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FASTER KERNEL RIDGE REGRESSION USING SKETCHING AND
PRECONDITIONING∗
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Abstract. Kernel ridge regression is a simple yet powerful technique for nonparametric regres-
sion whose computation amounts to solving a linear system. This system is usually dense and highly
ill-conditioned. In addition, the dimensions of the matrix are the same as the number of data points,
so direct methods are unrealistic for large-scale datasets. In this paper, we propose a preconditioning
technique for accelerating the solution of the aforementioned linear system. The preconditioner is
based on random feature maps, such as random Fourier features, which have recently emerged as a
powerful technique for speeding up and scaling the training of kernel-based methods, such as kernel
ridge regression, by resorting to approximations. However, random feature maps only provide crude
approximations to the kernel function, so delivering state-of-the-art results by directly solving the
approximated system requires the number of random features to be very large. We show that random
feature maps can be much more effective in forming preconditioners, since under certain conditions
a not-too-large number of random features is sufficient to yield an effective preconditioner. We em-
pirically evaluate our method and show it is highly effective for datasets of up to one million training
examples.
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1. Introduction. Kernel ridge regression (KRR) is a simple yet powerful tech-
nique for nonparametric regression whose computation amounts to solving a linear
system. Its underlying mathematical framework is as follows. A kernel function,
k : X × X → R, is defined on the input domain X ⊆ Rd. The kernel function k
may be (nonuniquely) associated with an embedding of the input space into a high-
dimensional reproducing kernel Hilbert space Hk (with inner product 〈·, ·〉Hk

) via
a feature map, Ψ : X → Hk such that k(x, z) = 〈Ψ(x),Ψ(z)〉Hk

. Given training
data (x1, y1), . . . , (xn, yn) ∈ X × Y and ridge parameter λ, we perform linear ridge
regression on (Ψ(x1), y1), . . . , (Ψ(xn), yn). Ultimately, the model has the form

f(x) =
n∑
i=1

cik(xi,x) ,

where c1, . . . , cn can be found by solving the linear equation

(1) (K + λIn)c = y .

Here K ∈ Rn×n is the kernel matrix or Gram matrix defined by Kij ≡ k(xi,xj),
c = [c1 · · · cn]T, and y ≡ [y1 · · · yn]T. See Saunders, Gammerman, and Vovk [30] for
details.
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Compared to kernel support vector machines (KSVMs), the computations in-
volved in KRR are conceptually much simpler: solving a single linear system as op-
posed to solving a convex quadratic optimization problem. However, KRR has been
observed experimentally to often perform just as well as KSVM [18]. In this paper, we
exploit the conceptual simplicity of KRR and using advanced techniques in numerical
linear algebra design an efficient method for solving (1).

For widely used kernel functions, the kernel matrix K is fully dense, so solving (1)
using standard direct methods takes Θ(n3), which is prohibitive even for modest
n. Although statistical analysis does suggest that iterative methods can be stopped
early [8], the condition number of K tends to be so large that a large number of
iterations are still necessary. Thus, it is not surprising that the literature has moved
toward designing approximate methods.

One popular strategy is the Nyström method [34] and variants that improve the
sampling process [22, 19]. We also note recent work by Yang, Pilanci, and Wain-
wright [37] that replace the sampling with sketching. More relevant to this paper is
the line of research on randomized construction of approximate feature maps, origi-
nating from the seminal work of Rahimi and Recht [28]. The underlying idea is to
construct a distribution D on functions from X to Rs (s is a parameter) such that

k(x, z) = Eϕ∼D
[
ϕ(x)Tϕ(z)

]
.

One then samples a ϕ from D and uses k̃(x, z) ≡ ϕ(x)Tϕ(y) as an alternative kernel.
Training can be done in O(ns2 + Tϕ(x1, . . . ,xn)), where Tϕ(x1, . . . ,xn) is the time
required to compute ϕ(x1), . . . , ϕ(xn). This technique has been used in recent years
to obtain state-of-the-art accuracies for some important datasets [21, 16, 6, 13]. We
also note recent work on using random features to construct stochastic gradients [23].

One striking feature of the aforementioned papers is the use of a very large number
of random features. Random feature maps typically provide only crude approxima-
tions to the kernel function, so to approach the full capacity of exact kernel learning
(which is required to obtain state-of-the-art results) many random features are neces-
sary. Nevertheless, even with a very large number of random features, we sometimes
pay a price in terms of generalization performance. Indeed, in section 6.1 we show
that in some cases, driving s to be as large as n is not sufficient to achieve the same
test error rate as that of the full kernel method. Ultimately, methods that use ap-
proximations compromise in terms of performance in order to make the computation
time manageable.

1.1. Contributions. We propose to use random feature maps as a means of
forming a preconditioner for the kernel matrix. This preconditioner can be used to
solve (1) to high accuracy using an iterative method. Thus, while training time still
benefits from the use of high-quality random feature maps, there is no compromise in
terms of modeling capabilities, modulo the decision to use kernel ridge regression and
not some other learning method.

We provide a theoretical analysis that shows that at least for one kernel selection,
the polynomial kernel, selecting the number of random features to be proportional to
the so-called statistical dimension of the problem (this established quantity is also fre-
quently referred to as the effective degrees-of-freedom) yields a high-quality precondi-
tioner in the sense that the relevant condition number is bounded by a constant. Thus,
the theoretical analysis can be viewed as a generalization of recent results on sharper
bounds for linear regression and low-rank approximation with regularization [3]. In
addition, we discuss a method for testing whether the preconditioner computed by
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our algorithm is indeed such that the relevant condition number is bounded. While
our analytical results are mostly of theoretical value (e.g., they are limited to only
the polynomial kernel and are likely very pessimistic), they do expose an important
connection between the statistical dimension and preconditioner size.

Finally, we report experimental results with a distributed-memory parallel im-
plementation of our algorithm. We demonstrate the effectiveness of our algorithm
for training high-quality models using both the Gaussian and polynomial kernel on
datasets as large as one million training examples without compromising in terms of
statistical capacity. For example, on one dataset with one million examples our code
is able to solve (1) to relatively high accuracy in about an hour on resources readily
available to researchers and practitioners (a cluster of EC2 instances).

An open-source implementation of the algorithm is available through the libSky-
lark library (http://xdata-skylark.github.io/libskylark/).

1.2. Related work. Devising scalable methods for kernel methods has long
been an active research topic. In terms of approximations, one dominant line of
work constructs low-rank approximations of the Gram matrix. Two popular variants
of this approach, as mentioned earlier, are the randomized feature maps and the
Nyström methods [34]. There are many variants of these approximation schemes, and
it is outside the scope of this paper to mention all of them. Recent work has also
focused on devising scalable methods that are capable of utilizing rather high rank
approximations [16, 6, 23]. In contrast, our goal is to develop a method which is
capable of using lower rank approximation without paying a price in terms of model
quality.

