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Abstract. Several innovative random-sampling and random-mixing techniques for solving prob-
lems in linear algebra have been proposed in the last decade, but they have not yet made a significant
impact on numerical linear algebra. We show that by using a high-quality implementation of one
of these techniques, we obtain a solver that performs extremely well in the traditional yardsticks of
numerical linear algebra: it is significantly faster than high-performance implementations of existing
state-of-the-art algorithms, and it is numerically backward stable. More specifically, we describe a
least-squares solver for dense highly overdetermined systems that achieves residuals similar to those
of direct QR factorization-based solvers (lapack), outperforms lapack by large factors, and scales
significantly better than any QR-based solver.
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1. Introduction. Randomization is arguably the most exciting and innovative
idea to have hit linear algebra in a long time. Several such algorithms have been
proposed and explored in the past decade (see, e.g., [23, 10, 9, 22, 17, 12, 21, 8, 5]
and the references therein). Some forms of randomization have been used for decades
in linear algebra. For example, the starting vectors in Lanczos algorithms are always
random. But recent research led to new uses of randomization: random mixing and
random sampling, which can be combined to form random projections. These ideas
have been explored theoretically and have found use in some specialized applications
(e.g., data mining [15, 5]), but they have had little influence so far on mainstream
numerical linear algebra.

Our paper answers a simple question, Can these new techniques beat state-of-
the-art numerical linear algebra libraries in practice?

Through careful engineering of a new least-squares solver, which we call Blenden-
pik, and through extensive analysis and experimentation, we have been able to answer
this question, yes.

Blendenpik beats lapack’s direct dense least-squares solver by a large margin on
essentially any dense tall matrix. Blendenpik is slower than lapack on tiny matrices,
nearly square ones, and on some sparse matrices. But on a huge range of matrices
of reasonable sizes, the answer is an unqualified yes. Figure 1.1 shows a preview of
our experimental results. On large matrices, Blendenpik is about four times faster
than lapack. We believe that these results show the potential of random-sampling
algorithms and suggest that random-projection algorithms should be incorporated
into future versions of lapack.

∗Received by the editors August 12, 2009; accepted for publication (in revised form) January 6,
2010; published electronically April 23, 2010. This research was supported in part by an IBM Faculty
Partnership Award and by grant 1045/09 from the Israel Science Foundation (founded by the Israel
Academy of Sciences and Humanities).

http://www.siam.org/journals/sisc/32-3/76791.html
†Blavatnik School of Computer Science, Raymond and Beverly Sackler Faculty of Exact Sciences,

Tel-Aviv University, Tel-Aviv 69978, Israel (haima@post.tau.ac.il, stoledo@tau.ac.il).
‡Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology,

Cambridge, MA 02139 (petar@csail.mit.edu).
1217



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1218 HAIM AVRON, PETAR MAYMOUNKOV, AND SIVAN TOLEDO

0 20 40 60 80 100 120
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

LA
P

A
C

K
 ti

m
e 

/ B
le

nd
en

pi
k 

tim
e

m / 1000

m−by−(m / 40) well−conditioned matrices

0 50 100 150 200 250 300
0.5

1

1.5

2

2.5

3

3.5

LA
P

A
C

K
 ti

m
e 

/ B
le

nd
en

pi
k 

tim
e

m / 1000

m−by−(2 * m0.5) well−conditioned matrices

Fig. 1.1. Comparison between lapack and the new solver for increasingly larger matrices.
Graphs show the ratio of lapack’s running time to Blendenpik’s running time on random matrices
with two kinds of aspect ratios.

2. Overview of the algorithm. Let xopt = argminx ‖Ax− b‖2 be a large
highly overdetermined system, with A ∈ Rm×n and b ∈ Rm. Can we sample a small
set of rows, R, and use only those rows to find an approximate solution? That is,
is the solution xR = argminx ‖AR,∗x− bR‖2 a good approximation of xopt? The
following simple experiment in matlab [16] illustrates that for random matrices xR
is indeed a good approximation in some sense as long as R is big enough:

>> rand(’state’, 2378)

>> randn(’state’, 23984)

>> m = 20000; n = 100;

>> A = rand(m, n); b = rand(m, 1);

>> [U, S, V] = svd(A, 0);

>> S = diag(linspace(1, 10^6, 100));

>> A = U * S * V’;

>> sampled rows = find(rand(m, 1) < 10 * n * log(n) / m);

>> A1 = A(sampled rows, :); b1 = b(sampled rows);

>> x = A \ b; >> x1 = A1 \ b1;

>> norm(A * x1 - b) / norm(A * x - b)

ans =

1.0084

The norm of the residual is within 1.01 of the optimal residual. In general, under
certain conditions on A, a uniform random sample of Ω(n log(m) log(n log(m))) rows
leads to a residual that is within a factor of 1 + ε of the optimal with high probabil-
ity [10]. These conditions hold in the experiment above, and the residual is indeed
small. The paper [10] also proposes a more sophisticated algorithm that leads to a
small residual for any matrix, but a small uniform sample does not work on any matrix.

