direct solver becomes slow and tends
to run out of memory. The rightmost graph in Figure 7.3 shows a typical example.

Figure 7.4 shows a breakdown of the running time of our solver for one particular
problem. The data shows that as the preconditioner gets sparse, the time to factor
the preconditioner decreases. The running time of the iterative part of the solver also
initially decreases, because the preconditioner gets sparser. This more than offsets

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COMBINATORIAL PRECONDITIONERS FOR FINITE ELEMENTS 713

0 1 2 3
x 10

6

0

200

400

600

800

1000

1200

NNZ in the Cholesky factor

T
im

e
(s

ec
)

B_G196053_U_L

Direct
AMG
NOC+Vaidya
cholinc

0 0.5 1 1.5 2 2.5
x 10

8

0

200

400

600

800

1000

NNZ in the Cholesky factor

T
im

e
(s

ec
)

C_G326017_U_Q

Estimated Direct
AMG
NOC+Vaidya
cholinc

Fig. 7.3. Experimental results on two additional problems with uniform coefficients; these
problems are much larger than those analyzed in Figure 7.2.

0 0.5 1 1.5 2 2.5
x 10

8

0

200

400

600

800

1000

1200

1400

NNZ in the Cholesky factor

T
im

e
(s

ec
)

SC_G395700_A1e1_Q

(1)
(1)+..+(3)
(1)+..+(5)
(1)+..+(7)

Notation for phases of the solver:

(1) Approximate Ke by Le

(2) Assembly L≤t =
∑

E(t) Le

(3) Sparsify L≤t to obtain M≤t

(4) Assembly of M = M≤t + K>t

(5) Order, permute, and factor M

(6) Assembly of K =
∑

E Ke

(7) Permute K and iterate

Fig. 7.4. A breakdown of the running time of our solver, on a particular problem. The graph
shows the time consumed by the different phases of the solver. Assembly phases are not separately
shown because their running time is negligible.

the growth in the number of iterations. But when the preconditioner becomes very
sparse, it becomes less effective, and the number of iterations rises quickly.

7.5. Well-conditioned elements and jumping coefficients. The next set
of experiments explores problems with a large jump in the conductivity θ. We in-
structed the mesh generators to align the jump with element boundaries, so within
each element, there is no jump. This leads to a large κ(K), but the conditioning of
individual element matrices is determined by their geometry, not by θ. The results,
shown in Figure 7.5, show that the jump in θ does not influence any of the four solvers
in a significant way.

7.6. Ill-conditioned elements: Anisotropy. Some of the experiments shown
in section 7.3 included ill-conditioned elements. The ill-conditioning of those elements
resulted from their geometrical shape. Other mesh generators may be able to avoid
such element shapes. Indeed, tetgen did not produce such elements, only distmesh

did. But in problems that contain anisotropic materials in complex geometries, ill-
conditioned elements are hard to avoid.

Figure 7.6 compares the performance of our solver with that of other solvers on
a problem in which the conductivity θ is anisotropic in one part of the domain. The

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

714 H. AVRON, D. CHEN, G. SHKLARSKI, AND S. TOLEDO

0 0.5 1 1.5 2 2.5
x 10

8

0

200

400

600

800

1000

1200

1400

NNZ in the Cholesky factor

T
im

e
(s

ec
)

SC_G395700_J1e4_Q

Estimated Direct
AMG
NOC+Vaidya
cholinc

0 0.5 1 1.5 2 2.5
x 10

8

0

200

400

600

800

1000

1200

1400

NNZ in the Cholesky factor

T
im

e
(s

ec
)

SC_G395700_J1e8_Q

Estimated Direct
AMG
NOC+Vaidya
cholinc

Fig. 7.5. Running times for problems with jumping coefficients. The average of the ratio
κ(Ke)/κ(Le, Ke) in both experiments is around 3.6 and is nearly constant. The condition numbers
of the Ke’s are always small.

