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EFFICIENT DIMENSIONALITY REDUCTION FOR CANONICAL
CORRELATION ANALYSIS∗
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Abstract. We present a fast algorithm for approximate canonical correlation analysis (CCA).
Given a pair of tall-and-thin matrices, the proposed algorithm first employs a randomized dimen-
sionality reduction transform to reduce the size of the input matrices, and then applies any CCA
algorithm to the new pair of matrices. The algorithm computes an approximate CCA to the original
pair of matrices with provable guarantees while requiring asymptotically fewer operations than the
state-of-the-art exact algorithms.
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1. Introduction. Canonical correlation analysis (CCA) [20] is an important
technique in statistics, data analysis, and data mining. CCA has been successfully
applied in many statistics and machine learning applications, e.g., dimensionality
reduction [30], clustering [8], learning of word embeddings [11], sentiment classification
[10], discriminant learning [29], and object recognition [22]. In many ways CCA is
analogous to principal component analysis (PCA), but instead of analyzing a single
dataset (in matrix form), the goal of CCA is to analyze the relation between a pair
of datasets (each in matrix form). From a statistical point of view, PCA extracts the
maximum covariance directions between elements in a single matrix, whereas CCA
finds the direction of maximal correlation between a pair of matrices. From a linear
algebraic point of view, CCA measures the similarities between two subspaces (those
spanned by the columns of each of the two matrices analyzed). From a geometric
point of view, CCA computes the cosine of the principal angles between the two
subspaces.

There are different ways to define the canonical correlations of a pair of matrices,
and all these ways are equivalent [16]. The linear algebraic formulation of Golub and
Zha [16], which we present shortly, serves our algorithmic point of view best.
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Definition 1.1. Let A ∈ R
m×n and B ∈ R

m×�, and assume that p = rank(A) ≥
rank(B) = q. The canonical correlations σ1(A,B) ≥ σ2(A,B) ≥ · · · ≥ σq(A,B) of
the matrix pair (A,B) are defined recursively by the following formula:

σi(A,B) = max
x∈Ai,y∈Bi

σ(Ax,By) =: σ(Axi,Byi), i = 1, . . . , q,

where
• σ(u,v) = |uTv|/(‖u‖2‖v‖2),
• Ai = {x ∈ R

n : Ax �= 0,Ax ⊥ {Ax1, . . . ,Axi−1}},
• Bi = {y ∈ R

� : By �= 0,By ⊥ {By1, . . . ,Byi−1}}.
The m-dimensional unit vectors

Ax1/‖Ax1‖2, . . . ,Axq/‖Axq‖2 and By1/‖By1‖2, . . . ,Byq/‖Byq‖2
are called the canonical or principal vectors. The vectors

x1/‖Ax1‖2, . . . ,xq/‖Axq‖2 and y1/‖By1‖2, . . . ,yq/‖Byq‖2
are called canonical weights (or projection vectors). Here, xi/‖Axi‖2 ∈ R

n and
yi/‖Byi‖2 ∈ R

� for all i = 1 : q. Note that the canonical weights and the canonical
vectors are not uniquely defined.

1.1. Contributions. The main contribution of this article (see Theorem 5.2)
is a fast algorithm to compute an approximate CCA. The algorithm computes an
approximation to all the canonical correlations. It also computes a set of approximate
canonical weights with provable guarantees. We show that the proposed algorithm is
often asymptotically faster compared to the standard method of Björck and Golub [5].
To the best of our knowledge, this is the first subcubic time algorithm for approximate
CCA that has provable guarantees.

The proposed algorithm is based on dimensionality reduction: given a pair of ma-
trices (A,B), we transform the pair to a new pair (Â, B̂) that has many fewer rows,
and then compute the canonical correlations of the new pair exactly, alongside a set
of canonical weights, e.g., using the Björck and Golub algorithm (see section 2.1). We

prove that with high probability the canonical correlations of (Â, B̂) are close to the

canonical correlations of (A,B) and that any set of canonical weights of (Â, B̂) can
be used to construct a set of approximately orthogonal canonical vectors of (A,B).

The transformation of (A,B) into (Â, B̂) is done in two steps. First, we apply the
randomized Walsh–Hadamard transform (RHT) to both A and B. This is a unitary
transformation, so the canonical correlations are preserved exactly. On the other
hand, we show that with high probability, the transformed matrices have their “infor-
mation” equally spread among all the input rows, so now the transformed matrices
are amenable to uniform sampling. In the second step, we uniformly sample (without

replacement) a sufficiently large set of rows and rescale them to form (Â, B̂). The
combination of RHT and uniform sampling is often called subsampled randomized
Walsh–Hadamard transform (SRHT) in the literature [33]. Note that other variants
of dimensionality reduction [27] might be appropriate as well, but for concreteness we
focus on the SRHT. (See section 6 for a discussion of other transforms.)

Our dimensionality reduction scheme is particularly effective when the matrices
are tall-and-thin, that is, they have many more rows than columns. Targeting such
matrices is natural: in typical CCA applications, columns typically correspond to
features or labels and rows correspond to samples or training data. By computing the
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CCA on as many instances as possible (as much training data as possible), we get the
most reliable estimates of application-relevant quantities. However, in current algo-
rithms adding instances (rows) is expensive, e.g., in the Björck and Golub algorithm
we pay O(n2 + �2) for each new row. Our algorithm allows practitioners to run CCA
on huge datasets because we reduce the cost of an extra row to almost O(n+ �).

Finally, from an empirical point of view, we demonstrate that our algorithm is
faster than the standard algorithm in practice by 30% to 60%, even on fairly small
matrices (section 7).

1.2. Related work. Dimensionality reduction has been the driving force be-
hind many recent algorithms for accelerating key machine learning and linear alge-
braic tasks. A representative example is linear regression, i.e., solve the least-squares
problem minx ‖Ax − b‖2, where b ∈ R

m. If m � n, then one can use SRHT to

reduce the dimension of A and b, to form Â and b̂, and then solve the small problem
minx ‖Âx − b̂‖2. This process will return an approximate solution to the original

problem [27, 6, 13]. Alternatively, one can observe that ATA and Â
T

Â are “spec-
trally close,” so an effective preconditioner can be obtained via a QR decomposition
of Â [26, 4]. Other problems that can be accelerated using dimensionality reduction
include (i) low-rank matrix approximation [18], (ii) matrix multiplication [27], (iii)
K-means clustering [7], and (iv) approximation of matrix coherence and statistical
leverage [12].

Our approach uses techniques similar to the algorithms mentioned above. For
example, Lemma 2.4 plays a central role in these algorithms as well. However, our
analysis requires the use of advanced ideas from matrix perturbation theory and it
leads to two new technical lemmas that might be of independent interest: Lemmas 3.4
and 3.5 provide bounds for the singular values of the product of two different sampled
orthonormal matrices. Previous work only provides bounds for products of the same
matrix (Lemma 2.4; see also [27, Corollary 11]).

Dimensionality reduction techniques for accelerating CCA have been suggested or
used in the past. One common technique is to simply use fewer samples by uniformly
sampling the rows. Although this technique might work reasonably well in many
instances, it may fail for others unless all rows are sampled. In fact, Theorem 4.1
analyzes uniform sampling and establishes bounds on the required sample size.

Sun, Ceran, and Ye suggest a two-stage approach which involves first solving a
least-squares problem, and then using the solution to reduce the problem size [30].
However, their technique involves explicitly factoring one of the two matrices, which
takes cubic time. Therefore, their method is especially effective when one of the two
matrices has significantly fewer columns than the other. When both matrices have
about the same number of columns, there is no asymptotic performance gain. In
contrast, our method is subcubic in any case.

Finally, it is worth noting that CCA itself has been used for dimensionality re-
duction [31, 8, 30]. This is not the focus of this article; we suggest a dimensionality
reduction technique to accelerate CCA.