Another approach is to approximate the kernel matrix so that it will be more
amenable to matrix-vector products or linear system solution. One idea is to use the
fast Gauss transform to accelerate the matrix-vector products of the kernel matrix by
an arbitrary vector [29, 25]. Another approach is to use a tree code to efficiently per-
form matrix-vector products [25, 12]. Related is also the hierarchical matrix approach
in which an hierarchical matrix approximation to the kernel matrix is built [11]. This
representation is amenable to efficient implementation of wide range of operations on
the approximate kernel matrix, including the matrix-vector product and linear system
solution.

The preconditioning approach has also been explored in the literature. Srinivasan
et al. propose to use a regularized kernel matrix as a preconditioner in a flexible Krylov
method [32]. The regularized kernel matrix, which has a lower condition number, is
solved using an inner conjugate gradient iteration. In parallel work to ours, Cutajar
et al. recently discussed various preconditioning techniques for kernel matrices [15].
One of the methods they propose is using random features to form a preconditioner.
However, unlike our work, they do not include any theoretical analysis of this precon-
ditioning approach. Furthermore, we propose additional algorithmic enhancements
(multiple level preconditioning, testing preconditioners). Finally, it is worth mention-
ing that Cutajar et al. only experiment with small-scale low-dimensional datasets,
while we present experimental results with large-scale high-dimensional datasets.

For a broad discussion of scalable methods for kernel learning, including of ideas
not mentioned here, see Bottou et al. [9].

2. Preliminaries.

2.1. Basic definitions and notation. We denote scalars using Greek letters
or using x, y, . . . . Vectors are denoted by x,y, . . . and matrices by A,B, . . . . The s×s

http://xdata-skylark.github.io/libskylark/


FASTER KERNEL RIDGE REGRESSION USING SKETCHING 1119

identity matrix is denoted Is. We use the convention that vectors are column-vectors.
We use nnz (·) to denote the number of nonzeros in a vector or matrix. We denote by
[n] the set 1, . . . , n. The notation α = (1± γ)β means that (1− γ)β ≤ α ≤ (1 + γ)β.

A symmetric matrix A is positive semidefinite (PSD) if xTAx ≥ 0 for every
vector x. It is positive definite (PD) if xTAx > 0 for every vector x 6= 0. For any
two symmetric matrices A and B of the same size, A � B means that B − A is
a PSD matrix. For a PD matrix A, ‖ · ‖A denotes the norm induced by A, i.e.,
‖x‖2A ≡ xTAx.

We denote the training set by (x1, y1), . . . , (xn, yn) ∈ X × Y ⊆ Rd × R. Note
that n denotes the number of training examples, and d denotes their dimension. We
denote the kernel, which is a function from X × X to R, by k. We denote the kernel
matrix by K, i.e., Kij = k(xi,xj). The associated reproducing kernel Hilbert space
(RKHS) is denoted by Hk and the associated inner product by (·, ·)Hk

. We use λ
to denote the ridge regularization parameter, which we always assume to be greater
than 0.

2.2. Random feature maps. As explained in the introduction, a random fea-
ture map is a distribution D on functions from X to Rs such that

k(x, z) = Eϕ∼D
[
ϕ(x)Tϕ(z)

]
.

Throughout the paper, we use s to denote the number of random features. This
quantity is a parameter of the various algorithms.

In recent years, diverse uses of random features have been seen for a wide spec-
trum of techniques and problems. However, the original motivation is the following
technique, originally due to Rahimi and Recht [28], which we refer to as the random
features method: sample a ϕ from D and use k̃(x, z) ≡ ϕ(x)Tϕ(z) as an alternative
kernel. For KRR the resulting model is

f(x) = ϕ(x)T(ZTZ + λIs)−1ZTy ,

where Z ∈ Rn×s has ith row zi = ϕ(xi). Thus, training can be done in O(ns2 +
Tϕ(x1, . . . ,xn)), where Tϕ(x1, . . . ,xn) is the time required to compute z1, . . . , zn.

Although our proposed method can be composed with any of the many feature
maps suggested in recent literature, we discuss and experiment with two specific
feature maps. The first is random Fourier features originally suggested by Rahimi
and Recht [28]. The underlying observation that lead to this transform is that a
shift-invariant kernel1 k for which k(x,x) = 1 for all with x ∈ X , then k(x, z) can be
expressed as

k(x, z) = Ew∼p,b∼U(0,2π)
[
cos(wTx + b) cos(wTz + b)

]
where p is some appropriate distribution that depends on the kernel function (e.g.,
Gaussian distribution for the Gaussian kernel). The existence of such a p for every
shift-invariant kernel function k is a consequence of Bochner’s theorem; see Rahimi
and Recht [28] for details. The feature map is then a Monte-Carlo sample: ϕ(x) =
s−1/2[cos(wT

1 x + b1) . . . cos(wT
s x + bn)]T, where w1, . . . ,ws are sampled from p and

b1, . . . , bn are sampled from a uniform distribution on [0, 2π].
The second feature map we discuss in this paper is TensorSketch [26], which is

designed to be used for the polynomial kernel k(x, z) = (xTz)q. In order to describe

1That is, it is possible to write k(x, z) = k0(x−z) for some positive definite function k0 : Rd → R.
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TensorSketch we first describe CountSketch [10]. Suppose we want to sketch
a d-dimensional vector to an s-dimensional vector. CountSketch is specified by a
2-wise independent hash function h : [d]→ [s] and a 2-wise independent sign function
g : [d] → {+1,−1}. Suppose CountSketch is applied to a vector x ∈ Rd to yield
z ∈ Rs. The value of coordinate i of z is

∑
j|h(j)=i g(j)xj . It is clear that this

transformation can be represented as a s×d matrix in which the jth column contains
a single nonzero entry g(j) in the h(j)th row. Therefore, the distribution on h and g
defines a distribution on s× d matrices.

TensorSketch implicitly defines a random linear transformation S ∈ Rs×dq

.
The transform is specified using q 3-wise independent hash functions h1, . . . , hq :
[d] → [s] and q 4-wise independent sign functions g1, . . . , gq : [d] → {+1,−1}. The
TensorSketch matrix S is then a CountSketch matrix with hash function H :
[d]q → [s] and sign function G : [d]q → {+1,−1} defined as follows:

H(i1, . . . , iq) ≡ h1(i1) + h2(i2) + · · ·+ hq(iq) mod m

and
G(i1, . . . , iq) ≡ g1(i1) · g2(i1) · · · gq(iq) .

We now index the columns of S by [d]q and set column (i1, . . . , iq) to be equal to
G(i1, . . . , iq) · eH(i1,...,iq), where ej denotes the jth identity vector. Let vq : Rd → Rdq

map each vector to the evaluation of all possible degree q monomials of the entries.
Thus, k(x, z) = vq(x)Tvq(z) ≈ vq(x)TSTSvq(z). The feature map is then defined by
ϕ(x) = Svq(x).