10
0

10
2

10
4

10
6

10
80

0.2

0.4

0.6

0.8

1

Condition Number

P
er

ce
nt

Condition numbers

θ = 101

θ = 102

θ = 103

0 0.5 1 1.5 2 2.5
x 10

8

0

1000

2000

3000

4000

NNZ in the Cholesky factor

T
im

e
(s

ec
)

SC_G395700_A1e1_Q

Estimated Direct
AMG
NOC+Vaidya
cholinc

0 0.5 1 1.5 2 2.5
x 10

8

0

1000

2000

3000

4000

NNZ in the Cholesky factor

T
im

e
(s

ec
)

SC_G395700_A1e2_Q

Estimated Direct
AMG
NOC+Vaidya
cholinc

0 0.5 1 1.5 2 2.5
x 10

8

0

1000

2000

3000

4000

5000

6000

NNZ in the Cholesky factor

T
im

e
(s

ec
)

SC_G395700_A1e3_Q

Estimated Direct
AMG
NOC+Vaidya
cholinc

Fig. 7.6. The behavior of our solver and other solvers on a solid three-dimensional problem that
contains a thin spherical shell with anisotropic material. The mesh was generated by tetgen. We
report here three experiments with anisotropy rates 10, 102, and 103 (θ in the legend). The top left
graph shows the distribution of the element matrix condition numbers in the different experiments.
The ratio κ(Ke)/κ(Le, Ke) is nearly constant within every experiment. This ratio for the isotropic
elements is similar in all the experiments. For the anisotropic elements, the maximal ratio grows
from about 19 for anisotropy 10 to about 806 for anisotropy 103.

results clearly show that anisotropy leads to ill-conditioned element matrices. As the
anisotropy increases, BoomerAMG becomes slower and incomplete Cholesky becomes
less reliable. The anisotropy does not have a significant influence on our solver. In

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COMBINATORIAL PRECONDITIONERS FOR FINITE ELEMENTS 715

0 500 1000 1500 2000 2500 3000
10

−15

10
−10

10
−5

10
0

Time (sec)

R
el

at
iv

e
R

es
id

ua
l

SC_G395700_A1e2_Q

NOC+Vaidya, NNZ = 1.1e6
NOC+Vaidya, NNZ = 1.4e6
NOC+Vaidya, NNZ = 6.9e6
NOC+Vaidya, NNZ = 47.0e6
NOC+Vaidya, NNZ = 202.1e6
AMG

0 500 1000 1500 2000 2500 3000
10

−15

10
−10

10
−5

10
0

Time (sec)

R
el

at
iv

e
R

es
id

ua
l

SC_G395700_A1e2_Q

Cholinc, NNZ = 0.4e6
Cholinc, NNZ = 1.4e6
Cholinc, NNZ = 6.1e6
Cholinc, NNZ = 16.8e6
Cholinc, NNZ = 41.9e6
AMG

Fig. 7.7. The relative norm of the residual as a function of the running time (and implicitly,
of the iteration count) on one anisotropic problem, for our solver (left) and for incomplete Cholesky
(right). The horizontal coordinate in which individual plots start indicates the time to construct and
factor the preconditioner.

experiments not reported here, our solver behaved well even with anisotropy of 108.
The incomplete-factorization solver becomes not only slow, but also erratic, as the
graphs in Figure 7.7 show. The convergence of our preconditioner is always steady,
monotonically decreasing, and the convergence rate is monotonic in the density of the
preconditioner. The convergence of incomplete Cholesky is erratic, not always mono-
tonic, and sometimes very slow. Furthermore, sometimes one incomplete factor leads
to much faster convergence than a much denser incomplete factor. We acknowledge
that in some cases, when targeting larger relative residuals (like 10−2 or 10−5), incom-
plete factorization and multigrid preconditioners are more effective than combinatorial
preconditioners. This is evident in other combinatorial preconditioners [15, 41]. This
is clearly shown in Figure 7.7.

These results show that the ability of our solver to detect inapproximable elements
and to treat them separately allows it to solve problems that cause difficulty to other
iterative solvers. When there are few such elements, as there are here because the
anisotropic shell is thin, these elements do not significantly increase the density of
the factor of M . In problems in which most of the elements are inapproximable by
SDD matrices, M would be similar to K and the characteristics of our solver would
be similar to the characteristics of a direct solver.

This is perhaps the most important insight about our solver. As problems get
harder (in the sense that more elements become inapproximable), its behavior becomes
closer to that of a direct solver. As problems get harder we lose the ability to effectively
sparsify the preconditioner prior to factoring it. But unlike other solvers, our solver
does not exhibit slow or failed convergence on these difficult problems.