2. Preliminaries. We use i : j to denote the set {i, . . . , j}, and [n] = 1 : n. We
use A,B, . . . to denote matrices and a,b, . . . to denote column vectors. In is the n×n
identity matrix; 0m×n is the m × n matrix of zeros. We denote the number of non-
zero elements in A by nnz(A). We denote by R(·) the column space of its argument
matrix. We denote by [A;B] the matrix obtained by concatenating the columns of
B next to the columns of A. Given a subset of indices T ⊆ [m], the corresponding
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sampling matrix S is the |T | × m matrix obtained by discarding from Im the rows
whose index is not in T . Note that SA is the matrix obtained by keeping only the
rows in A whose index appears in T . A symmetric matrix A is positive semidefinite
(PSD), denoted by 0 	 A, if xTAx ≥ 0 for every vector x. For any two symmetric
matrices X and Y of the same size, X 	 Y denotes that Y −X is a PSD matrix.

We denote the compact (or thin) SVD of a matrix A ∈ R
m×n of rank p by

A = UAΣAVT

A with UA ∈ R
m×p, ΣA ∈ R

p×p, and VT

A ∈ R
p×n. In this case,

we denote the singular values of A (i.e., the diagonal elements of ΣA) by σ1(A) ≥
σ2(A) ≥ · · · ≥ σp(A). Sometimes, we also use the full SVD of a matrix A ∈ R

m×n

with α = min{m,n} as A = UΣVT with U ∈ R
m×α, Σ ∈ R

α×α, and VT ∈ R
α×n.

In this case, we also denote the singular values of A (i.e., the diagonal elements
of Σ) by σ1(A) ≥ σ2(A) ≥ · · · ≥ σα(A). We refer to the thin or full SVD of
a matrix simultaneously, and when the two definitions are equivalent or refer to a
specific number of singular values of the matrix we do not make any distinction.
Finally, the Moore–Penrose pseudoinverse of A is A+ = VAΣ−1

A UT

A ∈ R
n×m, where

A = UAΣAVT

A is the thin SVD of A of rank p = rank(A).

2.1. The Björck and Golub algorithm. There are quite a few algorithms
with which to compute the canonical correlations [16]. One popular method is due
to Björck and Golub [5] (see also section 6.4.3 in [17]). It is based on the following
observation.

Theorem 2.1 (Theorem 1 in [5]). Let A ∈ R
m×n have rank p and B ∈ R

m×�

have rank q. Assume that the columns of Q ∈ R
m×p (m ≥ p) and W ∈ R

m×q (m ≥ q)
form an orthonormal basis for the range of A and B (respectively). Also, let p ≥ q.
Let QTW = UΣVT be the full SVD of QTW ∈ R

p×q with U ∈ R
p×q, Σ ∈ R

q×q, and
V ∈ R

q×q. The diagonal elements of Σ are the canonical correlations of the matrix
pair (A,B). The canonical vectors are given by the columns of QU ∈ R

m×q (for A)
and WV ∈ R

m×q (for B).
Theorem 2.1 implies that once we have a pair of matrices Q and W with or-

thonormal columns whose column space spans the same column space of A and B,
respectively, then all we need is to compute the SVD of QTW. Björck and Golub
suggest the use of QR decompositions to find the matricesQ and W, but UA ∈ R

m×p

and UB ∈ R
m×q from the compact SVD of A and B will serve as well. Notice that

both options require O(m(n2 + �2)) time.
Corollary 2.2. Let A ∈ R

m×n have rank p and B ∈ R
m×� have rank q ≤ p.

Let A = UAΣAVT

A with UA ∈ R
m×p, ΣA ∈ R

p×p, and VT

A ∈ R
p×n be the thin SVD

of A. Similarly, let B = UBΣBV
T

B with UB ∈ R
m×q, ΣB ∈ R

q×q, and VT

B ∈ R
p×n

be the thin SVD of B. Let UT

AUB = UΣVT be the full SVD of UT

AUB ∈ R
p×q

with U ∈ R
p×q, Σ ∈ R

q×q, and V ∈ R
q×q. Then, for i ∈ [q], σi(A,B) = Σii. The

canonical vectors are given by the columns of UAU ∈ R
m×q (for A) and UBV ∈

R
m×q (for B). The canonical weights are given by the columns of VAΣ−1

A U ∈ R
n×q

(for A) and VBΣ
−1
B V ∈ R

�×q (for B).

2.2. Matrix coherence and sampling from an orthonormal matrix. Ma-
trix coherence is a fundamental concept in the analysis of matrix sampling algorithms
(e.g. [32, 21]). There are quite a few similar but different ways to define the coherence.
In this article we use the following definition.

Definition 2.3. Given a matrix A with m rows and rank p, the coherence of A
is defined as

μ(A) = max
i∈[m]

‖e�i UA‖22,
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where ei is the ith standard basis (column) vector of R
m and UA ∈ R

m×p is the
U -factor from the thin SVD of A.

The coherence of a matrix gives information about the localization or uniformity
of the elements of an orthonormal basis of the matrix range. Similarly, the coherence
is a measure of how close a basis is to sharing a vector with a canonical basis.

Note that the coherence of A is a property of the column space of A and does
not depend on a particular choice of basis (e.g., the basis described by the columns of
A). Therefore, if R(A) = R(B), then μ(A) = μ(B). Furthermore, it is easy to verify
that if R(A) ⊆ R(B), then μ(A) ≤ μ(B). We also mention that for every matrix A
with m rows, rank(A)/m ≤ μ(A) ≤ 1.

We focus on tall-and-thin matrices, i.e., matrices with (many) more rows than
columns. We are interested in dimensionality reduction techniques that (approxi-
mately) preserve the singular values of the original matrix. The simplest idea for
dimensionality reduction in tall-and-thin matrices is uniform sampling of the rows
of the matrix. Coherence measures how susceptible the matrix is to uniform sam-
pling; the following lemma shows that not too many samples are required when the
coherence is “small.” The bound is almost tight [33, section 3.3].

Lemma 2.4 (sampling from orthonormal matrix, corollary to Lemma 3.4 in [33]).
Let Q ∈ R

m×d have orthonormal columns. Let 0 < ε < 1 and 0 < δ < 1. Let r be
an integer such that 6ε−2mμ(Q) ln(3d/δ) ≤ r ≤ m. Let T be a random subset of
[m] of cardinality r, drawn from a uniform distribution over such subsets (without
replacement), and let S be the |T | ×m sampling matrix corresponding to T rescaled
by

√
m/r. Then, with probability of at least 1 − δ, for i ∈ [d],

√
1− ε ≤ σi(SQ) ≤√

1 + ε.
Proof. Apply Lemma 3.4 from [33] with the following choice of parameters: � =

αM ln(k/δ), α = 6/ε2, and δtropp = η = ε. Here, �, α, M , k, η are the parameters of
Lemma 3.4 from [33]; also δtropp plays the role of δ, an error parameter, of Lemma
3.4 from [33]. ε and δ are from our lemma.

In the above lemma, T is obtained by sampling coordinates from [m] without
replacement. Similar results can be shown for sampling with replacement or using
Bernoulli variables [21].

2.3. Randomized fast unitary transforms. Matrices with high coherence
pose a problem for algorithms based on uniform row sampling. (To see this, notice
that in Lemma 2.4 the quality of the bound depends on the coherence of Q.) One
way to circumvent this problem is to use a coherence-reducing transformation. It is
important that this transformation will not change the solution to the problem.

One popular coherence-reducing method is applying a randomized fast unitary
transform. The crucial observation is that many problems can be safely transformed
using unitary matrices. This is also true for CCA: σi(QA,QB) = σi(A,B) if Q is
unitary (i.e., QTQ is equal to the identity matrix). If the unitary matrix is chosen
carefully, it can reduce the coherence as well. However, any fixed unitary matrix will
fail to reduce the coherence on some matrices.

