
Community Detection Using Time-Dependent Personalized PageRank

Haim Avron HAIMAV@US.IBM.COM

IBM T. J. Watson Research Center, Yorktown Heights, NY 10598

Lior Horesh LHORESH@US.IBM.COM

IBM T. J. Watson Research Center, Yorktown Heights, NY 10598

Abstract

Local graph diffusions have proven to be valu-
able tools for solving various graph clustering
problems. As such, there has been much interest
recently in efficient local algorithms for comput-
ing them. We present an efficient local algorithm
for approximating a graph diffusion that general-
izes both the celebrated personalized PageRank
and its recent competitor/companion - the heat
kernel. Our algorithm is based on writing the dif-
fusion vector as the solution of an initial value
problem, and then using a waveform relaxation
approach to approximate the solution. Our ex-
perimental results suggest that it produces rank-
ings that are distinct and competitive with the
ones produced by high quality implementations
of personalized PageRank and localized heat ker-
nel, and that our algorithm is a useful addition to
the toolset of localized graph diffusions.

1. Introduction
In community detection problems (i.e., graph clustering
problems), one seeks to identify sets of nodes in a graph
that are both internally cohesive and well separated from
the rest of the graph. Such sets are then referred to as com-
munities or clusters. In one important variant, the goal is to
build a community around a given seed node or set of seed
nodes. That is, the algorithm is given, as an input, a node
(or nodes) in the graph, and the goal is to find a cluster in
which it is a member.

One popular technique for identifying communities using
seed nodes is to use local graph diffusions (Andersen et al.,
2006; Chung, 2007). The general framework is as fol-
lows. Using the seed, a diffusion vector is computed. The

Proceedings of the 32nd International Conference on Machine
Learning, Lille, France, 2015. JMLR: W&CP volume 37. Copy-
right 2015 by the author(s).

diffusion vector is reweighted based on the degrees, and
the nodes are sorted according to their magnitude in the
reweighted diffusion vector. The community is found by
making a sweep over the nodes according to their rank,
selecting the prefix that minimizes (or maximizes) some
scoring function. If the input vector is sparse, most of the
entries in the diffusion vectors tend to be tiny, in which case
a sparse approximation is viable (the exact diffusion vector
is generally dense), and this is allows algorithms that work
even on massive graphs. Algorithms that find sparse ap-
proximations to diffusion vectors are local graph diffusion
algorithms.

One widely used scoring function is conductance. The con-
ductance of a subset of nodes S is given by

φ(S) ≡ ∂S

min(vol (S) ,vol
(
S̄
)
)
,

where S̄ is the complementary set of nodes, ∂S is the num-
ber of edges with one end-point in S and the other in S̄, and
vol (S) is the sum of degrees of nodes in S. Selecting sets
with low conductance tends to produce high quality clus-
ters (Yang & Leskovec, 2015), and the performance of the
aforementioned algorithm with respect to minimizing the
conductance can be rigorously analyzed for certain diffu-
sions (Andersen et al., 2006; Chung, 2009). However, we
stress that other scoring functions have been applied suc-
cessfully (Yang & Leskovec, 2015).

The classical graph diffusion vector is the PageRank vec-
tor (Brin & Page, 1998). Assume, without loss of gener-
ality, that the set of nodes is {1, . . . , n}. Let A ∈ Rn×n
be the adjacency matrix of the graph, and let D ∈ Rn×n
be a diagonal matrix with the degrees on the diagonal. Let
P ≡ AD−1 be the random walk transition matrix. The
PageRank vector is equal to

p ≡ (1− α)(In − αP)−1s

where α ∈ (0, 1) and s ∈ Rn are parameters. The vector
s is typically referred to as the teleportation vector. The

Community Detection Using Time-Dependent Personalized PageRank

PageRank vector p can be interpreted as the stationary dis-
tribution of a random walk with restart, and there are also
other equivalent formulations. When s is sparse this vec-
tor is often referred to as a personalized PageRank vector.
Andersen et al. (2006) described an efficient efficient local
algorithm for personalized PageRank.

Recently, the heat kernel diffusion vector (Chung, 2007)
has received attention in the literature. The heat kernel vec-
tor is equal to

h ≡ exp {−γ(In −P)} s

where γ > 0 is some parameter. Kloster & Gleich (2014)
recently described an efficient local algorithm for the heat
kernel, and experimentally showed that the heat kernel
tends to produce smaller and more realistic communities
than the ones produced using the PageRank diffusion, with
only a modest increase in conductance.

In this paper we consider a special case of the dynamical
PageRank diffusion recently introduced by Gleich & Rossi
(2014). Fix parameters γ > 0 and α ∈ [0, 1]. The diffusion
vector x, which we refer to as the time-dependent PageR-
ank vector, is equal to x(γ) where x(·) is the solution to
the initial value problem

x′(t) = (1− α)s− (In − αP)x(t)

x(0) = s, t ∈ [0, γ] . (1)

It can be shown that (Gleich & Rossi, 2014)

x = (1− α)(In − αP)−1s + (2)
exp {−γ(In − αP)} (s− (1− α)(In − αP)−1s) .

Time-dependent PageRank is a generalization of both
PageRank and heat kernel. If we fix α and let γ go to in-
finity, the time-dependent PageRank vector x converges to
the PageRank vector p. If we set α = 1.0, time-dependent
PageRank vector x is exactly equal to the heat kernel vector
h. Consequently, one can hope that certain non-degenerate
combinations of α and γ (perhaps ones that are dependent
on the application and/or the graph) will produce better dif-
fusion vectors for downstream use.

The main contribution of this paper is an efficient local
algorithm for approximating the time-dependent personal-
ized PageRank vector x. As such, our algorithm can also be
viewed as a new algorithm for both the heat kernel diffusion
and the personalized PageRank diffusion. The proposed
algorithm is deterministic and simple (we give a detailed
pseudo-code in the supplementary material). Our algorithm
tends to access the out-links much less than existing algo-
rithms for personalized heat kernel and PageRank, and as
such more suitable than those algorithms when out-link ac-
cess is somewhat expensive. We experimentally compare

communities produced using our algorithm with commu-
nities produced using the heat kernel and using PageRank.
Our algorithm tends to generate smaller communities than
both heat kernel and PageRank, with roughly the same con-
ductance. In our experimental setup, it had similar perfor-
mance to heat kernel in detecting ground-truth communi-
ties.

An open-source implementation of the algorithm is
available through the libSkylark library (http://
xdata-skylark.github.io/libskylark/).

2. Preliminaries
2.1. Notation

We denote scalars using Greek letters or using t, s,
Vectors are denoted by x,y, . . . and matrices by A,B,
We use the convention that vectors are column-vectors. We
denote vector-valued functions from [0, γ] (or any other in-
terval implied by the text) to Rn by x(·),y(·), . . . , while
x(t),y(t) denotes their evaluation (which is a vector in
Rn) at a specific point t. Accordingly, x(·), y(·), . . . de-
note scalar-valued functions, and x(t), y(t), . . . their eval-
uation at t. For a vector (or vector-valued function), lower
case letter with an index denotes the value of coordinate i
of the vector (resp. vector-valued function). For example,
xi (resp. xi(·)) denotes the ith entry of x (resp. x(·)). Note
that xi is different from xi; the former is a scalar, while the
latter is a vector indexed by i.