7.7. Comparisons of different element-by-element approximations. We
now explore additional heuristics for approximating Ke. The approximation methods
that we compare are as follows:
Nearly Optimal Clique (NOC) Le = ZDDT Z, where the columns of Z are the

full set of edge vectors and D scales the columns of U+Z to unit 2-norm.
This method gives the strongest theoretical bound of the methods we tested
on κ(Ke, Le): it is at most n2

e/2 times larger than the best possible for an
SDD approximation of Ke. Here and in the next four methods, we set the
scaling factor αe to be max Λ(Ke, Le).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

716 H. AVRON, D. CHEN, G. SHKLARSKI, AND S. TOLEDO

10
−2

10
0

10
2

10
4

10
60

0.2

0.4

0.6

0.8

1

(Generalized) Condition Number

P
er

ce
nt

SC_G93202_A1e2_Q

US
UC
NOS
NOC
PP
Theortical Bound

0 0.5 1 1.5 2 2.5
x 10

7

0

50

100

150

200

NNZ in the Cholesky factor

T
im

e
(s

ec
)

SC_G93202_A1e2_Q

US
UC
NOS
NOC
PP

10
−2

10
0

10
2

10
4

10
60

0.2

0.4

0.6

0.8

1

(Generalized) Condition Number

P
er

ce
nt

SC_G395700_J1e4_Q

US
UC
NOS
NOC
PP
BHV
Theortical Bound

0 0.5 1 1.5 2 2.5
x 10

8

0

200

400

600

800

1000

1200

1400

NNZ in the Cholesky factor

T
im

e
(s

ec
)

SC_G395700_J1e4_Q

US
UC
NOS
NOC
PP
BHV

Fig. 7.8. Different element-approximation methods. The graph on the left shows the distribution
of κ(Ke, Le) for each approximation method. The method of Boman et al. is only applicable to well-
conditioned elements, so it is not included in the graphs in the top row. The theoretical bound in
the left figure is calculated using the fact that the spectral distance of NOC is within n2

e/2 of the best
possible. In the bottom left figure, the BHV (diamond markers) plot occludes the US (star markers)
plot.

Nearly Optimal Star (NOS) Le = ZDDT Z, where the columns of Z are edge vec-
tors that form a star, 〈1,−2〉 , 〈1,−3〉 , . . . , 〈1,−ne〉 and D scales the columns
of U+Z to unit 2-norm. Sparser than the first but usually a worse approxi-
mation.

Uniform Clique (UC) Le is the extension of the ne-by-ne matrix BC(ne) to an
n-by-n matrix. Computing Le is cheap, but the approximation is only guar-
anteed to be good when Ke is very well conditioned. The low cost of this
method stems from the facts that (1) BC(ne) is a fixed matrix, and (2)
αn = maxΛ(Ke), so we do not need to estimate an extreme generalized
eigenvalue, only a single-matrix eigenvalue.

Uniform Star (US) Le is the extension of the ne-by-ne matrix BS(ne) to an n-by-
n matrix. Sparser than the uniform clique, but more expensive, since we
compute an extreme generalized eigenvalue to set αe.

Positive Part (PP) Le = (Ke)+, defined in section 2.6.
Boman et al. (BHV) αeLe is the Boman–Hendrickson–Vavasis approximation of

Ke [10]. In their method, Le is a uniform star, and the scaling factor αe

is computed from quantities associated with the finite-element discretization
that produces Ke.

The results are shown in Figure 7.8. When element matrices are fairly well condi-
tioned (bottom graphs), different approximation methods exhibit similar qualitative

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COMBINATORIAL PRECONDITIONERS FOR FINITE ELEMENTS 717

0 5 10 15
x 10

4

0

50

100

150

200

250

300

350

n

T
im

e
(s

ec
)

scaling − Vaidya

Goal = 0.00
Goal = 0.40
Goal = 0.60
Goal = 0.80
Goal = 0.95
Goal = 1.00

0 5 10 15
x 10

4

0

20

40

60

80

100

120

n

T
im

e
(s

ec
)

scaling − all (best)

Direct
AMG
Vaidya, Goal = 0.60
Cholinc, Droptol = 0.10

Fig. 7.9. Solution times as a function of mesh size, on the same physical problem (a cube with
uniform coefficients, discretized using linear tetrahedral elements). The graph on the left compares
the running times of our solver with different levels of fill, and the graph on the right compares our
solver (with the best-case fill level) with BoomerAMG and the direct solver. The fill in our solver is
controlled by a parameter called goal in these graphs. A goal of 1 does not sparsify the approximation
M≤t, and a goal of 0 sparsifies it as much as possible, resulting in a tree or forest graph structure
for L≤t.

behaviors. But when there are ill-conditioned elements, naive approximation methods
perform poorly. The results also show that the nearly optimal approximation (which
we used in all the other experiments) performs well relative to other approximation
methods, but is usually not the best.