The solution is to couple a fixed unitary transform with some randomization.
More specifically, the construction is F = FD, where D is a random diagonal matrix
of size m whose entries are independent Bernoulli random variables that take values
{+1,−1} with probability 1

2 , and F is some fixed unitary matrix. An important
quantity is the maximum squared element in F (we denote this quantity with η):
for any fixed X ∈ R

m×n it can be shown that with constant probability, μ(FX) ≤
O(ηn log(m)) [4]. So, it is important for η to be small. It is also necessary that F can
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be applied quickly to X. FFT and FFT-like transforms have both these properties
and work well in practice due to the availability of high-quality implementations.

A fast unitary transform that has the above two properties is theWalsh–Hadamard
transform (WHT), which is defined as follows. Fix an integer m = 2h for h =
1, 2, 3, . . . . The (nonnormalized) m×m matrix of the WHT is defined recursively as

Hm =

[
Hm/2 Hm/2

Hm/2 −Hm/2

]
with H2 =

[
+1 +1
+1 −1

]
.

The m×m normalized matrix of the WHT is H = m− 1
2Hm.

The recursive nature of the WHT allows us to compute HX for an m× n matrix
X in time O(mn log(m)). However, in our case we are interested in SHX, where S is
an r-row sampling matrix. To compute SHX only O(mn log(r)) operations suffice [2,
Theorem 2.1].

The WHT combined with a random diagonal sign matrix is the RHT.

Definition 2.5 (RHT). Let m = 2h for some positive integer h. An RHT is an
m×m matrix of the form Θ = HD, where D is a random diagonal matrix of size m
whose entries are independent Bernoulli random variables that take values {+1,−1}
with probability 1

2 , and H is a normalized Walsh–Hadamard matrix of size m.

For concreteness, our analysis uses the RHT since it has the tightest coherence
reducing bound. Our results generalize to other randomized fast unitary transforms
(for example, in our experiments we use the discrete Hartley transform), with bounds
that differ up to small constants.

Lemma 2.6 (RHT bounds coherence, Lemma 3.3 in [33]). Let A be an m × n
(m ≥ n, m = 2h for some positive integer h) matrix, 0 < δ < 1, and let Θ be an
RHT. Then, with probability of at least 1− δ, μ(ΘA) ≤ 1

m (
√
n+

√
8 ln(m/δ))2.

We remark that the original statement and proof of the lemma [33] is for matrices
with orthonormal columns. Since we define the coherence of A with respect to the
thin SVD of A, thereby making the coherence a property of the column space and
not of the particular basis, we can state in the above a more general result.

3. Perturbation bounds for matrix products. This section states three new
technical lemmas which analyze the perturbation of the singular values of the product
of a pair of matrices after dimensionality reduction. These lemmas are essential for
our analysis in subsequent sections, but they might be of independent interest. We
first state three well-known results.

Lemma 3.1 (see [15, Theorem 3.3]). Let Ψ ∈ R
p×q and Φ = DLΨDR with

DL ∈ R
p×p and DR ∈ R

q×q being nonsingular matrices. Let

γ = max{‖DLD
T

L − Ip‖2, ‖DT

RDR − Iq‖2}.

Then, for all i = 1, . . . , rank(Ψ) : |σi(Φ)− σi(Ψ)| ≤ γ · σi(Ψ).
Lemma 3.2 (Weyl’s inequality for singular values; [19, Corollary 7.3.8]). Let

Φ,Ψ ∈ R
m×n. Then, for all i = 1, . . . ,min(m,n) : |σi(Φ)− σi(Ψ)| ≤ ‖Φ−Ψ‖2.

Lemma 3.3 (conjugating the PSD ordering; Observation 7.7.2 in [19]). Let
Φ,Ψ ∈ R

n×n be symmetric matrices with Φ 	 Ψ. Then, for every n × m matrix
Z : ZTΦZ 	 ZTΨZ.

We now present the new technical lemmas.
Lemma 3.4. Let A ∈ R

m×n (m ≥ n) and B ∈ R
m×� (m ≥ �). Define C :=

[A;B] ∈ R
m×(n+�), and suppose C has rank ω, so UC ∈ R

m×ω, the U -factor from
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the thin SVD of C, has ω columns. Let S ∈ R
r×m be any matrix such that

√
1− ε ≤

σω(SUC) ≤ σ1(SUC) ≤
√
1 + ε for some 0 < ε < 1. Then, for i = 1, . . . ,min(n, �),∣∣∣σi

(
ATB

)
− σi

(
ATSTSB

)∣∣∣ ≤ ε · ‖A‖2 · ‖B‖2.

In the above, σi(A
TB) are the diagonal entries of the min(n, �)×min(n, �) diagonal

matrix from the full SVD of ATB, and similarly for σi(A
TSTSB) and ATSTSB.

Proof. Let A = UAΣAVT

A with UA ∈ R
m×p, ΣA ∈ R

p×p, and VT

A ∈ R
p×n be

the thin SVD ofA with p = rank(A). Similarly, let B = UBΣBV
T

B withUB ∈ R
m×q,

ΣB ∈ R
q×q, and VT

B ∈ R
q×n be the thin SVD of B with q = rank(B). Using Weyl’s

inequality for the singular values of arbitrary matrices (Lemma 3.2) we obtain, for
i = 1, . . . ,min(n, �),∣∣∣σi

(
ATB

)
− σi

(
ATSTSB

)∣∣∣ ≤ ∥∥ATSTSB−ATB
∥∥

=
∥∥∥VAΣA

(
UT

ASTSUB −UT

AUB

)
ΣBV

T

B

∥∥∥
≤ ‖UT

ASTSUB −UT

AUB‖2 · ‖A‖2 · ‖B‖2.
Next, we argue that ‖UT

ASTSUB −UT

AUB‖2 ≤ ‖UT

CS
TSUC − Iω‖2. Indeed,

‖UT

ASTSUB −UT

AUB‖2 = sup
‖w‖2=1, ‖z‖2=1

|wTUT

ASTSUBz−wTUT

AUBz|

= sup
‖x‖2=‖y‖2=1, x∈R(UA), y∈R(UB)

|xTSTSy − xTy|

≤ sup
‖x‖2=‖y‖2=1, x∈R(UC), y∈R(UB)

|xTSTSy − xTy|

≤ sup
‖x‖2=‖y‖2=1, x∈R(UC), y∈R(UC)

|xTSTSy − xTy|

= sup
‖w‖2=1, ‖z‖2=1

|wTUT

CS
TSUCz−wTUT

CUCz|

= ‖UT

CS
TSUC − Iω‖2.

In the above, all the equalities follow by the definition of the spectral norm of a matrix,
while the two inequalities follow because R(UA) ⊆ R(UC) and R(UB) ⊆ R(UC).
To conclude, recall that we assumed that for i ∈ [ω]: 1 − ε ≤ λi(U

T

CS
TSUC) ≤

1 + ε.
Lemma 3.5. Let A ∈ R

m×n (m ≥ n) have rank p and B ∈ R
m×� (m ≥ �)

have rank q. Let S ∈ R
r×m (r ≥ p, q) be any matrix such that rank(SA) = rank(A)

and rank(SB) = rank(B). Let UA ∈ R
m×p be the U -factor from the thin SVD of

A, and let UB ∈ R
m×q be the U -factor from the thin SVD of B. Similarly, let

USA ∈ R
r×p be the U -factor from the thin SVD of SA ∈ R

r×p, and let USB ∈ R
r×q

be the U -factor from the thin SVD of SB ∈ R
r×q. Let all singular values of SUA

and SUB be inside [
√
1− ε,

√
1 + ε] for some 0 < ε < 1/2, i.e., for all i = 1 : p let√

1− ε ≤ σi(SUA) ≤ √1 + ε and for all i = 1 : q let
√
1− ε ≤ σi(SUB) ≤

√
1 + ε.