There are two problems with this approach. First, the analysis in [10] bounds the
relative error in residual norm, that is,

‖AxR − b‖2/‖Axopt − b‖2 ≤ 1 + ε,

where xopt is the true solution and xR is the computed solution. Drineas et al. show
that this implies a bound on the forward error,

‖xopt − xR‖2
‖xopt‖2 ≤ tan(θ)κ(A)

√
ε,



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

BLENDENPIK: A FAST DENSE LEAST-SQUARES SOLVER 1219

where θ = cos−1(‖Axopt‖2/‖b‖2). While such an analysis might be useful in some
fields, it is difficult to relate it to standard stability analyses in numerical linear al-
gebra. The standard stability analysis of least-squares algorithms is done in terms
of backward error : an approximate solution x̃ is shown to be the exact solution of a
perturbed system

x̃ = argmin
x
‖(A+ δA)x − b‖2 ,

where ‖δA‖ ≤ ε̃‖A‖. This implies a bound on the forward error

‖xopt − x̃‖2
‖xopt‖2 ≤

(
κ(A) +

κ(A)2 tan θ

η

)
ε̃,

where η = ‖A‖2‖x‖2/‖Ax‖2. The two forward error bounds are not comparable in
an obvious way. Moreover, the

√
ε appears to make it difficult to prove small forward

error bounds in well-conditioned cases.
Second, running time depends on ε−1. The backward stability requirement (e.g.,

value of ε) of linear algebra software may be a constant, but it is a tiny constant. So
to achieve the required ε, the constants in the asymptotic bounds in [10] might be too
large.

Rokhlin and Tygert [22] use a difference approach. They use the R factor of the
sampled rows as a preconditioner in a Krylov-subspace method like LSQR [18]:

>> [Q, R] = qr(A1, 0);

>> x1 = lsqr(A, b, eps, 100, R);

lsqr converged at iteration 17 to a solution with relative

residual 0.5

A uniform sample of the rows is not always a good strategy. If A has a column j that
is zero except for Aij �= 0, any subset of rows that excludes row i is rank deficient.
If m � n, the algorithm needs to sample close to m rows in order to guarantee
a high probability that row i is in the subset. If the row sample is too small, the
preconditioner is rank deficient and LSQR fails.

>> A(1:end-1, end) = 0;

>> A1 = A(sampled rows, :);

>> [Q, R] = qr(A1, 0);

>> x1 = lsqr(A, b, eps, 100, R);

Warning: Matrix is singular to working precision.

> In sparfun\private\iterapp at 33

In lsqr at 217 In overview at 35

lsqr stopped at iteration 0 without converging to the desired

tolerance 2.2e-016 because the system involving the

preconditioner was ill conditioned.

The iterate returned (number 0) has relative residual 1

Uniform random sampling works well only when the coherence of the matrix is small,
which is equal to the maximum norm of a row in Q, where Q forms an orthonor-
mal basis for the column space of A (e.g., the leftmost factor in a reduced QR or
singular-value decomposition; a formal definition of coherence appears in section 3).
The coherence of the matrix is between n/m and 1. The lower it is, the better uniform
sampling works.

>> [Q, R] = qr(A, 0);

>> coherence = max(sum(Q .^ 2, 2))

coherence =

1.0000
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The coherence of our matrix, after the insertion of zeros into column 1, is the worst
possible.

The coherence of matrices with random independent uniform entries tends to
be small, but as we have seen, other matrices have high coherence. We can use a
randomized row-mixing preprocessing phase to reduce the coherence [10, 22]:

>> D = spdiags(sign(rand(m, 1)), 0, m, m);

>> B = dct(D * A); B(1, :) = B(1, :) / sqrt(2);

>> [Q, R] = qr(B, 0);

>> coherence = max(sum(Q .^ 2, 2))

coherence =

0.0083

First, we randomly multiply each row by +1 or −1, and then apply a discrete co-
sine transform (DCT) to each column. The first row is divided by

√
2 to make the

transformation orthogonal. With high probability the coherence of B is small. In the
example above, it is less than twice the minimal coherence (0.005). There are many
ways to mix rows to reduce the coherence. We discuss other methods in section 3.2.

With high probability, a uniform sample B1 of the rows of the row-mixed matrix
B makes a good preconditioner. In the code below, we use the R factor of the sample
to allow LSQR to apply the preconditioner efficiently:

>> B1 = B(sampled rows, :);

>> [Q, R] = qr(B1, 0);

>> x1 = lsqr(A, b, eps, 100, R);

lsqr converged at iteration 15 to a solution with relative

residual 1

3. Theory. This section explains the theory behind the algorithms that this
paper investigates. The ideas themselves are not new; they have been proposed in
several recent papers [10, 22, 17]. We do present some simple generalizations and
improvements to existing results, but since the original proofs are strong enough for
the generalizations, we omit the proofs, but they appear in [4].

3.1. Uniform sampling preconditioners. The quality of uniform sampling
preconditioners depends on how much the solution depends on specific rows. For
example, if the sample is rank deficient unless row i is in it, then the size of a uni-
form sample must be too large to be effective. Coherence [6] is the key concept for
measuring the dependence of the solution on specific rows.

Definition 3.1. Let A be an m × n full rank matrix, and let U be an m × n
matrix whose columns form an orthonormal basis for the column space of A. The
coherence of A is defined as

μ(A) = max ‖Ui,∗‖22 .

The coherence of a matrix is always smaller than 1 and bigger than n/m. If a
row contains the only nonzero in one of the columns of A, then the coherence of the
matrix is 1. Coherence does not relate in any way to the condition number of A.

Uniform random sampling yields a good preconditioner on incoherent matrices
(matrices with small coherence). For example, if μ(A) = n/m, then a sample of
Θ(n logn) rows is sufficient to obtain a good preconditioner. The following theorem
describes a relationship between the coherence, the sample size, and the condition
number of the preconditioned system.

Theorem 3.2. Let A be an m×n full rank matrix, and let S be a random sampling
operator that samples r ≥ n rows from A uniformly. Let τ = C

√
mμ(A) log(r)/r,
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where C is some constant defined in the proof. Assume that δ−1τ < 1. With probability
of at least 1 − δ, the sampled matrix SA is full rank, and if SA = QR is a reduced
QR factorization of SA, we have

κ(AR−1) ≤ 1 + δ−1τ

1− δ−1τ
.