A crucial observation that makes this transformation useful is that via a clever
application of the fast Fourier transform, ϕ(x) can be computed in O(q(nnz (x) +
s log s)) (see Pagh [26] for details), which allows for a fast application of the transform.

2.3. Fast numerical linear algebra using sketching. Sketching has recently
emerged as a powerful dimensionality reduction technique for accelerating numerical
linear algebra primitives typically encountered in statistical learning such as linear
regression, low rank approximation, and principal component analysis. The following
description is only a brief semi-formal description of this emerging area. We refer the
interested reader to a recent surveys [35, 36] for more information.

The underlying idea is to construct an embedding of a high-dimensional space
into a lower-dimensional one and use this to accelerate the computation. For example,
consider the classical linear regression problem

w? = arg min
w∈Rd

‖Xw − y‖2,

where X ∈ Rn×d is a sample-by-feature design matrix and y ∈ Rn is the target vec-
tor. Sketching methods for linear regression define a distribution on s-by-n matrices,
sample a matrix S from this distribution, and solve the approximate problem

w = arg min
w∈Rd

‖SXw − Sy‖2 .

If the distribution is an oblivious subspace embedding (OSE) for Range ([X y]), i.e.,
with high probability for all x ∈ Range ([X y]) we have ‖Sx‖2 = (1 ± ε)‖x‖2, then
one can show that with high probability ‖Xw−y‖2 ≤ (1+ε)‖Xw?−y‖2. See Drineas
et al. [17].

The “sketch-and-solve” approach just described allows only crude approxima-
tions: the ε-dependence for OSEs is ε−2. There is also an alternative “sketch-to-
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precondition” approach, which enjoy a much better log(1/ε) dependence for ε and so
supports very high accuracy approximations.

For linear regression the idea is as follows. The sketched matrix is factored,
SX = QR, and the unsketched original problem is solved using an iterative method
with R serving as a preconditioner. This technique has been shown to be very effective
in solving linear regression to high accuracy [4, 24].

2.4. Random feature maps as sketching. A random feature map ϕ can
naturally be extended from defining a function X → Rs to one that defines a function
Sp ({k(x1, ·), . . . , k(xn, ·)})→ Rs via

ϕ

(
n∑
i=1

αik(xi, ·)

)
≡

n∑
i=1

αiϕ(xi) .

Thus, random feature maps can be viewed as a sketch that embeds

Sp ({k(x1, ·), . . . , k(xn, ·)})

in Rs. (Here Sp (·) denotes the span of set of functions X → R.) At least in one
case, this embedding is an OSE, allowing stronger analysis of algorithms involving
such feature maps: TensorSketch defines an OSE [5].

Viewed this way, the random features method is a sketch-and-solve approach. It
is therefore not surprising that it produces suboptimal models. In this paper, we take
the sketch-to-precondition approach to utilizing sketching.

3. Random features preconditioning.

3.1. Algorithm. We propose to use the random feature maps to form a pre-
conditioner for K + λIn. In particular, let Z ∈ Rn×s have rows zT

1 , . . . , z
T
n ∈ Rs,

where zi = ϕ(xi). Here and throughout the rest of the paper, ϕ is a sample from the
distribution defined by the random feature map. We assume that s < n. We solve
(K + λIn)c = y using preconditioned conjugate gradients (PCG) with ZZT + λIn as
a preconditioner.

Using ZZT+λIn as a preconditioner requires, in each iteration, the computation of
(ZZT+λIn)−1x for some vector x. Let LLT = ZTZ+λIs be a Cholesky decomposition
of ZTZ + λIs. The Woodbury formula implies that

(ZZT + λIn)−1 = λ−1
(

In − Z
(
ZTZ + λIs

)−1
ZT
)

= λ−1
(
In −UTU

)
,

where U = L−TZT. Thus, we can compute L and U before the PCG iterations to ob-
tain an efficient method to apply the preconditioner in every iteration. A pseudocode
description of the algorithm appears as Algorithm 1.

We remark that strictly speaking U is not necessary and we could apply the
preconditioner using L and Z with the same asymptotic complexity. However, we
empirically observed that forming U and using the above formula reduces the cost
per iteration considerably and more than compensates for the additional time spent
on pre-processing. Overall, the end result is a considerable improvement in running
time in our implementation (even though both approaches have the same asymptotic
complexity). One possible reason is that with our scheme we only need to do matrix-
matrix products (GEMM operations) to apply the preconditioner, and we avoid tri-
angular solves (TRSM operation) which tends not to exhibit good parallel scalability
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Algorithm 1 Faster Kernel Ridge Regression using Sketching and Preconditioning.
1: Input: Data (x1, y1), . . . , (xn, yn) ∈ Rd×R, kernel k(·, ·), feature map generating

algorithm T , λ > 0, s < n, accuracy parameter ε > 0.
2:
3: Compute kernel matrix K ∈ Rn×n.
4: Using T , create a feature map ϕ : Rd → Rs.
5: Compute zi = ϕ(xi), i = 1, . . . , n and stack them in a matrix Z.
6: Compute ZTZ, and Cholesky decomposition LTL = ZTZ + λIs.
7: Solve LTU = ZT for U.
8: Stack y1, . . . , yn in a vector y ∈ Rn.
9: Solve (K+λIn)c = y using PCG to accuracy ε with ZZT+λIn as a preconditioner.

In each iteration, in order to apply the preconditioner to some x, compute λ−1(x−
UTUx).

10:
11: return c̃

(we observed gains mostly on large datasets where a large number of processes were
used), although another possible reason might be specific features of the underlying
library used for parallel matrix operations (Elemental [27]) and with another library
it might be preferable to use L to solve for ZZT + λIn.

Before analyzing the quality of the preconditioner we discuss the complexities of
various operations associated with the algorithm. The cost of computing the ker-
nel matrix K depends on the kernel and the sparsity of the input data x1, . . . ,xn.
For the Gaussian kernel and the polynomial kernel the matrix can be computed in
O(n

∑n
i=1 nnz (xi)) time (although in many cases it might be beneficial to use the

straightforward Θ(n2d) algorithm). The cost of computing z1, . . . , zn depends on
the specific kernel and feature map used as well. For the Gaussian kernel with ran-
dom Fourier features it is O(s

∑n
i=1 nnz (xi)), and for the polynomial kernel with

TensorSketch it is O(q(
∑n
i=1 nnz (xi) + ns log s)). Computing and decomposing

ZTZ + λIs takes Θ(ns2) and then another Θ(ns2) for computing U. The dominant
cost per iteration is now multiplying the kernel matrix by a vector, which is Θ(n2)
operations.

3.2. Analysis. We now analyze the algorithm when applied to kernel ridge re-
gression with the polynomial kernel and TensorSketch as the feature map. In
particular, in the following theorem we show that if s is large enough, then PCG will
converge in O(1) iterations (for a fixed convergence threshold).

