

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. MATRIX ANAL. APPL. c© 2009 Society for Industrial and Applied Mathematics
Vol. 31, No. 2, pp. 674–693

USING PERTURBED QR FACTORIZATIONS TO SOLVE LINEAR
LEAST-SQUARES PROBLEMS∗

HAIM AVRON† , ESMOND NG‡ , AND SIVAN TOLEDO†

Abstract. We propose and analyze a new tool to help solve sparse linear least-squares problems
minx ‖Ax − b‖2. Our method is based on a sparse QR factorization of a low-rank perturbation Â

of A. More precisely, we show that the R factor of Â is an effective preconditioner for the least-
squares problem minx ‖Ax − b‖2, when solved using LSQR. We propose applications for the new
technique. When A is rank deficient, we can add rows to ensure that the preconditioner is well
conditioned without column pivoting. When A is sparse except for a few dense rows, we can drop
these dense rows from A to obtain Â. Another application is solving an updated or downdated
problem. If R is a good preconditioner for the original problem A, it is a good preconditioner for
the updated/downdated problem Â. We can also solve what-if scenarios, where we want to find the
solution if a column of the original matrix is changed/removed. We present a spectral theory that
analyzes the generalized spectrum of the pencil (A∗A, R∗R) and analyze the applications.

Key words. preconditioning sparse QR, iterative linear least-squares solvers

AMS subject classifications. 65F10, 65F20, 65F22, 65F50, 65F15

DOI. 10.1137/070698725

1. Introduction. This paper shows that the R factor from the QR factorization
of a perturbation Â of a matrix A is an effective least-squares preconditioner for
A. More specifically, we show that the R factor of the perturbation is an effective
preconditioner if the perturbation can be expressed by adding or dropping a few rows
from A or if it can be expressed by replacing a few columns.

If A is rank deficient or highly ill conditioned, the R factor of a perturbation Â
is still an effective preconditioner if Â is well conditioned. Such an R factor can be
used in LSQR (an iterative least-squares solver [29]) to efficiently and reliably solve a
regularization of the least-squares problem. We present an algorithm for adding rows
with a single nonzero to A to improve its conditioning; it attempts to add as few rows
as possible.

We also show that if an arbitrary preconditioner M is effective for Â∗Â (where Â∗

is the adjoint of Â), in the sense that the generalized condition number of (Â∗Â, M) is
small, then M is also an effective preconditioner for A∗A. This shows that we do not
necessarily need the R factor of the perturbation Â; we can use M as a preconditioner
instead.

This paper provides a comprehensive spectral analysis of the generalized spectrum
of matrix pencils that arise from row and column perturbations. The analysis shows

∗Received by the editors July 30, 2007; accepted for publication (in revised form) by D. P. O’Leary
September 8, 2008; published electronically June 17, 2009. This research was supported by an IBM
Faculty Partnership Award, by grant 848/04 from the Israel Science Foundation (founded by the
Israel Academy of Sciences and Humanities), by grant 2002261 from the United States–Israel Bina-
tional Science Foundation, and by the Director, Office of Advanced Scientific Computing Research,
Division of Mathematical, Information, and Computational Sciences of the U.S. Department of En-
ergy under contract DE-AC03-76SF00098.

http://www.siam.org/journals/simax/31-2/69872.html
†Blavatnik School of Computer Science, Raymond and Beverly Sackler Faculty of Exact Sciences,

Tel-Aviv University, Tel-Aviv 69978, Israel (haima@tau.ac.il, stoledo@tau.ac.il).
‡Computational Research Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road,

Berkeley, CA 94720 (EGNg@lbl.gov).

674

D
ow

nl
oa

de
d

05
/2

2/
13

 to
 1

29
.3

4.
20

.2
3.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SOLVING LINEAR LEAST SQUARES USING PERTURBED QR 675

that if the number of rows/columns that are added, dropped, or replaced is small,
then most of the generalized eigenvalues are 1 (or lie in some interval when R is not
an exact factor). We bound the number of runaway eigenvalues, which are those that
are not 1 (or outside the interval), which guarantees rapid convergence of LSQR.

These results generalize a simple observation. Let A be a given matrix, and let
Â = [A

B]. Then

(
Â∗Â

)−1
A∗A = (A∗A + B∗B)−1

A∗A

= (A∗A + B∗B)−1 (A∗A + B∗B − B∗B)

= I − (A∗A + B∗B)−1 B∗B.(1.1)

The rank of the second term on the last line is at most the rank of B, so if B has
low rank, then (Â∗Â)−1A∗A is a low-rank perturbation of the identity. A symmetric
rank-k perturbation of the identity has at most k nonunit eigenvalues, which in exact
arithmetic guarantees convergence in k iterations in several Krylov-subspace itera-
tions. Therefore, the Cholesky factor of Â∗Â (which is also the R factor of Â) is a
good least-squares preconditioner for A. The same analysis extends to the case where
we drop rows of A. This idea has been used by practitioners [19].

We generalize this result in additional ways: to the case where Â is singular,
to column exchanges, and to preconditioners for Â rather than its R factor. We also
bound the size of the nonunit eigenvalues, which is important when A is rank deficient.

The rest of this paper presents relevant background, our spectral analysis of per-
turbed factorizations, an algorithm for choosing the perturbations, and numerical
results.

2. Background.

2.1. LSQR, an iterative Krylov-subspace least-squares solver. LSQR is
a Krylov-subspace iterative method for solving the least-squares problem minx ‖Ax−
b‖2. The method was developed by Paige and Saunders in 1982 [29].

The algorithm is based on the bidiagonalization procedure due to Golub and
Kahan [21]. A sequence of approximations {xk} is generated such that the residual
‖Axk − b‖2 decreases monotonically. The sequence {xk} is, analytically, identical
to the sequence generated by the conjugate gradients algorithm [24, 13] applied to
A∗A. Therefore, the convergence theory of conjugate gradients applied to A∗A applies
directly to the behavior of LSQR. In particular, the convergence of LSQR is governed
by the distribution of the eigenvalues of A∗A (and can be bounded using its condition
number). Another useful observation, which we will use extensively, is that if the
matrix A∗A has l distinct eigenvalues, then LSQR will converge in at most l iterations
(this is a simple consequence of the minimization property of conjugate gradients).

The relationship between the condition number and the convergence of LSQR
and the relationship between the number of distinct eigenvalues and the convergence
of LSQR are essentially a special case of a result given by [28, Theorem 2.3] (Ng
attributes the result to Van der Vorst). This result analyzes the convergence of con-
jugate gradients when all but k + r eigenvalues lie outside a given interval. The result
can also be adapted to singular matrices and LSQR, and it is used in section 5.

In this paper we use the preconditioned version of LSQR. Given an easy-to-invert
preconditioner R, we have

min
x

‖Ax − b‖2 = min
x

‖AR−1Rx − b‖2.

D
ow

nl
oa

de
d

05
/2

2/
13

 to
 1

29
.3

4.
20

.2
3.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

676 HAIM AVRON, ESMOND NG, AND SIVAN TOLEDO

This allows us to solve minx ‖Ax−b‖2 in two phases. We first solve miny ‖AR−1y−b‖2

and then solve Rx = y. The first phase is solved by LSQR. The convergence is now
governed by the spectrum (set of eigenvalues) of R−∗A∗AR−1, which is hopefully
more clustered than the spectrum of A∗A. The spectrum of R−∗A∗AR−1 is identical
to the set of generalized eigenvalues A∗Ax = λR∗Rx. We analyze these generalized
eigenvalues.

2.2. Sparse QR factorizations. In some of the applications that we describe
below, the preconditioner is the R factor from a QR factorization of a perturbation
of A.

The main approach to exploiting the sparsity of A in a QR factorization is to
attempt to minimize the fill in the R factor. Since the R factor of A is also the
Cholesky factor of A∗A, we can use an algorithm that reduces fill in sparse Cholesky
by symmetrically permuting the rows and columns of A∗A [18]. Such a permutation
is equivalent to a column permutation of A. Many algorithms can compute such a
permutation without ever computing A∗A or its sparsity pattern [15, 9].