This result does not appear in this exact form in the literature, but its proof is
a simple variation of the results in [10, 22]. Therefore, here we give only a sketch
of the proof; the full version of the proof appears in [4]. The first phase is to bound
‖In×n−(m/r)QTSTSQ‖2 with high probability, using the proof technique of Lemma 5
from [10], in two steps. The first step bounds E(‖In×n − (m/r)UTSTSU‖2) using
Lemma 4 from [10], and the second step uses Markov’s inequality to bound ‖In×n −
(m/r)QTSTSQ‖2 with high probability. Using a simple Rayleigh quotient argument,
we then bound κ(SQ) with high probability. Finally, Theorem 1 in [22] shows that
κ(AR−1) = κ(SQ).

Remark 1. Notice that the condition number of the original matrix A does not
affect the bound on the condition number of the preconditioned matrix.

Remark 2. Theorem 3.2 describes a relationship between sample size (r), the
probability of failure (δ), and the condition number of the preconditioned system.
With a small sample, the probability of obtaining a high condition number is high.
A high condition number may lead to a large number of iterations in LSQR, but the
number of iterations may also be small: the convergence of LSQR depends on the
distribution of the singular values of AR−1, not just on the extreme singular values.
In fact, [3] uses the fact that a few very large or very small singular values do not
affect convergence much.

If the coherence is high, uniform sampling produces poor preconditioners. One
alternative is to use nonuniform sampling. Let A = UR be a reduced QR factoriza-
tion of A. Drineas, Mahoney, and Muthukrishnan [11] suggest sampling row i with
probability pi = ‖Ui‖22/m, where Ui is row i of U . Computing these probabilities
requires too much work (a QR factorization of A), so to make this approach prac-
tical, probabilities should be somehow approximated; to the best of our knowledge,
no efficient approximation algorithm has been developed yet. Therefore, in the next
subsection we turn to a simpler approach, the one used by our solver, which is based
on mixing rows.

3.2. Row mixing. Theorem 3.2 implies that even if there are important rows,
that is, even if coherence is high, if we sample enough rows, then with high probability
the preconditioner is a good preconditioner. The higher μ(A) is, the more rows should
be sampled. This poses two problems. First, finding μ(A) is computationally hard.
Second, if μ(A) is high too, then many rows need to be sampled. Indeed, if μ(A) = 1
(the worst), then as many as O(m logm) rows need to be sampled in order to get
a bound on the condition number by using Theorem 3.2. When μ(A) = 1, there is
a row in the matrix that must be included in the sample for R to be full rank. We
do not know which row it is, so no row can be excluded from the sample; this is not
useful. If μ(A) = n/m (minimal coherence), on the other hand, then only Θ(n logn)
rows need to be sampled to get κ = O(1) with high probability.

In general, we cannot guarantee a bound on μ(A) in advance. The solution is
to perform a preprocessing step in which rows are mixed so that their importance is
nearly equal. The crucial observation is that a unitary transformation preserves the
condition number but changes the coherence. If F is a unitary transformation and
R is a preconditioner FA, then R is an equally good preconditioner for A because
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the singular values of AR−1 and FAR−1 are the same. But μ(A) and μ(FA) are not
necessarily the same; if we select F so that μ(FA) is small, then we can construct a
good preconditioner by uniformly random sampling the rows of FA.

Any fixed unitary transformation F leads to a high μ(FA) on some A’s, so we
use a random unitary transformation. We construct F from a product of a fixed seed
unitary transformation F and a random diagonal matrix D with ±1 diagonal entries.
The diagonal entries of D are random, unbiased, independent random variables. The
following theorem shows that with high probability, the coherence of FA is small,
as long as the maximum value in F is not too large. It is a simple generalization of
Lemma 3 in [10] using ideas from [17]; we omit the proof.

Theorem 3.3. Let A be an m × n full rank matrix, where m ≥ n. Let F
be an m × m unitary matrix, let D be a diagonal matrix whose diagonal entries
are independent and identically distributed Rademacher random variables (Pr(Dii =
±1) = 1/2), and let F = FD. With a probability of at least 0.95, we have

μ(FA) ≤ Cnη logm ,

where η = max |Fij |2 and some constant C.
Note 1. A must be full rank for the μ to be well defined. The theorem can be

generalized to success guarantees other than 0.95. A higher probability leads to a
higher constant C.

A seed matrix F is effective if it is easy to apply to A and if η = max |Fij |2 is
small. The minimal value of η is 1/m. If η is 1/m, then all the entries of F must have
squared absolute values of 1/m. A normalized DFT matrix has this property, and it
can be applied quickly, but it involves complex numbers. A normalized Hadamard
matrix has entries that are all ±1/√m, and in particular are all real. Hadamard
matrices do not exist for all dimensions, but they do exist for powers of two, and they
can be applied quickly at powers of two. The Walsh–Hadamard series

Hl =
1√
2

(
1 1
1 −1

)
, Hl+1 =

1√
2

(
Hl Hl

Hl −Hl

)
,

enables the Walsh–Hadamard transform (WHT). Two other options for F are the
discrete cosine transform (DCT) and discrete Hartley transform (DHT), which are
real, exist for every size, and can be applied quickly. Their η value is 2/m, twice as
large as that of the WHT.

If we use one of the transformations described above, we need a sample of
Θ(n log(m) log(n log(m))) rows to obtain κ = O(1) with high probability. In practice,
smaller samples are sufficient. In section 4, we discuss implementation issues and
considerations for selecting the seed unitary transformation.