2.2. Diffusion Coefficients

Since both PageRank and heat kernel are a special cases of
time-dependent PageRank, any rigorous theoretical guar-
antee on either one can be mimicked using the time-
dependent PageRank. Consequently, one can hope that
some non-degenerate combinations of α and γ will offer
better results. While there is no rigorous analysis support-
ing this assessment, inspection of diffusion coefficients can
provide insight into possibly favorable behaviors of time-
dependent PageRank.

Graph diffusion vectors, like PageRank and heat kernel,
can be written as an infinite series

f =

∞∑
k=0

αkP
ks

where
∑∞
k=0 αk = 1. The terms αk are the diffusion coeffi-

cients, which serve as weights to the distribution of random
walks of the corresponding lengths.

For PageRank, the diffusion expansion is

p = (1− α)

∞∑
k=0

αkPks ,

http://xdata-skylark.github.io/libskylark/
http://xdata-skylark.github.io/libskylark/

Community Detection Using Time-Dependent Personalized PageRank

and for the heat kernel it is

h = e−γ
∞∑
k=0

γk

k!
Pks .

Based on (2), it is easy to show that

x =

∞∑
k=0

[
(1− α)αk

(
1− e−γ

k∑
r=0

γr

r!

)
+ e−γ

αkγk

k!

]
Pks .

The diffusion coefficients of PageRank decay at a fixed
rate. Thus, if the decay for low-indices is slow (i.e. short
paths have roughly the same coefficient), the decay is very
slow overall, and excessively long paths will have rather
high coefficients, thereby encouraging large communities.
Slow decay also poses an algorithmic challenge, since the
algorithm needs to allocate significant weights to very long
paths. If we reduce α so that long paths have very small
coefficients, we ran the risk of having a strong decay for
the initial coefficients, perhaps resulting in unduly small
communities.

As for the heat kernel, while the coefficients eventually de-
cay to zero very quickly (since k! grows much faster than
γk), there is an initial phase in which they actually grow
(this is because k! is indepenent of γ, and thus γk ini-
tially grows much faster than k!). Thus, the coefficients of
the heat kernel display an hump in the lower coefficients,
which might cause short paths to get very small weight.

Inspecting the diffusion coefficients of time-dependent
PageRank, we see that for small indices, the behavior is
quite similar to that of PageRank (as long as α is small
enough), but for large k the decay is similar to that of heat
kernel. Thus, by carefully choosing α and γ, we can en-
tertain a slow initial decay, followed by very rapid decay
beyond some point. This is illustrated in Figure 1 (left).

Figure 1 (right) reports the cumulative sum of the diffusion
coefficients as the index increases. Once the cumulative
sum gets very close to 1.0, the weights of remaining long
paths are too small for them to affect the final diffusion
vector. Thus, when the cumulative sum quickly approaches
1.0 there is more hope for very fast algorithms.

2.3. Relaxation Methods and Waveform Relaxation

Relaxation is a general technique for solving linear equa-
tions of the form Ax = b. In the most general form, the
matrix is split A = Bk −Ck (here k is an iteration index),
and the iteration is written as x(k+1) = B−1k (Ckx

(k) + b).
By carefully choosing Bk and Ck, one can ensure that
x(k+1) is identical to x(k) in all but one coordinate. Such
methods are called coordinate relaxation methods, and
they are closely related to the Gauss-Seidel and Gauss-
Southwell iteration. Several competitive local algorithms

0 5 10 15 20 25 30
10

−15

10
−10

10
−5

10
0

Index

C
o

e
ff

ic
ie

n
t

PageRank (α = 0.99)

PageRank (α = 0.85)

Heat Kernel (γ = 5.0)

Time-dependent PageRank (α = 0.85, γ = 5.0)

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Index

C
u

m
u

la
ti
v
e

 S
u

m

Figure 1. Diffusion coefficients (αks) for different diffusions. The
left graph plots the coefficients themselves, while the right graph
shows a cumulative sum of the coefficients.

for personalized PageRank and heat kernel employ a coor-
dinate relaxation approach (Kloster & Gleich, 2014).

Waveform relaxation, originally developed at the begin-
ning of the 1980s for the simulation of electronic cir-
cuits, is a generalization of relaxation to solving initial
value problems of the form x′(t) = F (t,x(t)). The
basic idea is to introduce new functions Gk(·, ·, ·) such
that F (t,x) = Gk(t,x,x). To obtain x(k+1)(·) from
x(k)(·) we solve the initial value problem (x(k+1))′(t) =
Gk(t,x(k+1)(t),x(k)(t)). By choosing Gk(·, ·, ·) carefully
we can, again, ascertain x(k+1)(·) to be identical to x(k)(·)
in all but one coordinate. This form of waveform coordi-
nate relaxation is the basis for our method.

3. Algorithm
As explained earlier, diffusion-based community detection
algorithms start by computing a diffusion vector, which
is used rank the vertices and perform a sweep. Our goal
is to integrate the time-dependent personalized PageR-
ank (2) vector in this framework, instead of the personal-
ized PageRank vector or the heat kernel vector. This sec-
tion describes our algorithm for computing (2).

The exact time-dependent personalized PageRank vector is
completely dense for connected graphs. Computing it ex-
actly is too expensive for the purpose of detecting local
communities. It is common practice to find approximate
vectors that are localized (i.e., have only a small number of
non-zeros). Since the main purpose of the diffusion vector
is to form a ranking of the nodes by sorting their degree
reweighted diffusion values, a natural objective is to seek
an approximate diffusion vector y such that

‖D−1(x− y)‖∞ < ε .

Our algorithm constructs a vector-valued function that ap-
proximates the diffusion vector for all t ∈ [0, γ]. That is,
the algorithm constructs a vector function y(·) such that

‖D−1(x(t)− y(t))‖∞ < ε (3)

for all t ∈ [0, γ]. In the above x(·) is the solution to (1).

Community Detection Using Time-Dependent Personalized PageRank

Remark. Some of the algorithms for approximate diffusion
also guarantee that the error is one sided, i.e. y ≤ x. That
can be achieved by our algorithm by solving to ε/2 approx-
imation error, and then applying a non-uniform shift to y.
This shift does not affect the ranking of the nodes.

Let y(·) be some candidate solution. Following Botchev
et al. (2013) we define the residual r(·) relative to y(·) to
be

r(t) ≡ (1− α)s− (In − αP)y(t)− y′(t) .