When A is well conditioned, it is possible to solve the least-squares problem
minx ‖Ax− b‖2 using the QR factorization of A. When A is ill conditioned, it may be
useful to regularize the equation by truncating singular values that are too small (see
subsection 2.7.2 in [8]). A cheaper but effective regularization method approximates
the truncated solution using a rank revealing QR factorization of A [10, 11].

Designing a sparse rank revealing QR factorization is a challenging task. There
are basically two techniques to compute a rank revealing QR factorization. The first
method, which is guaranteed to generate a rank revealing factorization, is to find a
regular QR factorization and refine it to a rank revealing factorization [10]. In the
sparse setting the correction phase can be expensive and can produce considerable fill.
We can also find a rank revealing QR factorization using column pivoting [20]. This
method can fail to produce a rank revealing factorization, but it usually does [17].
When A is sparse, extensive column pivoting destroys the fill, reducing preordering
and hence increasing fill. Column pivoting also requires more complex data structures
and reduces the value of the symbolic analysis phase of the factorization.

Sparse rank revealing QR factorizations do use column pivoting, usually with
heuristics to restrict pivot selection (to avoid catastrophic fill). The heuristic nature
of the pivot selection has a price: the ability of these factorizations to reveal rank
is reduced compared to strict pivoting [12, 30]. Some algorithms [5, 2] address this
problem by adding a correction phase at the end. The restricted pivoting in the first
phase is aimed at reducing the amount of work that is needed in the second phase.
We use this correction idea in one of our algorithms.

A sparse QR algorithm can be organized in three ways. The method of George
and Heath [18] rotates rows of A into R using Givens rotations. The multifrontal
method [26] uses Householder reflections, and so does the left-looking method [14]. It
is not possible to incorporate column pivoting into methods that are based on rotating
rows into R, because there is no way to estimate the effect of pivoting on a particular
column. Consequently, column-pivoting QR factorizations are column-oriented and
not row-oriented, in which case Householder reflections are usually used rather than
Givens rotations.

3. Preliminaries. In this section we give some basic definitions in order to
establish terminology and notation. These definitions are not new. We also restate
known theorems that we will use extensively in our theoretical analysis.

D
ow

nl
oa

de
d

05
/2

2/
13

 to
 1

29
.3

4.
20

.2
3.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SOLVING LINEAR LEAST SQUARES USING PERTURBED QR 677

Definition 3.1. Let S and T be n-by-n complex matrices. We say that a scalar
λ is a finite generalized eigenvalue of the matrix pencil (pair) (S, T) if there is a vector
v �= 0 such that

Sv = λTv

and Tv �= 0. We say that ∞ is an infinite generalized eigenvalue of (S, T) if there
exists a vector v �= 0 such that Tv = 0 but Sv �= 0. Note that ∞ is an eigenvalue of
(S, T) if and only if 0 is an eigenvalue of (T, S). The finite and infinite eigenvalues of
a pencil are determined eigenvalues (the eigenvector uniquely determines the eigen-
value). If both Sv = Tv = 0 for a vector v �= 0, we say that v is an indeterminate
eigenvector, because Sv = λTv for any scalar λ.

Throughout the paper eigenvalues are ordered from smallest to largest. We will
denote the kth eigenvalue of S by λk(S) and the kth determined generalized eigenvalue
of (S, T) by λk(S, T). Therefore, λ1(S) ≤ · · · ≤ λl(S) and λ1(S, T) ≤ · · · ≤ λd(S, T),
where l is the number of eigenvalues that S has and d is the number of determined
eigenvalues that (S, T) has.

The solution of the least-squares equation minx ‖Ax − b‖2 is also the solution
of the equation A∗Ax = A∗x. Matrix A∗A is Hermitian positive semidefinite. The
LSQR method is actually a Krylov-space method on A∗A, and a preconditioner for
the method is Hermitian positive semidefinite too. Therefore, the matrix pencils that
we will consider in this paper are Hermitian positive semidefinite (H/PSD) pairs.

Definition 3.2. A pencil (S, T) is Hermitian positive semidefinite (H/PSD) if
S is Hermitian, T is Hermitian positive semidefinite, and null(T) ⊆ null(S).

The generalized eigenvalue problem on H/PSD pencils is, mathematically, a gen-
eralization of the Hermitian eigenvalue problem. In fact, the generalized eigenvalues
of an H/PSD can be shown to be the eigenvalues of an equivalent Hermitian matrix.
The proof appears in [1]. Based on this observation it is easy to show that other
eigenvalue properties of Hermitian matrices have an analogy for H/PSD pencils. For
example, an H/PSD pencil (S, T) has exactly rank(T) determined eigenvalues (count-
ing multiplicity), all of them finite and real.

A useful tool for analyzing the spectrum of a Hermitian matrix is the Courant–
Fischer Minimax Theorem [22].

Theorem 3.3 (Courant–Fischer Minimax Theorem). Suppose that S ∈ Cn×n is
a Hermitian matrix; then

λk(S) = min
dim(U)=k

max
x∈U
x �=0

x∗Sx

x∗x

and

λk(S) = max
dim(V)=n−k+1

min
x∈V
x �=0

x∗Sx

x∗x
.

As discussed above, the generalized eigenvalue problem on H/PSD pencils is a
generalization of the eigenvalue problem on Hermitian matrices. Therefore, there is
a natural generalization of Theorem 3.3 to H/PSD pencils, which we refer to as the
Generalized Courant–Fischer Minimax Theorem. We now state the theorem. We do
not include a proof of this theorem, since it is a simple generalization of Theorem 3.3,
and instead refer the reader to [1] for a complete proof.

D
ow

nl
oa

de
d

05
/2

2/
13

 to
 1

29
.3

4.
20

.2
3.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

678 HAIM AVRON, ESMOND NG, AND SIVAN TOLEDO

Theorem 3.4 (Generalized Courant–Fischer Minimax Theorem). Suppose that
S ∈ Cn×n is a Hermitian matrix and that T ∈ Cn×n is a Hermitian positive semidef-
inite matrix such that null(T) ⊆ null(S). For 1 ≤ k ≤ rank(T) we have

λk(S, T) = min
dim(U)=k
U⊥null(T)

max
x∈U

x∗Sx

x∗Tx

and

λk(S, T) = max
dim(V)=rank(T)−k+1

V ⊥null(T)

min
x∈V

x∗Sx

x∗Tx
.

4. Spectral theory. The generalized spectrum of (A∗A, A∗A) is very simple:
the pencil has rank(A) eigenvalues that are 1 and the rest are indeterminate. This
section characterizes the structure of spectra of perturbed pencils, (A∗A, A∗A+B∗B−
C∗C) and (A∗A, Ã∗Ã), where A =

[
D E

]
and Ã =

[
D F

]
.

These perturbations of A∗A shift some of the eigenvalues of (A∗A, A∗A). We call
the eigenvalues that moved away from 1 runaway eigenvalues. This section analyzes
these runaway eigenvalues, which govern the convergence of LSQR when a factoriza-
tion or an approximation of the perturbed matrix is used as a preconditioner.

To keep the notation simple, we define the symmetric product A∗A, where A is
an m-by-n matrix, to be the n-by-n zero matrix when m = 0.

4.1. Counting runaway eigenvalues. We begin by bounding the number of
runaway eigenvalues. We show that when B, C, E, and F have low rank, the general-
ized eigenvalue 1 has high multiplicity in these pencils. We also bound the multiplicity
of zero and indeterminate eigenvalues. The first result that we present bounds the
number of runaways (and other aspects of the structure of the spectrum) when we add
and/or subtract a symmetric product from a matrix. The result can be generalized
to also characterize indeterminate and infinite eigenvalues, but we omit this analysis
since it is not relevant to our applications.

Theorem 4.1. Let A ∈ Cm×n, and let B ∈ Ck×n and C ∈ Cr×n for some
1 ≤ k + r < n. The following claims hold:

1. In the pencil (A∗A, A∗A+B∗B−C∗C), at most k+ r generalized determined
eigenvalues may be different from 1 (counting multiplicities).