Then, for i = 1, . . . ,min(p, q),∣∣∣σi

(
UT

ASTSUB

)
− σi

(
UT

SAUSB

)∣∣∣ ≤ 2ε (1 + ε) .

Here, σi(U
T

ASTSUB) are the diagonal entries of the min(p, q)×min(p, q) diagonal ma-
trix from the full SVD of UT

ASTSUB, and similarly for σi(U
T

SAUSB) and UT

SAUSB.
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Proof. Let A = UAΣAVT

A with UA ∈ R
m×p, ΣA ∈ R

p×p, and VT

A ∈ R
p×n

be the thin SVD of A with p = rank(A). Let B = UBΣBV
T

B with UB ∈ R
m×q,

ΣB ∈ R
q×q, and VT

B ∈ R
q×n be the thin SVD of B with q = rank(B). Let SA =

USAΣSAVT

SA with USA ∈ R
r×p, ΣSA ∈ R

p×p, and VT

SA ∈ R
p×n be the thin SVD

of SA with p = rank(SA). Let SB = USBΣSBV
T

SB with USB ∈ R
r×q, ΣSB ∈ R

q×q,
and VT

SB ∈ R
q×n be the thin SVD of SB with q = rank(SB). Then, for every

i = 1, . . . ,min(p, q), we have

∣∣∣σi

(
UT

ASTSUB

)
− σi

(
UT

SAUSB

)∣∣∣ =
∣∣∣σi

(
Σ−1

A VT

AATSTSBVBΣ
−1
B

)

− σi

(
Σ−1

SAVT

SAATSTSBVSBΣ
−1
SB

) ∣∣∣
≤ γ · σi

(
Σ−1

A VT

AATSTSBVBΣ
−1
B

)

= γ · σi

(
UT

ASTSUB

)

≤ γ · ‖UT

AST‖2 · σi (SUB)

≤ γ · (1 + ε)

with

γ = max(‖Σ−1
SAVT

SAVAΣ2
AVT

AVSAΣ−1
SA−Ip‖2, ‖Σ−1

SBV
T

SBVBΣ
2
BV

T

BVSBΣ
−1
SB−Iq‖2).

In the above, the first inequality follows using Lemma 3.1: set

Ψ = Σ−1
A VT

AATSTSBVBΣ
−1
B ,

DL := Σ−1
SAVT

SAVAΣA and DR := ΣBV
T

BVSBΣ
−1
SB.

Moreover,

DLΨDR =
(
Σ−1

SAVT

SAVAΣA

)(
Σ−1

A VT

AATSTSBVBΣ
−1
B

)(
ΣBV

T

BVSBΣ
−1
SB

)

= Σ−1
SAVT

SAVAVT

AATSTSBVBV
T

BVSBΣ
−1
SB

= Σ−1
SAVT

SAATSTSBVSBΣ
−1
SB,

since A = AVAVT

A and B = BVBV
T

B.
To apply Lemma 3.1 we need to show that DL and DR are nonsingular. We will

prove that DL is nonsingular. (The same argument applies toDR.) DL is nonsingular
if and only if VT

SAVA is nonsingular. Since rank(VSA) = rank(VA), it follows that
the range of VSA equals the range of VA. So, VSA = VAW for some unitary matrix
W of size p. VT

SAVA = W� and W is nonsingular and so is DL.
The second inequality follows because for any two matrices X,Y : σi(XY) ≤

‖X‖2σi(Y). Finally, in the third inequality we used the fact that ‖UT

AST‖2 ≤
√
1 + ε

and σi(SUB) ≤
√
1 + ε.

We now bound ‖Σ−1
SAVT

SAVAΣ2
AVT

AVSAΣ−1
SA − Ip‖2. (The second term in the

max expression of γ can be bounded in a similar fashion, so we omit the proof.)

‖Σ−1
SAVT

SAVAΣ2
AVT

AVSAΣ−1
SA − Ip‖2

= ‖Σ−1
SAVT

SAATAVSAΣ−1
SA − Ip‖2

= ‖UT

SA((SA)
+
)TATA(SA)

+
USA −UT

SAUSAUT

SAUSA‖2
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= ‖UT

SA

(
((SA)+)TATA(SA)+ −USAUT

SA

)
USA‖2

≤ ‖((SA)+)TATA(SA)+ −USAUT

SA‖2,

where we used ATA = VAΣ2
AVT

A and (SA)
+
USA = VSAΣ−1

SA. Recall that all the

singular values of SUA are between
√
1− ε and

√
1 + ε, so (1− ε)Ip 	 UT

ASTSUA 	
(1 + ε)Ip. Conjugating the above PSD ordering with ΣAVT

A(SA)
+
(see Lemma 3.3),

it follows that

(1− ε)((SA)
+
)TATA(SA)

+ 	 USAUT

SA 	 (1 + ε)((SA)
+
)TATA(SA)

+

since UT

AUA = Ip and

((SA)
+
)TATSTSA(SA)

+
= USAUT

SA.

Rearranging terms, it follows that

1

1 + ε
USAUT

SA 	 ((SA)
+
)TATA(SA)

+ 	 1

1− ε
USAUT

SA.

Since 0 < ε < 1/2, it holds that 1
1−ε ≤ 1 + 2ε and 1

1+ε ≥ 1− ε, hence

−2εUSAUT

SA 	 ((SA)
+
)TATA(SA)

+ −USAUT

SA 	 2εUSAUT

SA

using standard properties of the PSD ordering. This implies that

‖((SA)
+
)TATA(SA)

+ −USAUT

SA‖2 ≤ 2ε‖USAUT

SA‖2 = 2ε.

Indeed, let x+ be the unit eigenvector of the symmetric matrix

((SA)
+
)TATA(SA)

+ −USAUT

SA

corresponding to its maximum eigenvalue. The PSD ordering implies that

λmax

(
((SA)

+
)TATA(SA)

+ −USAUT

SA

)
≤ 2εxT

+USAUT

SAx+ ≤ 2ε‖USAUT

SA‖2 = 2ε.

Similarly, λmin(((SA)
+
)TATA(SA)

+ − USAUT

SA) ≥ −2ε, which shows the
claim.

Lemma 3.6. Assume the conditions of Lemma 3.4. Then, for all w ∈ R
n and

y ∈ R
�, we have |wTATBy −wTATSTSBy| ≤ ε · ‖Aw‖2 · ‖By‖2.

Proof. Let A = UAΣAVT

A with UA ∈ R
m×p, ΣA ∈ R

p×p, and VT

A ∈ R
p×n

be the thin SVD of A with p = rank(A). Let B = UBΣBV
T

B with UB ∈ R
m×q,

ΣB ∈ R
q×q, and VT

B ∈ R
q×n be the thin SVD of B with q = rank(B). Let E =

UT

ASTSUB −UT

AUB. Now,∣∣∣wTATBy −wTATSTSBy
∣∣∣ =

∣∣∣wTVAΣAEΣBV
T

By
∣∣∣

≤ ‖wTVAΣA‖2‖E‖2‖ΣBV
T

By‖2
= ‖wTVAΣAUT

A‖2‖E‖2‖UBΣBV
T

By‖2
= ‖wTAT‖2‖E‖2‖By‖2
= ‖E‖2‖Aw‖2‖By‖2.

Now, the proof of Lemma 3.4 ensures that ‖E‖2 ≤ ε.
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4. CCA of row sampled pairs. Given A and B, one straightforward way
to accelerate CCA is to sample rows uniformly from both matrices and to compute
the CCA of the smaller matrices. In this section we show that if we sample enough
rows, then the canonical correlations of the sampled pair are close to the canonical
correlations of the original pair. Furthermore, the canonical weights of the sampled
pair can be used to find approximate canonical vectors to the original pair. Not
surprisingly, the sample size depends on the coherence. More specifically, it depends
on the coherence of [A;B].