The residual is a powerful tool for analyzing approximate
solutions to initial value problems (Botchev et al., 2013). In
particular, it can be used to certify that (3) is met by y(·), as
the following proposition shows (the proof, like all proofs,
appears in the supplementary material):

Proposition 1. Let di denote the ith diagonal entry of D
(which is the degree of vertex i). Suppose that y(0) = s. If

‖ri(·)‖∞ <
(1− α)diε

1− exp((α− 1)γ)
(4)

(if α = 1 then substitute 1−exp((α−1)γ)/(1−α) with γ)
holds for all i = 1, . . . , n, then (3) holds for all t ∈ [0, γ].

Algorithm Outline. The key observation is that if we
initialize y(t) = s then most coordinates are not in vio-
lation of (4). Thus, if we use a simple waveform relax-
ation approach, in which we iteratively target coordinates
in which (4) is violated, the iterates wo;; tend to stay lo-
calized. In particular, our algorithm maintains a queue of
violating coordinates. In each iteration, a coordinate is ex-
tracted from the queue and the corresponding coordinate
of y(·) is perturbed so that the corresponding residual is
small enough. This, in turn, can cause new coordinates to
violate (4). Newly violating coordinates (if any) are then
inserted into the queue. The algorithm terminates when
the queue is empty. To allow these various steps to be im-
plemented in standard computational models (e.g. RAM
model), we restrict the coordinates of y(·) to be polynomi-
als of some fixed degree. We remark that our algorithm is
similar in structure and spirit to “push” algorithms for per-
sonalized PageRank and heat kernel (Andersen et al., 2006;
Kloster & Gleich, 2014).

3.1. Waveform Relaxation Approach

Proposition 1 suggests the following waveform relaxation
approach: identify an index i for which ‖ri(·)‖∞ is too
large, modify yi(·) so to force ‖ri(·)‖∞ to be zero, while
keeping yj(·) for j 6= i as-is. This leads to the following
proto-algorithm:

1. Initialize y(t) = s.

2. While there exists an i such that

‖ri(·)‖∞ >
(1− α)diε

1− exp((α− 1)γ)

(a) Select such an i arbitrarily.
(b) Set yi(·) to the solution of the ODE

y′(t) = −y(t) + α

n∑
j=1

Pijyj(t) + (1− α)si

y(0) = si (5)

The reason we use the term “proto-algorithm” is that in the
above form, the proto-algorithm cannot be implemented in
usual computational models (e.g. RAM model), as it ab-
stractly operates on functions. We address this issue in the
next subsection.

3.2. Restricting the Function Space

To turn the proto-algorithm into an actual algorithm, we
restrict the functions to be polynomials of degree equal or
smaller than some fixed degree N . That is, each coordi-
nate of y(·) is a polynomial of degree at most N . As a
consequence, each coordinate of r(·) is also a polynomial
of degree at most N . How N is chosen is explained in the
next subsection. For now, it suffices to keep in mind that
N depend on γ and ε, and that it tends to grow slowly. For
example, for γ = 5.0 and ε = 10−4, N = 14 suffices.

Let PN be the space of polynomials of degree at most N .
We use a pseudo-spectral approach of representing polyno-
mials in PN by their values at predefined grid points1. Let
t0, . . . , tN be the result of scaling and shifting the Cheby-
shev points of the second kind from [−1, 1] to [0, γ], i.e.

tj = (cos(jπ/N) + 1)γ/2, j = 0, . . . , N .

Given a set of values y0, . . . , yN there is unique polyno-
mial p(·) which interpolates yj = p(tj), which means we
can use the vector

[
p(t0) · · · p(tN)

]T
to represent

p(·) ∈ PN . We denote by SN the operator mapping a scalar
function to aN+1-dimensional vector of its point-samples
at t0, . . . , tN , i.e.

SN [f(·)] ≡
[
f(t0) · · · f(tN)

]T
.

Our algorithm uses yi ≡ SN [yi(·)] to represent yi(·). The
derivative of a degreeN polynomial is a degreeN−1 poly-
nomial, so ri(·) ∈ PN . Thus, we can use ri ≡ SN [ri(·)] to
represent ri(·).2

1Our approach is inspired by the CHEBFUN library (Driscoll
et al., 2014; Battles & Trefethen, 2004). In fact, early prototypes
simply implemented the proto-algorithm using CHEBFUN.

2The reason we do not use the coefficients in the monomial
basis is because that will not result in a stable algorithm. The
reason we use non-equidistant grid points is that equidistant grid
point will result in a non-stable algorithm as well due to the Runge
phenomenon. See Trefethen (2000) and Boyd (1989).

Community Detection Using Time-Dependent Personalized PageRank

We now show how the various operations in the proto-
algorithm are implemented in our algorithm. These opera-
tions are:

◦ Taking derivative in order to compute residuals.
◦ Computing the infinity norm of residual entries for test-

ing convergence.
◦ Solving the ODE (5).

3.2.1. DERIVATIVE

Derivative is a linear operation on PN , so there exists a
matrix Ξ ∈ R(N+1)×(N+1) such that for every p(·) ∈ PN

SN [p′(·)] = ΞSN [p(·)] .

The following explicit formula for Ξ is based on known
formulas for the [−1, 1] domain (Boyd, 1989)

Ξij =

γ(1 + 2N2)/12 i = j = 0

−γ(1 + 2N2)/12 i = j = N

γxj/(4− 4x2j) i = j; 0 < j < N

(−1)i+jpi/(2pjxi − pjxj) i 6= j

where xi = cos(πi/N), p0 = pN = 2, and pj = 1 other-
wise.

3.2.2. BOUNDING ‖ri(·)‖∞

Convergence is tested by inspecting the value of ‖ri(·)‖∞.
This raises the question whether we can compute ‖ri(·)‖∞
using ri, or more generally, given SN [p(·)] can ‖p(·)‖∞ be
computed for p(·) ∈ PN? The answer is yes, and in a stable
manner (Battles & Trefethen, 2004). However, this compu-
tation is rather expensive: O(N3) operations. Fortunately,
we can bound ‖p(·)‖∞ using SN [p(·)] in only O(N) oper-
ations, as the following proposition shows.

Proposition 2. Let p(·) ∈ PN . The following holds,

‖p(·)‖∞ ≤ (1 +
2

π
logN)‖SN [p(·)]‖∞ .

Thus, we use the following termination test:

‖ri‖∞ <
(1− α)diε

(1− exp((α− 1)γ))(1 + 2
π logN)

(6)

(if α = 1 then substitute 1− exp((α− 1)γ)/(1− α) with
γ) for all i = 1, . . . , n.

3.2.3. SOLVING THE ODE

The solution to the ODE (5) is generally not a polynomial,
and step 2 (b) cannot be implemented exactly if we restrict
the solution space to PN . However, as N grows, better
and better approximation to the solution can be found in
PN . How to set N to be large enough so to find sufficiently

accurate solution to the ODE is the subject of the next sub-
section. In this subsection, we explain how our algorithm
finds an approximate solution to (5) within PN .

Writing y(t) = yi(t) + d(t) and rearranging (5), we can
rewrite the ODE and the update step as

d′(t) + d(t)− ri(t) = 0, d(0) = 0 (7)

yi(·)← yi(·) + d(·) .