2. If 1 is not a generalized eigenvalue of the pencil (B∗B, C∗C) and A∗A +
B∗B−C∗C is full rank, then the multiplicity of the zero eigenvalue is exactly
dim null(A).

Proof. We prove most of the claims by showing that if v is an eigenvector of
the pencil (A∗A, A∗A + B∗B − C∗C) corresponding to the eigenvalue λ, then the
relationship of v to the null spaces of A and the relationship of B∗Bv to C∗Cv
determine λ in the following way:

v ∈ null(A) v �∈ null(A)
B∗Bv = C∗Cv indeterminate λ = 1
B∗Bv �= C∗Cv λ = 0 λ �= 0 and λ �= 1

If v ∈ null(A) and B∗Bv = C∗Cv, then clearly both A∗Av = 0 and (A∗A +
B∗B−C∗C)v = 0, so v is an indeterminate eigenvector of (A∗A, A∗A+B∗B−C∗C).

Let v �∈ null(A) be a vector such that B∗Bv = C∗Cv. Therefore,

(A∗A + B∗B − C∗C) v = A∗Av �= 0,

D
ow

nl
oa

de
d

05
/2

2/
13

 to
 1

29
.3

4.
20

.2
3.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SOLVING LINEAR LEAST SQUARES USING PERTURBED QR 679

so v must be a finite generalized eigenvector of (A∗A, A∗A + B∗B − C∗C) that cor-
responds to the eigenvalue 1.

If v ∈ null(A) and B∗Bv �= C∗Cv, then A∗Av = 0 and (A∗A + B∗B − C∗C)v =
A∗Av + B∗Bv −C∗Cv = B∗Bv − C∗Cv �= 0, so v is an eigenvector corresponding to
0.

If v �∈ null(A) and B∗Bv �= C∗Cv, then λ can be neither 0 nor 1. It cannot be
0 because A∗Av �= 0. It cannot be 1 because that would imply B∗Bv − C∗Cv = 0,
which is a contradiction to the assumption that B∗Bv �= C∗Cv.

To establish claim 1 notice that if v ∈ null(B) ∩ null(C), then clearly B∗Bv =
C∗Cv. So, if v is a determined generalized eigenvector corresponding to an eigenvalue
different from 1, then v /∈ null(B) ∩ null(C). Therefore, the dimension of the space
spanned by these vectors is bounded by dim((null(B) ∩ null(C))⊥) ≤ k + r, which
bounds the number of such eigenvalues.

We now turn our attention to claim 2. Assume that A∗A + B∗B − C∗C is full
rank and 1 is not a generalized eigenvalue of the pencil (B∗B, C∗C). The multiplicity
of the eigenvalue 0 follows from the fact that every 0 �= v ∈ null(A) satisfies A∗Av = 0
and (A∗A+B∗B−C∗C)v �= 0 (because A∗A+B∗B−C∗C has full rank). Therefore,
v is indeed a generalized eigenvector. The converse is true from the table and the fact
that B∗Bv �= C∗Cv for every vector v.

The second result of this section characterizes the generalized spectra of symmet-
ric products that are formed by modifying a set of columns in a given matrix A. We
denote the columns of A that are not modified in the factorization by D, the columns
that are to be modified by E, and the new value in those columns by F .

Theorem 4.2. Let D ∈ Cm×n, and let E ∈ Cm×k and F ∈ Cm×k for some
1 ≤ k < n. Let

A =
[
D E

] ∈ C
m×(n+k),

and let

Ã =
[
D F

] ∈ C
m×(n+k) .

In the pencil (A∗A, Ã∗Ã), at least n − k generalized finite eigenvalues are 1.
Proof. Expanding A∗A and Ã∗Ã, we obtain

A∗A =
[
D∗

E∗

] [
D E

]
=

[
D∗D D∗E
E∗D E∗E

]

and

Ã∗Ã =
[
D∗

F ∗

] [
D F

]
=

[
D∗D D∗F
F ∗D F ∗F

]
.

Let S be the vector space in Cn+k defined by

S =
{[

v
0

]
: v ∈ C

n such that E∗Dv = F ∗Dv

}
.

Clearly, dimS = dim null(E∗D−F ∗D) = n− rank(E∗D−F ∗D). The matrix E∗D−
F ∗D has k rows, so rank(E∗D − F ∗D) ≤ k, which implies dim S ≥ n − k.

D
ow

nl
oa

de
d

05
/2

2/
13

 to
 1

29
.3

4.
20

.2
3.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

680 HAIM AVRON, ESMOND NG, AND SIVAN TOLEDO

Let v be a vector such that E∗Dv = F ∗Dv. The vector [v
0] is a generalized

eigenvector of (A∗A, Ã∗Ã) corresponding to the eigenvalue 1, because

A∗A
[
v
0

]
=

[
D∗D D∗E
E∗D E∗E

] [
v
0

]
=

[
D∗Dv
E∗Dv

]

=
[
D∗Dv
F ∗Dv

]
=

[
D∗D D∗F
F ∗D F ∗F

] [
v
0

]
= Ã∗Ã

[
v
0

]
.

Since S is a subset of the generalized eigenspace of (A∗A, Ã∗Ã) corresponding to
the eigenvalue 1, the multiplicity of 1 as a generalized eigenvalue is at least dim S ≥
n − k.

4.2. Runaways in a preconditioned system. We now show that if a precon-
ditioner M is effective for a matrix A∗A, then it is also effective for the perturbed
matrices A∗A + B∗B − C∗C and Ã∗Ã. If the rank of the matrices B, C, E, and
F is low, then most of the generalized eigenvalues of the perturbed preconditioned
system will be bounded by the extreme generalized eigenvalues of the unperturbed
preconditioned system. In other words, the number of runaways is still guaranteed
to be small, but the nonrunaways are not necessarily at 1: they can move about the
interval whose size determines the condition number of the original preconditioned
system. Ng in [28, Theorem 2.3] shows that this spectral characterization guarantees
rapid convergence; in exact arithmetic, after an iteration for each row in B and C,
the convergence rate bound is governed by the unperturbed condition number (after
two iterations for every column exchanged for column perturbations).

Theorem 4.3. Let A ∈ Cm×n, and let B ∈ Ck×n and C ∈ Cr×n for some
1 ≤ k + r < n. Let M ∈ Cn×n be a Hermitian positive semidefinite matrix. Suppose
that null(M) ⊆ null(A∗A), null(M) ⊆ null(B∗B), and null(M) ⊆ null(C∗C). If

α ≤ λ1(A∗A, M) ≤ λrank(M)(A∗A, M) ≤ β,

then

α ≤ λr+1(A∗A + B∗B − C∗C, M) ≤ λrank(M)−k(A∗A + B∗B − C∗C, M) ≤ β.

Proof. Denote t = rank(M). We prove the lower bound using the second equality
of Theorem 3.4. Let p = rank(C); we have

λp+1(A∗A + B∗B − C∗C, M) = max
dim(U)=t−p
U⊥null(M)

min
x∈U

x∗(A∗A + B∗B − C∗C)x
x∗Mx

.

We prove the bound by showing that for one specific U , the ratio for any x ∈ U is
at least α. This implies that the minimum ratio in U is at least α, and that the
maximum over all admissible subspaces U is also at least α.

Let U = null(C∗C) ∩ range(M). Because M is Hermitian positive semidefinite,
null(M) ⊥ range(M). This implies that U ⊥ null(M). Since null(M) ⊆ null(C∗C),
we have dim(U) = t − p (here we use range(C∗C) ⊆ range(M)). For every x ∈ U we

D
ow

nl
oa

de
d

05
/2

2/
13

 to
 1

29
.3

4.
20

.2
3.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SOLVING LINEAR LEAST SQUARES USING PERTURBED QR 681

have x∗(A∗A + B∗B − C∗C)x = x∗(A∗A + B∗B)x ≥ x∗A∗Ax, so

x∗(A∗A + B∗B − C∗C)x
x∗Mx

≥ x∗A∗Ax

x∗Mx

≥ min
x∈range(M)

x∗A∗Ax

x∗Mx

= λ1(A∗A, M)
≥ α.