Theorem 4.1. Suppose A ∈ R
m×n (m ≥ n) has rank p and B ∈ R

m×� (m ≥ �)
has rank q ≤ p. Let 0 < ε < 1/2 be an accuracy parameter and 0 < δ < 1 be a failure
probability parameter. Let ω = rank([A;B]) ≤ p+ q. Let r be an integer such that

54ε−2mμ([A;B]) ln(12ω/δ) ≤ r ≤ m.

Let T be a random subset of [m] of cardinality r, drawn from a uniform distribution
over such subsets, and let S ∈ R

r×m be the sampling matrix corresponding to T
rescaled by

√
m/r. Denote Â = SA ∈ R

r×n and B̂ = SB ∈ R
r×�.

Let σ1(Â, B̂), . . . , σq(Â, B̂) be the exact canonical correlations of (Â, B̂), and let

w1 = x̂1/‖Âx̂1‖2, . . . ,wq = x̂q/‖Âx̂q‖2
and

p1 = ŷ1/‖B̂ŷ1‖2, . . . ,pq = ŷq/‖B̂ŷq‖2

be the exact canonical weights (or projection vectors) of (Â, B̂). Here, wi = x̂i/‖Ax̂i‖2 ∈
R

n and pi = ŷi/‖Bŷi‖2 ∈ R
�. Also, x̂i ∈ R

r and ŷi ∈ R
r are some vectors chosen as

in Definition 1.1, but for the pair (Â, B̂).

Then, with probability of at least 1− δ all the following hold simultaneously:

(a) (approximation of canonical correlations) For every i = 1, 2, . . . , q,

|σi (A,B)− σi

(
Â, B̂

)
| ≤ ε+ 2ε2/9 = O(ε).

(b) (approximate orthonormal bases) The vectors {Awi}i∈[q] ∈ R
m form an ap-

proximately orthonormal basis. That is, for any c ∈ [q],

1

1 + ε/3
≤ ‖Awc‖22 ≤

1

1− ε/3
,

and for any i �= j,

| 〈Awi, Awj〉 | ≤ ε

3− ε
.

In particular, ‖WTATAW − Iq‖2 ≤ 2εq/3, where W = [w1, . . . ,wq], and
similarly for the set of {Bpi}i∈[q] ∈ R

m.
(c) (approximate correlation) For every i = 1, 2, . . . , q,

σi(A,B)

1 + ε/3
− 2ε ≤ σ(Awi,Bpi) ≤ σi(A,B)

1− ε/3
+ 2ε.
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Proof. Let A = UAΣAVT

A with UA ∈ R
m×p, ΣA ∈ R

p×p, and VT

A ∈ R
p×n be

the thin SVD of A with p = rank(A). Let B = UBΣBV
T

B with UB ∈ R
m×q, ΣB ∈

R
q×q, and VT

B ∈ R
q×n be the thin SVD of B with q = rank(B). Let C := [UA;UB] ∈

R
m×(p+q). Let C = UCΣCV

T

C with UC ∈ R
m×ω, ΣC ∈ R

ω×ω, and VT

C ∈ R
ω×n be

the thin SVD of C with ω = rank(C) ≥ rank(B) ≥ rank(B). Lemma 2.4 implies that
each of the following three assertions holds with probability of at least 1− δ/3; hence,
by the union bound, all three events hold simultaneously with probability of at least
1− δ:

• For every r ∈ [p],
√
1− ε/3 ≤ σr(SUA) ≤√

1 + ε/3.

• For every k ∈ [q],
√
1− ε/3 ≤ σk(SUB) ≤

√
1 + ε/3.

• For every h ∈ [ω],
√
1− ε/3 ≤ σh(SUC) ≤

√
1 + ε/3.

We now show that if indeed all three events hold, then (a)–(c) hold as well.
Proof of (a). Corollary 2.2 implies that for all i = 1 : min(p, q), σi(A,B) =

σi(U
T

AUB) and σi(SA,SB) = σi(U
T

SAUSB). Using the triangle inequality we

get |σi(A,B) − σi(SA,SB)| = |σi(U
T

AUB) − σi(U
T

SAUSB)| ≤ |σi(U
T

AUB) −
σi(U

T

ASTSUB)|+ |σi(U
T

ASTSUB)− σi(U
T

SAUSB)|.
In the above, σi(U

T

ASTSUB) are the diagonal elements of the min(p, q)× min(p, q)

matrix from the full SVD of UT

ASTSUB ∈ R
p×q, and similarly for σi(U

T

SAUSB) and
UT

SAUSB. To conclude the proof, use Lemmas 3.4 and 3.5 to bound these two terms,
respectively.

Proof of (b). For any c ∈ [q], ‖Awc‖2 = ‖Awc‖2/‖Âwc‖2, since ‖Âwc‖2 = 1.
Now Lemma 3.6 implies the first inequality. For any i �= j

| 〈Awi, Awj〉 | ≤ |wT

i Â
T

Âwj |+ |wT

i (Â
T

Â−ATA)wj |
= |wT

i (Â
T

Â−ATA)wj |
≤ ε

3
‖Awi‖2‖Awj‖2

≤ ε/3

1− ε/3
‖Âwi‖2‖Âwj‖2

=
ε

3− ε
.

In the above, we used the triangle inequality, the fact that the wi’s are the canonical
weights of Â, and Lemma 3.6.

The norm bound follows since the maximum entry (in absolute value) of the
matrix WTATAW − Iq is at most max{2ε/3, ε/3} = 2ε/3.

Proof of (c). We prove only the upper bound. The lower bound is similar, and
we omit it.

σ (Awi,Bpi) =
〈Awi, Bpi〉
‖Awi‖2‖Bpi‖2 ≤

1

1− ε/3
· 〈Awi, Bpi〉

=
1

1− ε/3
·
(〈

Âwi, B̂pi

〉
+wT

i

(
ATB− Â

T

B̂
)
pi

)

≤
σ
(
Âwi, B̂pi

)
1− ε/3

+
ε/3

1− ε/3
· ‖Awi‖2 · ‖Bpi‖2

≤
σ
(
Âwi, B̂pi

)
1− ε/3

+
ε/3

(1− ε/3)2
=

σi

(
Â, B̂

)
1− ε/3

+
ε/3

(1− ε/3)2
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≤ σi (A,B)

1− ε/3
+

ε+ 2ε2/9

1− ε/3
+

ε/3

(1− ε/3)2

≤ σi (A,B)

1− ε/3
+ 2ε.

In the above, the first equality follows by the definition of σ(·, ·), whereas the first
inequality holds since 1/‖Awi‖22 ≤ 1+ ε/3 and 1/‖Bpi‖22 ≤ 1+ ε/3 from part (b) and
then using the fact that 1 + ε/3 ≤ 1/(1 − ε/3). The second inequality follows from

Lemma 3.6 applied on wT

i (A
TB − Â

T

B̂)pi, and the third inequality follows since

(1−ε)‖Awi‖22 ≤ ‖Âwi‖22 = 1 (the same holds for Bpi). The fourth inequality follows
by part (a), and the last inequality follows by elementary algebraic manipulations and
the assumption ε < 1/2.

5. Fast approximate CCA. First, we define “approximate CCA.”
Definition 5.1 (approximate CCA). For 0 ≤ η ≤ 1, an η-approximate CCA of

(A,B) is a set of positive numbers σ̂1, . . . , σ̂q together with a set of vectors w1, . . . ,wq ∈
R

m×n (for A ∈ R
n of rank p) and a set of vectors p1, . . . ,pq ∈ R

� (for B ∈ R
m×� of

rank q ≤ p), such that the following hold:
(a) For every i ∈ [q],

|σi(A,B)− σ̂i| ≤ η.