Theorem 1. Let K be the kernel matrix associated with the q-degree homogeneous
polynomial kernel k(x, z) = (xTz)q. Let sλ(K) ≡ Tr

(
(K + λIn)−1K

)
. Let zi =

ϕ(xi) ∈ Rs, i = 1, . . . , n, where ϕ is a TensorSketch map, and Z ∈ Rn×s have
rows zT

1 , . . . , z
T
n . Provided that

(2) s ≥ 4(2 + 3q)sλ(K)2/δ

with probability of at least 1− δ, after

T =

⌈√
3

2
ln(2/ε)

⌉

iterations of PCG on K + λIn starting from the all-zeros vector with ZZT + λIn as a
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preconditioner we will find a c̃ such that

(3) ‖c̃− c‖K+λIn ≤ ε‖c‖K+λIn .

In the above, c is the exact solution of the linear equation at hand (see (1)).

Remark . The result is stated for the homogeneous polynomial kernel k(x, z) =
(xTz)q, but it can be easily generalized to the nonhomogeneous case k(x, z) = (xTz+
c)q by adding a constant feature to each training point.

Remark . While the theorem gives an explicit formula for the number of itera-
tions, we do not recommend to actually use this formula and recommend instead the
use of standard stopping criteria to declare convergence. (These usually involve deter-
mining that the residual norm has dropped below some tolerance.) The reason is that
the iteration bound holds only with high probability. On the other hand, a higher
probability bound bound holds when we consider a higher bound on the number of
iterations. Thus, using standard stopping criteria renders the algorithm more robust.
Furthermore, the bound holds only under exact arithmetic, while in practice PCG is
used with inexact arithmetic.

The quantity sλ(K) is often referred to as the statistical dimension or effective
degrees-of-freedom of the problem. It frequently features in the analysis of kernel
regression [38, 8], low-rank approximations of kernel matrices [7], and analysis of
sketching based approximate kernel learning [2, 37].

Estimating the statistical dimension is a nontrivial task that is outside the scope
of this paper (and can sometimes be avoided: see section 5). Nevertheless, the bound
does establish that the number of random features required for a constant number
of iterations depends on the statistical dimension, which is always smaller than the
number of training points. Since the kernel matrices often display quick decay in
eigenvalues, it can be substantially smaller. In particular, the number of random
features can be o(n) when the statistical dimension is o(n1/2). A discussion on how
the statistical dimension behaves with regard to the training size is outside the scope
of this paper. We refer the reader to a recent discussion by Bach on the subject [7].

Before proving the theorem we state some auxiliary definitions and lemmas.

Definition 1. Let A ∈ Rm×n with n ≥ m and let λ ≥ 0. A = LQ is a λ-LQ
factorization of A if Q is full rank, L is lower triangular and LLT = AAT + λIm.

A λ-LQ factorization always exists, and L is invertible for λ > 0. Q has or-
thonormal rows for λ = 0. The following proposition refines the last statement a
bit.

Proposition 2. If A = LQ is an λ-LQ factorization A ∈ Rm×n, then QQT +
λL−1L−T = Im.

Proof. Multiply LLT = AAT + λIm from the left by L−1 and from the right by
L−T to obtain the equality.

Proposition 3. If A = LQ is a λ-LQ factorization of A ∈ Rm×n, then

‖Q‖2F = sλ

(
AAT

)
≡ Tr

((
AAT + λIm

)−1
AAT

)
.
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Proof. Let σ1, . . . , σm be the singular values of A.

‖Q‖2F = Tr
(
QQT

)
= Tr

(
Im − λL−1L−T

)
= m− λTr

(
L−1L−T

)
= m− λTr

((
AAT + Im

)−1
)

= m−
m∑
i=1

λ

σ2
i + λ

=
m∑
i=1

σ2
i

σ2
i + λ

= Tr
((

AAT + λIm

)−1
AAT

)
.

In addition, we need the following lemma.

Lemma 4 (see [5]). Let S ∈ Rs×dq

be a TensorSketch matrix, and suppose
that A and B are matrices with dq columns. For s ≥ (2 + 3q)/(ν2δ) we have

Pr
[∥∥∥ASTSBT −ABT

∥∥∥2

F
≤ ν2‖A‖2F ‖B‖2F

]
≥ 1− δ .

We can now prove Theorem 1.

Proof of Theorem 1. We prove that with probability of at least 1− δ

(4)
2
3

(
ZZT + λIn

)
� K + λIn � 2

(
ZZT + λIn

)
.

Thus, with probability of 1 − δ the relevant condition number is bounded by 3. For
PCG, if the condition number is bounded by κ, we are guaranteed to reduce the error
(measured in the matrix norm of the linear equation) to an ε fraction of the initial
guess after d

√
κ ln(2/ε)/2e iterations [31]. This immediately leads to the bound in the

theorem statement.
Let Vq ∈ Rn×dq

be the matrix whose row i corresponds to expanding xi to the
values of all possible q-degree monomials,2 i.e., vq(xi) in the terminology of section 2.2.
We have K = VqVT

q . Furthermore, there exists a matrix S ∈ Rs×dq

such that
Z = VqST, so (4) translates to

2
3

(
VqSTSVT

q + λIn
)
� VqVT

q + λIn � 2
(
VqSTSVT

q + λIn
)
,

or equivalently,

(5)
1
2

(
VqVT

q + λIn
)
� VqSTSVT

q + λIn �
3
2

(
VqVT

q + λIn
)
.

Let Vq = LQ be a λ-LQ factorization of Vq. It is well known that for C that is
square and invertible, A � B if and only if C−1AC−T � C−1BC−T. Applying this

2The letter V alludes to the fact that Vq can be thought of as a multivariate analogue of the
Vandermonde matrix.
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to the previous equation with C = L implies that (5) holds if and only if

(6)
1
2
In � QSTSQT + λL−1L−T � 3

2
In .

A sufficient condition for (6) to hold is that

(7)
∥∥∥QSTSQT + λL−1L−T − In

∥∥∥
2
≤ 1

2
.

According to Proposition 2 we have∥∥∥QSTSQT + λL−1L−T − In
∥∥∥

2
=
∥∥∥QSTSQT −QQT

∥∥∥
2
.

According to Lemma 4, if s ≥ 4(2+3q)‖Q‖4F /δ, then with probability of at least 1−δ
we have ∥∥∥QSTSQT −QQT

∥∥∥
2
≤
∥∥∥QSTSQ−QQT

∥∥∥
F
≤ 1

2
.

Now complete the proof using the equality ‖Q‖2F = sλ(VqVT
q ) = sλ(K) (Proposi-

tion 3).

3.3. Other kernels and feature maps. Close inspection of the proof reveals
that the crucial ingredient is the matrix multiplication lemma (Lemma 4). In the
following, we generalize Theorem 1 to feature maps which have similar structural
properties. The proof, which is mostly analogous to the proof of Theorem 1, is
included in the appendix.