If we abandon solving (7) exactly so that we can require
d(·) ∈ PN , the update step (in the values-on-grid-points
representation) then becomes

yi ← yi + d

where d ≡ SN [d(·)]. After this step, the residual can be
updated as well

ri ← ri − (Ξ + IN+1)d .

The convergence criteria requires ‖ri‖∞ to be small
enough for all i, so it seems natural to attempt to find a
di that will minimize ‖ri‖∞ after the update. However, in-
finity norm minimization is rather expensive. Noting that
‖ri‖∞ ≤ ‖ri‖2 we instead opt to minimize ‖ri‖2 after
the update, which yields the following equality-constrained
linear least-squares problem

min
d
‖ri − (Ξ + IN+1)d‖2 s.t. dN+1 = 0 .

Writing
Ξ + IN+1 =

(
Ξ1 c

)
we get the following formula for d:

d =

(
Ξ+

1ri
0

)
. (8)

This leads to the following update formula for ri

ri ← (IN+1 −Ξ1Ξ
+
1)ri. (9)

Let R ≡ In − Ξ1Ξ
+
1 . Since Ξ1 has full column rank, R

is exactly a rank one matrix. In fact, R = uuT where u
is the unique unit norm null vector of ΞT

1 . This allows us
to compute the update formula (9) in O(N) time. Note
that Ξ+

1u = 0N and Ru = u, so setting ri to 0 instead
of using (9) will not change the result of any subsequent
application of (8). However, it might affect the detection of
convergence.

3.3. Choosing N

Recall that the update formula for the residual is ri ←
(IN+1 −Ξ1Ξ

+
1)ri, and that to declare convergence ‖ri‖∞

Community Detection Using Time-Dependent Personalized PageRank

has to be small enough. It is crucial that N is set large
enough so that ‖(IN+1 − Ξ1Ξ

+
1)ri‖∞ is small enough for

all ris encountered by the algorithm. Observing that at the
first iteration all residuals are multiple of the all-ones vec-
tor, we can bound the infinity error after the first iteration
using the following lemma.
Lemma 3. Let 1N+1 be the N + 1 dimensional all-ones
vector. Provided that γ ≥ 1 and N ≥ 10 we have

‖(IN+1−Ξ1Ξ
+
1)1N+1‖∞ ≤ 20

√
N exp(−γ/2)IN+1(γ)(4/5)

N+1

where I0(·), I1(·), . . . are the modified Bessel functions of
the first kind.

While we are unable to prove it rigorously, numerical ex-
periments revealed that values of ‖(IN+1 − Ξ1Ξ

+
1)ri‖∞

produced by the algorithm are of the same order of mag-
nitude as that of the first iteration. Therefore, we base our
criteria for choosing N on Lemma 3, and set N to be the
minimum N ≥ 10 that will guarantee

20
√
N exp(−γ/2)IN+1(γ)(4/5)N+1 ≤ ε

γ(1 + 2
π logN)

.

Our experience showed that this strategy for choosing N
is extremely robust, never failing to allow the algorithm to
converge in all our experiments (we stress that once the
algorithm has detected convergence, the result is accurate
enough regardless of how N is chosen).

An inequality due to Luke (1972) implies that IN+1(γ) ≤
γN+1eγ/2N+1(N + 1)! (we credit the answer to question
415834 of math stackexchange for this observation) which
imply that N = O(γ + log(1/ε)).

3.4. Putting It All Together

The algorithm keeps a queue of indices which violate (6).
The queue is initialized using the seed vector. In each iter-
ation, the algorithm pops an index from the queue and op-
erates on it. Suppose u is the popped index. The algorithm
first updates yu and ru using formulas in subsection 3.2.3.
It then updates rv for all neighboring vs of u. If rv vio-
lates (6), and it is not already in the queue, it is added to the
queue. The algorithm terminates when the queue is empty.

During the execution of the algorithm, most of the yis and
ris are zero. Our algorithm does not explicitly retain them
in memory, and initializes yi and ri only when encountered
first (that happens in three cases: as a seed vector, as a
neighbor of a seed vector and as a neighbor of an index
that was popped from the queue). We use an hash table for
compact storage with fast access.

A detailed pseudo-code appears in the supplementary ma-
terial. The only access our algorithm needs to G = (V,E)
is to query a vertex degree (i.e., given v ∈ V , return its

degree G.deg(v)) and to query the set of vertex neighbors
(i.e., given v ∈ V , return its neighbors G.neighbors(v)).

Once the algorithm terminates, the result y(·) appear as a
collection of N + 1 dimensional vectors, which hold the
values y(·) at N + 1 time points in the range [0, γ]. These
vectors can be used for ranking. The value of y(t) for other
values of t ∈ [0, γ] can be computed efficiently using the
barycentric formula (Berrut & Trefethen, 2004).

In terms of computational cost, we first note that while find-
ing N and Ξ+

1 is expensive, this is a one-time operation
given γ and ε, so their values can be cached for future uses.
Thus, we do not include them in the analysis. Assuming
hash operations take O(1), the cost of a single iteration of
the main loop is O(N2) = O((t + log(1/ε))2). While we
do not currently have a bound on the number of iterations,
our experience shows that it is rather small.

4. Experimental Results
We experimentally evaluated our algorithm in the context
of community detection using a seed vector (that is, we
use the common sweep procedure after applying the dif-
fusion, selecting the prefix with minimum conductance).
It is not the purpose of this section to show that our al-
gorithm always, or in most of the cases, produces better
communities when compared to the baselines. Evaluating
communities is very tricky, and it is unclear how to quan-
tify which of two communities is better. For example, just
comparing the conductance is questionable, since PageR-
ank based sweeps tend to produce lower conductance but
much larger (and less realistic) clusters than heat kernel
based sweeps (Kloster & Gleich, 2014). Other metrics ex-
ist, and it is unclear which is best (Yang & Leskovec, 2015).
It is not unreasonable to expect that the best metric is ap-
plication dependent and might in fact be an ensemble of
metrics, and thus for a given application the best strategy
might be to work with an ensemble of diffusion vectors
from which a collection of candidate clusters are generated.

Instead, we demonstrate that our algorithm produces dif-
fusion vectors that are useful in the sense that they pro-
duces rankings that are distinct and competitive with the
ones produced by high quality implementations of person-
alized PageRank and localized heat kernel. In competitive
we mean that selecting the better community between the
two is not a trivial task of selecting the smallest conduc-
tance, and in fact that task might be application dependent.
As such, we aim to establish that our algorithm is a useful
addition to the toolset of local graph diffusions.

We use two other codes as a baseline. The first is hk-
grow (Kloster & Gleich, 2014)3. The second is pprgrow,

3The paper uses the name hk-relax, but the code uses hkgrow.