A possible alternative mixing strategy is a Kac random walk [14]. We define

F = GT (m,n)GT (m,n)−1 · · ·G3G2G1,

where each Gt is a random Givens rotation. To construct Gt, we select two random
indices it and jt and a random angle θt, and we apply the corresponding Givens
rotation. The number of rotations is chosen to make the coherence of FA sufficiently
small with high probability. How small can we make T (m,n)? Ailon and Chazelle
[1] conjecture that T (m,n) = O(m logm) will suffice, but they do not have a proof,
so we do not currently use this approach. We propose an even simpler random walk,
where instead of using a random angle θt, we fix θt = π/4. We conjecture that still
T (m,n) = O(m logm) will suffice, and we have verified this conjecture experimentally.
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3.3. High coherence due to a few rows. The coherence is the maximal row
norm of U , an orthonormal basis for the column space of A. If all the rows of U
have low coherence, a uniform random sample of the rows of A leads to a good
preconditioner. We now show that even if a few rows in U have a large norm, a
uniform random sample still leads to an effective preconditioner. The fundamental
reason for this behavior is that a few rows with a large norm may allow a few singular
values of the preconditioned system AR−1 to be very large, but the number of large
singular values is bounded by the number of large rows. A few large singular vectors
cause the condition number of AR−1 to become large, but they do not affect much
the convergence of LSQR [3].

Lemma 3.4. Let A be an m× n full rank matrix, where m ≥ n, and suppose we
can write A =

[
A1

A2

]
, where A2 has l ≤ min(m − n, n) rows. Let S ∈ Rk×(m−l) be a

matrix such that SA1 is full rank. Let SA1 = QR be the QR factorization of SA1.
Then at least n − l singular values of AR−1 are between the smallest singular value
of A1R

−1 and the largest singular value of A1R
−1.

To prove Lemma 3.4 we need the following simplified version of Theorem 4.3
in [3].

Theorem 3.5 (simplified version of Theorem 4.3 in [3]). Let A ∈ Cm×n, and let
B ∈ Ck×n for some 1 ≤ k < n be full rank matrices. Let M ∈ Cn×n be a symmetric
positive semidefinite matrix. If all the eigenvalues of (ATA,M) are between α and β,
then so are the n− k smallest eigenvalues of (ATA+BTB,M).

Proof of Lemma 3.4. The singular values of A1R
−1 are the square root of the

generalized eigenvalues of (AT
1 A1, (SA1)

T (SA1)). The singular values of AR−1 are
the square root of the generalized eigenvalues of (AT

1 A1 +AT
2 A2, (SA1)

T (SA1)). The
matrix ATA = AT

1 A1+AT
2 A2 is an l-rank perturbation of AT

1 A1, so according to The-
orem 3.5 at least n−l generalized eigenvalues of (AT

1 A1+AT
2 A2, (SA1)

T (SA1)) are be-
tween the smallest and largest generalized eigenvalues of (AT

1 A1, (SA1)
T

(SA1)).
Suppose that A1 is incoherent but A is coherent. In this case, coherency can

be attributed to only a small number of rows (l rows). If A1 is incoherent and full
rank, then random sampling will produce a good preconditioner without row mixing.
Lemma 3.4 implies that the same preconditioner will be a good preconditioner for
A as long as l is small. In practice, we do not know the partition of A to A1 and
A2. We simply sample from all the rows of A. But if m is large and the sample
is small, the probability of missing any specific row is large; in particular, if l is
small, then rows from A2 are likely to be missed. The lemma shows that R is still
a good preconditioner. If rows from A2 are in the sample, the preconditioner is even
better.

The lemma assumes that the row sample is full rank. In fact, almost the same
result applies even if the sample is rank deficient, as long as we perturb R to make it
full rank; see [3] for details.

4. Algorithm and implementation. In this section we summarize the three
major steps of the algorithm: row mixing (preprocessing), row sampling and QR
factorization, and iterative solution. We also discuss how we handle random-sampling
failures. The overall solver is presented in Algorithm 1.

Implementation. Our solver currently runs under matlab 7.7 [16], but it is
implemented almost entirely in C. The C code is called from matlab using matlab’s
cmex interface.
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Algorithm 1. Blendenpik’s algorithm.
x=blendenpik(A ∈ R

m×n,b ∈ R
n)

� m ≥ n, A is nonsingular
� parameters: γ and transform type

m̃←−
⎧⎨
⎩2�log2 m�, WHT


m/1000� × 1000, DCT or DHT

M ←−
[

A

0

]
∈ Rm̃×n

while not returned

M ←− Fm̃(DM)

� D is a diagonal matrix with ±1 on its diagonal with equal probability

� Fm̃ is the seed unitary transform (WHT/DCT/DHT), Θ(mn logm)

operations

Let S ∈ R
m̃×m̃ be a random diagonal matrix:

Sii =
⎧⎨
⎩1 with probability γn/m̃

0 with probability 1− γn/m̃

Factorize: SM = QR, reduced QR factorization (R ∈ Rn×n)

κ̃←− κestimate(R), condition number estimation (lapack’s dtrcon)

if κ̃−1 > 5εmachine

x←− LSQR(A, b,R, 10−14)

return

else

if #iterations > 3

failure: solve using lapack and return

end if

end if

end while

Row mixing. In section 3.2 we suggest five row-mixing strategies: DFT, DCT,
DHT, WHT, and Kac. We chose not to implement DFT and Kac. The DFT of
a vector is a complex vector even if the vector is real. Thus, using DFT entails
operation-count and memory penalties on subsequent phases when applied on real
matrices. Therefore, it is unlikely that an FFT-based algorithm would outperform
one based on DCT or DHT. Kac’s random walk appears to suffer from poor cache
locality due to random index selection.