(b) For every i ∈ [q],

|‖Awi‖22 − 1| ≤ η,

and for i �= j,

| 〈Awi, Awj〉 | ≤ η.

In particular, ‖WTATAW − Iq‖ ≤ ηq, where W = [w1, . . . ,wq], and simi-
larly for the set of {Bpi : i ∈ [q]}.

(c) For every i ∈ [q],

|σi(A,B)− σ(Awi,Bpi)| ≤ η.

We are now ready to present our fast algorithm for approximate CCA of a pair of
tall-and-thin matrices. Algorithm 1 gives the pseudocode description of our algorithm.

The analysis in the previous section (Theorem 4.1) shows that if we sample enough
rows, the canonical correlations and weights of the sampled matrices are an O(ε)-
approximate CCA of (A,B). However, to turn this observation into a concrete algo-
rithm we need an upper bound on the coherence of [A;B]. It is conceivable that in
certain scenarios such an upper bound might be known in advance, or that it can be
computed quickly [12]. However, even if we know the coherence, it might be as large
as one, which will imply that sampling the entire matrix is needed.

To circumvent this problem, our algorithm uses the RHT to reduce the coherence
of the matrix pair before sampling rows from it. That is, instead of sampling rows from
(A,B) we sample rows from (ΘA,ΘB), where Θ is an RHT matrix (Definition 2.5).
This unitary transformation bounds the coherence with high probability, so we can
use Theorem 4.1 to compute the number of rows required for an O(ε)-approximate

CCA. We now sample the transformed pair (ΘA,ΘB) to obtain (Â, B̂). Now the

canonical correlations and weights of (Â, B̂) are computed and returned.
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Algorithm 1. Fast approximate CCA.

1: Input: A ∈ R
m×n of rank at most p, B ∈ R

m×� of rank at most q, 0 < ε < 1/2,
and δ (n ≥ l, p ≥ q). Here m = 2h for some positive integer h > 0.

2: r ←− min(54ε−2[
√
n+ �+

√
8 ln(12m/δ)]2 ln(3(n+ �)/δ),m).

3: Let S be the sampling matrix of a random subset of [m] of cardinality r (uniform
distribution).

4: Draw a random diagonal matrix D of size m with ±1 on its diagonal with equal
probability.

5: Â←− SH · (DA) using fast subsampled WHT (see section 2.3).

6: B̂←− SH · (DB) using fast subsampled WHT (see section 2.3).

7: Compute and return the canonical correlations and the canonical weights of (Â, B̂)
(e.g., using Björck and Golub’s algorithm) as an approximate CCA to (A,B).

Theorem 5.2. With probability of at least 1 − δ, Algorithm 1 returns an O(ε)-
approximate CCA of (A,B). Assuming Björck and Golub’s algorithm is used in line 7,
Algorithm 1 runs in time O(min{mn lnm+ ε−2[

√
n+

√
ln(m/δ)]2 ln(n/δ)n2,mn2}).

Proof. Lemma 2.6 ensures that with probability of at least 1−δ/2, μ([ΘA;ΘB]) ≤
1
m (
√
n+ � +

√
8 ln(3m/δ))2. Assuming that the last inequality holds, Theorem 4.1

ensures that with probability of at least 1−δ/2, the canonical correlations and weights

of (Â, B̂) form an O(ε)-approximate CCA of (ΘA,ΘB). By the union bound, both
events hold together with probability of at least 1− δ. The RHT transforms applied
to A and B are unitary, so for every η, an η-approximate CCA of (ΘA,ΘB) is also
an η-approximate CCA of (A,B) (and vice versa).

Running time analysis. Step 2 takes O(1) operations. Step 3 requires O(r)
operations. Step 4 requires O(m) operations. Step 5 involves the multiplication of A
with SHD from the left. Computing DA requires O(mn) time. Multiplying SH by
DA using fast subsampled WHT requires O(mn ln r) time, as explained in section 2.3.
Similarly, step 6 requires O(m� ln r) operations. Finally, step 7 takes O(rn�+ r(n2 +
�2)) time. Assuming that n ≥ �, the total running time is O(rn2+mn ln(r)). Plugging
in the value for r, and using the fact that r ≤ m, establishes our running time
bound.

We remark that while Algorithm 1 is often faster than Björck and Golub’s algo-
rithm, it is not guaranteed to always be so. In fact, if r = m, then the algorithm is
slower due to additional operations. Obviously, since r = Ω((n + �) ln(n + �)), the
algorithm is beneficial only if m is very large while n+ � is small.

6. Fast approximate CCA using other transforms. Our discussion so far
has focused on the case in which we reduce the dimensions of A and B via the SRHT.
In recent years, several similar transforms have been suggested by various researchers.
For example, one can use the fast Johnson–Lindenstraus method of Ailon and Chazelle
[1]. This transform leads to an approximate CCA algorithm with a similar additive
error guarantee and running time as in Theorem 5.2.

Recently, Clarkson and Woodruff described a transform that is particularly ap-
pealing if the input matrices A and B are sparse [9]. We present this transform in
the following lemma along with theoretical guarantees similar to those of Lemma 2.4.
The following lemma is due to [23] (see also [24]), which analyzed the transform orig-
inally due to [9]. We only employ the lemma due to Meng and Mahoney [23] because
it provides explicit constants compared to the original result due to Clarkson and
Woodruff, which is stated in asymptotic notation [9, Theorem 19].
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Algorithm 2. Fast approximate CCA using the Clarskon–Woodruff transform [9].

1: Input: A ∈ R
m×n of rank at most p, B ∈ R

m×� of rank at most q, 0 < ε < 1/3,
and δ (n ≥ l, p ≥ q).

2: r ←− min(243((n+�)2+n+�)
ε2δ ,m).

3: Let S be an r × m matrix constructed as follows: it has each column chosen
independently and uniformly from the r standard basis vectors of Rr.

4: Draw a random diagonal matrix D of size m with ±1 on its diagonal with equal
probability.

5: Â←− S · (DA).

6: B̂←− S · (DB).

7: Compute and return the canonical correlations and the canonical weights of (Â, B̂)
(e.g., using Björck and Golub’s algorithm) as an approximate CCA to (A,B).

Lemma 6.1 (Theorem 1 in [23] with ε, δ replaced with ε/3, δ/3, respectively).
Given any matrix X ∈ R

m×d with m � d, accuracy parameter 0 < ε < 1/3, and
failure probability parameter 0 < δ < 1, let r ≥ ⌈

(243(d2 + d))/(ε2δ)
⌉
. Construct

an r ×m matrix Ω as follows: Ω = SD, where S ∈ R
r×m has each column chosen

independently and uniformly from the r standard basis vectors of Rr and D ∈ R
m×m

is a diagonal matrix with diagonal entries chosen independently and uniformly from
{+1,−1}. Then with probability at least 1−δ/3, for every j ∈ [d],

√
1− ε/3 ·σj(X) ≤

σj(ΩX) ≤√
1 + ε/3 · σj(X). Moreover, ΩX can be calculated in O(nnz(X)) time.

Similar to Theorem 4.1, we have the following theorem.