The comparision between PP and NOC in the top experiments in Figure 7.8
is interesting. The top left graph indicates that PP is a better approximation in
that experiment. This was consistent in additional parameters that we explored and
are not reported here: absolute condition number, number of elements that were
inapproximable (beyond t = 1000), the distribution of the ratio κ(Ke, Le)/κ(Ke),
sparsity of the preconditioner, and time to compute the approximation.

Nevertheless, the number of iterations with the NOC+Vaidya preconditioner is
substantially smaller (about half) of the number of iterations with the PP+Vaidya pre-
conditioner. The bottom line is that NOC+Vaidya performs better than PP+Vaidya.
We do not have a good explanation for this; it may be a good subject for future
research.

7.8. Running times for growing problem sizes. The results in Figure 7.9
present the growth in running time of our solver as the problem size grows. For
very dense and very sparse preconditioners, the growth is highly nonlinear. This is
consistent with the theory of sparse direct solvers on one side and with the theory of
Vaidya’s preconditioners on the other. For intermediate levels of fill, running times
grow more slowly, but they still seem to grow superlinearly.

8. Open problems. This paper raises several interesting questions and chal-
lenges for further research. We mention three. One challenge is to extend the optimal-
scaling method of Braatz and Morari [12] to rank-deficient and rectangular matrices.
It may be possible to use the reduction in [49] to solve this problem, but we have not
explored this. It is not even clear whether van der Sluis’s nearly optimal scaling for
rectangular matrices [47] is also nearly optimal for rank-deficient matrices. Another
interesting question is to find a reliable and cheap-to-compute estimate of the spectral
distance between a given symmetric positive (semi)definite matrix A and the closest

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

718 H. AVRON, D. CHEN, G. SHKLARSKI, AND S. TOLEDO

SDD matrix to A. Our method can be used to estimate this distance, but for large
matrices the method is expensive and its estimates are loose. We have also shown
that κ(A) is an upper bound on that distance, but this bound can be arbitrarily loose.
The third and probably most important challenge is to find better ways to exploit
the splitting K = K≤t + K>t. There may be several ways to exploit it. For example,
it is probably possible to build better preconditioners by sparsifying L≤t with the
objective to reduce fill in the Cholesky factor of M≤t + K>t; the algorithm that we
used for the sparsification phase ignores K>t and only tries to reduce fill in the factor
of M≤t.

Acknowledgments. Thanks to the two anonymous referees and the editor for
their numerous comments and suggestions. We specifically want to thank one of the
referees for suggesting an elegant proof for Lemma 2.5 and for helping us to improve
Lemma 2.16. We also want to thank Stephen Vavasis for [49].

Sivan Toledo’s work on this problem started a decade ago, in 1996, when he was
working with John Gilbert under DARPA contract DABT63-95-C-0087, “Portable
parallel preconditioning”. The contributions and support of John and DARPA are
gratefully acknowledged.

REFERENCES

[1] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du

Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen, LA-
PACK User’s Guide, 3rd ed., SIAM, Philadelphia, 1999. Also available online from
http://www.netlib.org.

[2] H. Avron, E. Ng, and S. Toledo, Using perturbed QR factorizations to solve linear least-
squares problems, SIAM J. Sci. Comput., submitted.

[3] H. Avron, G. Shklarski, and S. Toledo, On element SDD approximability, Technical
report, Tel-Aviv University, Israel, Apr. 2008, http://www.cs.tau.ac.il/∼haima/element
approximability.pdf.

[4] F. L. Bauer, Optimally scaled matrices, Numer. Math., 5 (1963), pp. 73–87.
[5] M. Bern, J. R. Gilbert, B. Hendrickson, N. Nguyen, and S. Toledo, Support-graph

preconditioners, SIAM J. Matrix Anal. Appl., 27 (2006), pp. 930–951.
[6] D. S. Bernstein, Matrix Mathematics: Theory, Facts, and Formulas with Applications to

Linear Systems Theory, Princeton University Press, Princeton, NJ, 2005.
[7] E. G. Boman, D. Chen, B. Hendrickson, and S. Toledo, Maximum-weight-basis precondi-

tioners, Numer. Linear Algebra Appl., 11 (2004), pp. 695–721.
[8] E. G. Boman and B. Hendrickson, On spanning tree preconditioners, unpublished

manuscript, Sandia National Laboratories, 2001.
[9] E. G. Boman and B. Hendrickson, Support theory for preconditioning, SIAM J. Matrix Anal.