Community Detection Using Time-Dependent Personalized PageRank

Table 1. Datasets
Graph |V | |E|

email-Enron 36, 692 183, 831

ca-AstroPh 18, 771 198, 050

soc-sign-epinions 131, 580 711, 210

soc-LiveJournal1 4, 846, 609 42, 851, 237

com-amazon 334, 863 925, 872

com-dblp 317, 080 1, 049, 866

com-youtube 1, 134, 890 2, 987, 624

com-lj 3, 997, 962 34, 681, 189

com-orkut 3, 072, 441 117, 185, 083

an implementation of the personalized PageRank push al-
gorithm (Andersen et al., 2006) by the authors of hkgrow.
Similary, we call our algorithm tpprgrow. Note that we
are comparing algorithms and not diffusions. The reason is
that even when the underlying diffusion is the same (for ex-
ample time-dependent PageRank with α = 1.0 is identical
to heat kernel), different algorithms often produce different
approximate diffusion vector. Unless the accuracy param-
eter ε is set to be extremely small and well below common
values, these different values result in different ranking be-
tween nodes. Indeed, it is common practice to use ε as
another parameter, and to run the algorithm with different ε
values and select the best cluster found, instead of driving
ε to be low enough for the ranking to be fully determined
(we remark that setting ε so that the exact ranking between
all nodes is fully determined necessitates a dense vector,
which is counter to the goal of having a local algorithm).

4.1. Conductance, Cluster Size and Runtime

In the first set of experiments we compare hkgrow with
γ = 5.0 to tpprgrow with α = 1.0, γ = 5.0 and tpprgrow
with α = 0.85, γ = 5.0. Note that the underlying diffu-
sion for tpprgrow with α = 1.0, γ = 5.0 and hkgrow
with γ = 5.0 is exactly the same. So any difference in the
observed results is due to finding a different approximate
diffusion vector within the allowed error budget. We use
the four widely used datasets at the top of Table 1. For
each dataset, we randomly choose a seed node, and detect
a community around it using the various algorithms. We
repeat 1000 times for every dataset. We use ε = 0.001.

The results are summarized in Figure 2, Table 2 and Ta-
ble 3. Figure 2 shows scatter plots of the conductance ver-
sus cluster size of the cluster found by the two variants of
tpprgrow using randomly selected seed nodes. The val-
ues are normalized according to the cluster found using hk-
grow. We see that tpprgrow tends to produce clusters with
slightly higher (but comparable) conductance, but often of
smaller, and perhaps more realistic, size. It also occasion-
ally produces clusters with lower conductance.

10
−3

10
−2

10
−1

10
0

10
1

10
2

0

0.5

1

1.5

2

2.5

3

3.5

4

Relative Cluster Size

R
e
la

ti
v
e

 C
o
n

d
u

c
ta

n
c
e

email−Enron

ttprgrow(alpha = 1.0, gamma = 5.0)
ttprgrow(alpha = 0.85, gamma = 5.0)

10
−2

10
−1

10
0

10
1

10
2

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Relative Cluster Size

R
e
la

ti
v
e

 C
o
n

d
u

c
ta

n
c
e

ca−AstroPh

ttprgrow(alpha = 1.0, gamma = 5.0)
ttprgrow(alpha = 0.85, gamma = 5.0)

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

0

0.5

1

1.5

2

2.5

3

3.5

Relative Cluster Size

R
e
la

ti
v
e

 C
o
n

d
u

c
ta

n
c
e

soc−sign−epinions

ttprgrow(alpha = 1.0, gamma = 5.0)
ttprgrow(alpha = 0.85, gamma = 5.0)

10
−3

10
−2

10
−1

10
0

10
1

10
2

0

5

10

15

20

25

Relative Cluster Size

R
e
la

ti
v
e
 C

o
n
d
u
c
ta

n
c
e

soc−LiveJournal1

ttprgrow(alpha = 1.0, gamma = 5.0)

ttprgrow(alpha = 0.85, gamma = 5.0)

Figure 2. Scatter plot of conductance vs. community size of tp-
prgrow relative to hkgrow. Each point represent a single run
from a random seed, with blue x’s with α = 1.0 and γ = 5.0,
and red +’s for α = 0.85 and γ = 5.0. The conductance and
community size is relative to the values obtained by the cluster
found by the hkgrow with the same seed node.

Table 2 quantifies this further. In the table we compare
the size and conductance of the cluster found between the
algorithms. For each combination of algorithms, we find
what percent of the runs resulted in clusters that are smaller,
equal or larger of one algorithm versus the other. We repeat
with regards to conductance. We see that not only does
tpprgrow with α = 1.0, γ = 5.0 tends to produce smaller
sized clusters, but also with higher conductance. tpprgrow
with α = 0.85, γ = 5.0 tends to produce even smaller
clusters and even higher conductance.

Table 3 compares the performance in terms of running time.
The total time columns aggregates the total running time of
all 1000 experiments. While tpprgrow tends to be some-
what slower than hkgrow when used with α = 1.0 and
γ = 5.0, it is faster than hkgrow when α = 0.85 is used.
This is probably due to fact that with α = 0.85 the sum
of diffusion coefficients converge to 1.0 faster (recall Fig-
ure 1). We also report the average number of iterations in
the main loop. This corresponds to the average number of
access to the edge list of a node in the graph. In some cases,
this might be dominant cost (e.g., if the graph is too big to
kept in memory and instead kept on disk, so each access to
the neighbor list of a vertex is access to external storage).
We see that tpprgrow tends to do less iterations.

The results make it clear that the clusters that can be found
using tpprgrow are often distinct and competitive with the
ones found by hkgrow.

Community Detection Using Time-Dependent Personalized PageRank

Table 2. Comparison of cluster profile produced using different diffusions. tpprgrow-1 refers to tpprgrow withα = 1.0, γ = 5.0. tpprgrow-2 usesα = 0.85, γ = 5.0.

For hkgrow we use γ = 5.0. A triple “X%/Y%/Z%” means that between the algorithms compared, the first algorithm had a value smaller than the second algorithm’s value

for X% of the cases, equal value for Y% of the cases, and lager value for Z% of the cases. For example, the “36%/49%/15%” under “Size” for “tpprgrow-1 vs. hkgrow”

means that in 36% of the cases tpprgow produced a cluster which was smaller than the one produced by hkgrow, 49% of the cases the cluster size was the same and in 15%

of the cases the cluster was larger.

Dataset tpprgrow-1 vs. hkgrow tpprgrow-2 vs. hkgrow tpprgrow-2 vs. tpprgrow-1
Size Conductance Size Conductance Size Conductance

Enron 36%/49%/15% 9%/48%/43% 52%/29%/19% 1%/29%/70% 49%/32%/19% 1%/31%/68%
ca-AstroPh 40%/43%/17% 10%/42%/48% 59%/23%/18% 0%/22%/78% 58%/23%/19% 1%/22%/77%

soc-sign-epinions 27%/60%/12% 5%/ 60% / 35% 38%/38%/23% 0%/39%/61% 39%/ 41%/20% 1%/41%/58%
soc-LiveJournal1 42%/42%/16% 12%/41%/47% 61%/21%/18% 0%20%/80% 58%/ 22%/20% 1%/21%/78%

Table 3. Comparison between the total time and average number of iterations of the main loop for finding cluster around the same seeds between hkgrow and two tpprgrow
configurations.