Therefore,

min
x∈U

x∗(A∗A + B∗B − C∗C)x
x∗Mx

≥ α,

so λp+1(A∗A + B∗B − C∗C, M) ≥ α. Since p = rank(C) ≤ r, we have shown that

λr+1(A∗A + B∗B − C∗C, M) ≥ λp+1(A∗A + B∗B − C∗C, M) ≥ α.

For the upper bound we use a similar strategy, but with the first equality of
Theorem 3.4. Let l = rank(B); we have

λt−l(A∗A + B∗B − C∗C, M) = min
dim(V)=t−l
V ⊥null(M)

max
x∈V

x∗(A∗A + B∗B − C∗C)x
x∗Mx

.

Let V = null(B∗B) ∩ range(M). Since M is Hermitian positive semidefinite, V ⊥
null(M) and dim(V) = (n − l) − (n − t) = t − l. For every x ∈ V we have x∗(A∗A +
B∗B − C∗C)x = x∗(A∗A − C∗C)x ≤ x∗A∗Ax, so

x∗(A∗A + B∗B − C∗C)x
x∗Mx

≤ x∗A∗Ax

x∗Mx

≤ max
x∈range(M)

x∗A∗Ax

x∗Mx

= λt(A∗A, M)
≤ β.

Since

max
x∈V

x∗(A∗A + B∗B − C∗C)x
x∗Mx

≤ β,

we have λt−l(A∗A+ B∗B−C∗C, M) ≤ β, and since l = rank(B) ≤ k, we have shown
that

λt−k(A∗A + B∗B − C∗C, M) ≤ λt−l(A∗A + B∗B − C∗C, M) ≤ β.

We now give the analogous theorem when columns are modified.
Theorem 4.4. Let D ∈ Cm×n, and let E ∈ Cm×k and F ∈ Cm×k for some

1 ≤ k < n. Let

A =
[
D E

] ∈ C
m×(n+k),

D
ow

nl
oa

de
d

05
/2

2/
13

 to
 1

29
.3

4.
20

.2
3.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

682 HAIM AVRON, ESMOND NG, AND SIVAN TOLEDO

and let

Ã =
[
D F

] ∈ C
m×(n+k).

Let M ∈ C(n+k)×(n+k) be a Hermitian positive semidefinite matrix, such that null(M) ⊆
null(A∗A) and null(M) ⊆ null(Ã∗Ã). Suppose that

α ≤ λ1(A∗A, M) ≤ λrank(M)(A∗A, M) ≤ β.

Then we have

α ≤ λk+1(Ã∗Ã, M) ≤ λrank(M)−k(Ã∗Ã, M) ≤ β.

Proof. We denote t = rank(M) and r = rank(E∗D − F ∗D) ≤ k (because E∗D −
F ∗D has k rows). We prove both sides by applying Theorem 3.4. We define the linear
subspace of Cn+k:

U =
{[

v
0

]
: v ∈ C

n and E∗Dv = F ∗Dv

}
∩ range(M).

Clearly, U is a linear space and U ⊥ null(M). For any [v
0] ∈ null(M), the vector

v ∈ Cn satisfies E∗Dv = F ∗Dv = 0, because null(M) ⊆ null(A∗A) and null(M) ⊆
null(Ã∗Ã). This implies that the set of v’s for which v ∈ null(E∗D − F ∗D) contains
the set of v’s for which [v

0] ∈ null(M). This allows us to determine the dimension of
U :

dim(U) = dim null(E∗D − F ∗D) − dim
({

v ∈ C
n :

[
v
0

]
∈ null(M)

})
= (n − r) − (n − t)
= t − r.

It is easy to see that for every x ∈ U we have A∗Ax = Ã∗Ãx, so

x∗Ã∗Ãx

x∗Mx
=

x∗A∗Ax

x∗Mx

≥ min
x∈range(M)

x∗A∗Ax

x∗Mx

= λ1(A∗A, M)
≥ α.

Since, by the second equality of Theorem 3.4,

λr+1(Ã∗Ã, M) = max
dim U=t−r
U⊥null(M)

min
x∈U

x∗Ã∗Ãx

x∗Mx
,

we conclude that λk+1(Ã∗Ã, M) ≥ λr+1(Ã∗Ã, M) ≥ α. Similarly, for every x ∈ U ,

x∗Ã∗Ãx

x∗Mx
=

x∗A∗Ax

x∗Mx

≤ max
x∈range(M)

x∗A∗Ax

x∗Mx

= λt(A∗A, M)
≤ β.

D
ow

nl
oa

de
d

05
/2

2/
13

 to
 1

29
.3

4.
20

.2
3.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SOLVING LINEAR LEAST SQUARES USING PERTURBED QR 683

Since, by the first equality of Theorem 3.4,

λt−r(Ã∗Ã, M) = min
dim U=t−r
U⊥null(M)

max
x∈U

x∗Ã∗Ãx

x∗Mx
,

we conclude that λt−k(Ã∗Ã, M) ≤ λt−r(Ã∗Ã, M) ≤ β.

4.3. Using the simple spectrum of A∗A to bound the magnitude of
runaways. In some cases it is useful to know that runaway eigenvalues are either
very small or very close to 1. For example, we want to ensure that if we perturb an
ill-conditioned A∗A to a well-conditioned A∗A + B∗B, the numerical rank of A∗A
and of (A∗A, A∗A + B∗B) are the same, up to an appropriate relaxation of the rank
threshold. We need the following lemma.

Lemma 4.5. Suppose that S ∈ C
n×n is a Hermitian matrix and that T ∈ C

n×n

is a Hermitian positive definite matrix. For all 1 ≤ k ≤ n we have

λk(S)
λn(T)

≤ λk(S, T) ≤ λk(S)
λ1(T)

.

Proof. Let u1, . . . , un be a set of orthonormal eigenvectors corresponding to
λ1(S), . . . , λn(S). Using subspaces Uk = span {u1, . . . , uk} and Vk = sp {uk, . . . , un}
in the first inequality and second inequality of Theorem 3.4, respectively, gives the
two bounds.

We now state and prove the main results.
Theorem 4.6. Let A ∈ Cm×n, and let B ∈ Ck×n for some 1 ≤ k < n. Assume

that A∗A + B∗B is full rank. Denote α = ||A∗A||2. If there are d eigenvalues of A∗A
that are smaller than or equal to εα for some 1 > ε > 0, then d generalized eigenvalues
of (A∗A, A∗A + B∗B) are smaller than or equal to εκ(A∗A + B∗B).

Proof. We denote S = A∗A and T = A∗A + B∗B. We first note that λn(T) ≥
λn(S) ≥ α. By the lemma,

λk(S, T) ≤ λk(S)
λ1(T)

=
λk(S)λn(T)
λn(T)λ1(T)

=
λk(S)
λn(T)

κ(T)

≤ λk(S)
α

κ(T).

For any k such that λk(S) ≤ εα, we obtain the desired inequality.
Theorem 4.7. Let A ∈ Cm×n, and let B ∈ Ck×n for some 1 ≤ k < n. Assume

that A∗A + B∗B is full rank. Denote α = ||A∗A||2 and suppose that ||B∗B||2 ≤ γα.
If there are d eigenvalues of A∗A that are larger than or equal to ηα for some 1 >
η > 0, then d generalized eigenvalues of (A∗A, A∗A + B∗B) are larger than or equal
to η/(1 + γ).