Theorem 6.2. Suppose A ∈ R
m×n (m ≥ n) has rank p and B ∈ R

m×� (m ≥ �)
has rank q ≤ p. Let 0 < ε < 1/3 be an accuracy parameter and 0 < δ < 1 be a
failure probability parameter. Let ω = rank([A;B]) ≤ p+ q. Let r be an integer such

that 243(ω2+ω)
ε2δ ≤ r ≤ m. Let Ω ∈ R

r×m be constructed as in Lemma 6.1. Denote

Â = ΩA ∈ R
r×n and B̂ = ΩB ∈ R

r×�. Let σ1(Â, B̂), . . . , σq(Â, B̂) be the exact

canonical correlations of (Â, B̂), and let w1 = x̂1/‖Âx̂1‖2, . . . ,wq = x̂q/‖Âx̂q‖2, and
p1 = ŷ1/‖B̂ŷ1‖2, . . . ,pq = ŷq/‖B̂ŷq‖2 be the exact canonical weights (or projection

vectors) of (Â, B̂). Here, wi = x̂i/‖Ax̂i‖2 ∈ R
n and pi = ŷi/‖Bŷi‖2 ∈ R

�. Also,

x̂i ∈ R
r and ŷi ∈ R

r are some vectors chosen as in Definition 1.1 but for (Â, B̂).
With probability of at least 1−δ, (a), (b), and (c) of Theorem 4.1 hold simultaneously.

Proof. Let A = UAΣAVT

A with UA ∈ R
m×p, ΣA ∈ R

p×p, and VT

A ∈ R
p×n

be the thin SVD of A with p = rank(A). Let B = UBΣBV
T

B with UB ∈ R
m×q,

ΣB ∈ R
q×q, and VT

B ∈ R
q×n be the thin SVD of B with q = rank(B). Let C :=

[UA;UB]. Let C = UCΣCV
T

C with UC ∈ R
m×ω, ΣC ∈ R

ω×ω, and VT

C ∈ R
ω×n be

the thin SVD of C with ω = rank(C). Lemma 6.1 implies that each of the following
three assertions hold with probability of at least 1 − δ/3, and hence all three hold
simultaneously with probability of at least 1− δ:

• For every r ∈ [p],
√
1− ε/3 ≤ σr(ΩUA) ≤√

1 + ε/3.

• For every k ∈ [q],
√
1− ε/3 ≤ σk(ΩUB) ≤

√
1 + ε/3.

• For every h ∈ [ω],
√
1− ε/3 ≤ σh(ΩUC) ≤

√
1 + ε/3.

Recall that in the proof of Theorem 4.1 we have shown that if indeed all three hold,
then (a)–(c) hold as well.
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Finally, similar to Theorem 5.2 we have the following theorem for approximate
CCA (see also Algorithm 2).

Theorem 6.3. With probability of at least 1 − δ, Algorithm 2 returns an O(ε)-
approximate CCA of (A,B). Assuming Björck and Golub’s algorithm is used in line
7, Algorithm 2 runs in time O(min{m+ nnz(A) + nnz(B) + n4ε−2δ−1,mn2}).

Proof. The bound is immediate from Theorem 6.2 since n + � ≥ ω. So, we only
need to analyze the running time. Step 2 takes O(1) operations. Step 3 requires O(m)
operations. Step 4 requiresO(m) operations as well. Step 5 involves the multiplication
of A with SD from the left. Lemma 6.1 argues that this can be accomplished in
O(nnz(A)) arithmetic operations. Similarly, step 6 requires O(nnz(B)) operations.
Finally, step 7 takes O(rn� + r(n2 + �2)) arithmetic operations. Assuming that n ≥
�, the total running time is O(m + nnz(A) + nnz(B) + rn2). Plugging the value
for r = (243((n + �)2 + n + �))/(ε2δ) and using again that n ≥ � establishes the
bound.

Again we remark that while Algorithm 2 is often faster than Björck and Golub’s
algorithm, it is not guaranteed to always be so. In fact, if r = m, then the algorithm
is slower due to additional operations. Obviously, since r = Ω((n+ �)2) the algorithm
is beneficial only if m is very large while n+ � is small.

6.1. Sufficient properties of a dimension reduction transform. We stress
that any matrix Ω that satisfies the three conditions appearing in the beginning of
the proof of Theorem 6.2 can be used in our framework.

For example, it might be possible to design a dimensionality reduction algorithm
based on “subspace sampling” (also known as “leverage-scores sampling”) [14].

7. Experiments. In this section we report the results of a few small-scale exper-
iments. Our experiments are not meant to be exhaustive. However, they do show that
our algorithm can be modified slightly to achieve very good running time performance
in practice while still producing acceptable approximation results.

Our implementation of Algorithm 1 differs from the pseudocode description in
two ways. First, we use

(7.1) r ←− min(ε−2
[√

n+ �+
√
ln(m/δ)

]2
ln(n+ �)/δ),m)

for setting the sample size in all the following experiments, i.e., we keep the same
asymptotic behavior but drop the constants. The constants in Algorithm 1 are rather
large, so they might preclude the possibility of beating Björck and Golub’s algorithm
for reasonable matrix sizes. Our implementation also differs in the choice of the
underlying coherence-reduction matrix. Algorithm 1, and the analysis, uses the WHT.
However, as we discussed in section 2.3, other Fourier-type transforms will work as
well and some of these alternative choices have certain advantages that make them
better suited for an actual implementation [4]. Specifically, we use the implementation
of the normalized randomized discrete Hartley transform (DHT) in the Blendenpik
library [4].1 The DHT is a matrix Hm ∈ R

m×m, where for all i, j: Hm(i, j) =
cos(2·π·i·jm ) + sin(2·π·i·jm ). Hence, the normalized randomized DHT is

√
m/rDHm,

whereD is a random diagonal matrix of sizem whose entries are independent Bernoulli
random variables that take values {+1,−1} with probability 1/2.

We report the results of three experiments. In each experiment, we run our code
five times on a fixed pair of matrices (datasets) A and B and compare the different

1Available at http://www.mathworks.com/matlabcentral/fileexchange/25241-blendenpik.

http://www.mathworks.com/matlabcentral/fileexchange/25241-blendenpik.
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Fig. 1. The exact canonical correlations.
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Fig. 2. Error in approximation of the canonical correlations using Algorithm 1 (r as in (7.1)).

outputs to the true canonical correlations. The first two experiments involved syn-
thetic datasets, for which we set ε = 0.25 and δ = 0.05. The last experiment was
conducted on a real-life dataset, and we used ε = 0.5 and δ = 0.2. All experi-
ments were conducted in a 64-bit version of MATLAB 7.9. We used a Lenovo W520
Thinkpad, Intel Core i7-2760QM CPU running at 2.40 GHz, with 8GB RAM, running
Linux 3.5. The measured running times are wall-clock times and were measured using
the ftime Linux system call.

7.1. Synthetic experiment 1. We first draw five random matrices: three ma-
trices G,F,Z ∈ R

m×n with independent entries from the normal distribution, and
X,Y ∈ R

n×n with independent entries from the uniform distribution on [0, 1]. We
now set A = GX + 0.1 · F and B = GY + 0.1 · Z. We use the sizes m = 120,000
and n = 60. Conceptually, we first take a random basis (the columns of G), and
linearly transform it in two different ways (by multiplying by X and Y). The trans-
formation does not change the space spanned by the bases. We now add to each
base some random noise (0.1 · F and 0.1 · Z). Since both A and B essentially span
the same column space, only polluted by different noise, we expect (A,B) to have
mostly large canonical correlations (close to 1) but also a few small ones. Indeed,
Figure 1(a), which plots the canonical correlations of this pair of matrices, confirms our
hypothesis.

Figure 2(a) shows the (signed) error in approximating the canonical correlations
using Algorithm 1 (i.e., σ̂i(A,B) − σi(A,B)) with r as in (7.1) (r = 27, 231), in five
different runs. The actual error is always an order of magnitude smaller than the input
ε; the maximum absolute error is only 0.011. For large canonical correlations the error
is much smaller, and the approximated value is very accurate. For smaller correlations,
the error starts to get larger, but it is still an order of magnitude smaller than the
actual value for the smallest correlation. In Figure 5(a) we plot the maximum error
in the correlations as a function of r, when in each experiment we do 30 independent
runs. As expected, the error decreases sublinearly as the sample size increases.