In the following, for finite ordered sets U ,V ⊂ Hk we denote by K(U ,V) the Gram
matrix associated with this two sets, i.e., Kij = (ui,vj)Hk

for ui ∈ U and vj ∈ V.
We assume that the feature map defines a transformation from Hk to Rs, that is, a
sample from the distribution is a function ϕ : Hk → Rs. A feature map is linear if
every sample ϕ it can take is linear.

Definition 2. A linear feature map has an approximate multiplication property
with f(ν, δ) if ϕ with at least f(ν, ξ, δ) random features has that for all finite ordered
sets U ,V ⊂ Hk the following holds with probability of at least 1− δ:∥∥∥ZUZT

V −K(U ,V)
∥∥∥2

F
≤ ν2Tr (K(U ,U)) Tr (K(V,V)) + ξ2 ,

where ZU (resp., ZV) is the matrix whose row i corresponds to applying ϕ to ui (resp.,
vi).

Theorem 5. Suppose that ϕ is a sample from a feature map that has an approx-
imate multiplication property with f(ν, δ). Suppose that ϕ has s ≥ f(sλ(K)−1/2, 0, δ)
or s ≥ f(sλ(K)−1/2

√
2, 1/2

√
2, δ) features. Let zi = ϕ(k(xi, ·)) ∈ Rs, i = 1, . . . , n

and Z ∈ Rn×s have rows zT
1 , . . . , z

T
n . With probability of at least 1− δ, after

T =

⌈√
3

2
ln(2/ε)

⌉

iterations of PCG on K + λIn starting from the all-zeros vector with ZZT + λIn as a
preconditioner we will find a c̃ such that

‖c̃− c‖K+λIn
≤ ε‖c‖K+λIn

.
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Currently, there is no proof that the approximate multiplication property holds
for any feature map except for TensorSketch.

4. Multiple level sketching. We now show that the dependence on the sta-
tistical dimension can be improved by composing multiple sketching transforms. The
crucial observation is that after the initial random feature transform, the training
set is embedded in a Euclidean space. This suggests the composition of well-known
transforms such as the subsampled randomized Hadamard transform (SRHT) and
the Johnson–Lindenstrauss transform with the initial random feature map. A simi-
lar idea, referred to as compact random features, was explored in the context of the
random features method by Hamid et al. [20].

First, we consider the use of the SRHT after the initial TensorSketch for the
polynomial kernel. To that end we recall the definition of the SRHT. Let m be a
power of 2. The m×m matrix of the Walsh–Hadamard Transform (WHT) is defined
recursively as

Hm =
[

Hm/2 Hm/2
Hm/2 −Hm/2

]
with H2 =

[
+1 +1
+1 −1

]
.

Definition 3. Let m be some integer which is a power of 2, and s an integer. A
subsampled randomized Walsh–Hadamard transform is an s×m matrix of the form

S =
1√
s
PHD ,

where D is a random diagonal matrix of size m whose entries are independent random
signs, H is a Walsh–Hadamard matrix of size m, and P is a random sampling matrix.

The recursive nature of the WHT matrix allows for a quick multiplication of a
SRHT matrix by a vector. In particular, if S ∈ Rs×m is an SRHT, then Sx can be
computed in O(m log(s)) [1].

The proposed algorithm proceeds as follows. First, we apply a random feature
transform with s1 features to obtain Z1 ∈ Rn×s1 . We now apply a SRHT S2 ∈ Rs2×s1
to the rows of Z1, that is, compute Z2 = Z1ST

2 , and use Z2ZT
2 +λIn as a preconditioner

for K + λIn.
The following theorem establishes that using this scheme it is possible for the

polynomial kernel to construct a good preconditioner with only O(sλ(K) log(sλ(K)))
columns in Z2.

Theorem 6. Let K be the kernel matrix associated with the q-degree homogeneous
polynomial kernel k(x, z) = (xTz)q. Let sλ(K) ≡ Tr

(
(K + λIn)−1K

)
. Assume that

‖K‖2 ≥ λ. Let ϕ : Rd → Rs1 be a TensorSketch mapping with

s1 ≥ 32(2 + 3q)sλ(K)2/δ ,

and let S2 ∈ Rs2×s1 be a SRHT with s2 = Ω(sλ(K) log(sλ(K))/δ2). Let zi =
S2ϕ(xi) ∈ Rs, i = 1, . . . , n and Z2 ∈ Rn×s have rows zT

1 , . . . , z
T
n . Then, with probabil-

ity of at least 1− δ, after

T =

⌈√
3

2
ln(2/ε)

⌉
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iterations of PCG on K + λIn starting from the all-zeros vector with ZZT + λIn as a
preconditioner we will find a c̃ such that

(8) ‖c̃− c‖K+λIn ≤ ε‖c‖K+λIn .

In the above, c is the exact solution of the linear equation at hand (see (1)).

Proof. Let Vq and Q be as defined in the proof of Theorem 1. Let S1 be the
matrix that corresponds to ϕ, and let S = S2S1. We have Z = VqST. Following the
proof of Theorem 1 it suffices to prove that∥∥∥QSTSQT −QQT

∥∥∥
2
≤ 1

2
.

Noticing that∥∥∥QSTSQT −QQT
∥∥∥

2
≤
∥∥∥QST

1 ST
2 S2S1QT −QST

1 S1QT
∥∥∥

2
+
∥∥∥QST

1 S1QT −QQT
∥∥∥

2

it suffices to prove that each of the two terms is bounded by 1
4 with probability 1−δ/2.

Due to the lower bound on s1 this holds for the right term as explained in the proof
of Theorem 1.

For the left term, we used recent results by Cohen, Nelson, and Woodruff [14]
that show that for a matrix A and a SRHT Π with O(r̃(A) log(r̃(A))/ν2) rows,
where r̃(A) ≡ ‖A‖2F /‖A‖22 is the stable rank of A, we have∥∥∥ATΠTΠA−ATA

∥∥∥
2
≤ ν ‖A‖22

with high probability.
We bound the left term by applying this result to A = S1QT. First, we note that

‖QT‖22 = ‖K‖2/(‖K‖2 + λ) ≥ 1/2. Next, we note that∥∥∥S1QT
∥∥∥

2
=
∥∥∥QST

1 S1QT
∥∥∥1/2

2

≤
∥∥∥QT

∥∥∥
2

+
∥∥∥QST

1 S1QT −QQT
∥∥∥1/2

2
.

The second term has already been proved to be O(1), while the first is bounded by
one. Therefore, we conclude that ‖S1QT‖2 = O(1) so O(r̃(S1QT) log(r̃(S1QT))) row
is sufficient. In addition, since E[‖S1QT‖2F ] = ‖QT‖2F we conclude that with high
probability ‖S1QT‖2F = O(‖QT‖2F ) = O(sλ(K)). Finally, recall that ‖QT ‖22 ≥ 1/2 so
r̃(S1QT) = O(sλ(K)).