Appl., 25 (2004), pp. 694–717.
[10] E. G. Boman, B. Hendrickson, and S. A. Vavasis, Solving elliptic finite element systems in

near-linear time with support preconditioners, SIAM J. Numer. Anal., 46 (2008), pp. 3264–
3284.

[11] R. D. Braatz, Response to Chen and Toledo on “minimizing the Euclidean condition number”,
private communication, Sept. 2005.

[12] R. D. Braatz and M. Morari, Minimizing the Euclidean condition number, SIAM J. Control
Optim., 32 (1994), pp. 1763–1768.

[13] M. Brezina, A. J. Cleary, R. D. Falgout, V. E. Henson, J. E. Jones, T. A. Manteuffel,

S. F. McCormick, and J. W. Ruge, Algebraic multigrid based on element interpolation
(amge), SIAM J. Sci. Comput., 22 (2000), pp. 1570–1592.

[14] T. Chartier, R. D. Falgout, V. E. Henson, J. Jones, T. Manteuffel, S. McCormick,

J. Ruge, and P. S. Vassilevski, Spectral AMGe (ρAMGe), SIAM J. Sci. Comput., 25
(2003), pp. 1–26.

[15] D. Chen and S. Toledo, Vaidya’s preconditioners: Implementation and experimental study,
Electron. Trans. Numer. Anal., 16 (2003), pp. 30–49.

[16] D. Chen and S. Toledo, Combinatorial characterization of the null spaces of symmetric
H-matrices, Linear Algebra Appl., 392 (2004), pp. 71–90.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COMBINATORIAL PRECONDITIONERS FOR FINITE ELEMENTS 719

[17] P. Concus, G. H. Golub, and D. P. O’Leary, A generalized conjugate gradient method for the
numerical solution of elliptic partial differential equations, in Sparse Matrix Computations,
J. R. Bunch and D. J. Rose, eds., Academic Press, New York, 1976, pp. 309–332.

[18] M. Elkin, Y. Emek, D. A. Spielman, and S.-H. Teng, Lower-stretch spanning trees, in Pro-
ceedings of the 37th annual ACM symposium on Theory of computing (STOC), Baltimore,
MD, 2005, ACM Press, New York, pp. 494–503.

[19] A. Frangioni and C. Gentile, New preconditioners for KKT systems of network flow prob-
lems, SIAM J. Optim., 14 (2004), pp. 894–913.

[20] K. D. Gremban, Combinatorial Preconditioners for Sparse, Symmetric, Diagonally Dominant
Linear Systems, Ph.D. thesis, School of Computer Science, Carnegie Mellon University,
Oct. 1996. Available as Technical Report CMU-CS-96-123.

[21] K. D. Gremban, G. L. Miller, and M. Zagha, Performance evaluation of a new parallel
preconditioner, in Proceedings of the 9th International Parallel Processing Symposium,
IEEE Computer Society, 1995, pp. 65–69. A longer version is available as Technical Report
CMU-CS-94-205, Carnegie-Mellon University.

[22] G. Haase, U. Langer, S. Reitzinger, and J. Schicho, Algebraic multigrid methods based on
element preconditioning, Int. J. Comput. Math., 78 (2001), pp. 575–598.

[23] V. E. Henson and U. M. Yang, BoomerAMG: A parallel algebraic multigrid solver and pre-
conditioner, Appl. Numer. Math., 41 (2002), pp. 155–177.

[24] M. Hestenes and E. Stiefel, Methods of conjugate gradients for solving linear systems, J.
Res. Natl. Bureau Standards, 49 (1952), pp. 409–436.

[25] J. J. Júdice, J. Patricio, L. F. Portugal, M. G. C. Resende, and G. Veiga, A study
of preconditioners for network interior point methods, Comput. Optim. Appl., 24 (2003),
pp. 5–35.

[26] G. Karypis and V. Kumar, A fast and high quality multilevel scheme for partitioning irregular
graphs, SIAM J. Sci. Comput., 20 (1998), pp. 359–392.

[27] I. Koutis and G. L. Miller, A linear work, O(n1/6) time, parallel algorithm for solving planar
Laplacians, in Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2007, New Orleans, LA, January 7–9, 2007, N. Bansal, K. Pruhs, and
C. Stein, eds., SIAM, Philadelphia, 2007, pp. 1002–1011.

[28] U. Langer, S. Reitzinger, and J. Schicho, Symbolic methods for the element preconditioning
technique, Technical report, Johannes Kepler Universität (JKU) Linz, Jan. 2002.