Proof. We use the same notation as in the previous proof. We have λn(T) ≤
||A∗A||2 + ||B∗B||2 ≤ (1 + γ)α. Therefore,

λk(S, T) ≥ λk(S)
λn(T)

≥ λk(S)
(1 + γ)α

,

D
ow

nl
oa

de
d

05
/2

2/
13

 to
 1

29
.3

4.
20

.2
3.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

684 HAIM AVRON, ESMOND NG, AND SIVAN TOLEDO

which gives the desired bound for any k such that λk(S) ≥ ηα.
The theorems show that the numerical rank of the preconditioned system is the

same as that of the original system, up to an appropriate relaxation of the rank
threshold. Suppose that after the dth eigenvalue there is a big gap. That is, there
are d eigenvalues of A∗A that are smaller than εα, and the remaining n− d are larger
than ηα, where α is the largest eigenvalue of A∗A. The ratio between the largest
eigenvalue and the dth smallest is at least 1/ε, and between the largest eigenvalue
and the (n − d)th largest is at most 1/η. Recall that 1 is the largest eigenvalue of
(A∗A, A∗A + B∗B). Therefore, the ratio between the largest eigenvalue of the pencil
and the d smallest is at least κ−1(A∗A + B∗B)/ε, and the ratio between the largest
eigenvalue of (A∗A, A∗A+B∗B) and the n−d largest eigenvalues is at most (1+γ)/η.
Therefore, if B∗B is not too large relative to A∗A, and A∗A+B∗B is well conditioned,
then the ratios are roughly maintained.

In section 6 below we present an efficient algorithm that finds a B such that
||B∗B||2 ≤ m||A∗A||2 and κ(A∗A + B∗B) ≤ τ2, where τ ≥ n + 1 is a given threshold,
and a slightly more expensive algorithm that requires only τ ≥ √

2n and guarantees
||B∗B||2 ≤ ||A∗A||2.

5. Applications to least-squares solvers. This section describes applications
of the theory to the solution of linear least-squares problems. We show that we can
often obtain useful algorithms by combining a sparse QR factorization of a modified
matrix with a preconditioned iterative solver. We focus on improving the utility and
efficiency of sparse QR factorizations and not on the more general problem of finding
effective preconditioners.

In all the applications, we compute the R factor of a QR factorization of a modified
matrix and use it as a preconditioner in LSQR. Our spectral theory in section 4 shows
that the preconditioned system has only a few runaway eigenvalues. We then can use
[28, Theorem 2.3] to bound the number of iterations.

5.1. Dropping dense rows for sparsity. The R factor of A = QR is also the
Cholesky factor of A∗A. Rows of A that are fairly dense cause A∗A to be fairly dense.
Hence, R will be dense. In the extreme case, a completely dense row in A causes A∗A
and R to be completely dense (unless there are exact cancellations, which are rare).
This happens even if the other rows of A all have a single nonzero.

If A has a few rows that are fairly dense, we recommend that they be dropped
before the QR factorization starts. More precisely, these rows should be dropped
even before the column ordering is computed. If we dropped k dense rows, we expect
LSQR to converge in at most k + 1 iterations (see subsection 2.1).

Heath [23] proposed a different method for handling dense rows (see also [7]
and [27]), in which the dominant costs are the factorization of the first m rows of
A (the same is true in our approach), k triangular solves with R∗, and a dense QR
factorization of an (n + k)-by-k matrix. In most cases (e.g., when R is denser than
A), the asymptotic cost of each of the two methods is similar; there are also cases in
which one method is cheaper than the other (in both directions).

5.2. Updating and downdating. Updating a least-squares problem involves
adding rows to the coefficient matrix A and to the right-hand-side b. Downdating
involves dropping rows. Suppose that we factored the original coefficient matrix A,
that updating added additional rows represented by a matrix B, and that downdating
removed rows of A that are represented by a matrix C. The coefficient matrix of the
normal equations of the updated/downdated problem is A∗A + B∗B −C∗C. As long

D
ow

nl
oa

de
d

05
/2

2/
13

 to
 1

29
.3

4.
20

.2
3.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SOLVING LINEAR LEAST SQUARES USING PERTURBED QR 685

as this coefficient matrix is full rank and the number of rows in B and C is small,
Theorem 4.1 guarantees that the R factor of A is an effective preconditioner.

5.3. Adding rows to solve numerically rank deficient problems. We pro-
pose two methods for solving numerically rank deficient problems.

5.3.1. Using an iterative method. When A is rank deficient, there is an entire
subspace of minimizers of ‖Ax − b‖2. When A is full rank but highly ill conditioned,
there is a single minimizer, but there are many x’s that give almost the same residual
norm. Of these minimizers or almost-minimizers, the user usually prefers a solution
with a small norm.

The factorization A = QR is not useful for solving rank deficient and ill-conditioned
least-squares problems. The factorization is backward stable, but the computed R is
ill conditioned. This usually causes the solver to produce a solution x = R−1Q∗b
with a huge norm. This also happens if we use R as a preconditioner in LSQR: the
iterations stop after one or two steps with a solution with a huge norm. Even after
the first iteration the solution vector has a huge norm.

The singular-value decomposition (SVD) and rank revealing QR factorizations
can produce minimal-norm solutions, but they are difficult to compute. The SVD
approach is not practical in the sparse case. The rank revealing QR approach is
practical [30, 5, 2, 12, 23], but sparse rank revealing QR factorizations are complex,
and only a few implementations are available.

The approach that we propose here is to add rows to the coefficient matrix A
to avoid ill-conditioning in R. That is, we dynamically add rows to A to avoid ill-
conditioning in R. The factor R is no longer the R factor of A but the R factor of
a perturbed matrix [A

B], where B consists of the added rows. Section 6 outlines an
algorithm for dynamically adding rows to A so that the R factor of the perturbed
matrix will not be ill conditioned.

The well-conditioned R factor of the perturbed matrix is then used as a precon-
ditioner for LSQR. The convergence threshold of LSQR allows the user to control a
trade-off between the norm of the residual and the norm of the solution. Suppose that
the user wishes to find a minimizer of minx ‖Āx− b‖2, where Ā has the same SVD as
A except that the k smallest singular values of A are replaced by 0. When LSQR’s
convergence threshold is larger than r = σn−k/σ1, it computes such a minimizer [29].

When the R factor of [A
B] is used as a preconditioner, correct truncation at σn−k

depends on the preconditioned system preserving the singular gap above σn−k. This
is why the results in subsection 4.3 are important: they guarantee this preservation.

In exact arithmetic, the number of rows in B bounds the number of iterations in
LSQR. It may be smaller if the runaway eigenvalues are clustered.

5.3.2. Using a direct method. If the number of rows in B is exactly the same
as the number of singular values we wish to truncate, and if A∗A + B∗B is well con-
ditioned, then a direct method can find an approximation of a small-norm minimizer.
Let A ∈ Cm×n, and let B ∈ Ck×n. Let [A

B] = QR and P =
[

Im×m 0m×k

]
. We

show that if the k smallest singular values of A are small enough, then x̂ = R−1(PQ)∗b
is close to a minimizer of minx ‖Āx − b‖2, as defined above.

We start with a simple lemma that forms the basis of our method.
Lemma 5.1. Let A ∈ Cm×n, and let B ∈ Ck×n. Suppose that rank(A) = n − k

and that [A
B] has full rank. Let [A

B] = QR be a QR factorization of [A
B]. All the

singular values of AR−1 are exactly 0 or 1.

D
ow

nl
oa

de
d

05
/2

2/
13

 to
 1

29
.3

4.
20

.2
3.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

686 HAIM AVRON, ESMOND NG, AND SIVAN TOLEDO

Proof. The singular values of AR−1 are the square root of the eigenvalues of
R−∗A∗AR−1. The eigenvalues R−∗A∗AR−1 are exactly the eigenvalues of (A∗A, R∗R).
It is easy to see that R∗R = A∗A+B∗B. If we apply claim 2 of Theorem 4.1, we con-
clude that the multiplicity of the 0 eigenvalue of (A∗A, R∗R) is exactly dim null(A) =
n − rank(A) = k, and the multiplicity of the 1 eigenvalue of (A∗A, R∗R) is exactly
n − rank(B) = n − k. Therefore, n eigenvalues of (A∗A, R∗R), which are all the
eigenvalues of (A∗A, R∗R), are either 0 or 1.

We now show our claim for the case that A is exactly rank deficient by k, so
Ā = A. This is a simpler case than the case where the k smallest singular values are
small but not necessarily zero. In this case the vector x̂ = R−1(PQ)∗b is an exact
minimizer of minx ‖Āx − b‖2.