WHT is theoretically optimal, in the sense that its η value is 1/m, but it can be
applied only if the number of rows is a power of two. By padding the matrix with
zeros we can apply WHT to smaller matrices. This causes discontinuous increases in
the running time and memory usage as m grows. We use spiral wht [13] to apply
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WHT. To get good performance it is essential to use the package’s self-optimization
feature, which incurs a small one-time overhead.

Instead of using WHT, any Hadamard matrix can be used. If H1 and H2 are
Hadamard matrices, then so is H1 ⊗ H2, so by using kernels of small Hadamard
transforms, efficient large Hadamard transforms can be implemented. But to the best
of our knowledge, there is currently no efficient implementation of this idea.

DCT and DHT are near-optimal alternatives (their η value is 2/m). Their advan-
tages over WHT are that they exist for all vector sizes and that, in principle, they can
always be applied in O(m logm) operations. However, in practice these transforms
are quite slow for some sizes. The performance of fast transforms (DCT and DHT)
depends on how the input size m can be factored into integers. The performance is
not monotone in m. Also, the fast-transform library that we use (fftw) requires
tuning for each input size; the tuning step also takes time. To address these issues,
we use the following strategy. During the installation of our solver, we generate tuned
DCT and DHT solvers for sizes of the form m = 1000k, where k is an integer. The
information used by fftw to generate the tuned solvers (called “wisdom” in fftw) is
kept in a file. Before the solver uses fftw to compute DHT or DCT, this information
is loaded into fftw, so no additional tuning is done at solve time. Before applying
DCT or DHT to a matrix, we pad the matrix to the next multiple of 1000 or to a
slightly higher multiple if the tuning step suggested that the higher multiple would
result in higher performance. One can imagine more sophisticated strategies, based
on knowing what kernel sizes fftw uses as fast building blocks and using sizes that
are multiples of those building blocks. The method that we used is not optimal, but
it does deliver good performance while keeping tuning time reasonable.

We tune fftw using aggressive settings, so tuning takes a long time (hours). We
also experimented with milder tuning settings. If fftw’s weakest tuning is used, the
tuning time of DHT reduces to about 11 minutes, but the time spent in computing
the DHTs is sometimes doubled. As we shall see in section 5.6, this slows our solver,
relative to aggressive setting, by at most 15% (usually less).

Sampling rows and QR factorization. We sample rows by generating a size
m̃ vector with random uniform entries in [0, 1], where m̃ is the number of rows after
padding. We use matlab’s rand function to generate the vector. A row is sampled if
the corresponding entry in the vector is smaller than γn/m̃, where γ is a parameter.
The expected number of rows that are sampled is γn, but the actual value can be
higher or smaller. This is the same strategy that was suggested in [10]. Once the rows
are sampled we compute their QR factorization using lapack’s dgeqrf function.

Row sampling can be combined with row mixing to improve the asymptotic run-
ning time. Any k indices of the FFT of am element vector can be computed using only
O(m log k) operations [24]. This is also true for WHT [2]. If we select the sampled rows
before the row mixing, we can compute only the mixed rows that are in the sample.
We do not use this strategy because the libraries that we use do not have this option.

Iterative solution. We use LSQR to find the solution. Given an iterate xj with
a corresponding residual rj = b−Axj , stopping the algorithm when

(4.1)
‖AT rj‖2
‖A‖F ‖rj‖2 ≤ ρ

guarantees that xj is an exact solution of

xj = argmin
x
‖(A+ δA)x − b‖2
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where ‖δA‖F ≤ ρ‖A‖F . That is, the solution is backward stable [7]. The value of
ρ is a parameter that controls the stability of the algorithm. To use this stopping
criterion, we need to compute rj and AT rj in every iteration. It is therefore standard
practice in LSQR codes to estimate ‖rj‖2 and ‖AT rj‖2 instead of actually computing
them. The estimate formulas used are accurate in exact arithmetic, and in practice
they are remarkably reliable [18]. If a preconditioner R is used, as in our algorithm,
‖AT rj‖2 cannot be estimated but ‖(AR−1)T rj‖2 can be. Preconditioned LSQR codes
estimate ‖AR−1‖F as well and use the stopping criterion

‖ (AR−1
)T

rj‖2
‖AR−1‖F ‖rj‖2 ≤ ρ

that guarantees a backward stable solution to

yj = argmin
x

∥∥AR−1y − b
∥∥
2

and returns xj = R−1yj. We use the same strategy in our solver. We set ρ = 10−14,
which is close to εmachine but not close enough to risk stagnation of LSQR. This setting
results in a solver that is about as stable as a QR-based solver.

Most of the LSQR running time is spent on multiplying vectors by A and AT .
If A is sparse and very tall, using a sparse matrix-vector multiplication code can
reduce the LSQR running time, even though R is dense. We have not exploited this
opportunity in our code.

Handling failures. The bounds in section 3 hold with some probability bounded
from below. With some probability, the algorithm can fail to produce an effective
preconditioner in one of two ways: (1) the preconditioner can be rank deficient or
highly ill conditioned, or (2) the condition number κ(AR−1) can be high. When
the condition number is high, LSQR converges slowly, but the overall algorithm does
not fail. But a rank-deficient preconditioner cannot be used with LSQR. To address
this issue, we estimate the condition number of the preconditioner R using lapack’s
dtrcon function. If the condition number is too high (larger than ε−1

machine/5), we
perform another row-mixing phase and resample. If we repeat this three times and
still do not get a full rank preconditioner, we give up, assume that the matrix itself
is rank deficient, and use lapack. This never happened in our experiments on full
rank matrices, but on some matrices we had to mix and sample more than once.

5. Numerical experiments. We experimented with the new algorithm exten-
sively in order to explore its behaviors and to understand its performance. This
section reports the results of these experiments (Figure 1.1 shows additional results).