Remark . Notice that for multiple level sketching we require that ‖K‖2 ≥ λ.
This assumption is very reasonable: from a statistical point of view it should be
the case that λ � ‖K‖2. (Otherwise, the regularizer dominates the data.) From a
computational point of view, if λ = Ω(‖K‖2), then the condition number of K+λIn is
O(1) to begin with (although the constant might be huge). In particular, if λ ≥ ‖K‖2,
then the condition number is bounded by 2.

Remark . The dependence on δ in the previous theorem (and also in Theorem 1)
can be improved to O(poly (log(1/δ))) by considering a fixed failure probability and
repeating the algorithm O(log(1/δ)) times. If c̃1, . . . , c̃r are the candidate solutions
for r = O(log(1/δ)), then a sufficiently good solution can be found by looking at the
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Algorithm 2 Multiple Level Sketching Algorithm.
1: Input: Data (x1, y1), . . . , (xn, yn) ∈ Rd×R, kernel k(·, ·), feature map generating

algorithm T , λ > 0, s3 < s2 < s1 < n, accuracy parameter ε > 0.
2:
3: Compute kernel matrix K ∈ Rn×n.
4: Using T , create a feature map ϕ : Rd → Rs1 .
5: Compute zi = ϕ(xi), i = 1, . . . , n and stack them in a a matrix Z1.
6: Apply a subsampled randomized Hadamard transform S2 ∈ Rs2×s1 to the rows

of Z1 to form Z2 = Z1ST
2 .

7: Let S3 ∈ Rs3×s2 be a random matrix whose entries independent standard normal
random variables. Compute Z3 = 1√

s3
Z2ST

3 .

8: Solve LTU = ZT for U.
9: Stack y1, . . . , yn in a vector y ∈ Rn.

10: Solve (K+λIn)c = y using PCG to accuracy ε with ZZT+λIn as a preconditioner.
In each iteration, in order to apply the preconditioner to some x, compute λ−1(x−
UTUx).

11:
12: return c̃

differences ‖c̃i − c̃j‖K+λIn
for all i and j, and outputting an i for which, if we sort

these differences for all j, the median value of the sorted list for i is the smallest.
The analysis is based on Chernoff bounds and the triangle inequality, and it requires
adjusting ε by a constant factor. We omit the details.

From a computational complexity point of view, in many cases one can set s1 to
be very large without increasing the asymptotic cost of the algorithm. For example,
for random Fourier features, if

∑n
i=1 nnz (xi) = O(n log s2), then it is possible to set

s1 = Θ(n) without increasing the asymptotic cost of the algorithm.
It is also possible to further reduce the dimension to O(sλ(K)) using a dense

random projection, i.e., multiplying Z2 from the right by a scaled random matrix
with sub-Gaussian entries. We omit the proof as it is analogous to the proof of
Theorem 6. Pseudocode description of the three-level sketching algorithm is given as
Algorithm 2.

5. Adaptively setting the sketch size. It is also possible to adaptively set
s. The basic idea is to successively form larger Z’s until we have one that is good
enough. The following theorem implies quickly testable conditions for this, again for
the polynomial kernel and TensorSketch.

Theorem 7. Let P ∈ Rn×n be the orthogonal projection matrix on the subspace
spanned by the eigenvectors of ZZT whose corresponding eigenvalues are bigger than
0.05λ, and let Vq have K = VqVT

q . Suppose that the following hold:
1. ‖(In −P)K(In −P)‖2 ≤ 0.1λ.
2. For all x, ‖VT

q Px‖22 = (1± 0.1)‖ZTPx‖22.
Then the guarantees of Theorem 1 hold. Moreover, if s ≥ Csλ(K)2/δ for some
sufficiently large constant C, then with probability of at least 1− δ conditions 1 and 2
above hold as well.

Proof. We show that there exists constants m and M such that

m
(
ZZT + λIn

)
� K + λIn �M

(
ZZT + λIn

)
.
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This holds if there is a constant c < 1 such that for all y.

yT (K + λIn)y = (1± c)yT
(
ZZT + λIn

)
y .

Without loss of generality we restrict ourselves to ‖y‖2 = 1. We have

yT(K + λIn)y = λ‖y‖22 + yTKy

= λ+ (Py + (I−P)y)TK(Py + (I−P)y)
= λ+ yTPKPy + yT(I−P)K(I−P)y + 2yTPK(I−P)y
= (1± 0.1)λ+ (1± 0.1)yTPZZTPy + 2yTPK(I−P)y ± 0.1λ
= (1± 0.1)λ+ (1± 0.1)yTPZZTPy + 2yTPK(I−P)y

+
[
(1± 0.1)yT(I−P)ZZT(I−P)y + (1± 0.1)yT(I−P)ZZTPy

− (1± 0.1)yT(I−P)ZZT(I−P)y
]

= (1± 0.1)λ+ (1± 0.1)yTPZZTPy + 2yTPK(I−P)y
+
[
(1± 0.1)yT(I−P)ZZT(I−P)y

+ (1± 0.1)yT(I−P)ZZTPy ± (1± 0.1)0.1λ
]

= (1± 0.21)λ+ (1± 0.1)yTZZTy + 2yTPK(I−P)y

= (1± 0.21)yT
(
ZZT + λI

)
y + 2yTPK(I−P)y

= (1± 0.21)yT
(
ZZT + λI

)
y ± 2

∥∥yTPVq

∥∥
2

∥∥∥VT
q (I−P)y

∥∥∥
2

= (1± 0.21)yT
(
ZZT + λI

)
y ± 2

∥∥yTPVq

∥∥
2

√
0.1λ(1± 0.1) .

The fourth equality is due to condition 2 (which bounds yTPKPy since K = VqVT
q )

and condition 1 (which bounds yT(I−P)K(I−P)y). In the fifth equality we note that
because P is a projection on an eigenspace of ZZT, (I − P)ZZTP = 0. In the sixth
equality we use the definition of P to bound yT(I − P)ZZT(I − P)y ≤ 0.1λ. In the
ninth equality we use Cauchy–Schwarz. And in the tenth equality we use condition 1
again.

If
√

0.1λ ≤ ‖yTPZ‖2/3, then the last term is at most 2
31.1‖yTPVq‖22 = 11

15yTZZTy.
Notice that now (0.21 + 11/15) < 1, so yT(K + λIn)y = (1 ± c)yT(ZZT + λI)y for
some constant smaller than 1.