Lemma 5.2. Let A ∈ Cm×n, B ∈ Ck×n, and b ∈ Cm×r. Suppose that rank(A) =
n − k and [A

B] has full rank. Let [A
B] = QR be a QR factorization of [A

B]. Let P =[
Im×m 0m×k

]
. The vector x̂ = R−1(PQ)∗b is a minimizer of minx ‖Ax − b‖2.

Proof. We show that ŷ = Rx̂ = (PQ)∗b is the minimum norm solution to
miny ‖AR−1y − b‖2. The minimum solution norm to miny ‖AR−1y − b‖2 is

ymin =
(
AR−1

)+
b.

According to Lemma 5.1, the singular values of AR−1 are exactly 0 and 1. Therefore,(
AR−1

)+
=

(
AR−1

)∗
.

Notice that

AR−1 = P [A
B] R−1 = PQRR−1 = PQ.

Therefore, ymin = (PQ)∗b = ŷ.
We now analyze the case where A is has k small but possibly nonzero singular

values. In this case, x̂ = R−1(PQ)∗b is not necessarily a minimizer of minx ‖Ax− b‖2

and, more importantly, not even a minimizer of minx ‖Āx − b‖2. But if
[

Ā
B

]
= Q̄R̄,

then the vector ẑ = R̄−1(PQ̄)∗b is a minimizer of minx ‖Āx − b‖2. If the truncated
singular values are small enough, then the pairs (Q, R) and (Q̄, R̄) will be closely
related because they are QR factorizations of nearby matrices. Therefore, x̂ and ẑ
should not be too far from each other. The next theorem shows that this is indeed
the case.

Theorem 5.3. Let A ∈ Cm×n, B ∈ Ck×n, and b ∈ Cm. Let Ā be the matrix
with the same SVD as A except that the k smallest singular values are truncated to
0. Denote

C = [A
B] and D =

[
Ā
B

]
.

Assume that C and D are both full rank. Let C = QR be a QR factorization of C
and D = Q̄R̄ be the QR factorization of D. Denote

δ =
σn−k+1(A)
σmin(C)

,

where σn−k(A) is the kth smallest singular value of A and σmin(C) is the smallest
singular value of C. Let P =

[
Im×m 0m×k

]
. Define the solutions

x̂ = R−1(PQ)∗b

D
ow

nl
oa

de
d

05
/2

2/
13

 to
 1

29
.3

4.
20

.2
3.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SOLVING LINEAR LEAST SQUARES USING PERTURBED QR 687

and

ẑ = R̄−1(PQ̄)∗b.

Then, provided that δ < 1,

‖x̂ − ẑ‖2

‖x̂‖2
≤ δ

1 − δ

(
2 + (κ(R) + 1)

‖r‖2

‖R‖2‖ẑ‖2

)
,

where

r = b − Ax̂.

Before we prove the theorem, we explain what it means. The algorithm computes
x̂ and can therefore compute r = b−Ax̂. The theorem states that if δ is small (which
happens when C is well conditioned and A has k tiny singular values), if R is not ill
conditioned and not too large, and if the norm of r is not too large, then x̂ is a good
approximation of the minimizer ẑ that we seek. The quantity that is hard to estimate
in practice is δ, which depends on the small singular values of A. Therefore, the
method is useful mainly when we know a priori the number of small singular values
of A.

Proof. Notice that x̂ is the solution of minx ‖Cx − P ∗b‖2 and that ẑ is the
solution of minx ‖Dx − P ∗b‖2. Furthermore, we can write D = C + ΔC, where
‖ΔC‖2 ≤ σn−k+1(A). If we define ε = σn−k+1(A)/‖C‖2, then κ(C)ε = δ < 1 and
‖ΔC‖2 ≤ ε‖C‖2. We can apply a variant of result from Wedin [31] (see [25, Theorem
2.1] for the specific version that we use) and conclude that

‖x̂ − ẑ‖2

‖x̂‖2
≤ δ

1 − δ

(
2 + (κ(R) + 1)

‖r‖2

‖R‖2‖ẑ‖2

)
.

5.4. Solving what-if scenarios. The theory presented in this paper allows us
to efficiently solve what-if scenarios of the following type. We are given a least squares
problem min ‖Ax− b‖2. We already computed the minimizer using the R factor of A
or using some preconditioners. Now we want to know how the solution would change
if we fix some of its entries, without loss of generality xn−k+1 = cn−k+1, . . . , xn = cn,
where the ci’s are some constants. We denote A =

[
D E

]
, where E consists of k

columns. To solve the what-if scenario, we need to solve min ‖Dx1:n−k − (b − Ec)‖2.
We solve instead min ‖Ãx − (b − Ec)‖2, where Ã =

[
D 0

]
, a matrix that we obtain

from A by replacing the last k columns by zeros. Clearly, the last k entries of x do
not influence the norm of the residual in this system, so we can ignore them. By
Theorem 4.2, for small k the factor or the preconditioner of A is effective for this
least-squares system as well.

6. An algorithm for perturbing to improve the conditioning. In this
section we show an algorithm that perturbs a given input matrix A to improve its
conditioning. The algorithm adds only rows, which all have a single nonzero. The
algorithm finds the perturbation during and after a standard Householder QR fac-
torization (the technique applies to any column-oriented QR algorithm). Therefore,
it can be easily integrated into a sparse QR factorization code; unlike rank revealing
QR algorithms, our algorithm does not exchange columns.

The goal of the algorithm is to build an R whose condition number is below a
given threshold τ , with as few modifications as possible. More specifically, the goal is
to find a B ∈ Ck×n and upper triangular R ∈ Cn×n such that

D
ow

nl
oa

de
d

05
/2

2/
13

 to
 1

29
.3

4.
20

.2
3.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

688 HAIM AVRON, ESMOND NG, AND SIVAN TOLEDO

1. A∗A + B∗B = R∗R,
2. the Cholesky factors of A∗A and A∗A+B∗B are structurally the same (except

for accidental cancellations),
3. κ(R) ≤ τ , and
4. k is small.

We ensure that the first goal is met as follows. If, during the factorization of column
j, the algorithm finds that it needs to add a row to B, it adds a row with zeros in
columns 1 to j − 1. This ensures that the first j − 1 columns computed so far are
also the factor of the newly perturbed matrix. (In fact, it always adds a row with a
nonzero only in column j.)

By restricting the number of nonzeros in each row of B to one, we automatically
achieve the second goal, since B∗B is diagonal.

The algorithm works in two stages. In the first stage, the matrix is perturbed
during the Householder QR factorization. In step j, we factor column j and then run
a condition-number estimator to detect ill-conditioning in the leading j-by-j block
of R. If this block is ill conditioned, we add a row to B, which causes only Rj,j

to change. A trivial condition estimation technique is to estimate the large singular
value of A using its one or infinity norm and then to estimate the smallest singular
value using the smallest diagonal element in R. This method, however, is not always
reliable. There are incremental condition estimators for triangular matrices that are
efficient and more reliable [4, 6, 3, 16].

Let cA = ||A||1 be an estimation of the norm of A. Other norms can be used
and will modify some of the values below. All the rows of B will be completely zero
except a single nonzero, which we set to ±cA. Each row of B has a different nonzero
column. It follows that B∗B is diagonal to ||B||2 = cA. Therefore,

||R||2 =
√
||R∗R||2 =

√
||A∗A + B∗B||2

≤
√
||A∗A||2 + ||B∗B||2

≤
√

nc2
A + c2

A

≤ cA

√
n + 1.

Therefore, we add a row to B whenever the incremental condition estimator sus-
pects that ||R−1||2 > τ/cA

√
n + 1. If we estimate cA = ||A||2 directly (using power

iteration), we need only to ensure that ||R−1||2 > τ/cA

√
2, so we can use fewer per-

turbations.
Condition estimators can fail to detect ill-conditioning. For example, if we esti-

mate ‖R−1‖2 ≈ 1/ minj Rj,j , it will not perturb the following matrix at all. Let

Tn(c) = diag(1, s, . . . , sn−1)

⎡
⎢⎢⎢⎢⎢⎢⎣

1 −c −c · · · −c
0 1 −c · · · −c

. . .
...