5.1. Experimental setup. We compare the new solver, which we call Blenden-
pik, to a high-performance dense QR solver and to LSQR with no preconditioning.
The dense QR solver is lapack’s dgels: a high-performance, high-quality, portable
code. We call lapack from matlab using a special cmex interface that measures
only lapack’s running time. No Matlab-related overheads are included; Matlab

is used here only as a scripting tool.
Running times were measured on a machine with two AMD Opteron 242 proces-

sors (we used only one) running at 1.6 GHz with 8 GB of memory. We use goto

blas 1.30 and lapack 3.2.1 for basic matrix operations and fftw 3.2.1 for the
DCT and DHT.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

BLENDENPIK: A FAST DENSE LEAST-SQUARES SOLVER 1227

The measured running times are wall-clock times that were measured using the
ftime Linux system call.

We evaluated our solver on several classes of random matrices. Random matrices
were generated using matlab’s rand function (random independent uniform num-
bers). Ill-conditioned matrices are obtained by generating their SVD decomposition:
two random orthonormal matrices and an equally spaced diagonal matrix with the
appropriate condition number.

Our solver relies on automatic tuning of the fast-transform libraries that it uses
(fftw and spiral). This is an installation-time overhead that is not included in our
running-time measurements. Automatic tuning is a technique of growing importance
in various numerical libraries, such as the atlas [26] implementation of the blas.

Theoretical bounds relate to the coherence, which is the maximum row norm in
the orthogonal factor of the matrix. Our experiments suggest that, in practice, run-
ning time is related to the number of rows that have a large norm in the orthogonal
factor. Therefore, we experimented with three types of matrices: incoherent matri-
ces, semicoherent matrices and coherent matrices. Incoherent matrices Xm×n, either
well conditioned or ill conditioned, are generated using the rand function with no
restriction on the structure. Semicoherent matrices, are of the form

Ym×n =

[
B̃

In/2

]
+ 10−8

⎡
⎢⎣

1 · · · 1
...

...
1 · · · 1

⎤
⎥⎦ ,

where B̃ is an (m−n/2)×n/2 rectangular random matrix and In/2 is a square identity
of dimension n/2. Ym×n is, in fact, coherent (μ(Ym×n) = 1), but only n/2 rows have
a large norm in the orthogonal factor. Our coherent matrices have the form

Zm×n =

[
Dn×n

0(m−n)×n

]
+ 10−8

⎡
⎢⎣

1 · · · 1
...

...
1 · · · 1

⎤
⎥⎦ ,

where Dn×n is a random diagonal matrix. The orthogonal factors of these matrices
have n rows with a large norm. In both semicoherent and coherent matrices, the
constant 10−8 matrix is added to make the matrices dense. Some solvers, including
lapack’s (in version 3.2.1), exploit sparsity. Our solver does not. We added the
constant matrix to avoid this source of variance; we acknowledge the fact that, for
some sparse matrices, lapack’s dense solver is faster than our solver.

5.2. Tuning experiments. The behavior of our solver depends on the seed
unitary transformation that mixes the rows, on the number of row-mixing steps, and
on the sample size. These parameters interact in complex ways, which are not fully
captured by asymptotic analyses. We begin with experiments that are designed to
help us choose these parameters in the algorithm.

5.2.1. Unitary transformation type. The row-mixing phase uses a fixed seed
unitary matrix that depends only on the row dimension of the problem. In 3.2 we
suggested five different seed unitary matrices. As explained in section 4, we imple-
mented only three of them, all using external libraries: the WHT, the DCT, and the
DHT. Figures 5.1 shows the running time of each transformation time on increasingly
larger matrices. WHT is the fastest, but DHT and DCT come close.
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Fig. 5.1. Time spent on the fast unitary transformation (row mixing) for increasingly larger
matrices. We tested all three implemented transforms: WHT, DCT, and DHT.
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Fig. 5.2. Overall running time of the algorithm with different fast unitary transforms (row mix-
ing) on increasingly larger matrices. We tested on incoherent matrices (top left graph), semicoherent
matrices (top right graph), and coherent matrices (bottom graph).

Different unitary transforms improve coherence in different ways. Figure 5.2
examines the overall running time of the solver on incoherent, semicoherent, and
coherent matrices. For incoherent and semicoherent matrices there does not seem
to be a significant difference between the different mixing methods. WHT’s overall
time is smaller because it is faster than other methods. On coherent matrices, WHT
exhibits poor and erratic performance. Usually, a single WHT phase generated a very
ill-conditioned preconditioner (very close to rank deficiency). This was sometimes
detected by the condition number estimator, in which case a second WHT phase was
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done. In some cases the condition number estimator test failed, and convergence
was very slow. DHT and DCT continue to work well on coherent matrices; the two
methods behave the same. It is interesting to note that, from a theoretical standpoint,
WHT is superior, but in practice, DHT and DCT work better.

Clearly, WHT’s advantage (fast application and a low η) are offset by its disad-
vantages (reduced robustness and a large memory footprint). We therefore decided
to use DHT (which is faster than DCT) for all subsequent experiments except for the
right graph in Figure 1.1, where we used WHT for experimental reasons.

5.2.2. Sample size and number of row-mixing steps. The theoretical anal-
ysis shows that sampling Ω(n log(m) log(n log(m))) rows is sufficient with high prob-
ability, but we do not know the constants in the asymptotic notation. The analysis
may give bounds in the probability of failure, but even if there is failure (e.g., the
condition number is bigger than the bound), running time might still be good. Con-
vergence behavior is governed by the distribution of singular values, and it is not fully
captured by the condition number. The contributions of each phase to the running
time interact in a complex way that is not fully predictable by worst-case asymp-
totic analysis. Therefore, we performed experiments whose goal is to determine a
reasonable sampling size.