If
√

0.1λ ≥ ‖yTPZ‖2/3, then the last term is bounded 2‖yTPVq‖2
√

0.1λ(1 ±
0.1) ≤ 6

11λ ≤
6
11yT(ZZT + λIn)y and again yT(K + λIn)y = (1± c)yT(ZZT + λI)y

for some constant smaller than 1.
As for the other direction, if the conditions of Theorem 1 hold, then we showed

in the proof of Theorem 1 that (4) holds with high probability. It can be easily seen
that by adjusting the constant in front of (2) we can adjust the constants in (4) to be
as small as needed. Equation (4) immediately implies condition 2. As for condition
1, if it was not true than there is a unit vector y such that yT(K + λIn)y ≥ 1.1λ
but yT(ZZT + λIn)y ≤ 1.05λ. Thus, if the adjusted constant is small enough it is
impossible for (the modified) (4) to hold (i.e., 1.1λ ≤ (1 + ε0)1.05λ cannot hold for
small enough ε0).

This theorem can be used in the following way. We start with some small s,
generate Z, and test it. If Z is not good enough, we double s and generate a new
Z. We continue until we have a good enough preconditioner (which will happen
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when s is large enough per Theorem 1). Testing condition 1 can be accomplished
using simple power-iteration. Testing of condition 2 can be done by constructing
a subspace embedding to the range of VT

q P using TensorSketch. We omit the
technical details.

6. Experiments. In this section we report experimental results with an imple-
mentation of our proposed one-level sketching algorithm. To allow the code to scale
to datasets of size one million examples and beyond, we designed our code to use dis-
tributed memory parallelism using MPI. For most distributed matrix operations we
rely on the Elemental library [27]. We experiment on clusters composed on Amazon
Web Services EC2 instances.

In our experiments, we use standard classification and regression datasets, using
regularized least squares classification to convert the classification problem to a re-
gression problem. We use two kernel-feature map combinations: the Gaussian kernel
k(x, z) = exp(−‖x−z‖22/2σ2) along with random Fourier features and the polynomial
kernel k(x, z) = (γxTz + c)q along with TensorSketch. We declare convergence
of PCG when the iterate c is such that ‖y − (K + λIn)c‖2 ≤ τ‖y‖2. For multiple
right-hand sides we require this to hold for all right-hand sides. We set τ = 10−3 for
classification and τ = 10−5 for regression; while these are not particularly small, our
experiments did reveal that for the tested datasets further error reduction does not
improve the generalization performance (see also subsection 6.3).

6.1. Comparison to the random features method. In this section we com-
pare our method to the random features method, as defined in section 2.2. Our goal
is to demonstrate that our method, which solves the nonapproximate kernel prob-
lem to relatively high accuracy, is able to fully leverage the data and deliver better
generalization results than is possible using the random features method.

We conducted experiments on the MNIST dataset. We use both the Gaussian
kernel (with σ = 8.5) and the polynomial kernel k(x, z) = (0.01xTz + 1)3. The
regularization parameter was set to λ = 0.01. Running time were measured on a
single c4.8xlarge EC2 instance.

Results are shown in Figure 1. Inspecting the error rates (left plots), we see that
while the random features method is able to deliver close to optimal error rates, there
is a clear gap between the errors obtained using our method and the ones obtained
by the random features method even for a very large number of random features.
The gap persists even if we set the number of random features to be as large as the
training size!

In terms of the running time (right plots), our method is, as expected, generally
more expensive than the sketch-and-solve approach of the random features method,
at least when the number of random features is the same. However, in order to get
close to the performance of our method, the random features method requires so
many features that its running time eventually surpasses that of our method with
the optimal number of features. (Recall that for our method the number of random
features only affects the running time, not the generalization performance.)

It is worth noting that the optimal training time for our method on MNIST was
actually quite small: less than 2 minutes for the Gaussian kernel and less than 4 min-
utes for the polynomial kernel, and this without sacrificing in terms of generalization
performance by using an approximation.

In Figure 2 we further explore the complex interaction between algorithmic com-
plexity, quantity of data, and predicative performance. In this set of experiments we
use subsamples of the COVTYPE dataset (to a maximum sample of 80% of the data;



FASTER KERNEL RIDGE REGRESSION USING SKETCHING 1131

0 20 40 60 80 100
Random Features (% data size)

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

E
rr

or
 R

at
e 

(%
)

MNIST - Gaussian Kernel

Proposed Algorithm
Random Features Method

0 20 40 60 80 100
Random Features (% data size)

0

100

200

300

400

500

600

T
ra

in
in

g 
T

im
e 

(s
ec

)

MNIST - Gaussian Kernel

Proposed Algorithm
Random Features Method

0 10 20 30 40 50
Random Features (% data size)

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

E
rr

or
 R

at
e 

(%
)

MNIST - Polynomial Kernel

Proposed Algorithm
Random Features Method

0 10 20 30 40 50
Random Features (% data size)

0

50

100

150

200

250

300

350

T
ra

in
in

g 
T

im
e 

(s
ec

)

MNIST - Polynomial Kernel

Proposed Algorithm
Random Features Method

Fig. 1. Comparison with random features on MNIST.
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Fig. 2. Error as a function of time and data size on MNIST and COVTYPE.

the rest is used for testing and validation) and subsamples from the extended MNIST-
8M dataset (to a maximum of 450K data points). We compare the performance of
our method as the number of samples increases to the performance of the random
features method with three different profiles for setting s: s = 20000 (an O(n) train-
ing algorithm), s = 2.26

√
nd (an O(n2d) algorithm), and s = 0.2n (an O(n3) time,

O(n2) memory algorithm). For both datasets we plot both error as a function of the
datasize and error as a function of training time. The graphs clearly demonstrate the
superiority of our method.

6.2. Resources and running time on a cloud service. Our implementation
is designed to leverage distributed processing using clusters of machines. The wide
availability of cloud-based computing services provides easy access to such platforms
on an on-demand basis.
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To give an idea of the running time and resources (and as a consequence the
cost) of training models using our algorithm on public cloud services, we applied our
method to various popular datasets on EC2. The results are summarized in Table 1.
We can observe that using our method it is possible to train high-quality models on
datasets as large as one million data points in a few hours. We remark that while we
did tune σ and λ somewhat, we did not attempt to tune them to the best possible
values.

6.3. Additional experimental results. So far we described and experimented
with using ZZT + λIn as a preconditioner. One straightforward idea is to try to use
ZZT + λpIn as a preconditioner, where λp is now a parameter that is not necessarily
equal to λ. Although our current theory does not cover this case, we evaluate this
idea empirically and report the results Table 2. Our experiments indicate that setting
λp to be larger than λ often produces a higher quality preconditioner. In particular,
λp = 10λ seems like a reasonable rule-of-thumb for setting λp. We leave a theoretical
analysis of this scheme to future work.

In Table 3 we compare our method to a high-performance distributed block
ADMM-based solver using the random features method [6]. We use the same re-
source configuration as in Table 1. (We remark that the ADMM solver is rather
memory efficient and can function with fewer resources.) The ADMM solver is more
versatile in the choice of objective function, so we use hinge-loss (SVM). We use the
same bandwidth (σ) and reguarization parameter (λ) as in Table 1. In general we set
the number of random features (s) to be equal 25% of the dataset size. We clearly
see that our method achieves better error rates, usually with better running times.