Dataset tpprgrow with α = 1.0, γ = 5.0 tpprgrow with α = 0.85, γ = 5.0 hkgrow with γ = 5.0

Avg. #Its Total Time (sec) Avg. #Its Total Time (sec) Avg. #Its Total Time (sec)
Enron 358.3 2.26 163.8 0.70 594.0 0.93

ca-AstroPh 124.4 1.47 69.8 0.58 272.7 0.93
soc-sign-epinions 111.9 1.16 64.4 0.56 259.3 0.80
soc-LiveJournal1 134.1 1.86 72.7 0.51 304.8 1.00

Table 4. Comparison between tpprgrow, hkgrow and pprgrow on finding real-world communities (datasets with ground-truth communities). In the “Statistics” column,

the first item is the average F1-score, the second item is the average conductance, and the third is the average size.

Dataset tpprgrow hkgrow pprgrow
Statistics Time (sec) Statistics Time (sec) Statistics Time (sec)

amazon 0.940/0.026/28 131 0.943/0.027/28 26 0.822/0.019/46 362
dblp 0.591/0.165/33 343 0.592/0.166/34 138 0.527/0.139/53 429

youtube 0.185/0.527/61 292 0.173/0.490/84 126 0.183/0.522/89 108
lj 0.730/0.170/45 505 0.719/0.153/51 197 0.655/0.143/63 555

orkut 0.357/0.778/58 6058 0.363/0.762/65 2814 0.360/0.755/61 1673

4.2. Datasets with Ground Truth

Next, we evaluate the different algorithms using datasets
for which ground truth communities exists (Yang &
Leskovec, 2015). These are the datasets at the bottom
of Table 1. Our setup is quite similar to the one used
by Kloster & Gleich (2014): for each dataset, we use only
the list of 5000 top communities, and experiment on all
communities with 10 or more members. Given a seed, we
run tpprgrow with ε = 0.001 and three different values of
α: 0.85, 0.99, 1.0. We use γ = 5.0, but examine the diffu-
sion vector at three additional time points. Among the clus-
ters found, we pick the one with minimum conductance.
We repeat this for every member of the ground truth com-
munity, using it as a seed, choosing the community with
maximum F1-score. Similarly we run on hkgrow with the
same four values of γ, and pprgrow with α = 0.85, 0.99
(α = 1.0 does not make sense for pprgrow).

Table 4 reports for each dataset and algorithm, the average
F1-score, average cluster size, average cluster conductance,
and total running time. On average, tpprgrow and hkgrow
find clusters of about the same quality. hkgrow is faster
than our algorithm by a factor of x2-5 (however, our algo-

rithm explores a much wider parameter space). pprgrow
tends to produce larger clusters, with lower conductance,
but they are less faithful to the ground truth. It also tends
to be slower than hkgrow and tpprgrow.

5. Conclusions
We have described an efficient local algorithm for yet-
another graph diffusion. Our algorithm is also yet-another
local algorithm for PageRank and heat kernel. Our exper-
iments suggest that the algorithm produces rankings that
are distinct and competitive with the ones produced by high
quality implementations of personalized PageRank and lo-
cal heat kernel, and so is a useful addition to the toolset of
local graph diffusions.

From a theoretical perspective, by selecting parameters so
to behave like PageRank or heat kernel, the time-dependent
PageRank diffusion can recover the same rigorous bounds
that have been proven for those graph diffusions. However,
it is unclear whether a careful choice of parameter can, in
fact, produce stronger theoretical results. We propose that
as an open question for future research.

Community Detection Using Time-Dependent Personalized PageRank

Acknowledgments
We thank David Gleich and Kyle Kloster for useful dis-
cussions. Haim Avron acknowledges the support from
the XDATA program of the Defense Advanced Research
Projects Agency (DARPA), administered through Air
Force Research Laboratory contract FA8750-12-C-0323.

References
Abramowitz, M. and Stegun, I. A. Handbook of Mathe-

matical Functions with Formulas, Graphs, and Mathe-
matical Tables. Dover, New York, Ninth Dover printing,
Tenth GPO printing edition, 1964.

Andersen, R., Chung, F., and Lang, K. Local graph par-
titioning using pagerank vectors. In Proceedings of the
47th Annual IEEE Symposium on Foundations of Com-
puter Science, FOCS ’06, pp. 475–486, Washington,
DC, USA, 2006. IEEE Computer Society. ISBN 0-7695-
2720-5. doi: 10.1109/FOCS.2006.44. URL http:
//dx.doi.org/10.1109/FOCS.2006.44.

Battles, Z. and Trefethen, L. An extension of MATLAB
to continuous functions and operators. SIAM Journal on
Scientific Computing, 25(5):1743–1770, 2004. doi: 10.
1137/S1064827503430126. URL http://dx.doi.
org/10.1137/S1064827503430126.

Berrut, J. and Trefethen, L. Barycentric Lagrange inter-
polation. SIAM Review, 46(3):501–517, 2004. doi: 10.
1137/S0036144502417715. URL http://dx.doi.
org/10.1137/S0036144502417715.

Botchev, M. A., Grimm, V., and Hochbruck, M. Residual,
restarting and Richardson iteration for the matrix expo-
nential. SIAM Journal on Scientific Computing, 35(3):
A1376–A1397, 2013. URL http://doc.utwente.
nl/87651/.

Boyd, J. P. Chebyshev and Fourier Spectral Methods.
Springer-Verlag, New York, 1989. 792 pp.

Brin, S. and Page, L. The anatomy of a large-
scale hypertextual web search engine. Comput.
Netw. ISDN Syst., 30(1-7):107–117, April 1998.
ISSN 0169-7552. doi: 10.1016/S0169-7552(98)
00110-X. URL http://dx.doi.org/10.1016/
S0169-7552(98)00110-X.

Chung, F. The heat kernel as the pagerank of a graph. Pro-
ceedings of the National Academy of Sciences, 104(50):
19735–19740, December 2007. ISSN 1091-6490. doi:
10.1073/pnas.0708838104. URL http://dx.doi.
org/10.1073/pnas.0708838104.

Chung, F. A local graph partitioning algorithm using heat
kernel pagerank. In Avrachenkov, Konstantin, Donato,

Debora, and Litvak, Nelly (eds.), Algorithms and Mod-
els for the Web-Graph, volume 5427 of Lecture Notes
in Computer Science, pp. 62–75. Springer Berlin Hei-
delberg, 2009. ISBN 978-3-540-95994-6. doi: 10.
1007/978-3-540-95995-3_6. URL http://dx.doi.
org/10.1007/978-3-540-95995-3_6.