We also need to decide on the number of row-mixing steps. Row-mixing steps
reduce the coherence and improve the outcome of random sampling. Theoretical
bounds state that after a single row-mixing step, the coherence is within a O(logm)
factor of the optimal with high probability. Therefore, after the first row-mixing
step, there is still room for improvement. Although there are no theoretical results
that state so, it reasonable to assume that additional row-mixing steps will reduce
coherence further, which will cause LSQR to converge faster, perhaps offsetting the
cost of the extra mixing steps.

Figure 5.3 presents the results of these experiments. We ran experiments with
two matrix sizes, 30,000× 750 (left graphs) and 40,000× 2,000 (right graphs), and all
matrix types, incoherent (top left and middle right graphs), semicoherent (top right
and bottom left graphs), and coherent (middle left and bottom right graphs). All the
matrices were ill conditioned.

We used sample size γn, where γ ranges from 1.5 to 10. Although the theoretical
bound is superlinear, it is not necessarily tight. As the results show, for the range of
matrices tested in our experiments, the best sample size displays a sublinear (in n)
behavior (which might change for larger matrices).

For 30,000×750 matrices the best sample size is around γ = 6. For 40,000×2,000
it is γ = 3. Apparently, for larger matrices a smaller sample is needed (relative to n),
contrary to the theoretical analysis. A sample size with γ = 4 is close to optimal for
all matrices. For incoherent and semicoherent matrices there is a (small) advantage
for using only one preprocessing phase. For coherent matrices the best results are
achieved when using two preprocessing phases. In fact, using only one preprocessing
phase can be disastrous when combined with a sample size that is too small. But with
a sample size γ = 4, near-optimal results can be achieved with only one preprocessing
phase.

Following these experiments we decided to fix γ = 4 and to use one preprocessing
phase. We used these settings for the rest of the experiments. These parameters are
not optimal in all cases, but they seem to be nearly optimal for most cases. The rest
of the experiments in this paper use these values.
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Fig. 5.3. Running time as a function of sample size and number of row-mixing steps for
30,000 × 750 matrices (left graphs) and 40,000 × 2,000 matrices (right graphs). We ran the same
experiment on incoherent matrices (top left and middle right graphs), semicoherent matrices (top
right and bottom left graph), and coherent matrices (middle left and bottom right graphs).

5.3. Ill-conditioned matrices. Figure 5.4 shows that the condition number of
A does not affect our new solver at all, but it does affect unpreconditioned LSQR. On
very well conditioned matrices, unpreconditioned LSQR is faster, but its performance
deteriorates quickly as the condition number grows.

5.4. Easy and hard cases. Figure 5.5 compares the performance of our solver
and of lapack on incoherent, semicoherent, and coherent matrices of four different
aspect ratios. The number of elements in all matrices is the same. (lapack’s running
time depends only on the matrix’s dimensions, not on its coherence, so the graph
shows only one lapack running time for each size.) Our solver is slower on matrices
with high coherence than on matrices with low coherence but not by much. Even when
the coherence is high, our solver is considerably faster than lapack. Hard cases (high
coherence) run slower because LSQR converges slower, so more LSQR iterations are
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Fig. 5.4. Running time on increasingly ill-conditioned matrices.
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Fig. 5.5. Running time on different coherence profiles.

performed. (The other phases of the algorithm are oblivious to coherence.) It appears
that a single row-mixing phase does not remove the coherence completely.

5.5. Convergence rate. In the experiments whose results are shown in the
left graph in Figure 5.6, we examine the LSQR convergence rate on a single matrix.
The graph shows the norm of the residual after each iteration. Except for the final
iterations, where the solver stagnates near convergence, the convergence rate is stable
and predictable. This is a useful property that allows us to predict when the solver
will converge and to predict how the convergence threshold affects the running time.
The rate itself is slower on coherent matrices than on incoherent and semicoherent
ones. This is the same issue we saw in Figure 5.5.
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coherence profiles. The right graph shows the number of LSQR iterations needed for convergence on
increasingly larger matrices.
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Fig. 5.7. Breakdown of running time on increasingly larger matrices. The plotted series shows
the running time of each phase. The left graph shows the breakdown for incoherent matrices, while
the right graph shows the breakdown for coherent matrices.

The graph on the right examines the number of iterations required for LSQR to
converge as a function of problem size. On incoherent and semicoherent matrices the
number of iterations grows very slowly. On coherent matrices the number of iterations
grows faster.

5.6. The cost of the different phases. Figure 5.7 shows a breakdown of the
running time of our solver for incoherent matrices (left graph) and coherent matrices
(right graph) of increasingly larger size. The row-mixing preprocessing phase is not a
bottleneck of the algorithm. Most of the time is spent on factoring the preconditioner
and on LSQR iterations. The most expensive phase is the LSQR phase. The asymp-
totic running time of the row-mixing phase is Θ(mn logm), and for the QR phase
it is Θ(n3). Each LSQR iteration takes Θ(mn) time, and the number of iterations
grows slowly. In both graphs n = m/40, so the QR phase is asymptotically the most
expensive.

The dominance of the LSQR phase implies that considerable speedup can be
achieved by relaxing the convergence threshold. In our experiments the convergence
threshold was set to 10−14. If a convergence threshold of 10−6 is acceptable, for
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Fig. 5.8. Experiments examining strategies with no row mixing versus the regular strategy. The
left graph compares the solver without a row-mixing phase to the solver with a row-mixing phase
on incoherent matrices. The right graph compares the same two solvers on matrices with a few
important rows.

example, we can roughly halve the number of iterations of the LSQR phase, thereby
accelerating our solver considerably.