In Table 4 we examine whether the preconditioner indeed improves convergence
and running time. We set the maximum iterations to 1000 and declare failure if the
solver failed to converge to 10−3 tolerance for classification and 10−5 for regression.
We remark the following on the items labeled FAIL:

• For MNIST-200k, without preconditioning CG failed to convergence but the
error rate of the final model was just as good as our method.

• For MNIST-300K the error rate of the final model deteriorated to 1.33%
(compare to 0.92%).

• For YEARMSD the final residual was 6.63×10−4 and the error deteriorated
to 5.25× 10−3 (compare to 4.58× 10−3).

Almost always (with two exception, one of them a tiny dataset) our method was
faster than the nonpreconditioned method. More importantly our method is much
more robust: the nonpreconditioned algorithm failed in some cases.

In Table 5 we examine how classification generalization quality is affected by
choosing a more relaxed tolerance criteria. In general, setting tolerance to 10−3 is
just barely better than 10−2 in terms of test error. Only in one case (MNIST) is
the difference bigger than 0.01%. Running time for 10−3 is worse by a small factor
and the results are almost the same. We set the tolerance to 10−3 to be consistent
with the notion of exploiting data to the fullest, although in practice 10−2 seems to
be sufficient.

7. Conclusions. Kernel ridge regression is a powerful nonparametric technique
whose solution has a closed form that involves the solution of a linear system and
thus is amenable to applying advanced numerical linear algebra techniques. A naive
method for solving this system is too expensive to be realistic beyond “small data.”
In this paper we propose an algorithm that solves this linear system to high accuracy
using a combination of sketching and preconditioning. Under certain conditions, the
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Table 5

Comparison between setting tolerance to 10−2 and 10−3.

Dataset 10−2 - its 10−2 - Error rate 10−3 - its 10−3 - Error rate
GISETTE 3 3.50 6 3.50%
ADULT 10 14.99% 13 14.99%
IJCNN1 69 1.38% 120 1.39%
MNIST 54 1.37% 85 1.33%

MNIST-200K 54 1.00% 90 0.99%
MNIST-300K 73 0.92% 117 0.92%

EPSILON 7 10.21% 12 10.22%
COVTYPE 253 4.12% 555 4.13%

running time of our algorithm is somewhere between O(n2) and O(n3), depending
on properties of the data, kernel, and feature map. Empirically, it often behaves like
O(n2). As we show experimentally, our algorithm is highly effective on datasets with
as many as one million training examples.

Obviously the main limitation of our algorithm is the Θ(n2) memory requirement
for storing the kernel matrices. There are a few ways in which our algorithm can be
leveraged to allow learning on much larger datasets. One nonalgorithmic software-
based idea is to use an out-of-core algorithm, i.e., use SSD storage, or even a magnetic
drive, to hold the kernel matrix. From an algorithmic perspective there are quite a
few options. One idea is to use boosting to design a model that is an ensemble
of a several smaller models based on nonuniform sampling of the data. Huang et
al. recently showed that this can be highly effective in the context of kernel ridge
regression [21]. Another idea is to use our solver as the block solver in the block
coordinate descent algorithm suggested by Tu et al. [33]. We leave the exploration of
these techniques to future work.

More importantly, one should note that even in the era of Big Data, it is not
always the case that for a particular problem we have access to a very big training
set. In such cases it is even more important to fully leverage the data and produce
the best possible model. Our algorithm and implementation provide an effective way
to do so.

Appendix A. Proof of Theorem 5.

Proposition 8. Let K + λIn = LLT be a Cholesky decomposition of K + λIn.
Let M = L−1. Let Q = (q1, . . . ,qn) ⊂ Hk defined by qi =

∑n
j=1 Mijk(xj , ·) . We

have

K(Q,Q) + λL−1L−T = In .

Proof. Since Kij = k(xi,xj) = (k(xi, ·), k(xj , ·))Hk
and inner products are bilin-

ear, we have K(Q,Q) = L−1KL−T. So,

In = L−1(K + λIn)L−T = K(Q,Q) + λL−1L−T .

Proposition 9. Under the conditions of the previous proposition,

Tr (K(Q,Q)) = sλ(K) .
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Proof. Let λ1, . . . , λn be the eigenvalues of K.

Tr (K(Q,Q)) = Tr
(
In − λL−1L−T

)
= n− λTr

(
L−1L−T

)
= n− λTr

(
(K + In)−1)

= n−
n∑
i=1

λ

λi + λ

=
n∑
i=1

λi
λi + λ

= Tr
(
(K + λIn)−1K

)
.

Proof of Theorem 5. We prove that with probability of at least 1− δ

(9)
2
3

(
ZZT + λIn

)
� K + λIn � 2

(
ZZT + λIn

)
,

or equivalently,

(10)
1
2

(K + λIn) � ZZT + λIn �
3
2

(K + λIn) .

Thus, with probability of 1 − δ the relevant condition number is bounded by 3. For
PCG, if the condition number is bounded by κ, we are guaranteed to reduce the error
(measured in the matrix norm of the linear equation) to an ε fraction of the initial
guess after d

√
κ ln(2/ε)/2e iterations [31]. This immediately leads to the bound in the

theorem statement.
Let K + λIn = LLT be a Cholesky decomposition of K + λIn. Let M = L−1.

Let Q = (q1, . . . ,qn) ⊂ Hk defined by qi =
∑n
j=1 Mijk(xj , ·) . Let ZQ ∈ Rn×s be

the matrix whose row i is equal to ϕ(k(xi, ·)). Due to the linearity of ϕ, we have
ϕ(qi) =

∑n
j=1 Mijϕ(k(xj , ·)) =

∑n
j=1 Mijzj so ZQ = L−1Z.

It is well known that for C that is square and invertible A � B if and only if
C−1AC−T � C−1BC−T . Applying this to the previous equation with C = L yields

(11)
1
2
In � ZQZT

Q + λL−1L−T � 3
2
In .

A sufficient condition for (11) to hold is that

(12)
∥∥∥ZQZT

Q + λL−1L−T − In
∥∥∥

2
≤ 1

2
.

According to Proposition 8 we have∥∥∥ZQZT
Q + λL−1L−T − In

∥∥∥
2

=
∥∥∥ZQZT

Q −K(Q,Q)
∥∥∥

2
.

Now, the approximate multiplication property along with the requirement that s ≥
f(sλ(K)−1/2, 0, δ) or s ≥ f(sλ(K)−1/2

√
2, 1/2

√
2, δ) guarantees that with probability

of at least 1− δ we have∥∥∥ZQZT
Q −K(Q,Q)

∥∥∥
2
≤
∥∥∥ZQZT

Q −K(Q,Q)
∥∥∥
F
≤ 1

2
.

Now complete the proof using the equality Tr (K(Q,Q)) = sλ(K) (Proposition 9).
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