...
... 1 −c
0 . . . 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

with c2 + s2 = 1 with c, s > 0. For n = 100 the smallest diagonal value of Tn(0.2) is
0.13, but its smallest singular value is O(10−8) [22].

Better condition estimators will not fail on this example, but they may fail on
others. It is relatively easy to safeguard our algorithm against failures of the esti-
mator. A few inverse iterations on R∗R will reliably estimate the smallest singular

D
ow

nl
oa

de
d

05
/2

2/
13

 to
 1

29
.3

4.
20

.2
3.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SOLVING LINEAR LEAST SQUARES USING PERTURBED QR 689

value. Inverse iteration is cheap because R is triangular. If we find that R is still ill
conditioned, we add more rows to B and rotate them into R using Givens rotations.
The resulting factorization remains backward stable.

To find a perturbation that will reduce the number of tiny singular values, we find
an approximation of the smallest singular value and a corresponding right singular
vector of R. Suppose that σ and v are such a pair, with ||v||2 = 1 and ||Rv||2 = σ.
Let i be the index of the largest absolute value in v. Since ||v||2 = 1 we must have
|vi| ≥ 1/

√
n. We add to B a row b∗:

bj =

{
cA, j = i,

0, j �= i.

We now have ∥∥∥∥
[

R
b∗

]
v

∥∥∥∥
2

≥ ‖b∗v‖2

= |b∗v|
≥ cAvi

≥ cA/
√

n.

If τ ≥ n + 1, then ∥∥∥∥
[

R
b∗

]
v

∥∥∥∥
2

≥
√

n + 1cA

τ
,

and the number of singular values that are smaller than
√

n + 1cA/τ is reduced by
one. We repeat the process until all singular values are large enough. If we estimate
cA = ||A||2 directly (using power iteration), then the constraint on τ can be relaxed
to τ >

√
2n.

The combination of a less-than-perfect condition estimation with the kinds of
perturbations that we use during the factorization (rows with a single nonzero) can
potentially lead to a cascade of unnecessary perturbations. Suppose that the jth
column of the matrix is dependent (or almost dependent) on the first j − 1 columns,
but that the condition estimator missed this and estimated that the leading j-by-j
block of R is well conditioned. Suppose further that after the factorization of column
j + 1, the condition estimator finds that the leading (j + 1)-by-(j + 1) block of R
is ill conditioned (it is). Our algorithm will perturb column j + 1, which does not
improve the conditioning of R. This can keep on going. From now on, R remains ill
conditioned, so whenever the condition estimator finds that it is, our algorithm will
perturb another column. These perturbations do not improve the conditioning, but
they slow down the iterative solver. Situations like these are unlikely, but, in principle,
they are possible. Therefore, we invoke the condition estimator before and after each
perturbation. If a perturbation does not significantly improve the conditioning, we
refrain from further perturbations. We will fix the ill conditioning by perturbing R
after it is computed (it may also be possible to use inverse iteration to produce a more
reliable perturbation during the factorization rather than wait until it is complete).

7. Numerical examples. In this section we give simple numerical examples for
the applications described in section 5. The goal is to illustrate the benefits of the
tools developed in this paper.

D
ow

nl
oa

de
d

05
/2

2/
13

 to
 1

29
.3

4.
20

.2
3.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

690 HAIM AVRON, ESMOND NG, AND SIVAN TOLEDO

7.1. Dropping dense rows for sparsity; updating. Consider the matrix

A =

⎡
⎢⎢⎢⎣

α1

. . .
αn

β1 · · · βn

⎤
⎥⎥⎥⎦

for some (real or complex) α1, . . . , αn and β1, . . . , βn. Suppose that we want to find
the least-squares solution to minx ||Ax− b||2. The R factor of the QR factorization of
A will be completely full, because A∗A is full. Therefore, solving the equation using
the QR factorization will take Θ(n3) time. If the equation is solved using LSQR,
then every iteration will cost Θ(n) operations, but the number of iterations done
is proportional to κ(A). The value of κ(A) can be very large for certain values of
α1, . . . , αn and β1, . . . , βn.

Our analysis suggests a new method for solving the problem. We can remove the
last row of A and form the preconditioner R = diag(α1, . . . , αn). Our analysis shows
that when solving the equation using LSQR preconditioned by R, only 2 iterations
will be done. Each iteration still costs Θ(n) operations, amounting to a linear time
algorithm for solving the equation. In general, if there are m n full rows, an
application of LSQR with a preconditioner that is only the diagonal will converge in
m iterations, each of them with Θ(nm) operations. The total running time will be
Θ(nm2), while regular LSQR will complete in Θ(n2m) operations, and a QR-based
algorithm will complete in Θ(n3) operations. With Heath’s method [23] the total
running time will be Θ((n + m)m2). We conducted experiments that validate this
analysis.

7.2. Adding rows to solve rank deficient problems. Consider the matrix
A and vector b generated by the following commands in MATLAB:

rand(’state’, 0);
m = ceil(n/4);
A0 = rand(n, m);
[U,Sigma1,V] = svd(A0, 0);
Sigma = diag(10 .^ [linspace(1, -4, m-1) -12]);
A1 = U*Sigma*V’;
A = [A1 rand(n, m)];
b = rand(m, 1);

The code builds an n × n
2 matrix A, which is ill conditioned (κ ≈ 1012 and norm

around 1). We wish to solve the least squares problem min ‖Ax− b‖2. The matrix is
built so that column n/4 is close to a linear combination of the columns to its left.
The first command resets the random number generator so that each run will generate
the same matrix and vector.

A QR factorization without pivoting generates a very small diagonal value (around
10−12) in position (n

4 , n
4) of R. Using the factorization to solve minx ‖Ax−b‖2 leads to

a solution with norm around 1011. In many cases, the desired solution is the minimizer
in the subspace that is orthogonal to right singular vectors of A that correspond to
singular values around 10−12 and smaller. We refer to such a solution as a truncated
solution. A QR factorization without pivoting is useless for finding the truncated
solution or an approximation of it.

One way to compute a low-norm almost-minimizer of the truncated problem is
to use a rank revealing QR. If A is dense (as in our example), this is an effective

D
ow

nl
oa

de
d

05
/2

2/
13

 to
 1

29
.3

4.
20

.2
3.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SOLVING LINEAR LEAST SQUARES USING PERTURBED QR 691

solution. Rank revealing QR factorization algorithms have also been developed for
sparse matrices, but they are complex and sometimes expensive (since they cannot
control sparsity as well as non–rank revealing algorithms) [12, 30, 5].

In our example, running LSQR with a convergence threshold of r = 10−10 (for
n = 100) led to an acceptable solution (with norm around 103). With r = 10−15,
LSQR returned a solution with norm 1011, which is clearly not a good truncated
solution. Due to the ill-conditioning of A, many iterations are required for LSQR
to converge. Even with r = 10−10, LSQR converged slowly, taking 423 iterations to
converge.

We propose using instead the algorithm described in section 6 to generate an effec-
tive preconditioner that allows LSQR to solve the truncated problem. We generated
two preconditioners using the two versions of our algorithm, one with cA = ||A||1 and
the other with cA = ||A||2. We set the threshold τ to 1010. In both cases a single row
was added with a single nonzero in column 25. The need to add a row was detected,
in both cases, using the incremental condition estimator during the initial QR factor-
ization. With cA = ||A||1 the condition number of the factor was κ(R) ≈ 3.41 × 105,
while with cA = ||A||2 the condition number was κ(R) ≈ 1.78 × 105. When using R
as a preconditioner to LSQR with threshold 10−10, a single iteration was enough to
converge in both cases. The norm of the minimizer x was of order 103 in both cases.

The different methods that produced solutions with norm around 103 produced
different solution vectors x with slightly different norms (even the two preconditioned
LSQR methods). To see why, let v be the singular vector that corresponds to the
singular value 10−12. LSQR uses the norm ||A∗(Ax − b)||2 as a stopping criterion.
Adding ρv to a vector x changes ||A∗(Ax − b)||2 by at most ρ × 10−24, so even a
large ρ rarely affects this stopping criterion. Therefore, different methods can return
different solutions, say, x and x + ρv, possibly with ρ � ‖x‖. Such solutions are very
different from each other but with norms and residual norms that both differ by at
most ρ× 10−12. Both solutions are good, but they are different; this is a reflection of
the ill-conditioning of the problem.