Driscoll, T. A., Hale, N., and Trefethen, L. N. (eds.). Cheb-
fun Guide. Pafnuty Publications, Oxford, UK, 1st edi-
tion, 2014.

Gleich, D. F. and Rossi, R. A. A dynamical system
for PageRank with time-dependent teleportation. In-
ternet Mathematics, 10(1–2):188–217, June 2014. doi:
10.1080/15427951.2013.814092.

Kloster, K. and Gleich, D. F. Heat kernel based com-
munity detection. In Proceedings of the 20th ACM
SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, KDD ’14, pp. 1386–1395,
New York, NY, USA, 2014. ACM. ISBN 978-1-4503-
2956-9. doi: 10.1145/2623330.2623706. URL http:
//doi.acm.org/10.1145/2623330.2623706.

Laforgia, A. Bounds for modified Bessel functions.
Journal of Computational and Applied Mathemat-
ics, 34(3):263 – 267, 1991. ISSN 0377-0427. doi:
http://dx.doi.org/10.1016/0377-0427(91)90087-Z. URL
http://www.sciencedirect.com/science/
article/pii/037704279190087Z.

Luke, Y. L. Inequalities for generalized hypergeo-
metric functions. Journal of Approximation The-
ory, 5(1):41 – 65, 1972. ISSN 0021-9045. doi:
http://dx.doi.org/10.1016/0021-9045(72)90028-7. URL
http://www.sciencedirect.com/science/
article/pii/0021904572900287.

Paris, R. An inequality for the Bessel function Jν(νx).
SIAM Journal on Mathematical Analysis, 15(1):203–
205, 1984. doi: 10.1137/0515016. URL http://dx.
doi.org/10.1137/0515016.

Trefethen, L. N. Spectral Methods in MATLAB. Society for
Industrial and Applied Mathematics, Philadelphia, PA,
USA, 2000. ISBN 0-89871-465-6.

Yang, J. and Leskovec, J. Defining and evaluating network
communities based on ground-truth. Knowledge and
Information Systems, 42(1):181–213, 2015. ISSN
0219-1377. doi: 10.1007/s10115-013-0693-z.
URL http://dx.doi.org/10.1007/
s10115-013-0693-z.

http://dx.doi.org/10.1109/FOCS.2006.44
http://dx.doi.org/10.1109/FOCS.2006.44
http://dx.doi.org/10.1137/S1064827503430126
http://dx.doi.org/10.1137/S1064827503430126
http://dx.doi.org/10.1137/S0036144502417715
http://dx.doi.org/10.1137/S0036144502417715
http://doc.utwente.nl/87651/
http://doc.utwente.nl/87651/
http://dx.doi.org/10.1016/S0169-7552(98)00110-X
http://dx.doi.org/10.1016/S0169-7552(98)00110-X
http://dx.doi.org/10.1073/pnas.0708838104
http://dx.doi.org/10.1073/pnas.0708838104
http://dx.doi.org/10.1007/978-3-540-95995-3_6
http://dx.doi.org/10.1007/978-3-540-95995-3_6
http://doi.acm.org/10.1145/2623330.2623706
http://doi.acm.org/10.1145/2623330.2623706
http://www.sciencedirect.com/science/article/pii/037704279190087Z
http://www.sciencedirect.com/science/article/pii/037704279190087Z
http://www.sciencedirect.com/science/article/pii/0021904572900287
http://www.sciencedirect.com/science/article/pii/0021904572900287
http://dx.doi.org/10.1137/0515016
http://dx.doi.org/10.1137/0515016
http://dx.doi.org/10.1007/s10115-013-0693-z
http://dx.doi.org/10.1007/s10115-013-0693-z

Community Detection Using Time-Dependent Personalized PageRank
Supplementary Material

6. Appendix: Pseudocode

1: Input: Graph G, sparse seed vector s ∈ R|V |, α, γ and ε.
2:
3: Choose N , as explained in subsection 3.3.
4: Compute Ξ+

1 and u as defined in subsection 3.2.3.
5:
6: violating ← empty_queue
7:
8: # Initialize non-zero functions (i.e., indexes with non-zero seed value)
9: for each u s.t. su 6= 0: yu ← su1N+1, ri ← −αsu1N+1

10:
11: # Initialize neighbors of seeds that are not seeds
12: for u s.t. su 6= 0 do
13: for each v ∈ G.neighbors(u) s.t. sv = 0: yv ← 0N+1, rv ← 0N+1

14: end for
15:
16: # Update residual based on seeds
17: for u s.t. (s)u 6= 0 do
18: for each v ∈ G.neighbors(u): rv ← rv + αyu/G.degree(u)
19: end for
20: for each initialized u s.t. ‖ru‖∞ ≥ (1−α)·G.degree(u)·ε

(1−exp((α−1)γ))(1+ 2
π logN)

: violating.push(u)

21:
22: # Main loop
23: while violating is not empty do
24: u← violating.pop()
25: d← Ξ+

1ru
26: yu ← yu + d
27: ru ← (uTd)u
28: for v ∈ G.neighbors(u) do
29: if yv and rv have not been initialized yet: yv ← 0N+1, rv ← 0N+1

30: rv ← rv + αd/G.degree(u)

31: unless v is already in violating: if ‖rv‖∞ ≥ (1−α)·G.degree(v)·ε
(1−exp((α−1)γ))(1+ 2

π logN)
: violating.push(v)

32: end for
33: end while
34:
35: return the first coordinate of yu for u’s that have been initialized and for which the value 6= 0.

Community Detection Using Time-Dependent Personalized PageRank

7. Appendix: Proofs
7.1. Proof of Proposition 1

Let e(·) ≡ x(·)− y(·). e(·) is the solution to the following initial value problem:

e′(t) = −(I − αP)e(t) + r(t), e(0) = 0, t ∈ [0, γ] .

It follows that (Botchev et al., 2013)

e(t) =

ˆ t

0

exp(−(t− s)(I− αP))r(s)ds

=

ˆ t

0

exp(s− t) exp((t− s)αP)r(s)ds .

(The last inequality follows from the fact that exp(tA) exp(tB) = exp(t(A + B)) ⇐⇒ AB = BA.)

For any ω, we have

D−1 exp(ωP) = D−1 exp(ωAD−1)

= D−1
∞∑
k=0

ωk

k!
(AD−1)k

=

(∞∑
k=0

ωk

k!
(D−1A)k

)
D−1

= exp(ωPT)D−1 .

It follows that

D−1e(t) =

ˆ t

0

exp(s− t)D−1 exp((t− s)αP)r(s)ds

=

ˆ t

0

exp(s− t) exp((t− s)αPT)D−1r(s)ds .