Next, we checked whether AW and BP are close to having orthogonal columns,
where W and P contain the canonical weights returned by the proposed algorithm.
Figure 3(a) visualizes the entries of WTATAW and Figure 4(a) visualizes the entries
of PTBTBP in one of the runs. We see that the diagonal is dominant, and close to 1,



EFFICIENT DIMENSIONALITY REDUCTION FOR CCA S127

Synthetic Experiment 1, r = 27231

 

 

10 20 30 40 50 60

10

20

30

40

50

60

 1  1e−1 1e−2 1e−3 1e−4 1e−5

Synthetic Experiment 2, r = 30953

 

 

10 20 30 40 50 60 70 80

10

20

30

40

50

60

70

80

 1  1e−1 1e−2 1e−3 1e−4 1e−5

Mediamill, r = 9463

 

 

20 40 60 80 100 120

20

40

60

80

100

120

 1  1e−1 1e−2 1e−3 1e−4 1e−5

(a) (b) (c)

Fig. 3. Visualization of the absolute value of the enteries in WTATAW in one of the runs.
Color varies between white and black, where black is 1 and white is 10−5.
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Fig. 4. Visualization of the absolute value of the enteries in PTBTBP in one of the runs.
Color varies between white and black, where black is 1 and white is 10−5.

and the off-diagonal entries are small (but not tiny). The maximum condition number
of AW and BP we got in the five different runs was 1.18. The maximum value of
‖WTATAW− Iq‖2 and ‖PTBTBP− Iq‖2 we got was 0.096. In Figure 6(a) we plot

the maximum value of ‖WTATAW − Iq‖2 and ‖PTBTBP − Iq‖2 as a function of
r, when in each experiment we do 30 independent runs. As expected, the deviation
from orthogonality decreases sublinearly as the sample size increases.

As for the running time, the proposed algorithm takes about 55% less time than
Björck and Golub’s algorithm (0.915 seconds versus 2.04 seconds).

7.2. Synthetic experiment 2. We first draw three random matrices. The first
matrix X ∈ R

m×n has independent entries from the normal distribution. The second
matrixY ∈ R

m×k has independent entries which take value ±1 with equal probability.
The third matrix Z ∈ R

k×n has independent entries from the uniform distribution
on [0, 1]. We now set A = X + 0.1 ·Y · (1k×n + Z) and B = Y, where 1k×n is the
k × n all-ones matrix. We use the sizes m = 80, 000, n = 80, and k = 60. Here we
basically have noise (B) and a matrix polluted with that noise (A). Thus there is some
correlation, but really the two subspaces are different; there is one large correlation
(almost 1) and all the rest are small (Figure 1(b)).

Figure 2(b) shows the (signed) error in approximating the correlations using Al-
gorithm 1 (i.e., σ̂i(A,B)− σi(A,B)) with r as in (7.1) (r = 30, 953), in five different
runs. The actual error is an order of magnitude smaller than the target ε; the max-
imum absolute error is only 0.02. Again, for the largest canonical correlation (which
is close to 1) the result is very accurate, with tiny errors. For the other correlations
it is larger. For tiny correlations the error is about of the same magnitude as the
actual value. Interestingly, we observe a bias toward overestimating the correlations.
In Figure 5(b) we plot the maximum error in the correlations as a function of r, when
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Fig. 5. Maximum error in the canonical correlation over 30 runs as a function of r.
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Fig. 6. Maximum deviation from orthogonality over 30 runs as a function of r.

in each experiment we do 30 independent runs. As expected, the error decreases
sublinearly as the sample size increases.

Next, we checked whether AW and BP are close to having orthogonal columns,
where W and P contain the canonical weights returned by the proposed algorithm.
Figure 3(b) visualizes the entries of WTATAW and Figure 4(b) visualizes the entries
of PTBTBP in one of the runs. We see that the diagonal is dominant, and close to 1,
and the off-diagonal entries are small (but not tiny). The maximum condition number
of AW and BP we got in the five different runs was 1.18. The maximum value of
‖WTATAW− Iq‖2 and ‖PTBTBP− Iq‖2 we got was 0.087. In Figure 6(b) we plot

the maximum value of ‖WTATAW − Iq‖2 and ‖PTBTBP − Iq‖2 as a function of
r, when in each experiment we do 30 independent runs. As expected, the deviation
from orthogonality decreases sublinearly as the sample size increases.

As for the running time, the proposed algorithm takes about 30.5% less time than
Björck and Golub’s algorithm (0.98 seconds versus 1.41 seconds).

7.3. Real-life dataset: Mediamill. We also tested the proposed algorithm on
the annotated video dataset from the Mediamill challenge [28].2 Combining the train-
ing set and the challenge set, 43,907 images are provided, each image a representative
keyframe image of a video shot. The dataset provides 120 features for each image,
and the set is annotated with 101 labels. The label matrix is rank-deficient with rank
100. Figure 1(c) shows the exact canonical correlations. We see there are a few high
correlations with very strong decay afterward.

Figure 2(c) shows the (signed) error in approximating the correlations using Al-
gorithm 1 (i.e., σ̂i(A,B) − σi(A,B)) with r as in (7.1) (r = 9, 463), in five differ-
ent runs. The maximum absolute error is rather small (only 0.055). For the large
correlations, which are the more interesting ones in this context, the error is much
smaller, so we have a relatively high-accuracy approximation. Again, there is an
interesting bias toward overestimating the correlations. In Figure 5(c) we plot the
maximum error in the correlations as a function of r, when in each experiment we do

2The dataset is publicly available at http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/
multilabel.html##mediamill.

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multilabel.html{##}mediamill.
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multilabel.html{##}mediamill.
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30 independent runs. As expected, the error decreases sublinearly as the sample size
increases.

Next, we checked whether AW and BP are close to having orthogonal columns,
where W and P contain the canonical weights returned by the proposed algorithm.
Figure 3(c) visualizes the entries of WTATAW and Figure 4(c) visualizes the entries
of PTBTBP in one of the runs. We see that the diagonal is dominant, and close
to 1, and the off-diagonal entries are small (but not tiny). The maximum condition
number of AW and BP we got in the five different runs was 1.51. The maximum
value of ‖WTATAW− Iq‖2 and ‖PTBTBP− Iq‖2 we got was 0.24. Both are larger
than the previous two examples but still not huge and so indicate some measure of
orthogonality. In Figure 6(c) we plot the maximum value of ‖WTATAW− Iq‖2 and

‖PTBTBP− Iq‖2 as a function of r, when in each experiment we do 30 independent
runs. As expected, the deviation from orthogonality decreases sublinearly as the
sample size increases.

As for the running time, the proposed algorithm is considerably faster than Björck
and Golub’s algorithm (0.69 seconds versus 2.03 seconds).

7.4. Summary. The experiments are not exhaustive, but they do suggest the
following. First, it appears that the theoretical sampling size bounds are rather loose.
The algorithm achieves much better approximation errors in practice. Second, there
seems to be a connection between the canonical correlation value and the error: for
larger correlations the error is smaller. Our bounds fail to capture these phenomena.
Finally, the experiments show that the proposed algorithm is faster than Björck and
Golub’s algorithm in practice on both synthetic and real-life datasets, even if they are
fairly small. We expect the difference to be much larger on big datasets.

8. Conclusions. We demonstrated that dimensionality reduction via random-
ized fast unitary transforms leads to faster algorithms for canonical correlation analy-
sis on high-dimensional datasets, beating the seminal SVD-based algorithm of Björck
and Golub. The proposed algorithm builds upon a family of similar algorithms which,
in recent years, led to similar running time improvements for other classical linear al-
gebraic and machine learning problems: (i) least-squares regression [26, 6, 13, 4], (ii)
approximate PCA (via low-rank matrix approximation) [18], (iii) matrix multiplica-
tion [27], (v) K-means clustering [7], and (vi) support vector machines [25].
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