8. Conclusions. This paper presented a theoretical analysis of certain precon-
ditioned least-squares solvers. The solvers use a preconditioner that is related to a
low-rank perturbation of the coefficient matrix. The perturbation can be the result of
an updating or downdating (following the computation of a preconditioner or a factor
of the original coefficient matrix), of dropping dense rows, or of an attempt to make
the preconditioner well conditioned when the coefficient matrix is ill conditioned or
rank deficient. We note that further research is required to determine how to drop
rows effectively in sparse QR factorizations; here we gave only evidence that this idea
can be effective, but we did not provide a row-dropping algorithm.

The paper also proposed a specific method to perturb a QR factorization of an
ill-conditioned or rank deficient matrix.

Our theoretical analysis uses a novel approach: we count the number of general-
ized eigenvalues that move away from a cluster of eigenvalues (sometimes consisting
only of the value 1) due to perturbations. This allows us to bound the number of
iterations in iterative least-squares solvers like LSQR, which are implicit versions of
conjugate gradients on the normal equations.

This approach complements the more common way of bounding iteration counts
in optimal Krylov-subspace solvers, which is based on bounding the condition number
of the preconditioned system.

We have also presented limited experimental results, which are meant to illustrate

D
ow

nl
oa

de
d

05
/2

2/
13

 to
 1

29
.3

4.
20

.2
3.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

692 HAIM AVRON, ESMOND NG, AND SIVAN TOLEDO

the use of the techniques rather than establish their effectiveness or efficiency. We
plan to design and implement a sparse QR factorization code that will incorporate
these techniques, but this is beyond the scope of this paper. Once we have an imple-
mentation for the sparse case, we plan to perform extensive testing of the technique
that this paper analyzes theoretically.

Acknowledgments. This research was partially motivated by discussions with
Jason Riedy concerning theoretical analysis of diagonal perturbations in sparse LU
factorizations. We thank Jason for these discussions. Thanks to Michael Saunders
for pointing out [19] to us. We also would like to thank the referees for their valuable
comments.

REFERENCES

[1] H. Avron, E. Ng, and S. Toledo, A Generalized Courant-Fischer Minimax Theorem, Tech.
report, Tel-Aviv University, Tel-Aviv, Israel, 2008.

[2] J. L. Barlow and U. B. Vemulapati, Rank detection methods for sparse matrices, SIAM J.
Matrix Anal. Appl., 13 (1992), pp. 1279–1297.

[3] C. Bischof and P. Tang, LAPACK Working Note 33: Robust Incremental Condition Esti-
mation, Tech. report, University of Tennessee, Knoxville, TN, 1991.

[4] C. H. Bischof, Incremental condition estimation, SIAM J. Matrix Anal. Appl., 11 (1990),
pp. 312–322.

[5] C. H. Bischof and P. C. Hansen, Structure-preserving and rank-revealing QR-factorizations,
SIAM J. Sci. Statist. Comput., 12 (1991), pp. 1332–1350.

[6] C. H. Bischof, J. G. Lewis, and D. J. Pierce, Incremental condition estimation for sparse
matrices, SIAM J. Matrix Anal. Appl., 11 (1990), pp. 644–659.

[7] Å. Björck, A general updating algorithm for constrained linear least squares problems, SIAM
J. Sci. Statist. Comput., 5 (1984), pp. 394–402.

[8] Å Björck, Numerical Methods for Least Squares Problems, SIAM, Philadelphia, 1996.
[9] I. Brainman and S. Toledo, Nested-dissection orderings for sparse LU with partial pivoting, in

Proceedings of the 10th SIAM Conference on Parallel Processing for Scientific Computing,
Norfolk, VA, 2001, CD-ROM, SIAM, Philadelphia, 2001.

[10] T. F. Chan, Rank revealing QR factorizations, Linear Algebra Appl., 88/89 (1987), pp. 67–82.
[11] T. F. Chan and P. C. Hansen, Some applications of the rank revealing QR factorization,

SIAM J. Sci. Statist. Comput., 13 (1992), pp. 727–741.
[12] S. Chandrasekaran and I. C. F. Ipsen, On rank-revealing factorisations, SIAM J. Matrix

Anal. Appl., 15 (1994), pp. 592–622.
[13] P. Concus, G. H. Golub, and D. P. O’Leary, A generalized conjugate gradient method for the

numerical solution of elliptic partial differential equations, in Sparse Matrix Computations,
J. R. Bunch and D. J. Rose, eds., Academic Press, New York, 1976, pp. 309–332.

[14] T. A. Davis, Direct Methods for Sparse Linear Systems, Fundamentals of Algorithms 2, SIAM,
Philadelphia, 2006.

[15] T. A. Davis, J. R. Gilbert, S. I. Larimore, and E. G. Ng, A Column Approximate Mini-
mum Degree Ordering Algorithm, Tech. report TR-00-005, Department of Computer and
Information Science and Engineering, University of Florida, Gainesville, FL, 2000.

[16] I. S. Duff and C. Vömel, Incremental norm estimation for dense and sparse matrices, BIT,
42 (2002), pp. 300–322.

[17] L. V. Foster, The probability of large diagonal elements in the QR factorization, SIAM J.
Sci. Statist. Comput., 11 (1990), pp. 531–544.

[18] A. George and M. T. Heath, Solution of sparse linear least squares problems using Givens
rotations, Linear Algebra Appl., 34 (1980), pp. 69–83.

[19] P. E. Gill, W. Murray, M. A. Saunders, J. A. Tomlin, and M. H. Wright, On pro-
jected Newton barrier methods for linear programming and an equivalence to Karmarkar’s
projective method, Math. Programming, 36 (1986), pp. 183–209.

[20] G. H. Golub, Numerical methods for solving linear least squares problems, Numer. Math., 7
(1965), pp. 206–216.

[21] G. H. Golub and W. Kahan, Calculating the singular values and pseudo-inverse of a matrix,
SIAM J. Numer. Anal., 2 (1965), pp. 205–224.

D
ow

nl
oa

de
d

05
/2

2/
13

 to
 1

29
.3

4.
20

.2
3.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SOLVING LINEAR LEAST SQUARES USING PERTURBED QR 693

[22] G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed., The Johns Hopkins Uni-
versity Press, Baltimore, MD, 1996.

[23] M. T. Heath, Some extensions of an algorithm for sparse linear least squares problems, SIAM
J. Sci. Statist. Comput., 3 (1982), pp. 223–237.

[24] M. R. Hestenes and E. Stiefel, Methods of conjugate gradients for solving linear systems,
J. Research Nat. Bur. Standards, 49 (1952), pp. 409–436.

[25] N. J. Higham, Accuracy and Stability of Numerical Algorithms, SIAM, Philadelphia, 1996.
[26] S.-M. Lu and J. L. Barlow, Multifrontal computation with the orthogonal factors of sparse

matrices, SIAM J. Matrix Anal. Appl., 17 (1996), pp. 658–679.
[27] E. Ng, A scheme for handling rank-deficiency in the solution of sparse linear least squares

problems, SIAM J. Sci. Statist. Comput., 12 (1991), pp. 1173–1183.
[28] M. K. Ng, Iterative Methods for Toeplitz Systems (Numerical Mathematics and Scientific

Computation), Oxford University Press, New York, 2004.
[29] C. C. Paige and M. A. Saunders, LSQR: An algorithm for sparse linear equations and sparse

least squares, ACM Trans. Math. Software, 8 (1982), pp. 43–71.
[30] D. J. Pierce and J. G. Lewis, Sparse multifrontal rank revealing QR factorization, SIAM J.

Matrix Anal. Appl., 18 (1997), pp. 159–180.
[31] P.Å. Wedin, Perturbation theory for pseudo-inverses, BIT, 13 (1973), pp. 217–232.

D
ow

nl
oa

de
d

05
/2

2/
13

 to
 1

29
.3

4.
20

.2
3.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