[29] B. M. Maggs, G. L. Miller, O. Parekh, R. Ravi, and S. L. M. Woo, Finding effective
support-tree preconditioners, in SPAA ’05: Proceedings of the seventeenth annual ACM
symposium on Parallelism in algorithms and architectures, ACM Press, New York, 2005,
pp. 176–185.

[30] T. Manteuffel, An incomplete factorization technique for positive definite linear systems,
Math. Comput., 34 (1980), pp. 473–497.

[31] The MathWorks, Matlab version 7.2. software package, Jan. 2006.
[32] J. A. Meijerink and H. A. van der Vorst, An iterative solution method for linear systems of

which the coefficient matrix is a symmetric M-matrix, Math. Comput., 31 (1977), pp. 148–
162.

[33] C. C. Paige and M. A. Saunders, Solution of sparse indefinite systems of linear equations,
SIAM J. Numer. Anal., 12 (1975), pp. 617–629.

[34] P.-O. Persson and G. Strang, A simple mesh generator in MATLAB, SIAM Rev., 46 (2004),
pp. 329–345.

[35] L. Portugal, F. Bastos, J. Júdice, J. Paixao, and T. Terlaky, An investigation of interior-
point algorithms for the linear transportation problem, SIAM J. Sci. Comput., 17 (1996),
pp. 1202–1223.

[36] L. F. Portugal, M. G. C. Resende, G. Veiga, and J. J. Júdice, A truncated primal-infeasible
dual-feasible interior point network flow method, Networks, 35 (2000), pp. 91–108.

[37] S. Reitzinger, Algebraic multigrid and element preconditioning I, Technical report, J. Kepler
Universität (JKU) Linz, Dec. 1998.

[38] M. Resense and G. Veiga, An efficient implementation of the network interior-point method,
in Network Flows and Matching: The First DIMACS Implementation Challenge, D. John-
son and C. McGeoch, eds., DIMACS Series in Discrete Mathematics and Computer Science
12, AMS, New York, 1993.

[39] Y. Robert, Regular incomplete factorizations of real positive definite matrices, Linear Algebra
Appl., 48 (1982), pp. 105–117.

[40] A. Shapiro, Upper bounds for nearly optimal diagonal scaling of matrices, Linear and Multi-
linear Algebra, 29 (1991), pp. 145–147.

[41] G. Shklarski and S. Toledo, Rigidity in finite-element matrices: Sufficient conditions for the
rigidity of structures and substructures, SIAM J. Matrix Anal. Appl., 30 (2008), pp. 7–40.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

720 H. AVRON, D. CHEN, G. SHKLARSKI, AND S. TOLEDO

[42] H. Si, TetGen, A Quality Tetrahedral Mesh Generator and Three-Dimensional Delau-
nay Triangulator: Users’s Manual for Version 1.4, Jan. 2006, available online from
http://tetgen.berlios.de.

[43] D. A. Spielman and S.-H. Teng, Solving sparse, symmetric, diagonally-dominant linear sys-
tems in time 0(m1.31), in Proceedings of the 44th Annual IEEE Symposium on Foundations
of Computer Science, Oct. 2003, pp. 416–427.

[44] D. A. Spielman and S.-H. Teng, Nearly-linear time algorithms for graph partitioning, graph
sparsification, and solving linear systems, in STOC ’04: Proceedings of the thirty-sixth
annual ACM symposium on Theory of computing, ACM Press, New York, 2004, pp. 81–
90.

[45] D. A. Spielman and S.-H. Teng, Nearly-linear time algorithms for preconditioning and solving
symmetric, diagonally dominant linear systems, unpublished manuscript available online
at http://arxiv.org/abs/cs/0607105, 2006.

[46] P. M. Vaidya, Solving linear equations with symmetric diagonally dominant matrices by con-
structing good preconditioners, unpublished manuscript. A talk based on this manuscript
was presented at the IMA Workshop on Graph Theory and Sparse Matrix Computations,
Minneapolis, MN, October 1991.

[47] A. van der Sluis, Condition numbers and equilibration of matrices, Numer. Math., 14 (1969),
pp. 14–23.

[48] R. S. Varga, Saff E. B., and V. Mehrmann, Incomplete factorizations of matrices and
connections with H-matrices, SIAM J. Numer. Anal., 17 (1980), pp. 787–793.

[49] S. Vavasis, private communication, 2007.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