The row mixing phase takes about 15% of overall solver time. Even if we double
the row-mixing time, our solver will still be faster than lapack on nearly all of the
matrices used in our experiments.

5.7. No row mixing. If a matrix is completely incoherent to begin with, we
do not need to mix its rows. On such matrices, row mixing takes time but does not
reduce the running time of subsequent phases. The left graph in Figure 5.8 shows
that this is essentially true on random matrices, which have low (but not minimal)
coherence; the algorithm runs faster without mixing at all.

The right graph in Figure 5.8 examines performance on coherent matrices whose
coherence can be attributed to a small number c of rows. The matrices are of the
form

S(m+c)×(n+c) =

[
S0 S1

0 103 × Ic

]
,

where S0 ∈ R
m×(n−c)and S1 ∈ R

m×c are a random rectangular matrix and Ic is a c-
by-c identity. When c is tiny (1 and 2), row mixing does not improve the running time
substantially. But for c > 2, with row mixing the running time remains constantly
low, while a performance of random sampling without mixing deteriorates as the size
of the 103 × Ic block grows.

The reason for the deterioration is numerical inaccuracy and not poor precon-
ditioning. The basis vectors generated by LSQR lose orthogonality because a short
recurrence (Lanczos recurrence) is used. A celebrated result of Paige [19] shows that
loss of orthogonality is large only in the directions of converged or nearly converged
Ritz vectors. As long as no Ritz has converged, a satisfactory level of orthogonality
is maintained. This result explains why isolated singular values in the precondi-
tioned matrix cause numerical problems: the algorithm tends to converge fast for
the isolated eigenvalues. Possible solutions for this problem are full orthogonalization
(expensive), selective orthogonalization [20], and others (see section 5.3 in [25]). We
have verified this observation by running LSQR with full orthogonanlization (graph
not included).
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6. Discussion and related work. Experiments show that our solver is faster
than lapack and faster than LSQR with no preconditioning. The algorithm is robust
and predictable. The algorithm is competitive in the usual metric of numerical linear
algebra, and it demonstrates that randomized algorithms can be effective in numerical
linear algebra software. We have not encountered cases of large dense matrices where
the solver fails to beat lapack, even in hard test cases, and we have not encountered
large variance in running time of the algorithm on a given matrix. Even the conver-
gence rate in the iterative phase is stable and predictable (unlike many algorithms
that use an iterative method).

Although, the numerical experiments demonstrate the validity of the worst-case
theoretical analysis, they also demonstrate that actual performance is not fully de-
scribed by it. In some issues actual performance acts differently than suggested by
theoretical bounds, or the observed behavior is not explained by the analysis:

• The theoretical analysis suggests that WHT is better in reducing coherence.
In practice DHT and DCT work better, even though it takes longer to com-
pute them. In fact, on highly coherent matrices, WHT sometimes fails to mix
rows well enough (so we need to apply it again), while this never happened
for DHT and DCT.
• The algorithm may fail with some small probability. It may fail to produce
an incoherent matrix after row sampling, and important rows may be left
out of the random sample (thereby producing a poor preconditioner). Some
failures may slow down the solver considerably (for example, when the pre-
conditioner is rank deficient and another row-mixing phase is necessary), but
it is practically impossible for the algorithm not to finish in finite time on
full rank matrices. Current theory does not guarantee that the probability of
slowdown is negligible. When using WHT for row mixing, the solver did slow
down sometimes due to such failures. When DHT is used for row mixing, we
did not encounter such failures, and running time was always good, with a
small variance. Apparently the actual probability of failure is much smaller
than the theoretical bounds.
• Theoretical bounds require a superlinear sample size. In practice, a linear
sample works better. It is unclear whether the reason is that the bounds are
not tight or whether constants come into play.
• The theory relates performance to the coherence of the matrix. Coherence
uses the maximum function, which from our experiment is too crude for
analyzing random sampling. Actual performance depends on the distribution
of row norms in the orthogonal factor, not just the maximum values. In a
sense, the role coherence is similar to the role of the condition number in
Krylov methods: it provides bounds using extreme values (easy to handle)
while actual performance depends on internal values (hard to handle).

The algorithm used by our solver is new, but its building blocks are not. We chose
building blocks that are geared toward an efficient implementation. Using WHT for
row mixing (and padding the matrix by zeros) was suggested by Drineas et al. [10].
Their complete method is not suitable for a general-purpose solver because sample
size depends on the required accuracy. Using DCT or DHT for row mixing in low
rank matrix approximations was suggested by Nguyen, Do, and Tran [17]. Their
observation carries to a least-squares solution. DHT has a smaller memory footprint
than WHT, and it works better than WHT and DCT, so we decided to use it. Using
the sampled matrix as a preconditioner for an iterative Krylov-subspace method was
suggested by Rokhlin and Tygert [22]. They use CGLS; we decided to use LSQR
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because it often works better. The row-mixing method in [22] uses FFT, which forces
the solver to work on complex numbers. Furthermore, their analysis requires two FFT
applications.

Our observation that the solver can work well even if the post-mixing coherence
is high, as long as the number of high-norm rows in U is small, is new.

Unlike previous work in this area, we compared our solver to a state-of-the-art
direct solver (lapack), showed that it is faster, and explored its behavior on a wide
range of matrices. Drineas et al. [10] do not implement their algorithm. Rokhlin and
Tygert [22] implemented their algorithm, but they compared it to a direct solver that
they implemented, which is probably slower than lapack’s. They also experimented
with only a small range of matrices (incoherent matrices whose number of rows is a
power of two).
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