Recalling that P is row-stochastic, we can now bound

‖D−1e(t)‖∞ ≤
ˆ t

0

exp(s− t) · ‖ exp((t− s)αPT)D−1r(s)‖∞ds

≤
ˆ t

0

exp(s− t) · ‖ exp((t− s)αPT)‖∞ · ‖D−1r(s)‖∞ds

=

ˆ t

0

exp((1− α)(s− t))‖D−1r(s)‖∞ds

The last equality is because P is row-stochastic: for ω ≥ 0 we have

‖ exp(ωPT)‖∞ = ‖
∞∑
k=0

ωk

k!
(PT)k‖∞

=

∞∑
k=0

ωk

k!
‖(PT)k‖∞

=

∞∑
k=0

ωk

k!

= exp(ω) .

Community Detection Using Time-Dependent Personalized PageRank

The second equality is due to the fact that PT has only positive values, and the third is because P is row-stochastic.

Clearly if
1− exp((α− 1)γ)

1− α
‖d−1i ri(·)‖∞ < ε

for all i then condition (3) holds for all t ∈ [0, γ]. This is equivalent to having

‖ri(·)‖∞ <
(1− α)diε

1− exp((α− 1)γ)

for all i.

7.2. Proof of Proposition 2

Let S−1N be the inverse operator of SN on C([0, γ]), the set of continuous functions on [0, γ]. That is, S−1N maps a vector in
RN+1 to the unique interpolating polynomial. In particular, S−1N [SN [p(·)]] = p(·). Let ΠN be the mapping of a continuous
function [0, γ] to PN by sampling at t0, . . . , tN and interpolating, that is ΠN [f(·)] ≡ S−1N [SN [f(·)]]. Let

ΛN ≡ sup
f(·)∈C([0,γ])

‖ΠN [f(·)]‖∞
‖f(·)‖∞

.

ΛN is the Lebesgue constant associated with t0, . . . , tN , and it is well known that ΛN ≤ 1 + 2
π logN . Now let f(·) be

a piece-wise linear interpolation of p(t0), . . . , p(tN). Since SN [f(·)] = SN [p(·)] it follows that ΠN [f(·)] = ΠN [p(·)] =
p(·), so

‖p(·)‖∞ = ‖ΠN [f(·)]‖∞ ≤ ΛN‖f(·)‖∞ ≤ (1 +
2

π
logN)‖SN [p(·)]‖∞ .

7.3. Proof of Lemma 3

We have
‖(IN+1 −Ξ1Ξ

+
1)1N+1‖∞ ≤ ‖(IN+1 −Ξ1Ξ

+
1)1N+1‖2 = min

x
‖Ξ1x− 1N+1‖2 ,

so it suffices to show there exists a vector y ∈ RN+1 such that

‖(Ξ + IN+1)y − 1N+1‖2 ≤ 20
√
N exp(−γ/2)IN+1(γ)(4/5)N+1

under the constraint that yN+1 = 0.

We use the following expansion of exp(·) on [0, γ] in the basis of the Chebyshev polynomials (Abramowitz & Stegun,
1964):

exp(−t) = a0 +

∞∑
i=1

aiTi

(
2t− γ
γ

)
a0 = exp(−γ/2)I0(−γ/2) ai = 2 exp(−γ/2)Ii(−γ/2), k ≥ 1

where T0(·), T1(·), . . . are the Chebyshev polynomials of the first kind, and I0(·), I1(·), . . . are the modified Bessel func-
tions of the first kind.

Let

p(t) = 1− a0 −
N∑
i=1

aiTi

(
2t− γ
γ

)
+ c

where c is a constant selected so that p(0) = 0. We now set y = SN [p(·)]. Note that yN+1 = 0, as required.

p(·) is a polynomial of degree N , so SN [p′(·)] = ΞSN [p(·)]. Therefore,

‖(Ξ + IN)y − 1N‖2 ≤
√
N‖(Ξ + IN)y − 1N‖∞

≤
√
N‖p(·) + p′(·)− 1‖∞

Community Detection Using Time-Dependent Personalized PageRank

For t ∈ [0, γ]

|p(t) + p′(t)− 1| = |p(t)− 1− exp(−t) + p′(t) + exp(−t)|
≤ |p(t)− 1− exp(−t)|+ |p′(t) + exp(−t)|

=

∣∣∣∣∣−
∞∑

i=N+1

aiTi

(
2t− γ
γ

)
+ c

∣∣∣∣∣+ |p′(t) + exp(−t)|

≤

∣∣∣∣∣
∞∑

i=N+1

aiTi

(
2t− γ
γ

)∣∣∣∣∣+ |c|+ |p′(t) + exp(−t)|

≤
∞∑

i=N+1

|ai|+ |c|+ |p′(t) + exp(−t)|

where the last inequality is due to the fact that ‖Ti(·)‖∞ = 1 for all i.

Since exp(0) = 1 we have

1 = a0 +
∞∑
i=1

aiTi(−1)

which implies

−c = p(0)− c

= 1− a0 −
N∑
i=1

aiTi (0)

=

∞∑
i=N+1

aiTi(0)

which leads to the bound

|c| ≤
∞∑

i=N+1

|ai| .

Using the fact that T
′

i (t) = iUi−1(t), where U0(·), U1(·), . . . are the Chebyshev polynomials of the second kind, we find
that

p′(t) =
2

γ

N∑
i=1

iaiUi−1

(
2t− γ
γ

)
.

Since (exp(−t))′ = − exp(−t) we have

exp(−t) = − 2

γ

∞∑
i=1

iaiUi−1

(
2t− γ
γ

)
.

Combining the last two equalities we find

|p′(t) + exp(−t)| =

∣∣∣∣∣ 2γ
∞∑

i=N+1

iaiUi−1

(
2t− γ
γ

)∣∣∣∣∣
≤ 2

γ

∞∑
i=N+1

i2 |ai|

where the last inequality is due to the fact that ‖Ui(·)‖∞ = i+ 1 for all i.

Community Detection Using Time-Dependent Personalized PageRank

We now find that

|p(t) + p′(t)− 1| ≤
∞∑

i=N+1

(2 +
2

γ
i2) |ai|

= 4

∞∑
i=N+1

∣∣∣∣(1 +
1

γ
i2) exp(−γ/2)Ii(−γ/2)

∣∣∣∣
= 4 exp(−γ/2)

∞∑
i=N+1

(1 +
1

γ
i2)Ii(γ/2) ,

where last equality is due to the fact that for every integer i, |Ii(x)| = Ii(|x|) .

The following two inequalities are known (Paris, 1984; Laforgia, 1991):

Iν(x)

Iν(y)
≤
(
x

y

)ν
, ν > −1

2
, 0 < x < y

Iν+1(x) ≤ Iν(x), ν >
1

2
.

This now leads to

|p(t) + p′(t)− 1| ≤ 4 exp(−γ/2)IN+1(γ)

∞∑
i=N+1

(1 +
1

γ
i2)2−i .

Provided γ ≥ 1 and i ≥ 11 we have (1 + i2/γ)2−i ≤ (4/5)−i, so

|p(t) + p′(t)− 1| ≤ 4 exp(−γ/2)IN+1(γ)

∞∑
i=N+1

(4/5)−i = 20 exp(−γ/2)IN+1(γ)(4/5)N+1 .

